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Abstract. The objective of this work was
::
is to generate and evaluate regional rainfall thresholds obtained

:::::
obtain from a combi-

nation of high-resolution gridded precipitation
::::::
rainfall data (PISCOpd_Op), developed by the National Service of Meteorology

and Hydrology of Peru (SENAMHI), and information from observed shallow landslide events. The landslide data were asso-

ciated with rainfall data, determining triggering and non-triggering rainfall events with rainfall properties from which rainfall

thresholds were
:::
are

:
determined. The validation of the performance of the thresholds was

::
is carried out with events that oc-5

curred during 2020 and focused
:::::
focus on evaluating the operability of these thresholds in landslide warning systems in Peru.

Thresholds were
:::
The

:::::::::
thresholds

::
are

:
determined for 11 rainfall regions. The method of determining the thresholds was

::
is based

on an empirical–statistical approach, and the predictive performance of the thresholds was evaluated from
::
is

::::::::
evaluated

::::
whit the

“true skill statistics” (TSS)and the area under the curve (AUC). The best predictive performance was obtained by
:
is the mean

daily intensity-duration (Imean−D) threshold curve, followed
::::::
follow by accumulated rainfall E. This work is the first attempt10

to estimate regional thresholds on a country scale in order to better understand landslides
::
in

::::
Peru, and the results obtained

reveal the potential of using thresholds in the monitoring and forecasting of shallow landslides caused by intense rainfall and

in supporting the actions of disaster risk management.

1 Introduction

Landslides are one of the most globally impactful hazards causing casualties and damage to public and private property, and15

are responsible for at least 17% of all natural hazard deaths in the world (Chae et al., 2017; Segoni et al., 2018). Rain is

the main trigger for shallow landslides, which are responsible for fatalities and economic losses worldwide (Petley, 2012). In

Perú, landslides are the fifth most common natural hazard generating the most emergencies in the last 16 years (INDECI, 2019),

along with heavy rains, low temperatures, strong winds, and floods. Most landslides occur during the South American monsoon

(Zhou and Lau, 1998) between November and April, and most of them belong to the category of debris flow that is shallow20

in nature (Naidu et al., 2018). However, consideration of the physiographic and climatic environment of the country with

regard to the relationship between rainfall and landslides has not yet been investigated. Therefore, knowing and understanding

the interrelationship between landslides and rainfall, its main trigger, could be valuable in objectively proposing warning and

monitoring systems for areas susceptible to landslides.
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Terrain saturation is the original cause of landslide occurrence, and this saturation effect can arise in different ways (intense25

rains, thaws, changes in the level of groundwater, water discharge in lakes, lagoons, and reservoirs, and an increase in flow in

channels, streams, and rivers). Out of all these factors that cause saturation and affect soil stability conditions, rainfall is the

most frequent and important one in triggering landslides (Prenner et al., 2018; Segoni et al., 2014). However, the maximum

probability of occurrence of landslides is not always associated with extreme conditions of heavy rainfall and soil moisture;

there is also the influence of the antecedent condition of rainy days prior to the occurrence of landslides (Abraham et al., 2020;30

Leonarduzzi et al., 2017).

One of the techniques used in the study of rainfall as a triggering factor for landslides is the determination of rainfall thresh-

olds, which has been widely studied worldwide using various methods (empirical, statistical, manual, probabilistic methods,

and with physically-based models)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Guzzetti et al., 2007; Segoni et al., 2018; Tang et al., 2019; Berti et al., 2020). For rain-

induced landslides, the threshold can be defined as rainfall, soil moisture, or hydrological conditions that, when reached or35

exceeded, are likely to trigger landslides. Thresholds have been developed at different time (sub-hourly, hourly, daily, monthly)

and spatial scales (local, basin, regional, national, global) depending on the information available (Segoni et al., 2018). For ex-

ample, global thresholds have been developed based on antecedent precipitation indices (Caine, 1980; Caine, 2008; Caine, 2018),

and national thresholds have been established under an
::::
there

::
is

::::
been

:::::::::
developed empirical–statistical approach

::
to

:::
the

:::::::::
estimation

::
of

:::::
global

:::::::::
thresholds

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Caine, 1980; Guzzetti et al., 2008; Kirschbaum and Stanley, 2018)

:::
and

:::::::
national

:::::::::
thresholds

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Leonarduzzi et al., 2017; Peruccacci et al., 2017; Uwihirwe et al., 2020)40

. Empirical approaches to forecasting the occurrence of landslides depend on the definition of rainfall thresholds obtained from

different hydrometeorological variables (Gariano et al., 2015; Segoni et al., 2018). There is a large number of analysis variables

that could be used to define thresholds (up to 22 variables were reported) (Guzzetti et al., 2007, 2008). Under this approach,

rainfall thresholds aim to separate the rainfall events that triggered landslides from those rainfall events that did not result

in landslides. This empirical approach is widely applied because its analysis and implementation do not require the constant45

monitoring of the other physical variables on which other types of approaches are based . In addition, this methodology has

the ability to cover different spatial scales.
::::
most

::::::
robust

::::::
models

:::
are

:::::
based

:::::
(e.g.,

::::::::::::::
physically-based

:::::::
models),

::::
and

:::
this

:::::::::
drawback

::
of

:::
the

:::::
robust

:::::::
models

::
is

:::
the

::::
main

:::::::::
advantage

::
of

::::::::
empirical

::::::::::
approaches

:::
and

:::
its

:::::::::::
applicability

::::
over

::::
large

:::::
areas

:::::
(Rosi

::
et

:::
al.,

::::::
2012).

:::::::
Another

::::::::
advantage

:::
for

::
its

:::::::::
application

::
is
::::
that

:
it
::
is

:::
not

::::::
subject

::
to

:::
the

:::::::::
challenges

:::::::::::
accompanied

::::
with

::::
other

:::::::
models,

::::::
mainly

:::
the

:::::
many

::::::::::
high-quality

::::
input

:::::
data,

::::
such

::
as

:::
soil

::::::::::
information

::::
that

::
is

::::::
needed,

::::::
which

::
is

::::::::
associated

::::
with

::::
high

:::::::::::
uncertainties

::::
too.50

Thresholds can be set for different spatial scales depending on the extent of the analysis, and these can be categorized into six

classes: global, national, regional, basin, local, and hillside
::::
slope

:
scales. A regional scale is understood to be the administrative

subdivision of a nation, typically extending over thousands of square kilometers (Segoni et al., 2018). In the study of national

territories, it is necessary to take into account the high meteorological and spatial physiographic variability of the study area, in

order to obtain more accurate and reliable rainfall thresholds. This is achieved through the regionalization of the study area into55

areas with homogeneous meteorological conditions (Segoni et al., 2014). Regionalization in the analysis of thresholds associ-

ated with landslides has been used with different approaches; for example, precipitation
::::::
rainfall

:
indices have been used, such

as the annual average, daily maximum, monthly average, and monthly daily maximum precipitation
::::::
rainfall, among others (Au-

gusto Filho et al., 2020; Segoni et al., 2014), as well as
::::::::::::
environmental

:::::::::
subdivision

::::::
within

:
a
:::::::
national

:::::::
territory

:::::
based

::
on erodibility
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and climatology , represented by the maximum daily intensity of a precipitation event (Leonarduzzi et al., 2017)
::::::
rainfall

:::::
event60

:::::::::::::::::::::
(Leonarduzzi et al., 2017)

::
or

::
on

::::::::::
topography,

::::::::
lithology,

::::::::
land-use,

::::
land

:::::
cover,

:::::::
climate,

:::
and

:::::::::::
meteorology

::::::::::::::::::::
(Peruccacci et al., 2017)

. In this study, we refer to regions, such as the subdivision of the Peruvian territory, from a maximum daily rainfall perspective.

The main objective of this work is to estimate rainfall thresholds for the monitoring of shallow landslides generated by rain-

fall from a gridded precipitation
::::::
rainfall database. Additionally, this work focuses on implementing an objective methodology

for landslide monitoring that is based on observed landslide events. The novelty of this work is that this is the first approxima-65

tion of rainfall thresholds in Peru that combines gridded rainfall data and observed event data for landslide monitoring.

2 Materials and methods

2.1 Area of study

Peru is located on the west coast of South America and is characterized by maximum rainfall rates that occur between Novem-

ber and March in its Andean region, with most of the precipitation
::::::
rainfall being produced by convection (Lavado Casimiro70

et al., 2011). Peru’s climate variability is determined by the South American monsoon system, the southward shift of the In-

tertropical Convergence Zone (ITCZ), and differential warming between the ocean and the land, which contributes to a greater

influx of moisture eastward from the tropical Atlantic Ocean to the South American continent, and in which the Andes moun-

tain range plays an important role modulating rainfall on both the eastern and western slopes (Poveda et al., 2014; Bookhagen

and Strecker, 2008; Boers et al., 2014; Lavado Casimiro et al., 2011; Llauca et al., 2021).75

This study adopts the study domain defined for the Monitoring System of Potential Mass Movements Generated by Heavy

Rains (SILVIA) (Millan, 2020; Millan et al., 2021) of the National Service of Meteorology and Hydrology of Peru (SENAMHI).

This domain was obtained from the superposition of two databases. The first one was a map of landslide susceptibility from

the Geological, Mining and Metallurgical Institute of Peru (Villacorta et al., 2012), which has five categories of susceptibility.

