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Abstract. An ensemble of forecast flood inundation maps has the potential to represent the uncertainty in the flood forecast

and provide a location specific likelihood of flooding. Ensemble flood map forecasts provide probabilistic information to

flood forecasters, flood risk managers and insurers and will ultimately benefit people living in flood prone areas. Spatial

verification of the ensemble flood map forecast against remotely observed flooding is important to understand both the skill of

the ensemble forecast and the uncertainty represented in the variation or spread of the individual ensemble member flood maps.5

In atmospheric sciences, a scale-selective approach has been used to evaluate a convective precipitation ensemble forecast. This

determines a skilful scale (agreement scale) of ensemble performance by locally computing a skill metric across a range of

length scales. By extending this approach through a new application, we evaluate the spatial predictability and the spatial

spread-skill of an ensemble flood forecast across a domain of interest. The spatial spread-skill method computes an agreement

scale at every grid cell between each unique pair of ensemble flood maps (ensemble spatial spread) and between each ensemble10

flood map with a SAR-derived flood map (ensemble spatial skill). These two are compared to produce the final spatial spread-

skill performance. These methods are applied to the August 2017 flood event on the Brahmaputra River in the Assam region of

India. Both the spatial-skill and spread-skill relationship vary with location and can be linked to the physical characteristics of

the flooding event such as the location of heavy precipitation. During monitoring of flood inundation accuracy in operational

forecasting systems, validation and mapping of the spatial spread-skill relationship would allow better quantification of forecast15

systematic biases and uncertainties. This would be particularly useful for ungauged catchments where forecast streamflows are

uncalibrated and would enable targeted model improvements to be made across different parts of the forecast chain.

1 Introduction

Forecast flood maps indicating the extent and depth of fluvial flooding within an actionable lead time, are a useful tool for flood

risk managers and emergency response teams prior to and during a flood event. Typically, forecast flood maps are presented20

as deterministic forecasts showing precisely where flooding will occur. This can lead to incidents of false alarms or missed

warnings and subsequent recriminations causing mistrust in the system (Arnal et al., 2020; Savage et al., 2016). A timely
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prediction of exactly where and when fluvial flooding caused by intense or prolonged rainfall will occur is virtually impossible

due to the chaotic nature of the atmosphere (Lorenz, 1969). The ensemble forecasting approach aims to address the sensitivity

of the atmospheric dynamics to initial conditions and through multiple model runs these initial condition uncertainties can be25

quantified (Leutbecher and Palmer, 2008). The ensemble forecast results in a probabilistic weather forecast that indicates the

predictability of the atmosphere at a given space and time. State-of-the-art operational ensemble flood forecasting systems link

together a chain of forecast models to produce probabilistic streamflow and flood inundation forecasts at national and global

scales (Cloke and Pappenberger, 2009; Emerton et al., 2016; Wu et al., 2020). Ensemble Numerical Weather Prediction models

provide meteorological inputs into land-surface, hydrological and hydraulic models, cascading the atmospheric uncertainty30

through to the flood forecast. Throughout this chain of models, multiple sources of uncertainty exist that have been investi-

gated in numerous studies (Beven, 2016; Matthews et al., 2022; Pappenberger et al., 2005; Zappa et al., 2011). As discussed by

Boelee et al. (2019), these uncertainties include those arising from meteorological inputs, measurements and observations, ini-

tial conditions, unresolved physics within the models and parameter estimates. A probabilistic flood inundation forecast should

present a meaningful prediction of the likelihood of flooding so that there is confidence in the forecast, given the uncertainties35

represented in the system (Alfonso et al., 2016).

The accuracy of the location of flooding, predicted in advance, is defined as spatial predictability. The spatial predictability

of ensemble forecasts of flood inundation could be verified by comparing with a remote observation of the flood from satellite

or unmanned aerial vehicle (UAV) based sensors. Satellite-based optical and Synthetic Aperture Radar (SAR) sensors are well40

known for their flood detection capability (e.g. Horritt et al., 2001; Mason et al., 2012). SAR sensors are active, which enables

them to scan the Earth through weather and clouds, and at night. The SAR backscatter intensity detected depends on the rough-

ness of the surface, with unobstructed flooded areas and other surface water bodies appearing relatively smooth and returning

low backscatter values. Dasgupta et al. (2018a) detail some of the challenges along with approaches to solutions of flood

detection using SAR, examples of these challenges include: roughening of the water surface by heavy rain and strong wind,45

emergent or partially submerged vegetation and flood detection in urban areas. Accurate flood detection in urban areas particu-

larly due to surface water flooding has become increasingly important (Speight and Krupska, 2021) and recent techniques have

led to improved flood detection (Mason et al., 2018, 2021a, b). Optical instruments rely on solar energy and cannot penetrate

cloud, making them less useful during a flooding situation. Recent studies have investigated the flood detection benefits from

combining both optical and SAR imagery (Konapala et al., 2021; Tavus et al., 2020). Improvements in the spatial-temporal50

resolution of SAR images and their open source availability mean that they are an increasingly valuable tool for hydraulic

and hydrodynamic model improvements through calibration, validation and data assimilation (e.g. García-Pintado et al., 2015;

Grimaldi et al., 2016; Cooper et al., 2018, 2019; Di Mauro et al., 2021; Dasgupta et al., 2018b, 2021a, b). The Global Flood

Monitoring (GFM) product (EU Science Hub, 2021; GFM, 2021; Hostache, R., 2021) of the Copernicus Emergency Man-

agement Service (CEMS) (Copernicus Programme, 2021) produces SAR-derived flood inundation maps for every Sentinel-155

image detecting flooding. Three flood detection algorithms provide uncertainty estimation and population affected estimates

within 8 hours of the image acquisition. The European Space Agency (ESA) Copernicus Programme have recently included
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the ICEYE constellation of small satellites into the fleet of missions contributing to Europe’s Copernicus environmental moni-

toring programme (ESA, 2021). ICEYE captures very high resolution (spot mode ground range resolution = 1 m) SAR images

which brings the potential for increased accuracy of flood detection, particularly in urban areas.60

To evaluate the accuracy of an ensemble forecast, a number of verification measures have been proposed. Anderson et al.

