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Abstract. Multi-hazard risk assessments for building portfolios exposed to earthquake shaking followed by a tsunami are 

usually based on empirical vulnerability models calibrated on post-events surveys of damaged buildings. The applicability of 15 

these models cannot easily be extrapolated to other region of larger/smaller events. Moreover, the quantitative evaluation of 

the damages related to each of the hazards type (disaggregation) is impossible. To investigate cumulative damage on extended 

building portfolios, this study proposes an alternative and modular method to probabilistically integrate sets of single-hazard 

vulnerability models that are being constantly developed and calibrated by experts from various research fields to be used 

within a multi-risk context. This method is based on the proposal of state-dependent fragility functions for the triggered hazard 20 

to account for the pre-existing damage, and the harmonisation of building classes and damage states through their taxonomic 

characterization, which is transversal to any hazard-dependent vulnerability. This modular assemblage also allows us to 

separate the economic losses expected for each scenario on building portfolios subjected to cascading hazards. We demonstrate 

its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity 

commonly exposed to consecutive earthquake and tsunami scenarios. We show the importance of accounting for damage 25 

accumulation on extended building portfolios while observing a dependency between the earthquake magnitude and the direct 

economic losses derived for each hazard scenario. For the commonly exposed residential building stock of Lima exposed to 

both perils, we find that classical tsunami empirical fragility functions leads to underestimations of predicted losses for lower 

magnitudes (Mw) and large overestimations for larger Mw events in comparison to our state-dependent models and cumulative 

damage method. 30 
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1. Introduction 

Cascading natural events, commonly defined as a primary hazard triggering a secondary one, have jointly induced 

large disasters (Gill and Malamud, 2016). In the case of earthquakes, between 25 and 40% of economic losses and deaths have 

been reported to result as a consequence of secondary effects, i.e., tsunamis, landslides, liquefaction, fire, and others (Daniell 

et al., 2017). Well-known examples are the submarine earthquakes and the subsequent tsunamis occurred in 2004 in the Indian 35 

Ocean, in 2011 in Japan, and in 2018 in Palu Bay in Indonesia (Goda et al., 2019). These events not only induced cumulative 

physical damage on the exposed infrastructure, but also brought drastic socioeconomic cascading effects that are still 

perceptible today (de Ruiter et al., 2020; Suppasri et al., 2021). Despite the magnitude of such events, multi-hazard risk 

assessment remains a relatively new research field with still not unified terminologies and approaches (Pescaroli and 

Alexander, 2018; Tilloy et al., 2019). Nonetheless, a number of studies (e.g., Kappes et al., 2012; Komendantova et al., 2014; 40 

Gallina et al., 2016; Julià and Ferreira, 2021; De Angeli et al., 2022; Cremen et al., 2022) have unanimously agreed that more 

realistic multi-risk evaluations can only be conducted if both (1) multi-hazard (e.g., Marzocchi et al., 2012; Liu et al., 2016) 

and (2) multi-vulnerability interactions (e.g., Zuccaro et al., 2008; Gehl et al., 2013) are considered altogether. While the 

former comprises the study of the conditional probabilities of the occurrences of these hazards and their combination, the study 

of the latter involves reviewing the many classes of vulnerabilities that are associated with an exposed territory. 45 

Therefore, this study narrows down the scope of scenario-based multi-hazard risk by assuming that a second 

hazardous event is always triggered after the occurrence of the first one, thus eliminating the need to quantify the probability 

of this occurring. Thus, we will only focus on the dynamic physical vulnerability and related cumulative damage that a building 

stock exposed to a close succession of hazardous events might suffer. As a premise, this study contributes to the field by 

proposing a modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly 50 

developed and calibrated by experts from various research fields to be used within a multi-risk context. The rest of this 

introduction will discuss the state of the art in exposure modelling for large-scale building portfolios for multi-hazard risk 

assessment, focusing on the underlying assumptions to propose generalised building typologies with associated fragility 

functions used to assess their physical vulnerabilities to earthquake and tsunami. Having done that, the last part of the 

introduction summarises the general scope and capabilities of the original method that will be described in detail afterward.  55 

In exposure modelling for multi-hazard risk purposes, we can distinguish between two main approaches: 

1. Using a single set of building classes, each employing as many fragility/vulnerability models as the natural hazards 

considered, for example, the HAZUS-MH (FEMA, 2003, 2017); Dabbeek and Silva, (2020); and Dabbeek et al., 

(2020). They have typically associated sets of fragility functions with equivalent damage states regardless of the 

hazard. Aligned with this philosophy, the EMS-98 vulnerability classes (Grünthal, 1998) were used by some authors 60 

to not only describe the likely damage due to seismic action, but also to classify likely ranges of vulnerabilities to 

other hazards based on the building’s material types (Schwarz et al., 2019; Maiwald and Schwarz, 2019).  
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2. Jointly applying a number of different building classifications per individual hazard to the same exposed buildings 

(e.g., Gómez Zapata et al., 2021e; Arrighi et al., 2022). Their associated fragility functions may have different sets of 

damage states (differing in number and description). Notably, these models are constantly developed and individually 65 

validated by experts of each research field. 

Although the first type might be useful in the assessment of risk arising from independent hazards, their related sets 

of fragility models lack multi-hazard calibration and validation and, therefore, do not offer sufficient inputs for assessing the 

increasing damage from cascading events (Ward et al., 2020).  

Moreover, the definition of the damage scale depends on the building type (Hill and Rossetto, 2008) and the likely 70 

failure mechanisms that it can experience under the action of specific hazard intensity measures (IM) (Vamvatsikos et al., 

2010; Selva, 2013). Therefore, the observable damage features on individual structural or non-structural components that 

jointly describe a certain damage state can have contrasting descriptions across various hazard-dependent vulnerability types 

(Gehl and D’Ayala, 2018; Figueiredo et al., 2021) and there is often not a 1:1 relation between them, i.e., for the case of 

earthquakes and tsunamis (Bonacho and Oliveira, 2018; Lahcene et al., 2021). The reasons behind such a mismatching between 75 

the definitions of damage states may arise from the absence of standard formats for damage data collection across regions and 

across the several vulnerability types of interest (Mas et al., 2020; Frucht et al., 2021). Notably, the study of Negulescu et al., 

(2020) found this aspect to be particularly significant for the multi-hazard risk context, stating that the damage states of 

earthquake and tsunami fragility models can have variable levels of compatibility. This assumption led to contrasting loss 

estimates with respect the U.S HAZUS approach, which is based on the complete equivalence between damage grades. This 80 

background portrays the need to standardise the description of the physical damage through harmonizing scales across several 

hazard-dependent vulnerabilities, which are inputs for unified methods in multi-hazard risk (Ward et al., 2022). 