The second database contained information regarding spatial discretization in basins of the GEOGloWS ECMWF Streamflow80

Service (David et al., 2011; Qiao et al., 2019; Souffront Alcantara et al., 2019; Lozano et al., 2021), from which the domain of

this study was discretized in 5373 basins with median areas of approximately 105 km2. The study area and spatial distribution

of the basins are shown in Figure 1.

2.2 Precipitation
:::::::
Rainfall data: PISCOpd_Op

The main source of information for this study was the gridded daily rainfall dataset PISCOpd_Op (Gridded Daily Precipitation85

::::::
Rainfall

:
Operative data of PISCO). PISCOpd_Op is an operational precipitation

::::::
rainfall

:
dataset part of the Peruvian Interpo-

lated data of SENAMHI’s Climatological and Hydrological Observations (PISCO) with gridded data on precipitation
::::::
rainfall

(Aybar et al., 2020), air temperature (Huerta et al., 2018), reference evapotranspiration (Huerta et al., 2022) and monthly dis-

charges (Llauca et al., 2021) at the scale of all of Peru. PISCOpd_Op
:::
has

:
a
::::::
spatial

:::::::::
resolution

::
of

::::
0.1°

::::
and

:
a
:::::
daily

::::::::
temporal

::::::::
resolution.

::::::::::::
PISCOpd_Op

::::
has

::::
data

::::
from

:::::
1981

:::
and

:
is updated daily, accumulating daily rainfall (from 7 a.m. to 7 a.m.), gen-90
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Figure 1. Methodology six stepsStudy area . Left: s
:
Spatial distribution of the Global Landslide Catalog (red) and SENAMHI landslide

inventory (yellow). Right: Study area with eleven
:::::
Eleven

::::::::
landslide-

::::::::::
susceptibility regions for Peru and distribution of calibration (blue) and

validation (yellow) landslides.

erated from 416 conventional SENAMHI rain gauge network
:::
(see

::::::
Figure

::
1). PISCOpd_Op is generated based on a genRE

interpolation method (van Osnabrugge et al., 2017), which consists of an interpolation using inverse distance weighting (IDW)

and includes multipliers that are based on the monthly climatology of PISCOp.

2.3 Landslide event data

The second main source of information used for this research was two inventories of observed and collected landslide events:95

SENAMHI’s of Rainfall-Triggered Shallow Landslides Inventory of Peru (SLIP) and NASA’s Global Landslide Catalog (GLC)

(Kirschbaum et al., 2015a). Both catalogs consider all types of
:::::::
shallow landslides triggered by rainfall that have been reported

in the media, in databases of agencies associated with disasters, in scientific reports, and in other available sources.
::::
Most

:::
of

::::
them

::::::
belong

::
to

:::
the

::::::
debris

::::
flow

:::::::
category

:::::
which

:::
are

:::::::
shallow

::
in

::::::
nature

::::::::::::::::
(Naidu et al., 2018).

:::
In

:::
this

:::::
sense,

:::
in

:::
this

:::::
study

::::
was

::::
used

::::::
shallow

::::::::
landslide

::::
(SL)

:::
for

::
all

:::::
types

::
of

:::::::
shallow

::::::::
landslide

::::::::
processes.

:
100

The SLIP
::::
SLIP

::::
was

:::::::::::
implemented

::
in

:::::::
January

:::::
2019

:::
and

:
has 330 records up to 2020 from the 2014–2020 period.

:::::::::
Therefore,

::::
there

::
is

::
a

::::::
greater

::::::
degree

::
of

::::::::
certainty

::::::::
regarding

::::
the

::::::
number

:::
of

::::::
events

:::::::
recorded

:::
in

:::::
recent

::::::
years. It should be noted that this

inventory was implemented in January 2019. Therefore, there is a greater degree of certainty regarding the number of events

recorded in recent years. The GLC has 6788 registrations for the whole world; while for Peru, 53
::
49 landslide events have

been registered, which were temporarily distributed between 2007 and 2014. For the use of these data, exploratory analyses105
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were performed to avoid inconsistencies in the recording of the events. The spatial correspondence of the data was evaluated

through geospatial analysis of points and areas in the study area, and the registration information was subsequently excluded

or corrected. We also assessed data consistency with regard to typographical errors. As a result, two incongruous events were

determined: The first one was reported in a place without landslide occurrence conditions and was therefore not considered in

the analysis. In the second event, an error in its spatial tabulation was determined; this error was corrected, and the event was110

included in the analysis. The total number of landslide records is 382
:::
377, and the spatial distribution of these events is shown

in Figure 3
:
1.

a) Extract from the precipitation time series (rainy period 2019) for an example basin, where the estimated rainfall events

are observed (each color is a rainfall event, the lead-colored event 0 is the non-rainy days). b) An example of a rain event

associated with the occurrence of a landslide, in this case the rain event No. 93, where the variables analyzed for the estimation115

of thresholds are shown: the maximum daily intensity Imax (mm/day), the accumulated precipitation E (mm), the duration

D (day), and the mean daily intensity Imean = E/D (mm/day). An Entire Event (EE) is defined considering the landslide

occurrence day while an antecedent event (AE) is defined in the same way without considering the day of observation of the

landslide.

2.4 Rainfall threshold model120

The methodology used in this study, along with a description of each step, is presented in Figure 2.

Methodology six steps.

An empirical–statistical approach was used to define rainfall thresholds for landslide-susceptible regions, consisting of the

following steps: (1) determination of rainfall events from a historical precipitation
::::::
rainfall series, (2) definition of the variables

of rainfall events, and (3) calibration of the thresholds for the properties of rainfall events
:::::
define

::::::::
landslides

:::::::
regions

:::::
from125

::::::::
maximum

:::::
daily

::::::
rainfall

:::::
region

::::
and

::::::::::
GEOGloWS

::::::
basins

::
for

:::
the

::::
area

::::::
studio,

:::
(4)

::::::::
threshold

::::::::
estimation

:::
for

:::::::::
individual

::::::
rainfall

:::::
event

:::::::
variables

:::
for

:::::::::
calibration

::::::
period

:::::
based

:::
on

:::
an

::::::::
objective

:::::::::::
maximization

:::
of

::::::::
predictive

::::::::::::
performance,

:::
(5)

::::::::
threshold

:::::::::
estimation

:::
for

::::::::::
combination

::
of

:::::::
rainfall

::::
event

::::::::
variables

:::
for

:::::::::
calibration

::::::
period

:
based on an objective maximization of predictive performance

:
,

:::
and

:::
(6)

:::
run

:::::::::
thresholds

::::::
models

:::
and

:::
get

:::::::
metrics

:::
for

:::::::
analysis

:::
and

::::::::::
discussions

:::::::::::
(methodology

::
is
:::::::::
presented

::
in

:::::
Figure

:::
2). Below are

the details of the method.130

The first step was the construction of a historical rainfall series from gridded rainfall data (PISCOpd_Op) for each basin that

had a minimum of one landslide event. After obtaining the rainfall series, rainfall events were defined along with a historical

series for each selected basin. For this work, we define an independent rainfall event as a series of consecutive rainy days

where it has rained above a minimum rainfall threshold (Figure 3). Many authors use minimum thresholds of 1 mm to define

rainy days (Dai, 2006; Dai et al., 2007; Han et al., 2016; Leonarduzzi et al., 2017; Shen et al., 2021; Tian et al., 2007; Yong135

et al., 2010). However, given the great climatological spatial variability in the study area, it was determined that there was not

a single minimum threshold for the entire territory, but a minimum threshold was discretized from the bias of PISCOpd_Op

for non-rainy days. The PISCOpd_Op bias was determined when rain gauges did not report rain (0 mm), and the discretized

minimum threshold (Umin) of rain was defined according to the following Equation 1:
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Figure 2.
::::::::::
Methodology

:::
six

::::
steps.

Figure 3.
::
a)

:::::
Extract

::::
from

:::
the

::::::
rainfall

:::
time

:::::
series

:::::
(rainy

:::::
period

::::
2019)

:::
for

::
an

:::::::
example

:::::
basin,

::::
where

:::
the

:::::::
estimated

::::::
rainfall

:::::
events

:::
are

:::::::
observed

::::
(each

::::
color

::
is

:
a
::::::
rainfall

::::
event,

:::
the

::::::::::
lead-colored

::::
event

:
0
::
is
:::
the

:::::::
non-rainy

:::::
days).

::
b)

:::
An

::::::
example

::
of

:
a
::::

rain
::::
event

::::::::
associated

::::
with

::
the

:::::::::
occurrence

:
of
::

a
:::::::
landslide,

::
in

:::
this

:::
case

:::
the

:::
rain

:::::
event

:::
No.

::
93,

:::::
where

:::
the

:::::::
variables

::::::
analyzed

:::
for

:::
the

:::::::
estimation

::
of
::::::::
thresholds

:::
are

:::::
shown:

:::
the

::::::::
maximum

::::
daily

::::::
intensity

:::::
Imax ::::::::

(mm/day),
::
the

::::::::::
accumulated

:::::
rainfall

::
E

:::::
(mm),

:::
the

::::::
duration

::
D

:::::
(day),

:::
and

:::
the

::::
mean

::::
daily

:::::::
intensity

:::::::::::
Imean = E/D

::::::::
(mm/day).