(2019) developed a joint verification framework for end-to-end assessment of the England and Wales Flood Forecasting Centre

(FFC) ensemble flood forecasting system. Anderson et al. (2019) describe verification metrics such as the continuous rank

probability score (CRPS), rank histograms, Brier Skill Score (BSS) and the relative operative characteristics (ROC) diagrams65

that are commonly applied to assess the main ensemble attributes desirable in both precipitation and streamflow ensemble

forecasts (e.g. Renner et al., 2009). These metrics refer to flooding events as part of a time series evaluated against a reference

benchmark, such as climatology, to produce an average skill score. In contrast, here we consider ensemble spatial verification

at a single time point. The verification of ensemble forecasts usually involves comparing the RMSE of the ensemble mean

against an observed quantity to assess the skill of the forecast with the ensemble standard deviation used as a measure of70

spread. A perfect ensemble should encompass forecast uncertainties such that the ensemble spread is correlated to the RMSE

of the forecast (Hopson, 2014). This spread-skill relationship was assessed by Buizza (1997) to investigate the predictabil-

ity limits of the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS). This

approach to ensemble verification is based on point values and makes the assumption that the ensemble mean is the forecast

state with the highest probability and that the forecast distribution is Gaussian. Significant flooding events are, in their nature,75

a rare occurrence and in certain circumstances a few ensemble members can indicate a low probability of an extreme flood.

Also, in particular atmospheric scenarios the ensemble forecast may result in a multi-modal forecast where two clusters of

ensemble members are each equally likely (Galmiche et al., 2021). For example, both clusters may indicate flooding events

but at different magnitudes. In both of these instances the individual ensemble member details are important and evaluation of

the ensemble mean alone would not be meaningful. When mapping the flood extent prediction, the ensemble mean field alone80

does not retain the spatial detail of the individual member forecasts.

The spatial spread-skill of the ensemble forecast is determined by evaluating the full ensemble against observations of flood-

ing. For a flood map ensemble to be considered spatially well-spread, the spread or variation between ensemble members

should equal the spatial predictability, or skill of the ensemble members (Dey et al. (2014), see Section 2). Presently, to the best85

of our knowledge, quantitative evaluation methods assessing the spatial spread-skill of ensemble forecast flood maps do not ex-

ist. However, previous work in numerical weather prediction by Ben Bouallègue and Theis (2014) investigated the application

of spatial techniques to ensemble precipitation forecasts using a neighbourhood, or fuzzy approach that allowed comparisons

at larger scales than grid level (native resolution). A location dependent approach to the spatial spread-skill evaluation of a con-

vective precipitation ensemble forecast was developed by Dey et al. (2016b). This method compares every ensemble member90

across a range of scales on a spatial field against an observation field to assess whether the ensemble forecast is spatially over-,

under- or well-spread on average across a domain of interest (Chen et al., 2018). In a recent study, a scale-selective approach
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was developed and applied to evaluate a deterministic flood map forecast where comparisons were made against conventional

binary performance measures (Hooker et al., 2022a). A scale-selective approach to flood map evaluation was found to have sev-

eral benefits over conventional binary performance measures. These include over-coming the double penalty impact problem95

when validating at higher spatial resolutions and accounting for the impact of the flood magnitude on the skill score. The work

described here extends and applies this scale-selective approach to assess the spatial predictability and the spatial spread-skill

of an ensemble flood map forecast.

In this paper we aim to address the following questions:100

– How can we summarise the spatial predictability information in ensemble flood map forecasts?

– How can we evaluate and visualise the spatial spread-skill of an ensemble flood map forecast?

– How does the spatial spread-skill vary with location and how can this be presented?

In Section 2 we present a new approach to the evaluation of spatial predictability and the spatial spread-skill of an ensemble

flood map forecast by comparing against a remotely observed flooding extent. We illustrate the features of the methods through105

an example case study of an extreme flooding event of the Brahmaputra River which impacted India and Bangladesh in August

2017, with focus on the Assam region of India. The flood event details are described in Section 3.1. The international ensemble

version of the JBA Consulting Flood Foresight system provides forecast flood maps for the study and is described in Section 3.2.

Observations of the flood are derived from satellite based SAR sensors and the method is explained in Section 3.3. The results

including the Spatial spread-skill (SSS) map are discussed in Section 4. Our results show that individual ensemble member110

spatial predictions of flooding are meaningful and that the full ensemble spatial detail should be evaluated. We conclude in

Section 5 that the spatial spread-skill of the ensemble forecast varies with location across the domain and can be linked to

physical characteristics of the flooding event.

2 Ensemble flood map spatial predictability evaluation methods

In this Section we present new methods for evaluating and visualising the spatial-spread skill of an ensemble flood map forecast.115

Hooker et al. (2022a) described and applied a new scale-selective approach to evaluate the spatial skill of a deterministic flood

map forecast relative to an observed SAR-derived flood map. Here, we apply this same measure to evaluate different aspects

of an ensemble forecast. The scale-selective Fraction Skill Score (FSS) method is outlined in Section 2.1. Agreement scale

maps indicating forecast accuracy are defined for location-specific comparisons between forecast and observed flood maps

in Section 2.2. These are used to assess the spatial relationship between each unique pair of ensemble member flood maps120

(member-member) and between every ensemble member flood map and the observed SAR-derived flood map (member-SAR,

Section 2.3). Visualisation methods of the spatial spread-skill relationship including our new Spatial Spread-Skill (SSS) map

are presented in Section 2.4.
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2.1 Fraction Skill Score

The FSS is a scale-selective verification measure that can determine the skilful scale of a modelled flood map, when compared125

against a remotely sensed observation of flooding (Roberts and Lean, 2008; Hooker et al., 2022a). We will call these flood

maps the model array and the observed array respectively. For an ensemble forecast, the model array could be an individual

ensemble member, or a summarised flood estimate derived from a combination of ensemble members such as a combined

ensemble or the ensemble median (see Section 3.4). Both the model and observed arrays are converted into binary fields using

a situation dependent threshold (e.g. depths greater than 0.2 m are labelled flooded). For this ensemble application of the FSS130

we evaluate the entire flood extent across the domain. Each grid cell is labelled as inundated (1) or dry (0). All grid cells are

numbered according to their spatial locations (i, j), i= 1 . . .Nx and j = 1 . . .Ny where Nx is the number of columns and Ny

is the number of rows. Surrounding each grid cell, a square of length n creates an n×n neighbourhood. The fraction of 1s