The earthquake engineering community has investigated the cumulative damage expected during seismic sequences 

(e.g. Papadopoulos and Bazzurro, 2021; Karapetrou et al., 2016; Trevlopoulos et al., 2020), but this concept is rarely considered 

in other research disciplines. For instance, the physical vulnerability of building portfolios to tsunamis has been typically 85 

evaluated through empirical fragility functions derived from post-near-field tsunami surveys. A drawback of these functions 

is that they have been presented solely as tsunami fragility functions in terms of the inundation depth when in reality these 

surveys encompassed assets that experienced cumulative damage due to the joint effect of the tsunami-generating earthquake 

and the tsunami itself (Charvet et al., 2017). Due to this limitation, analytical fragility functions were recently proposed for 

individual structures (e.g., Attary et al., 2017; Petrone et al., 2017) and for large-scale building stocks with generalised 90 

typologies (Belliazzi et al., 2021). However, as remarked by Attary et al., (2019), using these functions for loss estimation 

should only be valid for far-field tsunamis, and for near-field events the damage induced by shaking before the tsunami strikes 

must still be addressed. 

To the best of the authors’ knowledge, only a few studies have investigated the performance of heterogeneous and 

large-scale building portfolios for risk estimates subjected to consecutive ground shaking and tsunamis. Hereby, we summarize 95 

some of them. In Goda and De Risi, (2018) a rationale was proposed for adopting the larger value of the damage ratios from 
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independent earthquake and tsunami risk computations. In Park et al., (2019) a probabilistic multi-risk approach was presented 

for a building stock in the USA subjected to spatially uncorrelated seismic ground motions and subsequent tsunamis. This 

study showed the disaggregation of losses per hazard and per material-based building type across several return periods while 

assuming statistical independence between their respective damage states. As a common denominator of the aforementioned 100 

studies, the cumulative damage and losses from a building portfolio were not assessed. Since these metrics cannot be obtained 

as the sum of the effects from each individual hazardous event (Bernal et al., 2017; Terzi et al., 2019), it is rather necessary to 

address the nonlinear damage accumulation on the same exposed assets during the multi-hazard sequences (Merz et al., 2020). 

This study proposes a modular method to probabilistically integrate existing sets of single-hazard vulnerability models 

(or “reference schemes”). For this aim, this method comprises four main modules. The first two ones refer to sets of 105 

compatibilities between the vulnerability models selected for each single-hazard vulnerability (e.g., between existing seismic 

and tsunami building classification schemes). The first probabilistic compatibility set are obtained between (1) building classes 

(as presented in Sect. 2.1), whilst the second is obtained between (2) damage states (Sect. 2.2). These two conversions are 

done through the use of taxonomic attributes that are independent to the definition of the reference schemes. This is done with 

the purpose of representing the damage distribution resulting after the first hazard (i.e., earthquake) through a damage-updated 110 

exposure model whose damage scale is dependent on the classification scheme required for assessing the vulnerability to a 

triggered event (i.e., tsunami). The third module results from the need to perform risk assessment for the triggered hazard using 

the damage-updated exposure model that is now represented in terms of the second vulnerability scheme (e.g., building classes 

and damage states for tsunami fragility). Hence, this module comprises the proposal of (3) sets of state-dependent fragility 

functions for the second hazard (e.g., tsunami), as presented in Sect. 2.3. These three modules are valuable inputs for ultimately 115 

assessing the expected cumulative damage. They are later complemented by a last fourth module: (4) a consequence model to 

assess the incremental direct economic losses (Sect 2.4) that are expected from consecutive hazard scenarios. 

In the application chapter of this paper (Sect. 3), we demonstrate the application of this method by investigating the 

likely cumulative damage on the residential buildings of Lima (Peru) by considering this city’s exposure to six mega-thrust 

earthquake scenarios (main shock) and subsequent tsunamis. This is done using existing vulnerability models per hazard, and 120 

addressing the probabilistic compatibilities between building classes and damage states. Complementarily, a set of tsunami 

state-dependent fragility functions that are obtained through the use of simple ad-hoc scaling factors are proposed. Nonetheless, 

as it will be discussed, these functions can and should be replaced by other sets of state-dependent tsunami fragility functions 

derived from more sophisticated methods when they become available. Every damage distribution is translated into direct 

economic losses to gain a comparative risk metric and disaggregate the contribution of each hazard scenario. 125 

2. Proposed method 

To assess the cumulative damage that is expected to be experienced by a building portfolio during hazardous event 

sequences, we rely on the principle that its related exposure model is represented by jointly applying existing building 
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classification schemes, one per each individual hazardous scenario of the cascading sequence. For example, one building that 

is expected to be affected by a first hazard intensity measure 𝐼𝑀𝐴 (here A refers to an IM used to model ground-shaking (e.g. 130 

PGA in g)) and a second one 𝐼𝑀𝐵 (B refers to an IM used to model inland tsunami inundation (e.g. inundation depth in m)) is 

actually classified under two exposure classification schemes (𝑇𝑘
𝐴 and 𝑇𝑗

𝐵), respectively, which have attached their related 

vulnerability models (Figure 1a). Each scheme contains a set of mutually exclusive, collectively exhaustive building classes 

𝑘 = {𝑘1, … , 𝑘𝑛} and 𝑗 = {𝑗1, … , 𝑗𝑛} correspondingly. 

To assess the expected damage state after the first hazardous event (e.g., ground-shaking), we apply their fragility 135 

function ∑
𝑧

𝑝(𝐷𝑘𝑧
𝐴 |𝐼𝑀𝐴), which give us the probability that a building 𝑘, typically assumed to be in an undamaged state 0, (𝐷𝑘0

𝐴 ), 

changes to a progressive state 𝑧 due to a hazard intensity 𝐼𝑀𝐴 (green part in Figure 1b). For risk assessment, this is completed 

by the consequence model, 𝑝(𝐿|𝐷𝑘𝑧
𝐴 ), which assigns a loss ratio 𝐿 of the total replacement cost of building class 𝑘 given the 

occurrence of a damage state. Thus, the expected loss given a hazard intensity 𝐼𝑀𝐴 is calculated considering the contributions 

from all possible damage states and their probabilities, as per Eq. 1. 140 

𝑝(𝐿|𝐼𝑀𝐴) = ∑
𝑧

𝑝(𝐷𝑘𝑧
𝐴 |𝐼𝑀𝐴)𝑝(𝐿|𝐷𝑘𝑧

𝐴 ) Eq. 1 

If this damaged building portfolio is subjected to the action of a second scenario with a hazard intensity 𝐼𝑀𝐵, it would 

experience cumulative damage moving from a damage state 𝑧, (𝐷𝑘𝑧
𝐴 ) to a damage state 𝑤 (but in the domain of the second 

vulnerability scheme: 𝐷𝑗𝑤
𝐵 ). Due to this differential scheme classification, their respective set of damage states may not have 

trivial equivalences because they can also have different observable damage features. Therefore, we propose integrating a set 

of modular components, namely:  145 

(1) Inter-scheme compatibilities between each hazard-dependent exposure classification scheme 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) (i.e., purple 

part/ doubled line box in Figure 1b). Its derivation follows the method originally proposed in Gómez Zapata et al., 

(2022b), and it is summarised herein in Sect. 2.1. By reusing this approach, a building stock formerly that was initially 

classified for a first hazard vulnerability (i.e., earthquake-oriented typologies) can now be probabilistically 

represented by other predefined classes (e.g., tsunami-oriented typologies).  150 

(2) The related compatibility levels between inter-scheme damage states 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) (i.e., red part/ dashed box in Figure 

1b, explained in Sect. 2.2) that is needed when the fragility models attached to such schemes have different numbers 

of damage states and descriptions. 