:
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Umin =

U0 if s≤ U0

s if s > U0

(1)140

where s
:
s is the average of simple bias when rainfall stations reported a value of 0 rainfall compared with the estimation in

PISCOpd_Op. For
::::
And

::
U0::

is
:::
the

:::::
initial

:::::::::
minimum

::::::
rainfall

::::::::
threshold,

::::
and

::
its

::::::::
stablished

:::
as
::
1
::::
mm

::
for

:::
all

:::::
region

::::
with

:::::::::
exception

::
of

coastal Pacific regions ,
:::::
which

::
is

:::::::::
considered

:
0.5 mmwas considered the minimum rainfall threshold. Once rainfall events were

defined, whether they were triggering or non-triggering events was established. A rainfall event is considered a rainfall trigger

event if it is associated with a landslide event.
:
,
:::
i.e.,

::
if

:::::::::
throughout

:::
the

::::::
rainfall

:::::
event

:::::::
duration

::
a

::::::
shallow

::::::::
landslide

:::
has

::::::::
occurred.

:
145

The second step was to determine analysis variables for each rainfall event, for which the maximum daily intensity Imax

(mm/day), the accumulated precipitation
::::::
rainfall

:
E (mm), the duration D (day), and the mean daily intensity Imean = E/D

(mm/day) were calculated. Concerning the triggering rain events, two scenarios were considered. For the first scenario (entire

event -
:::
EE), the properties of the rainfall event (Figure 3) were defined considering the precipitation

::::::
rainfall rate of the landslide

occurrence day. The second scenario (antecedent event -
::::
AE) defined the properties up to one day before the occurrence, i.e.,150

it did not consider the precipitation
:::::
rainfall

:
rate of the landslide occurrence day. The reason for analyzing the second scenario

was to evaluate the level of incidence that is attributed only to antecedent conditions for landslide occurrence, as this allows

us to evaluate if it is possible to forecast or warn of possible landslides based only on the antecedent conditions. The temporal

evolution of hydrometeorological variables provides an idea of how the critical conditions of the activation of landslides

develop (Prenner et al., 2018; Segoni et al., 2018).155

The third step
:::::::
consisted

::
in

::::::
divide

:::
the

:::::
study

::::
area

:::
into

:::::::
regions

:::::
based

::
on

:::::::::
clustering

:::::::::
techniques

::::
(this

::::
step

::
is

::::::::
explained

::
in

:::::
more

::::
detail

::
in
:::
the

::::::
section

::::
2.5).

:::::
Next,

:::::::::::
GEOGloWS

:::::
basins

::::
were

:::::::
merged

::::
with

::::::
regions

::
in

::::
order

::
to

:::::::::
determine

::::
their

:::::
spatial

::::::::::::::
correspondence.

:::
The

::::::
fourth

::::
and

::::
fifth

::::
step

:
was to objectively select a rainfall threshold that separates triggering rain

:::
fall even

:
ts from non-

triggering rainfall events with the best level of predictive performance. Rainfall thresholds were established by maximizing

predictive performance in two ways: the first one only included variables independent of rainfall properties
::::
way

:::::::
includes

:::::
every160

::::::
rainfall

:::::
event

:::::::
property

::::::::::::
independently

:
(Imax,E,D,Imean), and the second one determined was through curve-like thresh-

olds that related two properties (Imax −D,E−D,Imean −D) in the form of V = a.D−b, where V represents the variables

Imax, E, and Imean; a
::::::
rainfall

::::::::
properties

:::::::::::::::::
(Imax,E,D,Imean);

::
a
:::
and

::
b

:::
are

:::
the

::::
scale

::::
and

:::::
shape

:::::::::
parameters

::
of

:::
the

:::::
curve

::::::
(while

::
for

::::::::::
logarithmic

::::::
space,

:
a
:
is the intersection parameter or scale factor; and b denotes the slope of the potential curveor shape

parameter
::::
linear

::::::
curve).

::::
The

::::::::::::
approximation

:::
of

:::
the

:::::::::
thresholds

:::::
based

::
on

:::::
only

:::
one

::
of

::::
the

::::::
rainfall

:::::
event

::::::::
properties

:::::::::::
(Imax,E,D165

::
or

:::::::
Imean),

::::
was

::::::::
estimated

::::
whit

::::
the

::::::::
minimum

::::::
radial

:::::::
distance

::
to
::::

the
::::::
perfect

:::::::::::
classificatory

::::
test

::::::::::
(TSS = 1,

::::
with

::::::
se= 1

::::
and

:::::::::
1− sp= 0)

:::::
from

::
the

:::::
ROC

:::::
space

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Uwihirwe et al., 2020; Postance et al., 2018; Gariano et al., 2015)

::
and

:::
the

::::::::::::
approximation

::
of

::::::::
curve-like

:::::::::
thresholds,

::::
was

:::::::::
established

::::
with

:::
the

:::::::::
maximum

::::
true

:::
skill

:::::::
statistic

:::::
based

:::
on

::
the

:::::::::::
optimization

::
of

::
a

:::
and

:
b
::::::::::
parameters

::
of

:::
the

::::
curve

::::::
model

::::::::::
V = a.D−b

::::
with

::
an

:::::
initial

::::::::::::
approximation

::
of

:::
the

:::::
curve

:::::
based

::
on

:::::::::
a=average

::
of

:::
the

:::::::
variable

:
V
:::
of

::
the

:::::::::
triggering

::::::
rainfall

:::::
events

::::
and

:::::::
b= 0.5.

:::::::
Finally,

:::
the

::::
sixth

::::
step

:::::::::
consisted

::
in

:::::
apply

:::
the

::::::
model

::
to

:::
the

:::::::
rainfall

:::::
events

::::
and

:::::::
compare

:::::
with

:::
the170

:::::::
observed

:::::::::
landslides

:::::
events

::::
and

:::
get

::
the

:::::::::
predictive

:::::::::::
performance

::::::
metrics

:::
for

::::
each

:::::
region

::
at
:::::::::
calibration

::::
and

::::::::
validation

:::::::
periods.

:

7



2.5 Regionalization

According to the study, on a national scale, it is necessary to consider the meteorological and spatial physiographic high vari-

ability governing the country to obtain reliable rainfall thresholds, since a single global or national threshold cannot represent

such variability. To achieve rainfall thresholds on a national scale, the approach used was the regionalization of the study area in175

areas with homogeneous meteorological conditions (Segoni et al., 2014). Research related to thresholds have used precipitation

::::::
rainfall indices such as the annual average, daily maximum, monthly average, monthly daily maximum of precipitation

::::::
rainfall,

and other environmental variables for the regionalization of study areas (Augusto Filho et al., 2020; Leonarduzzi et al., 2017;

Segoni et al., 2014).

This study uses SENAMHI’s Homogeneous Regions of Maximum
:::::
Daily Precipitation

:::::::
Rainfall

:
(Yupanqui et al., 2017) as180

input for the regionalization of the study area. These regions were determined based on clustering techniques from precipitation

::::::
rainfall

:
information from 535 automatic stations, in which 10 macroregions and 30 subregions of maximum precipitation

::::
daily

::::::
rainfall

:
were natively identified. The climatic regions established for the present study consisted of a grouping of the

30 maximum precipitation
::::
daily

:::::::
rainfall regions. The regrouping consisted of a multi-criteria analysis based mainly on the

fact that the grouped regions did not exceed a threshold value of 10 in the heterogeneity test (Hosking and Wallis, 1997),185

which included events recorded in the databases in addition to sharing the similarity of the covariates of relief (altitude) and

climatology (mean precipitation
::::::
rainfall). Although this value of 10 indeed exceeds the level of heterogeneity recommended

in 2, this tolerance is contemplated since they are regions obtained from a regrouping. From this analysis, 11 regions were

obtained for the study area (see Figure 1). Four thresholds of independent variables (Imax,E,D,Imean) and three curved

thresholds (Imax −D,E−D,Imean −D) were defined for each region. The total was 77 thresholds for the study area, and 7190

thresholds for each region. Figure 4 presents an accumulated rain E box diagram showing its predictive power to discriminate

between triggering and non-triggering rainfall events.

2.6 Calibration and validation of thresholds

Calibration and validation are fundamental processes for objectively defining thresholds. The purpose of calibration is to es-

timate thresholds based on the maximization of predictive or classifier performance capacity. Validation aims to show the195

potential of the ability to predict or differentiate those rainfall events that trigger landslides. Among the calibration and vali-

dation approaches, the most recommended is to divide the datasets for threshold estimation and another independent set for

validation (Segoni et al., 2018). In this work, 383
:::
377 recorded landslide events were used to define rainfall thresholds in Peru

: 311 for calibration and 72 for validation (Figure 1).
:::
For

:::
the

::::::::::
calibration,

:::
all

:::::
events

:::::::::
occurring

::::::
before

::::
2020

:::::
were

::::::::
selected,

::::::::::
representing

::::::::::::
approximately

:::::
70%

::
of

:::
the

::::::::
recorded

:::::::
events.

:::::::::
Regarding

:::
the

:::::::::
validation

:::::::
process,

::
it
::::
was

::::::::
consisted

:::
of

:::::::::
evaluating200

::::::::
thresholds

:::::::::
calibrated

:::::
using

:::
the

:::::::::
landslides

::::::
events

:::::::
recorded

:::
in

:::::
2020,

::::::
which

::::::::::
represented

::::::::::::
approximately

::::
30%

:::
of

:::
the

::::::::
recorded

::::::
events.