(inundated cells) in the square neighbourhood area is calculated for every grid cell. This creates two arrays of fractions across

the domain for both the observed Onij and modelled Mnij data. The mean squared error (MSE) for the fraction arrays is135

calculated for the domain and a given neighborhood size, n:

MSEn =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[Onij −Mnij ]
2. (1)

A potential maximum MSEn(ref) depends on the fraction of flooding in the domain for the modelled and observed fields and

is calculated as:

MSEn(ref) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[O2
nij +M2

nij ]. (2)140

Finally, the FSS is

FSSn = 1− MSEn

MSEn(ref)
. (3)

The FSS is initially calculated at grid level (n= 1) followed by the smallest neighbourhood size (n= 3) before increasingly

larger neighbourhood sizes (n= 5, n= 7...) are considered. The FSS ranges between 0 (no skill) and 1 (perfect skill). Increas-

ing the neighbourhood size typically leads to an improved FSS as the fractions are calculated over a larger area. Plotting FSS145

against the neighbourhood size can indicate a range of scales where the model is deemed to be the most skilful. A target FSS

score (FSST ) can be determined from the fraction of observed flooding across the whole domain (f0):

FSST ≥ 0.5+
fo
2
. (4)

The point where the FSSn exceeds FSST can be viewed as being equidistant between the skill of a random forecast and

perfect skill (Roberts and Lean, 2008). A recent study by Skok and Roberts (2018) investigated the sensitivity of the calculated150

skilful scale to the constant value (0.5) in Eq. (4), and found that 0.5 gave meaningful results compared with the measured

displacement. The magnitude of the observed flood, relative to the domain area, determines the value of FSST . This allows
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the comparison of the skilful scale (neighbourhood size) where FSST is reached across different domain sizes and floods of

different magnitudes.

155

2.2 Location dependent agreement scales

The FSS (Section 2.1) gives a domain average measure of forecast performance and a minimum spatial scale at which the

forecast is deemed skilful. To enable the spatial spread-skill of the full ensemble to be evaluated at specific locations, we

first define an agreement scale (see Dey et al. (2014, 2016b); Hooker et al. (2022a) for full methodology). The agreement

scale is calculated and mapped for every grid cell in the domain and shows a measure of similarity between two arrays of160

data. In contrast to the FSS method the arrays are not required to be thresholded. The agreement scale method can be applied

to both binary flood extent maps as well as flood depth fields. These could both be ensemble member flood maps or an

ensemble member flood map and an observed flood map. Two data arrays are compared F1ij and F2ij and the aim is to find

a minimum neighbourhood size (or spatial scale) for every grid cell such that there is a predetermined acceptable minimum

level of agreement between F1ij and F2ij . This is known as the agreement scale SA(F1F2)
ij . (Note that the relationship between165

the agreement scale and the neighbourhood size described previously in section 2.1 is given by S
A(F1F2)
ij = (n− 1)/2.) The

agreement scale (now defined S for simplicity in the following equations) is determined individually for every grid cell by

testing and meeting a chosen criteria.

A relative MSE, DS
ij is calculated for all grid cells, initially at grid level, S = 0 (n= 1),

DS
ij =

(FS
1ij −FS

2ij)
2

(FS
1ij)

2 +(FS
2ij)

2
. (5)170

If F1ij = 0 and F2ij = 0 (both dry) then DS
ij = 0 (correct at grid level). The value of DS

ij ranges between zero and 1. The arrays

are deemed to be in agreement at the scale being tested if:

DS
ij ≤DS

crit,ij where DS
crit,ij = α+(1−α)

S

Slim
(6)

The parameter value α indicates an acceptable bias at grid level such that 0≤ α≤ 1. Additional historical forecast data of

flood events is not available for the region in this study, so we assume there is no background bias between the forecast and the175

observations and set α= 0. A fixed maximum scale Slim is predetermined using human judgement considering the physical

characteristics of the flood event. The value chosen for Slim depends on the magnitude of the flood extent relative to the size

of the sub-catchment. For the case study presented here, we set Slim = 80 (2400 m), which is approximately 1
4 to 1

2 of the

sub-catchment widths in the domain. If DS
ij ≥DS

crit,ij then the next neighbourhood size up is considered (S = 1, n= 3, a 3

by 3 square) where F 1
1ij and F 1

2ij are arrays containing the average value of each neighbourhood surrounding the grid cell at180

position (i, j) for each array. The process continues by comparing increasingly larger neighbourhoods (e.g. S = 2, n= 5, a 5

by 5 square) until the agreement criterion:

S
A(F1F2)
ij or Slim at DS

ij ≤DS
crit,ij (7)
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is met for every cell in the domain. The agreement scale at which the agreement criterion is met will usually vary from grid

cell to grid cell and these values (S = 0, S = 1, S = 2 and so on up to Slim), each specific to each grid cell location can be185

mapped onto the domain of interest to provide a location specific measure of agreement between the two data arrays that are

compared. A small value for the agreement scale means that the two arrays being compared are very similar (spatially) at a

specific location, whereas a large value for the agreement scale means that the two arrays being compared are dissimilar. Note

that the skilful scale determined by the FSS (Section 2.1) differs from the agreement scale defined here. The former links

directly with the spatial differences between objects e.g. Skok and Roberts (2018), whereas the latter reflects a pre-defined190

“acceptable” bias at different scales.

Validation of forecast flood maps against remotely observed flooding extent is typically carried out by labelling each grid cell

using a contingency table with categories: correctly predicted flooded, under-prediction (miss), over-prediction (false alarm)

and correctly predicted unflooded. In the contingency table under-predicted cells are set to +1, over-predicted cells are set195

to -1, correctly predicted flooded cells are assigned NaN and correctly predicted unflooded cells are set to 0. Mapping these

categories creates a conventional contingency map, which combined (by element-wise array product) with an agreement scale

map (Eq. (7)) creates a categorical scale map made by plotting the absolute agreement scale values coloured according to the

contingency class. A categorical scale map shows a measure of spatial accuracy between two data arrays (Hooker et al., 2022a).

Categorical scale maps may be used as a basis for comparison between ensemble members and observations, as we illustrate200

with our case study in Section 4.3.