The two aforementioned conversions are represented through two sets “compatibility matrices” that are probabilistically 

generated. The advantage of using these matrices is that through these conversions, the damaged updated exposure model 155 

resulting from the action of 𝐼𝑀𝐴 can be represented in the domain of the reference scheme attached to the second vulnerability 

to be analysed. Once this change of reference scheme is obtained, the damage-updated exposure model can be directly used 
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for a second risk computation (e.g. for tsunami risk, addressing cumulative when the buildings experienced previous damage 

due to seismic ground shaking). This second risk calculation is performed by using a third module that refers to: 

(3)  Generic state-dependent tsunami fragility functions (i.e. with non-zero initial damage states made of new curves that 160 

represent the permissible damage progression). Since the resultant earthquake–induced damages are formerly 

expressed in the tsunami vulnerability domain (step 2), the non-zero damage limit states of this set of state-dependent 

tsunami fragility functions will implicitly account for such pre-existing damage. The joint ensemble  of these three 

components can be ultimately used to calculate the cumulative expected damages after the triggered event with 𝐼𝑀𝐵, 

while accounting for the preceding induced by 𝐼𝑀𝐴 (i.e., green part/ dotted box in Figure 1b, developed in Sect. 2.3).  165 

(4) For multi-risk assessment a fourth module that represents the incremental loss obtained from the economic 

consequence model attached to the classification scheme 𝑇𝑗
𝐵 (i.e., replacement costs and related loss ratios per damage 

state of the second scheme, 𝐷𝑗𝑦
𝐵 ) is integrated. This is represented by the last box made of continues (blue) lines in 

Figure 1b, explained in Sect. 2.4.  

 

Figure 1. (a) Example of the principle proposed for classifying the same building class into two hazard-dependent reference schemes with 170 

associated fragility models. (b) Schematic representation of the proposed method to calculate cumulative damage from the case of 

earthquake-tsunami that is developed afterward. 
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These four modules are described hereafter. 

2.1 Exposure modelling: taxonomic description, inter-scheme conversion and spatial aggregation of 

building classes 175 

The classified building stock under the first hazard-dependent classification scheme 𝑇𝑘
𝐴 is spatially aggregated into a 

set of geocells that capture the local spatial variations of the hazards’ IM of interest across the study area. For such a purpose, 

we recommend using variable resolution exposure models in the form of Central Voronoi Tessellations (CVT). Besides 

spatially representing the building portfolio, they also provide a representative IM per geocell for reliable and computationally 

efficient vulnerability estimations (Pittore et al., 2020; Gómez Zapata et al., 2021e). They also implicitly serve as common 180 

minimum reference units (MRU) aggregation entities between exposure and hazard (Zuccaro et al., 2018). This is because for 

their derivation, one can consider the combination of local variations of the hazard intensity measures (IM) and certain 

exposure proxies (e.g., population density) across the same area. CVT-based models may be useful in a multi-hazard risk 

context where the spatial correlation of various IM can differ (e.g., ground-shaking and tsunami inundation). 

As shown in Pittore et al., (2018), every building class k that belongs to one scheme 𝐴 (in this case, earthquake); and 185 

every building class j that belongs to one scheme 𝐵 (in this case, tsunami) can be described in terms of basic observable 

features {𝐹}𝑚 within a faceted taxonomy, that is, a building classification schema in which building classes result from the 

characterisation of individual attributes, or facets (Brzev et al., 2013; Silva et al., 2018, 2022). This disaggregation is the 

common underlying vocabulary to obtain the probability that a building class within the source scheme (𝑇𝑘
𝐴) corresponds to 

another class within the target scheme (𝑇𝑗
𝐵). As proposed in Gómez Zapata et al., (2022b), the degree of compatibility between 190 

the buildings classes belonging to both schemes can be represented by a compatibility matrix 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) to account for the 

uncertainties when there is not a trivial (one-to-one) mapping. Knowing in advance certain exposure metrics of the source 

scheme {𝑅}𝑇𝑘
𝐴 (i.e., building counts), the respective values of the target scheme {𝑅}𝑇𝑗

𝐵 can be obtained by applying the dot 

product (Eq. 2). 

{𝑅}𝑇𝑗
𝐵 = 𝑝(𝑇𝑘

𝐴|𝑇𝑗
𝐵). {𝑅}𝑇𝑘

𝐴 Eq. 2 

2.2 The probabilistic description and compatibility of inter-scheme damage states  195 

We consider how the fragility functions associated with 𝑇𝑘
𝐴 (earthquake) and 𝑇𝑗

𝐵 (tsunami) may have diverse numbers 

and descriptions of damage states per considered hazard-dependent vulnerability scheme (𝐷𝑘𝑧
𝐴 , 𝑧 = 𝑧1, … , 𝑧𝑁𝐴

 and 𝐷𝑗𝑦
𝐵 , 𝑦 =

𝑦1, … , 𝑦𝑁𝐵
). To harmonise their equivalence, we propose obtaining their probabilistic inter-scheme compatibility as a set of 

matrices 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ). This is achieved after having evaluated how the likely observable characteristics linked to each damage 

state within 𝐷𝑘𝑧
𝐴  and 𝐷𝑗𝑦

𝐵  can be expressed in terms of another one. For this aim, we first propose the use of the AeDES form 200 

(Agibilità E Danno in Emergenza Sismica (usability and damage in seismic emergency)) of the Italian Civil Protection (Baggio 



8 

 

et al., 2007) as a standard scoring system to create a synthetic dataset based on the likely observable damage on individual 

building components. Although it was originally proposed for post-earthquake damage data collection, we propose to 

transversally use it to describe every damage state 𝑧 and 𝑦 of 𝐷𝑘𝑧
𝐴  (due to seismic ground shaking) and 𝐷𝑗𝑦

𝐵  (due to tsunami 

inundation) respectively. Expert elicitation is used on the AeDES form to create heuristics evaluating the expected damage 205 

extension per building type and each of the damage-limit-states defined within their respective fragility functions. For this aim, 

we make use of its implicit scale within a range of 0=L to 9=A over the building components 𝑛, (low-level taxonomic 

attributes) as shown in Figure 2. We decided to only include four out of these six components that can be found in any building 

type as listed in Eq. 3 as stairs and pre-existing damage are not always present in all buildings. The importance of such building 

components for assessing their physical vulnerability has been documented in previous studies to ground-shaking (e.g. 210 

Lagomarsino et al., 2021) and tsunamis (e.g. Del Zoppo et al., 2021). 

𝑛 = {𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑉𝑆); 𝑓𝑙𝑜𝑜𝑟 (𝐹𝐿); 𝑟𝑜𝑜𝑓 (𝑅𝐹); 𝑖𝑛𝑓𝑖𝑙𝑙𝑠 𝑎𝑛𝑑 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝐼𝑃)} Eq. 3 

 

Figure 2. Scale to assess the damage level on buildings as proposed by the AeDES form. Reprinted from Baggio et al., (2007). 

A heuristic is generated by scoring the four components in Eq. 3 per damage state, per fragility function, per building 

class of both exposure classification schemes. This is done through expert elicitation and establishes a training dataset of the 215 

possible observable damage extent {𝑂𝐷}𝑛 in a harmonized manner. For instance, one set of {𝑂𝐷}𝑛 (for a given damage state 

and building type) is made up by a set of four numbers from 0 to 9, e.g., n = {1, 2, 1, 3}, meaning level I for VS and RF, level 

H for FL and level G for IP (Eq. 3). Thereafter, using the total probability theorem, the probability that the damage state z of 

a building class j in a scheme A corresponds to damage state y of building class j in scheme B can be calculated by Eq. 4. 

𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) = ∑
𝑛

𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛 ∩ 𝐷𝑗𝑦

𝐵 )𝑝({𝑂𝐷}𝑛|𝐷𝑗𝑦
𝐵 ) Eq. 4 

We assume that the representations of damage states within the two considered schemes are conditionally independent 220 

(⫫). Thereby, given the information of the scored observable damage on the individual components {𝑂𝐷}𝑛, we can describe 
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the source damage scheme 𝐷𝑘𝑧
𝐴  to be modelled in terms of {𝑂𝐷}𝑛  that jointly compose the target scheme 𝐷𝑗𝑦

𝐵 :  𝐷𝑗𝑧
𝐴 ⫫

𝐷𝑗𝑦
𝐵 |{𝑂𝐷}𝑛.Thus, Eq. 4 can be expressed as a product, given by Eq. 5. 

𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) = ∑
𝑛

𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛)𝑝({𝑂𝐷}𝑛|𝐷𝑗𝑦

𝐵 )      𝑠𝑖𝑛𝑐𝑒 𝐷𝑘𝑧
𝐴 ⫫ 𝐷𝑗𝑦

𝐵 |{𝑂𝐷}𝑛 Eq. 5 

We obtain a probabilistic compatibility degree between damage states (𝐷𝑘𝑧
𝐴 , 𝑧 = 𝑧1, … , 𝑧𝑁𝐴

 and 𝐷𝑗𝑦
𝐵 , 𝑦 = 𝑦1, … , 𝑦𝑁𝐵

) 

for every pair of combination of building classes 𝑇𝑘
𝐴, and 𝑇𝑗

𝐵 through a Bayesian formulation as presented in Eq. 6. 225 

𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) = ∑
𝑛

𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛)𝑝(𝐷𝑗𝑦

𝐵 |{𝑂𝐷}𝑛)
𝑝({𝑂𝐷}𝑛)

𝑝(𝐷𝑗𝑦
𝐵 )

 
Eq. 6 

The terms 𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛) and 𝑝(𝐷𝑗𝑦

𝐵 |{𝑂𝐷}𝑛) in Eq. 6 can be solved through supervised machine learning techniques 

for classification (e.g., logistic regression, naive Bayes, decision trees) to predict the probabilities between the training sets 

and a synthetic testing dataset. The selection of the machine learning technique, naturally, carries epistemic uncertainties 

(Mangalathu et al., 2020) whose investigation is beyond the scope of this study. The testing dataset is obtained after generating 

random numbers of all the possible combinations of the AeDES-based scores. With this dataset we express the conditional 230 

probabilities of having damage states 𝐷𝑘𝑧
𝐴 , 𝑧 and 𝐷𝑗𝑦

𝐵 , 𝑦 (for each building class within schemes A and B given {𝑂𝐷}𝑛. The term 

𝑝({𝑂𝐷}𝑛) is a marginal probability that can be assumed to represent the proportion of one observation out of exhaustive 

combinations of {𝑂𝐷}𝑛. Lastly, 𝑝(𝐷𝑗𝑦
𝐵 ) describes the proportion of each damage state 𝑦 within each building class 𝑘 in the 

training dataset for scheme B. Once Eq. 6 is solved, the expression 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) is obtained, which stems from the probabilistic 

inter-scheme damage compatibility matrix for each possible pair of buildings within schemes A and B. After having established 235 

the compatibility between building classes and damage states, a special set of fragility functions is needed to follow the damage 

progression inflicted by the second hazard. They are explained hereafter. 

2.3 State-dependent fragility functions 

The next steps of the method are carried out within the reference vulnerability scheme of the second hazard (i.e. 

tsunami). Let us suppose that the fragility functions 𝐹𝑇𝑟
𝑖,𝑞𝑁𝑖

 (for a set of building types 𝑇𝑟, and composed by a set of 𝑞𝑁𝑖
 damage 240 

limite states) are assumed to be modelled by cumulative lognormal distributions. They are defined by their respective 

logarithmic means 𝜇𝑞0
(𝑇𝑟

𝑖) and their logarithmic standard deviations, for which we assume that their initial damage states 𝑞𝑁𝑖
 

are all represented by a zero 𝑞0 (for a pristine, intact structure). For a set of damage states 𝑞𝑁𝑖
 in pristine structures, there is a 

corresponding set of values 𝜆𝑞0
= [𝜆𝑞01

, 𝜆𝑞𝑦
, 𝜆𝑞𝑤

, … 𝜆𝑞0𝑖
]. With this, let us assume that the damage state 𝑤 belongs to 𝐷𝑗𝑦

𝐵 , 𝑦 =

𝑦1, … 𝑤 … , 𝑦𝑁𝐵
. Eq. 7 represents the conditional probability that the building 𝑗 (of the scheme B) can move to a progressive 245 
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state 𝑤 given the action of 𝐼𝑀𝐵 when it already presented a damage state 𝑦 due to the action of 𝐼𝑀𝐴. For such a process, please 

note that it was already classified in terms of scheme B, thanks to the compatibilities between damage states. 

𝑝(𝐷𝑗𝑤
𝐵 |𝐷𝑗𝑦

𝐵 , 𝐼𝑀𝐵) Eq. 7 

The former expression defines a probabilistic state-dependent fragility function composed of transition probabilities 

between increasing damage states (for instance, for the scheme B, this description follows: 𝑦𝑁𝐵
− 𝑦𝑁𝐵−(𝑁𝐵−1); 𝑦𝑁𝐵

−

𝑦𝑁𝐵−(𝑁𝐵−2) … ). For a fragility model 𝐷𝑇𝑟
𝑖 designed for a set of  building types 𝑇𝑟, and composed of 𝑞𝑁𝑖

 damage states (for any 250 

hazard of interest i), the required set of transition probabilities for a given range of hazard intensities are completely defined 

by a triangular number 𝐺𝑓 as expressed in Eq. 8.  

𝐺𝑓 = ∑ 𝐷𝑇𝑟
𝑖

𝑞𝑁𝑖

𝐷
𝑇𝑟

𝑖 =1

=
(1 + 𝑞𝑁𝑖

)𝑞𝑁𝑖

2
 

Eq. 8 

A visual example of such transition probabilities within fragility functions for several hazard-dependent models (also 

including 𝑇𝑘
𝐴; 𝑇𝑗

𝐵 and their respective sets of damage states 𝑧𝑁𝐴
; 𝑦𝑁𝐵

) is presented in Figure 3. 

 255 

Figure 3. Example of a set of damage state-dependent fragility functions for several single hazard fragility functions comprising 

progressive transition probabilities. Figure modified from Gómez Zapata et al., (2020). 