::::
This

::::::
process

::::
was

::::::
carried

:::
out

:::
for

:::
the

::::
year

:::::
2020,

:::
as

:::
we

::::::
wanted

::
to

:::::
know

::::
how

:::
the

:::::::::
thresholds

::::::
would

:::::::
perform

:::::
when

::::
they

::::
were

:::::::::
assimilated

::::
into

:
a
:::::::
regional

:::::
early

:::::::
warning

:::::::
system.

::::
This

::::::
method

::
of

::::::::::::::::::
calibration/validation

:::
that

:::
set

::::
one

:::
year

:::
of

:::
the

::::::
dataset

::
to

::::::::
validation

::
is

:
a
:::::::
method

:::
that

:::
has

:::::
been

::::
used

::
in

::::::
another

:::::::
research

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Kirschbaum et al., 2015b; Dikshit et al., 2019).

:
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Figure 4. Boxplot of triggering (yellow) and no triggering (blue) total cumulative rainfall E by
::
for

:::
the

:
eleven regions

::::::::
stablished

:
in
:::
this

:::::
study

for Peru. The boxplot graphs include outliers
:::
and

::::
show

:::
the

:::::::
potential

:::::::
predictive

:::
for

::
the

::
E

::::::
variable

::
to

::::::
separate

:::
the

:::::
rainfall

:::::
events

:::
that

::::::::
trigger/no

:::::
trigger

::::::
shallow

:::::::
landslides.

::::
Also,

:::
the

:::
plot

:::::
shows

:::
the

:::::
region

:::::::
variability

::
of
:::
the

::::::
rainfall

:::::
events

:::
that

:::::
trigger

::::::
shallow

::::::::
landslides.

For the evaluation of the thresholds ,
::
in

:::::::::
calibration

:::
and

:::::::::
validation

::::
was

::::
used a confusion matrix , or contingency table, was205

used, which
::::
(also

:::::
called

:::
as

::::::::::
contingency

::::::
table).

:::
The

:::::::::
confusion

::::::
matrix is a tool

::::
used

:
to determine the accuracy of binary clas-

sification models (triggering and non-triggering rainfall events)and
:
,
:::
and

:::::
also,

::::
used

:
to evaluate the analysis of concordance

between the results of the model and the observed data. From this,
::
A

::::::::
confusion

::::::
matrix

::::
was

::::::::
computed

:::
for

::::
each

::::::::
threshold

::::
and

:::
was

:::::::
counted

:
the number of true successes or true positives (TP), the number of false positives (FP), the number of true neg-

atives (TN), and the number of false negatives (FN) are determined (Figure 5).
::::
From

::::::
which

::::::
various

:::::::::::
performance

::::::::
statistics210

:::
can

::
be

:::::::::
calculated.

::::::
Some

::
of

:::
the

::::
most

::::::::
common

::::::::
measures

:::
for

::::::::
landslide

:::::::::
forecasting

:::
are

:::
the

:::::::::
sensitivity

:::::::::::::::::::::
(se = TP/(TP +FN)),

::::::::
specificity

::::::::::::::::::::::::
(sp = 1−FP/(FP +TN))

:::
and

:::
true

::::
skill

:::::::
statistic

:::::::::::::::::
(TSS = se + sp − 1)

:
,
::::
(e.g.,

::::::::::::::::::::::::::::::::::::::
Staley et al.; Gariano et al.; Leonarduzzi et al.

:::::::::::::::::::::::::::::::::::::::::::::
Mirus et al.; Leonarduzzi and Molnar; Hirschberg et al.

:
).

The overall impression of the predictive power of each variable was estimated from the so-called receiver operating characteristic

(ROC)curve (Fawcett, 2006) and from the area under the ROC curve (AUC) , while the threshold curve was selected to215

maximize the true skill statistics (TSS) . The AUC is used as an indicator of variable performance, where a perfect test

variable would result in AUC = 1 (Uwihirwe et al., 2020). While the TSS identifies the threshold that has the highest predictive

performance beyond a random choice, the area under the ROC curve (AUC) gives an overall impression of the predictive power

of an event property, regardless of a specific threshold value (Leonarduzzi et al., 2017). The TSS is also known as the Peirce

skill score (Peirce, 1884), the Youden index (Youden, 1950), or the Hanssen–Kuipers skill score (Hanssen and Kuipers, 1965).220

The TSS is
:::
The

::::
TSS

::
is an efficiency statistic that helps in the measurement of the goodness-of-threshold models, as it is an inte-

grative measure of the predictive performance of the model. The TSS is more objective than simply a random manual estimate

9



Figure 5. Confusion matrix definition for classification model.

(Frattini et al., 2010). It varies between 1 and –1, with its optimal score equal to 1, which indicates a maximum performance of

the model. TSS=TPR-FPR is defined as
:::::::
se-(1-sp)

::
is the difference between the true positive rate (TPR) and the false positive

rate (FPR)
:::::::::
sensitivity

:::
se)

:::
and

:::::
false

:::::
alarm

:::
rate

:::::::::::
(1-specificity

::::
sp),

:
which are the two most important components for providing225

early warnings (Leonarduzzi et al., 2017). TSS=se-
:::
The

::::
TSS

::
is

:::
also

:::::::
referred

::
as

:::
the

:::::
Peirce

::::
skill

:::::
score

::::::::::::
(Peirce, 1884),

:::
the

:::::::
Youden

::::
index

::::::::::::::
(Youden, 1950),

::
or

:::
the

:::::::::::::::
Hanssen–Kuipers

::::
skill

:::::
score

::::::::::::::::::::::::
(Hanssen and Kuipers, 1965)

:
.
:::
The

::::::
benefit

:::
of

:::::
using

:::
the

:::::::::
specificity

:::
over

::::
the

::::
false

:::::::
positive

::::
rate (1-sp) can be expressed in terms of the sensitivity se (TPR=se) and specificity sp (FPR=1-sp),

because what the TSS seeks is to maximize the true success rate (se)and the rate of true negatives (sp) .

Regarding calibration, all events occurring before 2020 were selected, representing approximately 70% of the recorded230

events. For the choice of single-variable thresholds (Imax,E,D,Imean), an analysis was performed using the
:::::::::::
FP/(FP+TN))

::
is

:::
that

::
in

:
a
::::::
perfect

::::::
model

::::
TSS,

:::::::::
sensitivity

::::
and

::::::::
specificity

:::
all

:::::
equal

:
1
::::::::::::::::::::
(Hirschberg et al., 2021)

:
.

:::
For

:::::::::
thresholds

:::::
based

:::
on

:::::::
rainfall

:::::
event

::::::::
properties

:::::::::::::
independently

::::::
(Imax,

:::
E,

::
D

:::
or

:::::::
Imean),

:::
the

::::::
overall

::::::::::
impression

::
of

::::
the

::::::::
predictive

:::::
power

::::
was

::::::::
estimated

::::
whit

:::
the

::::::::
so-called

:
receiver operating characteristic (ROC) curve

::::::::::::
(Fawcett, 2006)

:
,
::::
from

::::::
which

::
the

:::::::::
minimum

:::::
radial

::::::
distance

::
to
:::
the

::::::
perfect

:::::::::::
classificatory

:::
test

:::::::
(TSS=1,

::::
with

::::
se=to select the variables based on their performance.235

This was performed between the true positive rate (TPR se) and the false positive rate (FPR1-sp) . This is one of the most widely

used techniques for measuring the performance of rainfall threshold models (Leonarduzzi et al., 2017; Gariano et al., 2015; Abraham et al., 2020)

. The choice of thresholds with two variables
:
1
::::
and

::::::
1-sp=0)

::::
was

::::
used

::
to

:::::
select

:::
the

::::::::
individual

:::::::
variable

::::::::
threshold

::::
(e.g.,

:::::::::::::::::::::::::::::::::::::
Uwihirwe et al.; Gariano et al.; Postance et al.

:
)
:::::
while

:::
for

:::
the

:::::::::
threshold

:::::
curve

:
(Imax −D,E−D,Imean −Dcurves) was made by determining the best performance by

optimizing the objective function that maximizes the TSS for each proposed threshold.Parameters a and b of V = a.D−b were240

:
)
:::
the

::::
scale

:::::::::
parameter

:
a
:::
and

:::
the

:::::
shape

:::::::::
parameter

:
b
:::
are

:::::::::::::
simultaneously

:::::
tuned

::
to

::::::::
maximize

:::
the

:::
the

::::
true

::::
skill

:::::::
statistics

:::::
(TSS)

:::::
(e.g.,

:::::::::::::::::::::::::::::
Leonarduzzi et al.; Hirschberg et al.

:
).