2.3 Ensemble spatial spread-skill evaluation

We assume that each ensemble forecast flood map represents an equally likely future scenario and the evaluation of the full

ensemble is needed to quantify the uncertainty and to evaluate the spatial spread-skill relationship. The ensemble flood map205

spatial characteristics vary with location and in order to preserve the location dependent information, we utilise a method

developed to evaluate a convective ensemble precipitation forecast (Dey et al., 2016b, a). Here, we outline the method and

describe a new application to evaluate an ensemble forecast flood map.

A neighbourhood approach (Section 2.2) is used to assess the spatial agreement scale S
A(F1F2)
ij or measure of similarity at210

each grid cell location (i, j) between each unique pair of ensemble flood maps. For an ensemble of M members, there are

Mp =
M(M − 1)

2
, (8)

unique pairs (e.g., 1275 pairs for a 51 member ensemble). For an ensemble, the skillful scale can be renamed as a believable

scale, which is the scale where ensemble members become sufficiently similar to observations such that they are a useful pre-

diction. Every paired ensemble agreement scale field is averaged at each grid cell to produce a mean field, from the agreement215
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scale field defined in Eq. (7)

S
A(mm)
ij =

1

Mp

M−1∑
F1=1

M∑
F2=F1+1

S
A(F1F2)
ij (9)

indicating the location specific believable scales of the forecast flood map ensemble. Maps of SA(mm)
ij summarise the spatial

spread of the full ensemble. Each of the agreement scale fields between the ensemble members and the observations are also

averaged at each grid cell to give220

S
A(mo)
ij =

1

M

M∑
f=1

S
A(F0)
ij . (10)

A measure of the spatial spread-skill of the ensemble can be found by comparing the average agreement scale between the en-

semble members SA(mm)
ij representing the ensemble spread with the average agreement scale between the ensemble members

and the observed flood field S
A(mo)
ij representing the ensemble skill.

2.4 Spatial spread-skill visualisation methods225

To evaluate the spatial spread-skill relationship, SA(mm)
ij (representing the ensemble spread) must be compared in the same

location as S
A(mo)
ij (representing the ensemble skill). Data arrays can be visually compared using a binned scatter plot that

averages across a selected bin of cells at the same location within the domain. Dey et al. (2016b) demonstrated for an idealised

example that by plotting S
A(mm)
ij against SA(mo)

ij as a binned scatter plot in order to preserve the spatial location of the com-

parison (Fig. 1), the ensemble can be classified as over-, under- or well-spread. The ensemble is deemed to be well-spread at a230

specific location in the domain of interest when the spread of the individual members represented at each grid cell by S
A(mm)
ij

equals the skill of the ensemble represented at each grid cell by S
A(mo)
ij , i.e. SA(mm)

ij −S
A(mo)
ij = 0. The result would lie on a

1:1 line on the binned scatter plot. Where the spread between the ensemble members exceeds the skill of the ensemble forecast

i.e. SA(mm)
ij > S

A(mo)
ij the ensemble is considered to be over-spread and the binned scatter plot will lie beneath the 1:1 line.

The converse is true for an under-spread ensemble forecast where the agreement between members, the spread, is less than the235

agreement between the ensemble and the observations, the skill. Here, SA(mm)
ij < S

A(mo)
ij and the binned scatter plot would

lie above the 1:1 line.

To summarise the spread-skill relationship we develop this visualisation further by plotting a hexagonal binned 2D histogram

plot (an example hexbin plot is presented in Section 4.3). The domain is divided into a (pre-determined) number of hexagons.240

Hexagons minimize the perimeter to area ratio and therefore minimize the edge effects. The hexbin histogram plot colour shade

represents the number of data points within each bin.

Whilst the hexbin plot is useful for gaining an understanding of the general spread-skill relationship of the ensemble flood

map forecast, it does not tell us specifically where in the domain the ensemble spatial predictability is better or worse. Our new245

Spatial Spread-Skill (SSS) map plots SA(mm)
ij −S

A(mo)
ij at every grid cell location so that the spread-skill is mapped across the
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Figure 1. Figure reproduced with permission from Dey et al. (2016b) showing results on a binned scatter plot from an idealised experiment

indicating the spatial spread-skill relationship between an ensemble forecast and the observation.

domain and can be linked directly to different sub-catchments and surface features such as tributaries, embankments, bridges

and importantly the underlying topography or DTM, which influence the derivation of the ensemble flood maps. Regions on

the SSS map where the ensemble is over-spread are positive with negative areas indicating where the ensemble is under-spread,

zero values show a well-spread ensemble. Note that this does not necessarily mean that the entire ensemble is in agreement250

with observations at grid level, but that the agreement scales between S
A(mm)
ij and S

A(mo)
ij are equal. (An example SSS map is

presented in Section 4.3).

3 Ensemble forecasting flood event case study

In this section we describe an example flooding event used to demonstrate the application of the spatial spread-skill evaluation

approach. We evaluate a 1-day flood inundation 51 ensemble member forecast from the Flood Foresight system (Section 3.2)255

for the domain area against a satellite SAR-derived flood map (Section 3.3).
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3.1 Brahmaputra flood, Assam India, August 2017

The origin of the Brahmaputra River (also known as the Yarlung Tsangpo in Tibetan, the Siang/Dihang River in Arunachali,

Luit in Assamese, and the Jamuna River in Bangladesh) lies in the Himalayan Kailas Range of southwestern Tibet, China.

Draining an area of 543,000 km2, the Brahmaputra flows for 2000 km across the Tibetan Plateau and a further 1000 km par-260

allel to the Himalayan foothills through the Assam Valley, India before entering Bangladesh where the Brahmaputra joins the

Ganges River (Palash et al., 2020). The Brahmaputra baseflow originates from the upstream glacial snow melt, however the

streamflow rates are dominated by the summer monsoon precipitation. The basin receives up to 95% of its annual rainfall

during the pre-monsoon and monsoon season, which usually runs from April to September and causes annual flooding of the

Brahmaputra. The Assam region typically records on average 2300 mm of annual rainfall and up to 5000 mm in the Himalayan265

foothills (Dhar and Nandargi, 2000, 2003).