Only for the overall scope of this paper, we propose that state-dependent fragility functions can be simplified by using 

ad-hoc calibration parameters to modify these logarithmic mean values. For such a modification, we propose applying to them 

the exponential operator to obtain the physically accountable mean IM (hazard intensity measures). I.e., 𝜆𝑞0
(𝑇𝑟

𝐼) defines each 260 
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damage state as:  𝜆𝑞0
(𝑇𝑟

𝑖) = 𝑒𝜇𝑞0(𝑇𝑟
𝑖). Subsequently we propose to obtain their respective differences Δ𝜆𝑞0

. For example, if a 

fragility function is composed of 𝑞𝑁𝑖
= 4 damage states (excluding damage state 0, equivalent to no damage), there will be a 

set of damage states 𝜆𝑞0
= [𝜆𝑞01

, 𝜆𝑞02
, 𝜆𝑞03

, … 𝜆𝑞0𝑖
] for which we should obtain the differences between all the possible top and 

bottom damage states and we must obtain six values: Δ𝜆𝑞0
=  [𝛥𝜆𝑞01,2

, 𝛥𝜆𝑞01,3
, 𝛥𝜆𝑞01,4

, 𝛥𝜆𝑞02,3
, 𝛥𝜆𝑞02,4

, 𝛥𝜆𝑞03,4
].  

In this example, these six state-dependent transition values are included within the  𝐺𝑓 = 10 triangular number (i.e. 4 265 

from 0; 3 from 1; 2 from 2; 1 from 3) given by Eq. 8. Thereby, for each 𝑇𝑟
𝑖, it is still necessary to determine the probabilistic 

representation (log mean and log standard deviation) of every damage state transitions Δ𝜆𝑞0
.To do so, the 𝜆𝑞0

(𝑇𝑟
𝑖) values are 

proposed to be multiplied by the Δ𝜆𝑞0
 factors, and reframing this quantity to a natural logarithm in order to approximate it 

back again to lognormal mean values. This is expressed as given by Eq. 9. 

𝛿𝑤|𝑦 =  𝑙𝑛(𝛥𝜆𝑞0
×  𝜆𝑞0

). Eq. 9 

The reader should note that in this approach, the 𝛥𝜆𝑞0
values are a set of ad-hoc calibration parameters or scaling 270 

factors that are applied directly to the 𝜆𝑞0
for which each damage limit state was originally derived. These values form the 

lognormal mean of the state-dependent fragility functions. A similar approach was followed by Rao et al., (2017). The fragility 

functions used to constrain the state-dependent fragility functions should have been derived only for the actual second acting 

hazard (i.e., far-field tsunamis). Thus, the use of those derived analytically is advised over empirical ones (which had implicit 

the damaged induced by ground-shaking in their derivation). Further details about this approach and model assumptions to 275 

find the ad-hoc calibration parameters are provided for the example case in the data repository in Gómez Zapata et al., (2022a). 

2.4 Loss assessment for sequences of cascading hazards scenarios 

We propose a simple economical consequence model that assigns the replacement cost ratios to every damage state 

of the building classes 𝑇𝑗
𝐵. The incremental economic loss, defined as the difference in the expected loss resultant from the 

initial damage state and final damage state, is calculated in terms of the reference scheme 𝐵 as: 280 

𝑝(𝐿|𝐷𝑗𝑤
𝐵 ) − 𝑝(𝐿|𝐷𝑗𝑧

𝐵 ) Eq. 10 

Combining the two inter-scheme compatibility matrices, (𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) and (𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ), along with Eq. 7 and Eq. 10, we 

obtain the formulation in Eq. 11, which is identical to the one in Figure 1b. This allows us to calculate the probability of 

observing an incremental loss due to the cumulative damage during the sequence of hazard-scenarios. 

𝑝(𝐿|𝐼𝑀𝐵 ∩ 𝐼𝑀𝐴) = ∑
𝑘,𝑦,𝑧,𝑤

𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵)𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 )𝑝(𝐷𝑘𝑧
𝐴 |𝐼𝑀𝐴)𝑝(𝐷𝑗𝑤

𝐵 |𝐷𝑗𝑦
𝐵 , 𝐼𝑀𝐵)[𝑝(𝐿|𝐷𝑗𝑤

𝐵 ) − 𝑝(𝐿|𝐷𝑗𝑧
𝐵 )] Eq. 11 

Eq. 11 represents the disaggregated loss caused by the triggered event upon the buildings with a pre-existing damage 

(induced by 𝐼𝑀𝐴). Finally, the likely loss for the entire sequence can be obtained by summing up Eq. 1 and Eq. 11. 285 
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3 Application example 

3.1 Context of the study area: Metropolitan Lima, Peru 

In 2022, Peru had a population of around 33 million people, with nearly 58% of this living in coastal communities 

(INEI, 2022). In Løvholt et al., (2014) it was stated that this country has the largest population exposed to tsunamis in the 

American continent. Lima, its capital, with nearly 10 million inhabitants (around one third of the country’s population) is home 290 

to the most important political, industrial, and economic activities of the country. Lima ranks as the capital city exposed to the 

highest seismic hazard in South America (Petersen et al., 2018), and as the second city in the world in terms of the value of 

working days lost relative to the national economy due to earthquakes (Schelske et al., 2014). This city has suffered devastating 

disasters in the past. For instance, in 1586 and 1724 earthquakes triggered tsunami run-ups over 24 m (Kulikov et al., 2005). 

The 1746 earthquake, with an estimated magnitude of Mw 8.8 (Jimenez et al., 2013), produced a tsunami with local height of 295 

15 to 20 m (Dorbath et al., 1990) and destroyed the city. In 1974, a Mw. 8.1 event produced widespread damage and caused 

losses of ~ 7.5 billion dollars. Since then, the city has been experiencing continuous urbanization with generally poor structural 

design (Tarque et al., 2019). 

The 1746 earthquake for scenario for earthquake and tsunami modelling was also used in Adriano et al., (2014) to 

estimate the damage probabilities of the residential building stock of Callao (part of the Metropolitan area of Lima) using the 300 

empirical tsunami fragility functions of Suppasri et al., (2013) for four building types. More recently, Ordaz et al., (2019) 

developed probabilistic earthquake and tsunami risk forecasts for Callao. However, that study did not describe the vulnerability 

models used, nor the method employed to address the non-linear damage accumulation. To the authors’ best knowledge, neither 

cumulative damages due to earthquake and tsunami scenarios nor the use of analytical tsunami fragility functions for Lima 

have been reported in the scientific literature. 305 

3.2 Scenarios of earthquake and tsunami for Lima 

We use the dataset compiled by Gómez Zapata et al., (2021e) which is composed of six earthquakes with moment 

magnitudes ranging from 8.5 to 9.0 Mw, which were made available in Gómez Zapata et al., (2021c). In that dataset, each event 

is represented by an associated 1,000 realisations of cross-correlated ground motion fields (GMF) for peak ground acceleration 

(PGA) and spectral accelerations at 0.3 and 1.0 seconds. The selection of these spectral periods depends upon the fragility 310 

function’s IM associated with the building classes of the exposure model (Sect. 3.3). The simulated GMF were obtained making 

use of the ground motion prediction equation (GMPE) proposed in Montalva et al., (2017) and the spatially cross-correlation 

model of Markhvida et al., (2018) employing the OpenQuake Engine (Pagani et al., 2014). For the site term of the GMPE, the 

dataset reported in Ceferino et al., (2018), which combined the slope-based Vs30 values of Allen and Wald, (2007) and a 

seismic microzonation (Aguilar et al., 2013) was used.  315 
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On the tsunami modelling side, we reuse the data repository Harig and Rakowsky, (2021) that compiles tsunami 

inundations for each of the mentioned six earthquakes using the finite element model TsunAWI. Similarly as performed by 

Harig et al., (2020), the inundation values were interpolated to a raster file with grid cell dimensions of 10×10 m. Figure 4 

shows three of the tsunami inundation scenarios for the study area. 