::::
This

:::::::::::
maximization

::::
was automatically calibrated using the shuffled complex evolutionary

algorithm (SCEA-UA) (Duan et al., 1993), considering the TSS as the objective function. The methodology was applied for

each region within the analysis area, finding different thresholds for each of them. The threshold validation process consisted of
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Table 1.
::::::
Rainfall

::::::::
thresholds

::
of

:::::::::
independent

:::::::
variables

::::
(Th:

:::::::
threshold,

:::::::::::
Rad:Minimum

:::::
radial

:::::::
distance,

:::
Cal:

:::::::::
Calibration,

::::
Val:

::::::::
Validation)

Scenario Region

E I_mean Imax D

Th Rad
TSS

Th Rad
TSS

Th Rad
TSS

Th Rad
TSS

:::
Cal

:::
Val

:::
Cal

:::
Val

:::
Cal

:::
Val

::
cal

: :::
Val

Entire

event

:::::
Pacific 1

::::
21.16

: :::
0.38

:::
0.66

:::
0.20

: :::
5.62

: :::
0.33

:::
0.54

: :::
0.60

: ::::
10.11

:::
0.43

:::
0.68

:::
0.58

: :
8
: :::

0.49
:::
0.56

::::
-0.09

:::::
Pacific

::
2

:::
4.23

:::
0.48

:::
0.44

:::
0.39

: :::
2.12

: :::
0.35

:::
0.61

: :::
0.20

: :::
4.55

: :::
0.34

:::
0.51

:::
0.27

: :
7
: :::

0.48
:::
0.30

:::
0.39

:

::::
Andes

:
1
: ::::

16.15
: :::

0.49
:::
0.39

:::
0.12

: :::
6.20

: :::
0.41

:::
0.43

: :::
0.18

: ::::
11.84

:::
0.43

:::
0.38

:::
0.23

: :
2
: :::

0.60
:::
0.19

::::
-0.16

::::
Andes

:
2
: ::::

23.92
: :::

0.29
:::
0.58

:::
0.41

: :::
5.17

: :::
0.30

:::
0.51

: :::
0.28

: :::
8.59

: :::
0.29

:::
0.58

:::
0.47

: :
8
: :::

0.31
:::
0.54

:::
0.33

:

::::
Andes

:
3
: ::::

25.35
: :::

0.21
:::
0.78

:::
0.41

: :::
6.01

: :::
0.19

:::
0.83

: :::
0.22

: ::::
16.72

:::
0.08

:::
0.92

:::
0.34

: ::
21

:::
0.29

:::
0.69

:::
0.28

:

::::
Andes

:
4
: ::::

38.85
: :::

0.35
:::
0.51

:::
0.61

: :::
6.17

: :::
0.42

:::
0.45

: :::
0.61

: :::
8.44

: :::
0.40

:::
0.43

:::
0.69

: :
9
: :::

0.43
:::
0.45

:::
0.33

:

::::
Andes

:
5
: ::::

25.52
: :::

0.27
:::
0.67

:::
0.39

: :::
4.25

: :::
0.35

:::
0.52

: :::
0.37

: :::
9.75

: :::
0.29

:::
0.61

:::
0.51

: :
4
: :::

0.33
:::
0.54

:::
0.03

:

::::
Andes

:
6
: ::::

24.32
: :::

0.36
:::
0.64

:::
0.66

: :::
4.05

: :::
0.57

:::
0.40

: :::
0.44

: :::
5.56

: :::
0.54

:::
0.45

:::
0.46

: :
6
: :::

0.31
:::
0.68

:::
0.69

:

::::::
Amazon

:
1
: ::::

37.20
: :::

0.36
:::
0.64

:
-

::::
12.68

:::
0.26

:::
0.74

: :
-

::::
20.73

:::
0.34

:::
0.66

:
-

:
3
: :::

0.57
:::
0.29

:
-

::::::
Amazon

:
2
: ::::

92.77
: :::

0.31
:::
0.57

:::
0.52

: :::
8.88

: :::
0.44

:::
0.41

: :::
0.34

: ::::
16.15

:::
0.41

:::
0.46

:::
0.38

: :
5
: :::

0.40
:::
0.51

:::
0.37

:

::::::
Amazon

:
3
: ::::

53.99
: :::

0.32
:::
0.68

:::
0.66

: ::::
11.14

:::
0.59

:::
0.41

: :::
0.39

: ::::
17.74

:::
0.48

:::
0.52

:::
0.55

: ::
12

:::
0.50

:::
0.44

::::
-0.10

Antecedent

event

:::::
Pacific

::
1

::::
19.01

: :::
0.18

:::
0.63

:::
0.35

: :::
4.87

: :::
0.30

:::
0.51

: :::
0.90

: ::::
10.11

:::
0.22

:::
0.65

:::
0.91

: :
7
: :::

0.28
:::
0.60

::::
-0.11

:::::
Pacific

::
2

::::
18.60

: :::
0.27

:::
0.53

::::
-0.17

:::
2.98

: :::
0.33

:::
0.43

: ::::
-0.21

::::
10.56

:::
0.35

:::
0.43

::::
-0.11

:
6
: :::

0.28
:::
0.49

:::
0.55

:

::::
Andes

:
1
: :::

7.57
:::
0.65

:::
0.14

:::
0.42

: :::
5.70

: :::
0.47

:::
0.35

: :::
0.63

: :::
7.57

: :::
0.54

:::
0.30

:::
0.57

: :
7
: :::

0.73
:::
0.04

::::
-0.11

::::
Andes

:
2
: ::::

40.03
: :::

0.28
:::
0.59

:::
0.42

: :::
5.26

: :::
0.29

:::
0.51

: :::
0.30

: :::
9.74

: :::
0.27

:::
0.59

:::
0.33

: :
7
: :::

0.32
:::
0.54

:::
0.38

:

::::
Andes

:
3
: :::::

127.47
:::
0.30

:::
0.69

:::
0.53

: :::
6.08

: :::
0.23

:::
0.55

: :::
0.33

: ::::
16.72

:::
0.16

:::
0.77

:::
0.44

: ::
20

:::
0.29

:::
0.69

:::
0.34

:

::::
Andes

:
4
: ::::

31.73
: :::

0.33
:::
0.53

:::
0.57

: :::
5.77

: :::
0.37

:::
0.51

: :::
0.59

: :::
8.44

: :::
0.35

:::
0.50

:::
0.60

: :
9
: :::

0.40
:::
0.46

:::
0.24

:

::::
Andes

:
5
: ::::

15.77
: :::

0.31
:::
0.57

:::
0.32

: :::
2.22

: :::
0.56

:::
0.43

: :::
0.28

: :::
8.25

: :::
0.31

:::
0.57

:::
0.31

: :
3
: :::

0.41
:::
0.44

:::
0.01

:

::::
Andes

:
6
: ::::

18.76
: :::

0.43
:::
0.55

:::
0.60

: :::
3.75

: :::
0.60

::::
-0.14

:::
0.41

: :::
4.75

: :::
0.64

:::
0.33

:::
0.44

: :
5
: :::

0.38
:::
0.61

:::
0.67

:

::::::
Amazon

:
1
: ::::

70.79
: :::

0.54
:::
0.31

:
-

::::
10.18

:::
0.48

:::
0.32

: :
-

::::
13.26

:::
0.52

:::
0.34

:
-

::
15

:::
0.83

:::
0.14

:
-

::::::
Amazon

:
2
: :::::

175.88
:::
0.36

:::
0.53

:::
0.64

: :::
8.81

: :::
0.44

:::
0.44

: :::
0.40

: ::::
16.15

:::
0.40

:::
0.48

:::
0.45

: ::
17

:::
0.39

:::
0.51

:::
0.47

:

::::::
Amazon

:
3
: :::::

137.64
:::
0.52

:::
0.35

:::
0.30

: ::::
11.05

:::
0.59

:::
0.41

: :::
0.39

: ::::
16.90

:::
0.49

:::
0.51

:::
0.53

: ::
11

:::
0.50

:::
0.10

::::
-0.10

evaluating the thresholds for mass movement events recorded in 2020, which represented approximately 30% of the recorded245

events. This process was carried out for the year 2020, as we wanted to know how the thresholds would perform when they

were assimilated into a regional early warning system. Since the value of the TSS varies between 0 and 1, performances above

0.4 are considered good to acceptable measures of thresholds, and values above 0.7 are considered very good values.
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3 Results

3.1 Rainfall–landslide threshold250

The calibrated thresholds for the individual properties of the events (Imax,E,D,Imean) are shown in Table 1 and the curved

thresholds (Imax −D,E−D,Imean −D) are shown in Table 2. They are presented for two scenarios: the first one describes

the rainfall events that include rainfall on the landslide occurrence day, called the entire event (EE); and the second one only

includes the antecedent conditions up to one day before the landslide occurrence, called the antecedent event (AE), given that

we are interested in analyzing landslide events under an approach that includes the predictive capacity of antecedent conditions255

and their influence on the occurrence of future events for the operation of early warning services.

From the results, it is observed that thresholds with the best average performance for entire events were E (TSS = 0.59)

for individual properties and Imean −D (TSS = 0.65) for combined curves. As expected, the integration of properties into

curves produced a better overall performance compared with the properties of individual events. Of the three curves (Imax −
D,E−D,Imean −D), the Imean −D curve performed the best (Figure 6), with TSS = 0.65 for calibration and TSS = 0.42260

for validation.

The results show that the components with the lowest performance for threshold determination were duration (D) for both

the calibration period and validation, followed by the average rainfall rate (Imean). In the case of the combined curves, there

is a smaller difference in their performances, with the E−D being the one with the lowest performance. These thresholds do

not have a good ability to discriminate landslide-triggering rainfall events of non-triggers.265

3.2 Impact of regionalization

The study area was regionalized into 11 regions based on maximum
::::
daily rainfall information. The estimated results show the

rainfall variability of Peru in the magnitudes of the thresholds for each region , as
:
is
:
presented in Table 1. Regionally, the best

performing threshold of a single variable, cumulative rainfall E, averaging 33 mm, ranged from 4.23 mm (Pacific 2 region)

to 92.77 mm (Amazon 2 region). Imax ranged from 4.55 mm/d (Pacific 2 region) to 20.73 mm/d (Amazon 1 region) with270

an average of 11.83 mm/d. The region with the best predictive performance was Andes 3 with a TSS of 0.8 for the mean of

the thresholds of individual variables, and TSS of 0.89 for the mean of the threshold-type curve in scenario 2. The threshold

with the best performance for this region was Imax = 16.72 mm/d (TSS = 0.92), which correctly separated 100% of rainfall-

triggering events and only had an 8% rate of false alarms. Similarly, the Imax−D curve (TSS = 0.91) correctly separated 100%

of rainfall-triggering events and only had a 9% rate of false alarms. A summary of the best single variable or curved thresholds275

for each region is presented in Table 3.