For this example case we focus on the third wave of flooding that occurred during the monsoon season in August 2017,

peaking around the 12th. Figure 2 shows the location of the Brahmaputra and of a chosen domain centred upon some of

the worst flooding that occurred. This area includes a confluence zone where the Subansiri River meets the Brahmaputra.270

The monsoon flooding impacted an estimated 40 million people across India and Bangladesh. Locally in the Assam region,

the flooding in August affected over 3.3 million people and approximately 3200 villages, river embankments were damaged

in 11 districts. Over 14,000 people were evacuated to one of around 700 relief camps that were also needed to house over

180,000 people relocated (Floodlist, 2017). The local Assam State Disaster Management Authority (ASDMA, 2017) flood

early warning system issued a low warning alert (disasters that can be managed at the district level) on the 10th August for the275

district.

In 2017, the southwest monsoon season rainfalls were predicted to be normal by the South Asian Climate Outlook Forum

(WMO, 2017). However, the pre-monsoon season began early in the year with heavy thunderstorms affecting the region from

March onwards. In the Assam region, June and July were 60% wetter than the previous three years and during August more

locally intense rainfall was recorded compared with historical observations (Palash et al., 2020). In higher latitude areas, 30280

km to the north of the domain at North Lakhimpur, 215.8 mm rainfall was recorded in the three days prior to the flood peak

(Floodlist, 2017; Hossain et al., 2021). An above normal flood situation is declared in India where the river water level exceeds

the Warning Level, a severe flood occurs where the water level exceeds the Danger Level, and an extreme flood occurs where

the previous Highest Flood Level is exceeded (Central Water Commission, 2023). The peak water level recorded downstream

at Tezpur (Danger Level 65.23 m) on August 14th was 66.12 m. There are regional variations in maximum water levels re-285

ported, with upland regions to the north of the Assam valley recording water levels that exceed the previous Highest Flood

Level indicating an extreme flood level (Floodlist, 2017).
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Figure 2. Left panel: domain location on the Brahmaputra River in the Assam region of India. Domain size is 57.5 km by 39.3 km. Right

panel: Sentinel-1 SAR-derived flood map and permanent water bodies from the JRC Global Surface Water database for the domain of interest

(DOI). Base map from ©Google Maps.

3.2 Ensemble flood forecasting system

The Flood Foresight system (Fig. 3), developed and operationally run by JBA Consulting, is a fluvial flood inundation mapping290

system that can be implemented at any river basin around the world. Flood Foresight utilises a simulation library approach to

generate real-time and forecast flood inundation and water depth maps. The simulation library approach saves valuable com-

puting time and allows the application of Flood Foresight in near continuous real-time at national and international scales. A

pre-computed library of flood maps for a river basin or country are created using JFlow®(where a DTM is available), (Brad-

brook, 2006) and RFlow (where a DTM is unavailable). JFlow uses a raster-based approach with a detailed underlying digital295

terrain model (DTM) and a diffusion wave approximation of the full 2D hydrodynamic shallow water flow equations. RFlow

combines a 1D model based upon Normal Depth calculations, optimised for use on a Digital Surface Model (DSM, NEXTmap

(2016)) with rapid 2D flood spreading (created by spreading Normal Depth from upstream to downstream) and is calibrated

against JFlow. These equations capture the main controls of the flood routing for shallow, topographically driven flow. Six

flood maps at 30 m resolution are created for 20, 50, 100, 200, 500 and 1500 year return period flood events (corresponding300

to annual exceedance probabilities (AEPs) of 5%, 2.5%, 1%, 0.5% and 0.2% and 0.07% respectively). Between each adjacent
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pair of modelled return period maps, five additional intermediate flood maps are created by linear interpolation of both flood

depth and extent. An additional five flood maps are also created beneath the lowest return period flood map. This gives, in total,

a library of 36 flood maps. Note that these flood maps are undefended and local temporary flood defences are not included.

Flood foresight is set up for a region by dividing the river basin into sub-catchments using the HydroBASINS data-set (level305

12) (Lehner, 2014). Flood Foresight takes gridded inputs of ensemble forecast streamflow and uses these to select the most ap-

propriate flood map for each sub-catchment. These are mosaicked together and forecasts of ensemble flood maps are produced

daily, out to ten days ahead.

Figure 3. Flood Foresight ensemble forecast flood inundation and impact mapping work flow. Prepared by JBA Consulting.

The global (non UK and Ireland) configuration of Flood Foresight uses ensemble streamflow forecast data from the Global310

Flood Awareness System (GloFAS) (Alfieri et al., 2013; GloFAS, 2021). GloFAS was jointly developed by the European

Commission and the European Centre for Medium-Range Weather Forecasts (ECMWF) and is composed of an integrated

hydro-meteorological forecasting chain that couples state-of-the-art weather forecasts with a land surface and hydrological
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model. With its continental scale set-up, GloFAS provides downstream countries with forecasts of upstream river conditions

up to one month ahead as well as continental and global overviews for large world river basins. Meteorological forecast data315

are provided by the ECMWF Ensemble (IFS) model, the operational (51 member) ensemble weather forecasting product of the

ECMWF. The meteorological forecast data provide inputs to the land surface module, HTESSEL (Hydrological Tiled ECMWF

Scheme for Surface Exchange over Land). HTESSEL simulates the land surface response to the meteorological data, based on

simulated interactions with soil conditions, idealised vegetation cover and land cover. From these simulations, HTESSEL out-

puts forecast global surface and sub-surface flows per grid cell. These simulated flows are then used by a simplified version of320

the hydrological model LISFLOOD, a 1D routing model which simulates the movement of the surface and sub-surface flows.

The runoff data produced is routed through a representation of the river network using a double kinematic wave approach,

which includes bankfull and over bankfull routing. The river network used is taken from the HydroSHEDS data-set (Lehner

and Grill, 2013).

325

GloFAS outputs a gridded (approximately 10 km spatial resolution) ensemble forecast of river streamflow (Fig. 4). Each of

the GloFAS grid cells are linked to the sub-catchments in the Flood Foresight system. The simulation library flood maps are

selected when the forecast streamflow exceeds a return period threshold level within each sub-catchment. The RP threshold

levels are calculated using ERA5 reanalysis data (Harrigan et al., 2020). Each ensemble member flood map forecast is created

by aggregating the individual sub-catchment maps. In summary, the meteorological IFS 51 member ensemble input to the flood330

forecasting chain allows atmospheric evolution uncertainties to be represented within the ensemble streamflow forecast and

the ensemble of inundation flood maps, thus creating a probabilistic flood map forecast, indicating the likelihood of flooding.