 320 

Figure 4. Expected tsunami inundation heights (TIH) in meters (m) for three out of the six considered scenarios per moment magnitude 

(Mw), namely: (a) Mw 8.6; (b) Mw 8.8; and (c) Mw 9.0. These raster products are available from Harig and Rakowsky, (2021). Two densely 

populated areas are depicted by white rectangles: in the north the “La Punta” (Callao) and Chorrillos in the south. Updated figure from 

Gómez Zapata et al., (2021f). Map data: ©Google Earth 2021. 

3.3 Exposure modelling: taxonomic description, inter-scheme conversion and spatial aggregation of 325 

building classes for Lima 

We make use of the existing building exposure models that represent the residential building stock of Metropolitan 

Lima for ground shaking vulnerability that were developed by Gómez Zapata et al., (2021e) and are available from Gómez 

Zapata et al., (2021b). Such a building classification was defined by relating some covariates included within the last official 

Peruvian census from 2017 (INEI, 2017) at the block-level with respect to 21 classes proposed by the South American Risk 330 

Assessment (SARA) project (Yepes-Estrada et al., 2017) through a mapping scheme proposed from expert-elicitation (GEM, 

2014). Since that information was provided for dwellings, the so-called “dwelling ratios” proposed by SARA were also 

implemented to obtain the building counts per class. A description of these building classes is presented in Table 1. 

It is worth noting that although these typologies are similar to those of the SARA exposure model, there are differences 

between the building counts reported by that project and the adopted model. This might be due to the vintage of the input 335 
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census datasets (2007 vs. 2017, respectively), the thematic detail induced by the spatial aggregation entities (districts/ blocks/ 

CVT), having merged some building classes in terms of similar heights, and having reduced the number of unknown (UNK) 

type (~91% with respect the SARA model). The resultant exposure model is made up of ~1,657,635 residential buildings, a 

25% increase with respect the SAA model. However, as observed in Gómez Zapata et al., (2022b), this scheme does not 

properly capture the presence of high-rise buildings, underestimating their presence, while overestimating the wooden types. 340 

 

Table 1. SARA building classes proposed for the residential building stock of Metropolitan Lima and Callao, with their respective 

replacement costs per building unit (Repl. Cost (USD/bdg.) as reported in Yepes-Estrada et al., (2017) in the frame of the SARA model 

released by GEM (Global Earthquake Model) in 2015, which was based on official census data reported by INEI, (2007). The intensity 

measures (IM) of the associated seismic fragility functions to each building class, as reported in Villar-Vega et al., (2017), are also 345 

provided. 

SARA building classes in 

Lima and Callao 

Description IM Repl. Cost 

(USD/bdg.) 

Building 

counts 

MUR-H1-3 Unreinforced masonry (MUR), 1–3 stories (H1-3) PGA 18,000 248799 

MUR-ADO-H1-2 Unreinforced masonry, with adobe (ADO), 1–2 

stories (H1-2) 

PGA 15,000 209837 

MUR-STDRE-H1-2 Unreinforced masonry, with dressed stone (STDRE), 

1–2 stories 

PGA 15,000 209837 

W-WBB-H1 Wood (W), bamboo (WBB), 1 story (H1) S.A at 0.3s 12,000 187355 

W-WWD-H1-2 Wood, bahareque and Quincha (i.e., wattle and daub 

construction): WWD, 1–2 stories (H1-2) 

S.A at 0.3s 15,000 149884 

W-WS-H1-2 Wood, solid wood (WS), 1–2 stories S.A at 0.3s 12,000 127401 

W-WLI-H1-3 Wood, light wood (WLI), 1–3 stories S.A at 0.3s 31,500 123654 

ER-ETR-H1-2 Rammed earth (ER), reinforced earth system (ETR), 

1–2 stories 

PGA 15,000 89931 

MUR-STRUB-H1-2 Unreinforced masonry, with rubble (field stone) or 

semi-dressed stone (STRUB), 1–2 stories 

PGA 15,000 89931 

W-WHE-H1-3 Wood (W), Heavy wood (WHE), 1–3 stories S.A at 0.3s 12,000 82436 

MCF-DNO-H1-3 Confined masonry (MCF), non-ductile (DNO), 1–3 

stories 

PGA 40,500 66749 

MCF-DUC-H1-3 Confined masonry, ductile, 1–3 stories PGA 126,000 66749 

MR-DUC-H1-3 Reinforced masonry (MR), ductile (DUC), 1–3 

stories 

PGA 360,000 16745 

CR-LFINF-DNO-H1-3 Reinforced concrete (CR) with infilled frame 

(LFINF), non-ductile, 1–3 stories 

PGA 126,000 13925 

UNK Unknown S.A at 0.3s 12,000 8432 

CR-LFINF-DUC-H1-3 CR, with infilled frame, ductile, 1–3 stories PGA 288,000 7519 

CR-LDUAL-DUC-H4-7 CR, with dual wall system (LDUAL), ductile, 4–7 

stories (H4-7) 

S.A at 1.0s 1,080,000 125 

CR-LWAL-DNO-H4-7 CR, with wall system (LWAL), non-ductile, 4–7 

stories 

S.A at 1.0s 472,500 76 

CR-LWAL-DUC-H4-7 CR, with wall system, ductile, 4–7 stories S.A at 1.0s 1,080,000 76 

CR-LWAL-DUC-H8-19 CR, wall system, ductile, 8–19 stories (H8-19) S.A at 1.0s 3,456,000 34 

CR-LDUAL-DUC-H8-19 CR, with dual wall system, ductile, 8–19 stories S.A at 1.0s 3,456,000 32 
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These SARA buildings are spatially aggregated onto Central Voronoi Tessellations (CVT) to form seismic-oriented 

exposure models. It is worth noting that the construction of such heterogeneous aggregation units was based on the selection 

of an underlying distribution that spatially combined and normalised two weighted map layers, namely: (1) a tsunami 

inundation depth from a Mw 9.0 scenario (70% weight), and (2) the population density at the block level (30%). The resulting 350 

model provides higher resolution cells where both conditions are maximised whilst coarser geocells occur when one can expect 

their absence. Further details about these models are available in Gómez Zapata et al., (2021a, b). Figure 5 shows the percentage 

of building typologies grouped by their main structural materials expected within each geocell.  

 
Figure 5. Spatial distribution of the percentage of the main structural material of the residential buildings in Metropolitan Lima in each 355 

CVT (Central Voronoi Tessellation) geocell using the dataset of Gómez Zapata et al., (2021b). The colour scale represents the material 

type: (a) masonry and earthen (red); (b) reinforced concrete, RC and Unknown, UNK (blue); (c) wooden types (green). Only CVT that 

intersected the census-based blocks (INEI, 2017) are shown. 