Regionalization achieves a better separation of trigger and non-trigger distributions. The results for single-variable thresholds

are presented in Figure 7. The calibrated thresholds performed better overall in the Andes 3 (TSS = 0.83) areas compared with

the Andes 1 (TSS = 0.4), Andes 4 (TSS = 0.47), and Amazon 1 (TSS = 0.5) regions, which were the regions with the lowest

performance. In fact, most of the landslides recorded occurred in the Andes 3 region (Figure 8). With respect to the two Pacific280

regions, the Pacific 1 region (TSS = 0.66) performed better than the Pacific 2 region (TSS = 0.51). In the wettest regions of
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Table 2. Rainfall thresholds of two variables (Th: threshold, Cal: Calibration, Val: Validation)

Scenario Region

Imean-D Imax-D E-D

Thresh TSS Thresh TSS Thresh TSS

a b Cal Val a b Cal Val a b Cal Val

Entire event

Pacific 1 11.55 -0.4
:
4 37 0.68 0.26 16.73 -0.17 0.71 0.28 27.92 -0.16 0.66 0.21

Pacific 2 2.10 -0.002 0.61 0.20 4.58 -0.00 43 0.51 0.27 4.54 -0.10 0.44 0.38

Andes 1 7.34 -0.10 3 0.44 0.19 20.97 -0.98 0.36 0.09 18.30 -0.13 0.39 0.11

Andes 2 14.28 -0.531 0.62 0.28 13.62 -0.17 0.64 0.34 150.75 -0.59 0.57 0.34

Andes 3 10.84 -0.254 0.89 0.33 16.77 -0.01 0.91 0.34 27.47 -0.12 0.77 0.57

Andes 4 25.69 -0.814 0.52 0.68 44.51 -0.66 0.49 0.70 132.84 -0.56 0.48 0.61

Andes 5 16.68 -0.7
:
765 0.66 0.39 15.08 -0.25 0.64 0.38 45.36 -0.41 0.66 0.26

Andes 6 16.93 -0.8
:
109 0.62 0.63 19.25 -0.69 0.56 0.63 117.52 -0.90 0.65 0.67

Amazon 1 14.25 -0.0
:
5 47 0.77 - 20.91 -0.02 0.66 - 37.89 -0.03 0.64 -

Amazon 2 42.06 -0.54 0 0.57 0.53 66.35 -0.56 0.57 0.48 206.71 -0.73 0.58 0.44

Amazon 3 36.74 -0.4
:
545 0.73 0.68 49.54 -0.42 0.73 0.70 54.10 0.00 0.68 0.66

Antecedent event

Pacific 1 8.50
::::
-0.50 0 0.68 0.84 18.60 -0.28 0.67 0.44 156.39 -0.67 0.67 -0.06

Pacific 2 14.85 -0.8
:
876 0.53 -0.17 25.15 -0.3111 0.47 -0.08 34.46 -0.37 0.53 0.19

Andes 1 6.45 -0.0
:
878 0.36 0.66 7.52 0.00 0.30 0.56 9.21 -0.03 0.18 0.46

Andes 2 11.54 -0.389 0.65 0.39 19.37 -0.54 0.60 0.43 113.10 -0.53 0.58 0.31

Andes 3 13.98 -0.264 0.80 0.48 16.01 -0.49 0.73 0.48 387.59 -0.37 0.69 0.54

Andes 4 19.29 -0.724 0.56 0.66 34.81 -0.69 0.51 0.66 31.59 -0.00 12 0.53 0.57

Andes 5 8.59 -0.63 1 0.53 0.41 23.61 -0.66 0.62 0.22 45.51 -0.67 0.60 0.06

Andes 6. 16.39 -0.92 3 0.55 0.59 18.54 -0.89 0.51 0.57 83.96 -0.93 0.61 0.64

Amazon 1 51.63 -0.562 0.43 - 49.46 -0.17 0.37 - 69.73 0.00 0.30 -

Amazon 2 22.41 -0.418
:
2
:

0.53 0.51 33.70 -0.32 0.54 0.49 388.25 -0.30 0.53 0.64

Amazon 3 16.81 -0.1
:
436 0.55 0.55 16.83 -0.01 0.50 0.53 485.20 -0.53 0.39 0.35
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Figure 6. Mean Intensity-duration (Imean−D) plots with regional threshold curves at logarithmic scale. The background with colored dots

on a green-blue-black scale shows the density of rainfall events that do not trigger landslides. The rainfall events that trigger landslides were

plotted with the same regional threshold color.

the Amazon, the Amazon 1 region was the best performing, followed by the Amazon 3 and Amazon 2 regions. This Amazon

region and the Altiplano region (Andes 6) were the regions with the least calibration events.

The results do not show that any drainage (Pacific, Andes, or Amazon) stands out in separating triggering rain events from

those that are not triggering; on the contrary, there are regions with good performance and regular performance along the285

Pacific, Andes, and Amazon. The Andes 6 (3 landslide
:
4

:::
SL events), Amazon 1 (6 landslide

::
SL

:
events), and Amazon 3 (8

landslide
::
12

:::
SL

:
events) regions were the ones that had the least number of events for calibration and validation. The other

regions included more than 10 events (Figure 8), highlighting the Andes 2 (63 landslide
::
98

:::
SL events), Andes 4 (58 landslide

::
65

:::
SL events), and Amazon 2 (

::
54

:::
SL

::::::
events)

:::
and

::::::
Pacific

::
1

:
(46 landslide

::
SL

:
events) regions.

3.3 Effect of Antecedent Conditions290

It is known that the antecedent conditions of the terrain play an important role in the occurrence of landslides, and especially

in their magnitude. This is the reason why this scenario was analyzed, and included the separation of rain events that only
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Table 3.
::::::
Number

::
of

::
SL

:::::
events

:::
and

:
best thresholds for one and two variables for each region (Th: threshold

:
,
:::
SL:

::::::
number

::
of

::::::::
landslides

:::
per

:::::
region,

:::
Cal:

:::::::::
Calibration,

::::
Val:

::::::::
Validation)

Region
::
SL

::::
total

::
SL

:::
Cal

: ::
SL

:::
Val

:
Best Th - 1 variable TSS Best Th - 2 variables TSS

Pacific 1
::
46

::
43

:
3 Imax 0.68 Imax −D 0.71

Pacific 2
::
27

::
20

:
7 Imean 0.61 Imean −D 0.61

Andes 1
::
34

::
28

:
6 Imean 0.43 Imean −D 0.44

Andes 2
::
98

::
83

::
15 E and Imean 0.58 Imax −D 0.64

Andes 3
::
17

::
10

:
7 Imax 0.92 Imax −D 0.91

Andes 4
::
65

::
54

::
11 E 0.51 Imean −D 0.52

Andes 5
::
14

:
7
: :

7 E 0.67 Imean −D and E−D 0.66

Andes 6
:
4
: :

3
: :

1 D 0.68 E−D 0.65

Amazon 1
:
6
: :

6
:

- Imean 0.74 Imean −D 0.77

Amazon 2
::
54

::
41

::
13 E 0.57 E−D 0.58

Amazon 3
::
12

::
10

:
2
:

E 0.68 Imean −D and Imax −D 0.73

consider the rate of rain until a day before the day of landslide occurrence (Table 1). It is observed that, in the calibration

phase, the antecedent event scenario obtained lower returns than the integer event scenario. However, in the validation stage

for the year 2020, it was observed that, for some thresholds in isolation, their performance was higher; for example, for the295

Pacific 1 region, the Imax and Imean thresholds obtained higher performances than the entire event scenario (including the

precipitation
:::::
rainfall

:
rate of the mm event day). This means that in the days prior to the day of occurrence, there was a day

with intense rain greater than that on the day of occurrence, and this allows the separation of that event as a triggering event, in

addition to altering the average rainfall rate associated with said event.

3.4 Evaluation of threshold performance300

Validation was carried out for the events that occurred in 2020 by simulating the operability of the calibrated thresholds in a

regional alert system. The Amazon 1 region did not contemplate landslide events for that year so it did not enter this assessment.

The validation shows that, in most regions and thresholds, there was a clear magnitude decrease (Tables 1 and 2). For example,

the Imax threshold, which obtained the best performance in calibration, decreased for this period, except for the Andes 4,

Andes 6, and Amazon 3 regions, which improved in this validation; this means that the threshold allowed for the separation of305

the rainfall events of 2020 better than expected in calibration.