Flood foresight produces daily ensemble flood depth and extent forecasts at 30 m spatial resolution out to 10-days.

3.3 SAR-derived flood map

A Sentinel-1 (S1A) image was acquired in interferometric wide swath mode (swath width 250 km) around the time of the335

flood peak at 17:18 (IST) on the 12th August 2017. The ESA Grid Processing on Demand (GPOD) HASARD service (http:

//gpod.eo.esa.int/) was utilised to map the flooding. The flood mapping algorithm (Chini et al., 2017) uses an automated,

statistical, hierarchical split-based approach to distinguish between two classes (background and flood) using a pre-flood and

flood image. A pre-flood image (February 2017) from the same satellite sensor and track was used to derive the flood map

(Fig. 2). Original SAR images (VV polarisation) were pre-proccesed, which involved: precise orbit correction, radiometric340

calibration, thermal noise removal, terrain correction, speckle reduction and re-projection to the WGS84 coordinate system.

The HASARD mapping algorithm removes permanent water bodies that are detected on the pre-flood image, such as the

unflooded river water, lakes and reservoirs by applying a thresholding approach. Flooded areas beneath vegetation, bridges and

near to buildings will not be detected using this method. Flood Foresight forecast flood maps include the river channel and

exclude surface features such as vegetation and buildings. To smooth the HASARD flood maps and allow a fairer comparison345

we apply a morphological closing operation (without impacting the location of the flood extent) to flood fill vegetation and

buildings. The wide and braided Brahmaputra River in the Assam region covers a significant area of the selected domain. In
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Figure 4. GloFAS grid, permanent water bodies and Flood Foresight sub-catchments for the domain of interest (DOI).

order to evaluate the flood prediction accuracy alone, the pre-flood occurrence of surface water using the JRC Global Surface

Water database (Pekel et al., 2016) has been removed from the Flood Foresight forecast inundation maps. The observed flood

extent derived from satellite based SAR data at 20 m grid size is re-scaled to match the forecast flood map grid size (30350

m) using average aggregation. The closest available (cloud free) optical image available was a Sentinel-2 image on the 17th

August 2017, 5 days after the SAR image acquisition. During this time the flood waters had receded from their peak, which

makes this unsuitable for comparison with the SAR-derived flood map. Since no other validation sources are available, for

the purposes of this study we assume that the SAR-derived observation of flooding represents the true flooding extent. From

October 2021, Sentinel-1 SAR images are processed by CEMS GFM (GFM, 2021) to derive flooding extent and provide an355

uncertainty estimate of the grid cell classification. This means uncertainty information in the SAR-derived flood map could be

accounted for in future evaluation studies by verifying across different levels of observation uncertainty. Additionally, a flood

mask, indicating areas where flood detection using SAR data is not currently possible (at the Sentinel-1 spatial resolution) could

be used to exclude areas from the evaluation process (note that this was not possible for this case study, since this information

was not available in 2017).360

3.4 Forecast data

Flood Foresight was set-up for the Brahmaputra basin in India and Bangladesh using the simulation library approach to flood

mapping described in Section 3.2. Flood maps were pre-computed for the domain of interest (Fig. 2) using a DSM and RFlow.

The forecast data for the Brahmaputra flood event contains a 51 member ensemble of flood maps indicating flooding extent,

14



produced at a 1-day lead time. Vertically stacking each individual ensemble member flood map and adding vertically across365

every grid cell combines all ensemble members into a single flood map (all flooded grid cells are set to 1) showing where

flooding is possible across all members (ensall). A spatial median flood map is created (ensmedian) where 26 members or

more predict flooding at a particular grid cell location. Each of the ensemble member flood maps for the domain are plotted in

Figure 5 along with ensall, ensmedian and the SAR-derived flood map.
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Figure 6 shows the amalgamated probabilistic ensemble forecast indicating the probability of flooding at each grid cell370

location. This was produced by vertically stacking each ensemble member flood map and adding vertically the number of

flooded cells at each grid cell location across all ensemble members. The total is divided by 51 to calculate the probability.

Dark blue colours near to the central river channel indicate agreement between all ensemble members and 100% forecast

probability of flooding, lighter colours to the north of the river indicate a low probability of flooding.

Figure 6. Brahmaputra River, Assam region, August 2017. Colour shading from white (low) to dark blue (high) indicate the forecast prob-

ability of flooding based on a 1-day lead time, 51 ensemble member flood map forecast for the Brahmaputra River in the Assam region,

August 2017. (Note map background is grey)

4 Results and discussion375

To demonstrate an application of the spatial scale approach to both ensemble forecast flood map evaluation of forecast skill

and the spatial spread-skill relationship, we apply the methods outlined in Section 2 to the flooding case described in Section

3.1. First, in Section 4.1 we verify the full ensemble using a spatial scale approach to calculate a skilful scale of agreement

between each ensemble member and the SAR-derived flood map (Fig. 2) along with the combined ensemble (ensall) and the

ensemble spatial median (ensmedian). We evaluate the location specific spatial skill of the ensemble by calculating categorical380

scale maps (Section 4.2) for ensall, ensmedian and a best and worst case ensemble members determined by the skilful scale

17



calculated in Section 4.1. In Section 4.3 we evaluate the spatial predictability of the full ensemble and show this on our new

Spatial Spread-Skill (SSS) map, indicating regions where the ensemble is over-, under- or well-spread.