The analytically derived set of seismic fragility functions by Villar-Vega et al., (2017) are assigned to every SARA 

class. They will be used to obtain the damage distribution for the cross-correlated ground motions per earthquake scenario 360 

(Sect. 3.2). For this vulnerability assessment, we use the replacement cost as given by Yepes-Estrada et al., (2017) presented 

in Table 1. For their damage states, we assumed loss ratios of 2%, 10%, 50%, and 100%, respectively. 

On the tsunami vulnerability side, we represent the commonly exposed residential building stock to earthquakes and 

tsunamis in terms of two classification schemes, namely the Suppasri et al., (2013) and Medina, (2019) schemes which provide 

sets of empirical and analytical fragility curves, respectively. The former one was made available for Lima in Gómez Zapata 365 

et al., (2021b) and is comprised of six typologies. Notably, its corresponding set of empirical tsunami fragility functions (with 

six damage states) was derived by implicitly addressing the damage induced by the ground-shaking after the Mw 9.1 2011 

Japan earthquake and tsunami. Due to this reason, the steps outlined in Sections 2.2 and 2.3 are not developed for the Suppasri 
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et al. (2013) scheme. Their related direct scenario-based loss estimates were reported in Gómez Zapata et al., (2021e) from the 

variations obtained from seven geographical entities used to spatially aggregate the residential building portfolio of Lima, and 370 

presented in Sect. 4 for comparative purposes in contrast with the offered method applied to the Medina (2019) scheme. This 

second type of classification is to the authors’ knowledge the only available model that provides analytical far-field tsunami 

fragility functions for the South American Pacific Coast. It includes six typical buildings located in Tumaco (Colombia) 

initially defined in Medina, (2019), which are generalized in this study. They are M-PN (wooden), M-MP (masonry), M-PCP1-

T1 (framed RC, one storey with similar length-width ratio), M-PCP1-T2 (framed RC, one storey, with a higher length to width 375 

ratio), M-PCP2 (framed RC, 2 storeys), and M-PCP3 (framed RC, 3 or more storeys). Their associated set of fragility functions 

was developed following the method proposed in Medina et al., (2019) to define the structural fragility due to tsunami forces. 

A summary that regards the structural characteristics of these building types and the method adopted in deriving these models 

are provided in the data repository (Gómez Zapata et al., 2022c). 

 380 

Figure 6.  Classification of the buildings in the maximum exposed area to both perils (Mw 9.0 scenario) in terms of the (a) seismic-

vulnerability oriented SARA classes (used as a source scheme) and (b) the inter-scheme conversion matrix. The former two models are 

used as inputs to obtain the (c) proportions for the tsunami-oriented building classes of Medina (2019). Acronyms for SARA building 

classes are given in Table 1, whilst the six Medina (2019) classes are: M-PN (wooden), M-MP (masonry), M-PCP1-T1 (framed reinforced 

concrete (RC), one storey with similar length-width ratio), M-PCP1-T2 (framed RC, one storey, with a higher length to width ratio), M-385 

PCP2 (framed RC, 2 storeys), and M-PCP3 (framed RC, 3 or more storeys). 

 

As explained in Sect. 2.1, every building class within the three schemes of interest is disaggregated into attributes 

within the GEM v.2.0 faceted taxonomy. As done in Gómez Zapata et al., (2022b), fuzzy compatibility levels between the 

attribute values and building classes are assigned through expert elicitation. Thereby, synthetic surveys based on the possible 390 
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combinations of attributes that every building class may describe are employed to solve the compatibility scores and obtain 

the probabilistic inter-scheme compatibility matrices expressed by 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) that is shown in Figure 6b. By applying a dot 

product (Eq. 2) between this matrix and the building counts of the source scheme SARA {𝑅}𝑇𝑘
𝐴, (Figure 6a), we can obtain the 

building counts under the tsunami classification scheme Medina (2019) {𝑅}𝑇𝑗
𝐵 as shown in Figure 6c. 

The inter-scheme conversion between SARA and the Suppasri et al., (2013) classes for Lima was reported in Gómez 395 

Zapata et al., (2021f). The replacement costs values of the building classes within the Medina (2019) scheme are assumed to 

be the same as the SARA class for which the largest compatibility value was obtained from the inter-scheme compatibility 

matrix (Figure 6-b). We have adopted identical loss ratios per limit damage state as the ones assumed for earthquake 

vulnerability. This decision is aligned with previous related studies, i.e., similar loss ratios were also adopted in Antoncecchi 

et al., (2020) to assess the vulnerability of buildings to tsunamis using empirical fragility functions. It is worth noting that only 400 

the commonly exposed buildings to each pair of hazard scenarios (i.e., intersection between the IM of Figure 4 and Figure 5) 

are considered for the assessment of cumulative damage after the cascading sequence. 

3.4 The probabilistic description and compatibility of inter-scheme damage states for Lima 

We obtain the inter-scheme damage compatibility matrices, 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ), following the method presented in Sect. 2.2 

to probabilistically harmonise the damage states that define the fragility functions of 𝐴 (SARA) and 𝐵 (Medina). It is worth 405 

noting that although 𝐴 and 𝐵 comprise four damage states they do not have a trivial equivalence. 𝐴 defines a single damage 

criterion for the entire set of building classes closely following the proposal by Lagomarsino and Giovinazzi, (2006) as a 

function of the yielding and ultimate spectral displacements. Conversely, 𝐵 uses a building class-dependent parametrization 

based on the HAZUS inter-storey drift ratios to define the structural damage levels on pre-code structures. 

First, we use the AeDES scale to score the admissible observable damage extension on individual building 410 

components (𝑛 in Eq. 3) through expert elicitation, which can jointly describe each building-specific damage states of every 

scheme’s fragility functions (𝐷𝑘𝑧
𝐴 , 𝐷𝑗𝑦

𝐵 ). Some examples of this procedure are displayed in Figure 7. These heuristics configure 

the training datasets. Subsequently, we have configured the testing datasets. They are composed of a synthetic dataset of 10,000 

exhaustive possible combinations of the observable AeDES score-based damage extension {𝑂𝐷}𝑛. Thereby, the likelihood 

terms and 𝑝(𝐷𝑗𝑦
𝐵 |{𝑂𝐷}𝑛) in Eq. 6 represent the probability of classifying each damage state 𝐷𝑘𝑧

𝐴  and 𝐷𝑗𝑦
𝐵  given the set of scored 415 

building components {𝑂𝐷}𝑛. 