The variable D was confirmed to be, by itself, a bad threshold separator for the separation of triggering rain events from those

that are not triggering. Even with negative performances (Pacific 1, Andes 1, and Amazon 3), this negativity was associated

with the sensitivity (correct prediction of landslides) of the model for these regions, which was 0; i.e., the estimated threshold

in the calibration was not able to separate the rainfall events. However, this variable shows that we can associate landslides310

with continuous rainfall events with an antecedent duration of 8 days.
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Figure 7. The first column shows the spatial distribution of Rainfall thresholds for independent variables magnitude for Peru:
::
(a)

:
day D

(
:::
days),

::
(b)

:
total cumulative rainfall E (

:::
mm),

::
(c) mean daily intensity Imean (

::::::
mm/day) and

::
(d) maximum daily intensity Imax (

:::::
mm/day). The

bivariate maps of second and third columns show the
::::::
bivariate

::::
maps

::::::::
indicating

::
the spatial distribution of the sensibility

:::::::::
sensitivity

:
(probabil-

ity of correctly predicting landslide triggering rainfall events) and specificity
:::::::::
specificity

:
(probability of correctly predicting non-triggering

rain
:::::
rainfall

:
events from landslide) of the thresholds for Calibration (second column)

::::::::
calibration

:
and Validation (third column)

:::::::
validation.

Regarding the
::::::::
variability

::
of

:::
the

:::::::::
thresholds

::::::
(Figure

:::
6),

:::
we

:::
can

::::::
explain

::
it
::::::
mainly

::
to

:::
the

::::::
rainfall

:::::::::::
climatology

::
in

::::
Peru.

::
It
:::
can

:::
be

::::
seen

:::
that

:::
the

::::::::::
magnitudes

::::
have

::
a
::::::::::
relationship

::::
with

::::::
respect

::
to

:::
the

::::::
spatial

::::::::::
distribution

::
of

::::::
rainfall

:::
in

::::
Peru,

::::
that

::
is,

::::
low

:::::::::
thresholds

:::::
related

:::
to

::::::
rainfall

::
of

:::::
lesser

:::::::::
magnitude

:::
in

:::
the

:::
arid

::::::
zones

::
in

:::
the

:::::::
western

:::
part

:::
of

::::
Peru

:::::::
(Pacific

::::::
region),

:::::::::
thresholds

::::::::::::
intermediates
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Figure 8. Spatial distribution at regional scale of number of landslides events (left), number of rainfall events (middle) and a probability

(right) of landslides triggering rainfall event.

:::::
related

:::
to

:::
the

:::::::
increase

::
in

:::
the

:::::::::
magnitude

::
of
:::::::

rainfall
::
in

:::
the

::::::
middle

::::
part

::
or

:::::::::::
mountainous

::::::
region

::::::
(Andes

:::::::
region)

:::
and

:::
the

:::::::
highest315

::::::::
thresholds

::::::
related

:::
to

:::
wet

:::::::
regions

::::::::
(Amazon

:::::::
region).

::::::::
However,

:::
the

::::::
Andes

::
1,
::::::

Andes
::

3
::::
and

:::::
Andes

::
6
:::::::
regions

::
do

::::
not

::::
have

::::
this

::::::::::
relationship,

::
so

::::
this

:::::::::
discussion

::
is

:::
not

:::::::::
conclusive

::::
and

::
is

:::::::::
considered

:::
to

::
be

::::::
related

:::
to

::::::
limited

:::::
data,

::
so

::
it

::
is

::::::::
suggested

::::
that

::::
this

::::::::
variability

:::
be

::::::::
discussed

::
in

:::::
future

:::::::
research

::::
that

::::::
include

:::::
more

::::::
shallow

:::::::::
landslides

:::::
events

:::::
data.

::::::::
Regarding

:::
the

:
validation period, 61 events were used in total, resulting in the TSS statistic being more sensitive, mainly

due to the increased sensitivity of the model (i.e., the probability of correctly predicting landslide-triggering rainfall events),320

while specificity remained approximately the same (i.e., the probability of correctly predicting non-landslide triggering rainfall

events). This effect points to the importance of obtaining wide and robust inventories of landslides.

:::
The

::::::::::::::::::
calibration/validation

:::::::::::
methodology,

:::::
based

:::
on

::::
take

:::
one

::::
year

::
of

:::::::::::
observations

:::
for

::::::::
validation

::::
set,

:::::
which

::::
was

::::
used

::
in

:::::
other

:::::::
research

:::::
works

::::::::::::::::::::::::::::::::::::::::::
(e.g., Kirschbaum et al., 2015b; Dikshit et al., 2019)

:
,
::
is

::::
quite

:::::
short

:::
and

::::
there

::
is
:::
the

::::
risk

::
of

:::::::::::::::
overinterpretation.

::
It

:
is
::::::::
therefore

::::::
highly

::::::::::::
recommended

:::
for

:::::
future

::::::::
research

::
to

::::::
expand

:::
the

::::::
dataset

::::
and

::::::
explore

:::::
other

::::::::::::::::::
calibration/validation

::::::::
methods,325

::
for

::::::::
example,

::
a

::::::
random

::::::::
selection

::
of

:::
the

::::::::::::
differentiated

:::
data

:::
set

:::
for

:::
the

:::::::::
calibration

::::
and

::::::::
validation

:::::
(e.g.,

::::
70%

:::
for

:::::::::
calibration

::::
and

::::
30%

::
for

::::::::::
validation)

::::::::::::::::::::::::::::::::::::::
(e.g., Brunetti et al., 2021; Gariano et al., 2020)

:
.

4 Discussions

In this research, rainfall thresholds were determined that allow for the separation of triggering and non-triggering rainfall

events for shallow landslide occurrence in two scenarios based on the variables of rainfall events associated with observed330

landslides. This type of analysis has already been objectively developed in previous studies (Peruccacci et al., 2017, 2012;

Segoni et al., 2014; Rosi et al., 2012; Leonarduzzi et al., 2017; Uwihirwe et al., 2020; Abraham et al., 2019). This work is the
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first approximation of regional thresholds on a national scale
:
in
:::::

Peru, and will serve as a starting point and reference for the

continued development of this type of research in Peru.

Individual thresholds were chosen to maximize the AUC statistic (see Table 1 ). The results
:::
The

:::::::::
estimated

::::::::
thresholds

:::
of335

::::::::::
independent

::::::::
variables

:::
are

::::
show

::
in
:::::
Table

::
1
:::
and

:::::
curve

:::::::::
thresholds

:::
are

:::::
show

::
in

:::::
Table

::
2.

::::
The

::::::::
thresholds

:::
of

::::::::::
independent

::::::::
variables

show that the thresholds with the best performance were E for the individual properties
:::::::
variables

:
of rainfall events and Imean−

D for combined variables
:::::
curve

:::::::::
thresholds. The variable that had the lowest performance was the duration of the event, D, so it

should not be used independently, but combined with other event variables. However, it allows us to associate landslide events

with the background rain conditions of the previous 8 days, an association that can be used for future research.340

Concerning the thresholds of two variables or curves(see Table 23), ,
::::

the
::::
TSS

:::
had

::
a
:::::
slight

::::::::::::
improvement,

:::
all

:::::::::
exceeding

:::
0.5

::
in

:::
the

:::::::::
calibration

::
of

:::
the

::::::::::
Imean −D

::::::::
threshold

:::
(the

::::::::
threshold

:::::
with

:::
the

:::
best

:::::::::::
performance

:::
for

::::::
curved

::::::::::
thresholds),

::::::
except

:::
for

:::::
Andes

::
1.

::::
This

:::::::::
efficiency

::::::::
statistics,

:::::
based

::
on

:
the optimization model has an approach based on maximizing the TSS, through

which a high detection rate of landslides (sensitivity) is sought, maintaining, as far as possible, a low rate of detection of false

positives (specificity). However, it was observed that to seek this optimization, the detection of landslides is sacrificed (giving345

false negatives),
:::::
though

:::::
false

::::::
alarms

:::
are

:::::::
reduced,

:
and this is a dilemma in terms of alert systems. However, the TSS in all

the thresholds that related to two variables (curve type) had a slight improvement, all exceeding 0.5 in the calibration of the

Imean −D threshold (the threshold with the best performance for curved thresholds), except for Andes 1.
:
,
:::
but

::::
TSS

::
is

:
a
:::::
good

::::::
balance

:::::::
between

:::::::::
landslides

::::::::
detection

:::
and

::::
false

:::::::
alarms.

The Pacific 1 region is of special importance in Peruas it is one of the regions where there are several high-impact streams.350

Due to the constant landslide occurrence
::::::::
constantly

::::::::
impacted

:::
by

:::::::
shallow

::::::::
landslides

::::
and

::::
also

:::::::
contains

::::
most

:::
of

:::
the

:::::
cities

::::
with

::
the

:::::::
highest

:::::::::
population

::::::
density

::
in

:::::
Peru,

::
so

::::
their

:::::::::
evaluation

::
is

:::::
highly

::::::::
relevant.

::
In

:::
this

::::::
region, it was observed that the Imax (TSS

= 0.68) and Imax −D -D (TSS = 0. 71) were the best thresholds for the integer
:::::
entire event scenario, and the

:::::
which

::::::::
indicates

:::
that

:::
the

::::::::::
catchments

::
in

:::
this

::::::
region

:::
are

::::::
highly

::::::::::
susceptible

::
to

:::::
events

:::
of

:::::::::
maximum

:::::::
intensity.