4.1 Ensemble spatial scale evaluation385

Here we investigate how a scale-selective approach can be useful for extracting meaningful information from a flood map

ensemble forecast where multiple forecast flood maps represent equally likely flooding scenarios (Fig. 5). A minimum skilful

scale (where FSS > FSST ) has been calculated for each individual member flood map, ensall and ensmedian. The results in

Figure 7 show that individual ensemble member spatial skill varies considerably with FSS at grid level ranging from 0.35 to

0.59. One member ens1, which would usually be disregarded as an outlier due to its low probability, outperformed all other390

members significantly with a skilful scale achieved at a neighbourhood size of n= 3. The combined ensall showed more skill

at grid level (n= 1) and smaller neighbourhood sizes compared with ensmedian, both however exceeded FSST at n= 41, or

600 m. At neighbourhood sizes greater than n= 41, ensmedian outperformed ensall. There is a cluster of members showing

similar skill to ensmedian and ensall and a second cluster, with more ensemble variation but indicating lower skill than the

first cluster. The ensmedian and ensall flood maps outperform the second cluster, however there are individual members with395

a higher spatial skill score compared to ensmedian and ensall. These results show that all ensemble member flood maps,

including outliers, should be considered individually as possible future flooding scenarios. Spatial variations across individual

ensemble members (see Fig. 5 ens1 compared to ensmedian) indicate that it is not meaningful to consider only the ensemble

median flood map to represent the information within the full ensemble.

4.2 Ensemble spatial predictability400

The scale-selective skill scores calculated for different aspects of the ensemble forecast give a domain-averaged score and

skilful scale. To understand location specific spatial predictability of the ensemble forecast, categorical scale maps are cal-

culated and presented in Figure 8. These show how the agreement scale (Section 2.2) varies with location for (a) ensall, (b)

ensmedian, (c) ens1, the ‘best’ performing ensemble member and (d) ens21, the ‘worst’ performing ensemble member. The

ensemble summary map, ensall (Fig. 8 (a)) captures most of the observed flooding (in grey) with small regions of under-405

prediction (red). However, as you might expect to see by including every potential flooding realisation there are significant

regions of over-prediction (blue) or false alarm. The region of over-prediction to the south of the river is less evident in the

ensmedian categorical scale map (Fig. 8 (b)) which performs worse to the north by under-predicting flooding here. This flood-

ing is captured well by ens1 (Fig. 8 (c)) and in particular close to a confluence zone where the Subansiri River joins the

Brahmaputra (grid cell location (1100, 250)). This ties in with the high rainfall totals accumulated just to the north of this410

region associated with localised very heavy rainfall (Floodlist, 2017). A region of under-prediction at grid cell location (750,

750) is missed by all members. In future work, a closer inspection of the DTM or surface features included/excluded in the

hydraulic modelling, such as embankment heights, may indicate how this modelling could be improved. The ‘worst’ perform-

ing ensemble member ens21 (Fig. 8 (d)) accurately predicts flooding closer to the river channel, however under-prediction

18



Figure 7. The spatial skill of each individual ensemble member forecast flood extent is evaluated along with the ensmedian (a spatial median

where 26 or more members predict flooding at a grid cell location) and ensall (flooded grid cells from all ensemble members are combined).

The FSS is calculated at increasing neighbourhood sizes to determine the scale at which the forecast becomes skilful at capturing the observed

flood (FSST ).

to the north along with over-prediction to the south show where the forecast was inaccurate. Categorical scale maps enable415

different ensemble flood map presentations to be evaluated so that the most useful presentation method can be determined for

a particular flooding situation.

4.3 Ensemble spatial spread-skill

To evaluate the location specific skill of the full ensemble, one option would be to calculate 51 categorical scale maps from

each individual member flood map (Fig. 5). This approach maintains the spatial detail held within each of the ensemble mem-420

ber flood maps, although does require multiple visual comparisons to be made by the flood forecaster or modeller, which takes

time and effort. Making comparisons across the different ensemble member flood maps in Figure 5 provides a demonstration
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Figure 8. Brahmaputra River, Assam region, August 2017. Categorical scale maps for (a) ensall (flooded grid cells from all ensemble

members are combined), (b) ensmedian (a spatial median where 26 or more members predict flooding at a grid cell location), (c) individual

ensemble member 1 and (d) individual ensemble member 21. Red areas indicate where the forecast is under-predicted and blue regions

represent over-prediction. The colour shade gives the scale of agreement (Eq. (7)) between the forecast and the observed flooding with

lighter shading indicating a smaller agreement scale is required to reach the agreement criterion (Eq. (6)), a fixed maximum scale Slim is

drawn to scale (c). For georeferencing see Figure 6, each grid cell is 30 m x 30 m.

of these forecasting difficulties. Further, the categorical scale maps do not evaluate the ensemble spatial spread. To address this,

we develop a Spatial Spread-Skill (SSS) map (derived from Fig. 9, presented in Fig. 10) showing the spread-skill of the full

ensemble forecast and keeping the location specific detail. All ensemble members are included in this analysis which evaluates425

both the spatial skill and the ensemble spatial spread of the forecast against the remotely observed flooding extent.

Figure 9 shows how the average-ensemble/ensemble-agreement scale in (a) SA(mm)
ij calculated at each grid cell (representing

ensemble spread) compares with the average ensemble/observed scale in (b) SA(mo)
ij (representing ensemble skill) along with
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the hexbin scatter plot in (c) which compares (a) and (b) to indicate the spatial spread-skill of the forecast. The hexagonal430

tessellation is used so that the distances along the hexbin diagonal are on the same scale as those along the x and y-axis. For a

perfect ensemble forecast the average agreement scale between ensemble members should match the agreement scale between

the ensemble forecast and observed flood map, i.e. they should align along the 1:1 line. The SSS map plots the difference

between the ensemble/ensemble and the ensemble/observed average agreement scales at each grid cell (Fig. 10) and indicates

where the spatial spread-skill is over-, under-, or well-spread. Three numbered areas (Fig 9(a)) identify three different ensemble435

spread-skill relationships. Area 1 shows that the agreement between ensemble members is close, but that they disagree with

the observed flooding extent. This is displayed in orange shades as an under-spread or miss region on the SSS map, Figure 10.

This is the region close to the confluence area described in Section 4.2. Recall that in this region, most ensemble members did

not predict the flooding that occurred with the exception of one ensemble member (ens1). In area 2 on Figure 9, both (a) and

(b) are in agreement at grid level, which indicates the ensemble is well-spread; these are shown in white on Figure 10. Away440

from the miss and well-spread regions in Figure 9, the overall visual impression is that the ensemble spread-skill lies below

the 1:1 line and is over-spread, indicated by area 3. This corresponds to purple shading on the SSS map (Fig. 10). Overall

Figure 9 tells us that the spread-skill relationship for this example case study is not uniform across the domain but is in fact

location specific. The areas identified (1, 2 and 3) lie within different sub-catchments, which are linked to different GloFAS

grid cells, driving the ensemble flood map selection for each sub-catchment. Inferences can be made about the spread-skill of445

the driving discharge data at sub-catchment level across the domain. Using the spatial spread-skill relationship shown on the

ensemble SSS map we can infer how well the ensemble forecasting system encompasses the multiple sources of uncertainty

and how meaningful the probabilistic ensemble forecast of flood inundation actually is. An ensemble flood map forecast that is

well-spread suggests that the probabilistic forecast is meaningful. The SSS map is a useful evaluation tool for validating flood

forecasts in un-gauged or partially gauged rivers. A simulation library approach, like the Flood Foresight maps used here, relies450

on the accuracy of the return period thresholds set, the (ensemble) forecast streamflow and the accuracy of the flood inundation

map for a given streamflow. The forecast evaluation approaches presented here enable these system attributes to be evaluated

even where observed streamflow is limited or erroneous. The SSS map summarises the whole ensemble, which makes it useful

for forecasters attempting to convey uncertainty information to decision makers, highlighting regions where there is high/low

confidence in the forecast.455
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Figure 9. Brahmaputra River, Assam region, August 2017. (a) The average agreement scale map of each unique pair of forecast ensemble

flood maps and (b) between each ensemble member compared against the observed SAR-derived flood map. (c) A binned histogram scatter

plot compares (a) and (b) to indicate the spatial spread-skill of the forecast ensemble. (d) indicates the corresponding sub-catchment locations.

Areas labelled (1, 2 and 3) are discussed in Section 4.3. A fixed maximum scale Slim (Eq. (6)) is drawn to scale (a). Note PWB means

permanent water bodies.
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Figure 10. Brahmaputra River, Assam region, August 2017. (a) The Spatial Spread-Skill (SSS) map shows the difference between the ensem-

ble/ensemble and the ensemble/observed average agreement scales at each grid cell. Negative values (orange) indicate where the ensemble

is under-spread and positive values (purple) indicate where the ensemble is over-spread. White areas areas indicate where the average agree-

ment scales match and indicate good spatial spread-skill. (d) indicates the corresponding sub-catchment locations. Areas labelled (1, 2 and

3) are discussed in Section 4.3. A fixed maximum scale Slim (Eq. (6)) is drawn to scale (a). Note PWB means permanent water bodies.
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5 Conclusions

Differences between ensemble members in ensemble forecast flood map systems are mostly driven by initial condition perturba-

tions at the top of the hydro-meteorological forecast chain within the NWP system. Presently, there is limited understanding or

evaluation of how these meteorological uncertainties link to mapped flooding predictability, which involves additional sources

of uncertainty. An evaluation of the spatial predictability and the spread-skill relationship of the ensemble flood map forecast460

provides an improved understanding of the performance of the forecast system. Uncertainties in other parts of the forecast chain

are not truly represented by the ensemble flood maps and evaluating the spatial spread-skill of the flood maps is important for

understanding the likelihood of flooding that the ensemble flood maps capture. In this paper, we present a new scale-selective

approach to assess the spatial predictability and spread-skill of an ensemble flood map forecast by comparing against a satellite

SAR-derived observation of flooding extent. By calculating a skilful scale at each grid cell for every unique ensemble member465

pair we can determine the ensemble spatial spread, and between every ensemble member and the SAR-derived flood map we

can determine the ensemble spatial skill. The hexbin scatter plot summarises the spread-skill relationship so that a trend across

the whole domain can be assessed. The difference between these skilful scales can be mapped onto the Spatial Spread Skill

(SSS) map which shows for each specific location in the domain whether the ensemble is over-, under- or well-spread. The

methods are applied to an example flooding event of the Brahmaputra River in the Assam region of India in August 2017.470

In operational practice there are multiple options of ensemble flood map presentation type such as presenting the ensemble

median or other exceedance probability for delivery to end-users and decision makers. An important aspect of developing

an inundation flood forecasting system is to determine the most useful way to present a spatial ensemble forecast. Using a

scale-selective approach we have evaluated the performance of individual ensemble members, a combined total ensemble and475

the spatial ensemble median compared to a SAR-derived observation of flooding extent. Other options could be to exclude

ensemble member outliers, to spatially cluster similar ensemble members into groups of flooding extent or to present a most

likely, best and worst case ensemble flood map. Whichever presentation method is chosen, this should be fully explored using

the spatial spread-skill methods described here to evaluate the ensemble performance of historical flooding events. We found

for this example flooding event that one ensemble member significantly outperformed the combined and median flood maps480

and that potentially in some flood forecasting scenarios this member would have been excluded as an outlier. The categorical

scale maps show the ensemble spatial median could miss vital flooding information and that all members should be considered

as potential future flooding scenarios.

Through mapping the spatial-spread skill relationship, which varies with location, links can be made between the spatial485

variations in spread-skill and the physical characteristics of the flooding event. We found that one ensemble member outper-

formed all others in a region close to a confluence zone and nearby observed heavy rainfall. The region correlates to an area

of under-spread ensemble members indicating that not enough members were predicting flooding here. Future studies could

investigate the physical processes further using the methods presented here. The ensemble flood map spatial spread-skill could
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be investigated in the context of a particular physical process (such as rainfall intensity/location or an improved aspect of the490

hydrological model such as antecedent soil moisture) and how these uncertainties translate to the probabilistic flood map fore-

cast. An understanding of the spatial predictability is particularly important for un-gauged catchments where the calibration

of both forecast streamflow and return period thresholds (used to select the simulation library flood map) are rarely practiced

routinely. Ideally, in operational practice, these spatial verification approaches including the categorical scale and SSS maps

could be calculated and stored routinely as flooding events coincide with SAR-derived or other remotely observed flood maps495

to build up a verification catalogue/database. This database could then be used to investigate the spatial spread-skill model

performance under different scenarios such as forecast lead time, month or season, or flood type. More locally, the impact of

an improved DTM or the inclusion of a Digital Surface Model (DSM) or other surface features in the hydraulic model such as

embankments could be considered. Over time, such a database would improve our understanding of the spatial predictability

of an ensemble flood map system and how well the uncertainties present are represented by the ensemble forecast.500
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