::::::
While

:::
the

:
Imax (TSS = 0.65) and

Imean −D (TSS = 0.68) thresholds for the background conditions
::::
were

:::
the

::::
best

::::::::
thresholds

:::
for

:::
the

:::::::::
antecedent

:::::
event

:
scenario.355

The
::::
Imax:::::::

variable
::::
had

:::
the

::::
best

:::::::::::
performance,

::::::
which

:::::::
suggests

::::
that

::::::::::::
high-intensity

:::::
rains

::::
have

::
a

::::
high

:::::::::::
conditioning

::::::
impact

:::
on

:::::::
landslide

::::::::::::
development.

::::::::
Regarding

::::
the validation performances in the antecedent conditions scenario were higher than in the

calibration performances, which indicates that the streams in this region are highly susceptible to events of maximum intensity,

increasing the probability of landslide occurrence. This is particularly because , in the validation stage, this region showed

significant growth in its calibration performance, revealing that antecedent rainfall conditions have a high conditioning impact360

on landslide development
::
it

::::
may

::
be

:::::::
because

:::
the

::::::::
validation

:::
set

::
is

:::
too

:::::
small.

Regionalization was necessary given the high climatic variability in Peru, evidenced by the differences in magnitude between

the thresholds. This regionalization helped us to observe the regions of Peru where there is greater landslide occurrence and

response to this type of daily threshold. For example, we observed that the Andes 2 region (the region with the highest number

of events recorded in recent years) had a better response for the Imax threshold for both calibration and validation. In general,365

the regions with the best performance are shown in Table 4.
:::::::::::::::::::
Hirschberg et al. (2021)

:::::
found

::::
that

::
25

::::::
events

:::
are

::::::
enough

::
to
:::::
limit

::
the

:::::::::::
uncertainties

::
in

:::
the

:::
ID

:::::::
threshold

::::::::::
parameters

::
to

:::::
±30%

::
in
:::
his

:::::
study,

:::::
based

:::
on

::::
this,

:
it
::
is

::::::::
observed

:::
that

::::
there

:::
are

::::::
several

:::::::
regions
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::::::
(Andes

::
3,

::
5,

:
6
::::
and

:::::::
Amazon

::
1,

::
2)

::::
that

::
do

::::
not

::::::
exceed

:::
that

::::::::
quantity,

::
so

:::::
these

::::::
regions

::::
have

::
a

::::::
greater

:::::
source

:::
of

:::::::::
uncertainty

::::
due

::
to

::
the

::::::::
quantity

::
of

:::
the

::::
data.

::
A
::::::::
summary

:::
of

:::
the

::::::
number

:::
of

::::::
shallow

::::::::
landslide

::::::
events

::::
used

:::
for

:::
the

:::::::
research

::::
and

:::
the

:::::::::
thresholds

::::
with

:::
best

::::::::::::
performances

:::
per

:::::
region

::
is

::::::::
presented

::
in

:::::
Table

::
3.

:
370

The evaluation of the performance of the thresholds was carried out through validation with the events of 2020. However,

it was observed that the performances decreased, which may be due to the fact that, in the year 2020, there were no extreme

rainfall events as in other years, and the number of landslides was lower than in other years. Even the Amazon 1 region had no

record of activation events, thus we can state that the low performance was because the thresholds do not represent landslide

events with low-impact magnitude, and this associated with one of the focuses of the model, which is to reduce the rate of false375

alarms.

There are still many different sources of limitations on studies at the regional level in the field of landslides and their in-

terrelation with rainfall as a triggering agent in Peru. The main source of uncertainty in this study was the unreliability of the

available databases used, which resulted in the following limitations: (i) precipitation
::::::
rainfall

:
of PISCOpd_Op by the spatio-

temporal resolution with a grid of 10 km and a daily time scale; (ii) the basins or units of analysis, which covered several380

streams, torrents and small basins; (iii) landslides registered, since the objective of the study did not focus on a review of the

record of events, although a global analysis of the databases was carried out; (iv) the small number of events recorded in the

landslide historical series must also be taken into account; and (v) the climatic regions, due to the great landslide spatial vari-

ability of descriptor variables studied in this research. These described factors are limitations with regard to the determination

of thresholds and create uncertainties in the generation of regional thresholds that are translated into the performance indices385

used for the evaluation of thresholds.

5 Conclusions

This study is the first approximation of the regional rainfall thresholds that trigger landslides
::
in

::::
Peru. It was conducted to

estimate and analyze the interrelation between rainfall and its landslide trigger effect in 11 precipitation
::::::
rainfall

:
regions in

Peru using an empirical-–statistical method. The advantage of this study is the use of observed landslides to perform threshold390

calibrations
::::::::
landslides

:::::::
datasets

::::::::
available

::
at

:::
the

:::::::
national

:::::
scale

::
to

:::::::::
objectively

:::::::::
determine

:::
and

::::::::
compare

::::::
rainfall

:::::::::
thresholds. Daily

gridded rainfall data and landslide records allowed us to estimate landslide-triggering rainfall events and thus determine the

properties of triggering and non-triggering rainfall events at susceptible sites, using them to ascertain rainfall thresholds for the

activation of shallow landslides triggered by rainfall and to validate their performance. Our main conclusions are:

a. The generation of thresholds using the empirical–statistical method and calibrations based on the optimization of the395

area under the curve (AUC) statistics and the
::::::::
minimum

:::::
radial

:::::::
distance

::::
and

::::::::
maximum

:
true skill statistics (TSS) were

successful in defining rainfall thresholds for landslides. The best predictive performance was obtained using the mean

intensity-duration (Imean−D) threshold curve, followed by the accumulated daily intensity E. The duration of the event

independently has very low predictive power.
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b. The performance of the thresholds in the
:::::::::::
performances

::
of

:::
the

::::::::
calibrated

:::::::::
thresholds

::::
had

:
a
::::
high

::::::::::::
differentiation

::::::::
between400

::::::
regions.

:::::
This

:::::::::::
performances

:::::::::
difference

::
is

::::::::
associated

:::::
with

:::
the

:::::
highly

:::::::::
variability

::
of

:::::::
rainfall

:::::
events

::::
and

::::
their

:::::::::
properties

::
in

::::
each

::::::
region,

:::::
where

:
it
::
is
::::::::
observed

:::
that

:::
the

::::
best

:::::::::::
performances

:::::
occur

::
in

::::
areas

::::::
where

:
it
::
is

:::::
easier

::
to

:::::::
separate

::::::
rainfall

:::::
events

::::
that

:::::
trigger

::::
and

::
no

::::::
trigger

:::::::
shallow

:::::::::
landslides,

::::::
which

::
is

:::::::
reflected

::
in

::::
high

::::::::::::
performances

:
(Andes 3, Andes 2, Andes 5, Pacific

:::::::
Amazon

:
1, and Amazon

:::::::
Amazon

:
3
::::

and
::::::
Pacific

:
1 regionswas good. The models acceptably classified the triggering

rainfall events from those
:
).
::::::::
However,

::
in
:::::
other

:::::::
regions,

:::
this

:::::::::
separation

:::::::
between

:::::::
rainfall

:::::
events

::
is

:::::
more

:::::::
complex

::
to

:::::
carry405

:::
out,

:::::
since

::::
there

:::
are

:::::
more

::::::
rainfall

::::::
events

::::
with

::::
high

::::::::::
magnitudes

:
that do not trigger . The worst performing regions were

::::::::
landslides

:::
but

::::
that

::::::
exceed

:::
the

::::::::::
thresholds,

::::::::
reflecting

::
in
::::::

lower
:::::::::::
performances

::
(Andes 1, Andes 4 , and Amazon 1.

:::
and

:::::::
Amazon

:::
2).

:::::
Thus,

:::
we

:::::
could

::::::
assume

::::
that

::
in
:::::

these
:::::::
regions

::::
there

::
is
::

a
::::::
greater

::::::::
incidence

:::
of

::::::::
lithology

:::
and

:::::::
geology

:::
in

:::
the

:::::::::
occurrence

::
of

:::
SL

::::
than

:::
just

:::
the

:::::
rains.

c. Through the observed PISCOpd_Op and landslides databases, it is possible to generate daily rainfall thresholds for410

shallow landslide occurrence. However, the uncertainties associated with these databases are the main source of threshold

error, which is why the validation phase had high sensitivity
:::::::::
uncertainty

:::
for

:::
the

::::::::::
thresholds.

:::
The

::::
few

::::::::
landslides

::::::::
recorded

::::
made

::::
that

:::
the

::::::::
validation

:::::::::::
performance

:::
had

::::::
highly

:::::::
sensitive

::
to

:::
the

::::
few

:::
data

:::::
(i.e.,

:
a
:::::
single

:::::
event

:::::
could

::::
lead

::
to

:
a
::::
high

::
or

::::
low

::::
value

::
of

:::
the

:::::::::::
performance

::::::::
statistics).

The results of this work demonstrate the potential of rainfall thresholds based on the characteristics of rainfall events as-415

sociated with landslides for implementation in landslide monitoring in Peru. Future work should focus on three main per-

spectives based on the limitations and sources of uncertainty: i) improvement in the spatio-temporal resolution of gridded

precipitation
::::::
rainfall; ii) improvement in the spatial discretization of regions where the greatest number of landslides take

place, which is dependent firstly on improving the spatio-temporal resolution of rainfall; and iii) the assimilation of landslide

databases to improve the certainty of the thresholds and reduce their sensitivity.420

Code and data availability. The source code with an example data set is available from GitHub (https://github.com/caemillan/Rainfall_

thresholds_for_shallow_landslide.git).
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