To obtain the likelihood terms of in Eq. 6, we have decided to use the Gaussian Naïve Bayes supervised machine-

learning classification-algorithm. It is available in the free software library Scikit-learn for the Python programming language 

(Buitinck et al., 2013). This selection is suitable for our classification problem because the observable damage heuristics can 

be assumed as normally distributed continuous data. This can be intuitively observed from the heuristic shown in Figure 7 420 

where the central damage states (i.e., moderate and extensive) show wider ranges of combinations of observable damage with 
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respect to the lowest (slight) and largest (collapse) states. For illustrative purposes, in Figure 8 we show one of the possible 

sets for the likelihood probabilities predicted for each damage state described in terms of observable damage extension with 

respect to the AeDES scale upon two building components (VS, IP) for two material-based typologies in the commonly 

exposed area to both perils, i.e., masonry and wooden structures (see Figure 6a,c). 425 

 

Figure 7. Examples of the AeDES-based heuristics (see original AeDES form (Baggio et al., (2007) on Figure 2)) that describe the 

expected observable damage onto the four selected building components listed in Eq. 3 (vertical structure (VS); floor (FL); roof (RF); 

infills and partitions (IP)) using the scale from I-A (i.e., I=0 (null) to A=9 (>2/3 extension within the “very heavy” damage level). This is 

done per damage state per building class within two hazard-dependent vulnerability schemes. 430 

 

The marginal probability in Eq. 6, 𝑝({𝑂𝐷}𝑛), is assumed to be the proportion between one observation and the 

exhaustive combinations (1/10,000). Thereafter, we have obtained the probabilistic inter-scheme damage matrix 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) 

for each combination of building types from the two schemas (i.e., 21 SARA classes by 6 Medina classes = 126 conversion 

matrices). Examples of the inter-scheme damage matrices are shown in Figure 9 for three pairs of building types that had the 435 

highest inter-scheme compatibility values in Figure 6b. Each of the 126 matrices that relates the damage states for each possible 

combination of building classes from the two schemas is subsequently weighted by the corresponding value of 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵), that 

is, by the probability of the building classes of the two schemas actually being descriptive of the same actual building (i.e., 

Figure 6-b). When considered in Eq. 11, the damage related matrices are maximized by the most compatible pairs of inter-

schema building matrices (Figure 6b). The scripts, heuristics, the final set of likelihoods, and the compatibility matrices are 440 

provided in Gómez Zapata et al., (2022c).  
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Figure 8. Predicted likelihood probabilities of classifying each damage state of two building types that belong to the earthquake-oriented 

(EQ) vulnerability scheme SARA (𝐷𝑘𝑧
𝐴  (with building types k and sets of damage states z)) and two building types that belong to the 

tsunami-oriented (TS) scheme Medina (𝐷𝑗𝑦
𝐵 , with building types j and sets of damage states y). These features comes from having scored 445 

the likely observable damage {𝑂𝐷}𝑛 onto the building components listed in Eq. 3 in terms of the AeDES scale (i.e., 0=L - 9=A (e.g., as 

shown in Figure 7). The predicted likelihood probabilities on the figure are only shown for the building components VS (vertical structure) 

and IP (infills and partitions) for masonry buildings (subplots a, c) and wooden buildings (subplots b, d). 
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(a) Masonry classes 

 

(b) Wooden classes 

 

(c) RC classes 

 

Figure 9. Probabilistic inter-scheme damage compatibility matrices for three pairs of building classes: (a) Masonry, (b) Wooden, and (c) 

Reinforced concrete (RC). The pairs of building typologies shown had the greatest compatibility in Figure 6b. Their respective fragility 450 

functions are comprised within the source earthquake-oriented (EQ) vulnerability scheme SARA (𝐷𝑘𝑧
𝐴 , with building types k and sets of 

damage states z) and the target tsunami-oriented (TS) scheme Medina (𝐷𝑗𝑦
𝐵 , with building types j and sets of damage states y). 

3.5 Tsunami state-dependent fragility functions for Lima 

We have followed the method presented in section 2.3 to configure the state-dependent fragility functions based on 

Scheme 𝐵 (Medina) with associated analytical far-field tsunami fragility functions. The parameters that define the lognormal 455 

cumulative distributions for the four original damage states (assuming an initial undamaged state), and well as for the set of 

𝐺𝑓 = 10 transitions probabilities (from Eq. 8) are provided in the data repository (Gómez Zapata et al., 2022a). Figure 10 

shows the analytical tsunami fragility functions (continuous lines) and state-dependent fragility curves with their respective 

damage-transitions (non-continuous lines) for the six building classes.  

From Figure 10 it is possible to observe some features of the tsunami damage-state fragility functions based on ad- 460 

hoc calibration parameters (Sect. 2.3). For example, the masonry buildings class is the one most fragile to tsunami forces when 

in an undamaged state. Consequently, their associated state-dependent fragilities are shifted towards the left side of the plot in 

quite an extreme fashion (Figure 10-a). This means that for that building type there is a higher probability for it to follow a 

longer damage progression after having been strongly affected by the seismic ground-shaking (dotted and dashed lines). 

Conversely, for the wooden buildings (Figure 10-b), these are more likely to follow a damage progression than other classes 465 

if they were slightly affected by the shaking (see dashed lines). For the two one-storey RC building types assessed (M-PCP1-

T1 & M-PCP1-T2) there are negligible differences between the transition probabilities D2-D3 and D3-D4, as well as between 

D1-D3 and D2-D4. Notably, the inter-distances between these pairs of sets (of damage states) are of a similar order as the ones 

comprised by one and two damage state(s) respectively. This feature is not present for the other RC buildings with increasing 

heights nor for the wooden types. It is worth noting that these observations are fully dependent on the specific fragility models 470 

that we have implemented and the assumptions adopted to derive them (Eq. 10) and no further generalizations should be done 

until they can be further compared with other approaches and validated through other means. 
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Figure 10. Analytical tsunami fragility functions with initial undamaged state as proposed by Medina, (2019) (continuous lines) and 

derived state-dependent fragility curves (non-continuous lines) in terms of flow depth (m) as IM for six building classes: (a) M-MP 

(masonry), (b) M-PN (wooden), (c) M-PCP1-T1 (framed reinforced concrete (RC), one storey with similar length-width ratio), (d) M-475 

PCP1-T2 (framed RC, one storey, with a higher length to width ratio), (e) M-PCP2 (framed RC, 2 storeys, (f) M-PCP3 (framed RC, 3 or 

more storeys).  

3.6 Cumulative damage from consecutive ground shaking and tsunami scenarios in Lima 

The spatially cross-correlated ground motion fields (Sect. 3.2, Fig. 11-a, b), along with the exposure model for seismic 

vulnerability and their corresponding fragility functions (Sect. 3.3, Fig. 11-d, e) are the first set of inputs required by the engine 480 

DEUS (Brinckmann et al., 2021) to estimate the damage distribution and direct economic losses for the residential building 

stock of Lima after each of the six earthquake scenarios considered. DEUS is a software designed to compute scenario-based 

risk from any type of natural hazard over spatially aggregated building portfolios. This version of DEUS is an open-source 

Python program whose number of executions are proportional to the consecutive risk scenarios. 
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As shown in Fig. 11-f, g, the resulting damaged exposure model (after ground-shaking) is used as input for a second 485 

execution to account for the cumulative damage induced by the corresponding tsunami scenarios. DEUS makes use of the two 

sets of inter-scheme compatibility matrices for buildings (Sect. 3.3) and damage states (Sect.3.4) to change from the source 

earthquake reference scheme to the target tsunami reference scheme (see Fig. 11-g). These are inputs together with the tsunami 

inundation heights (Sect. 3.2, Fig. 11--c), and state-dependent tsunami fragility functions (Sect. 3.5, Fig. 11-h) for the second 

run of DEUS. This time, the damage states are updated in the building exposure model, delivering only the disaggregated 490 

damage and losses expected from the tsunami. Finally, the cumulative distribution of losses is obtained by adding the latter 

disaggregated tsunami losses with the initial results derived from the earthquake ground-shaking.  

 

Figure 11. Proposed workflow for multi-risk assessment in Lima from each pair of consecutive earthquake and tsunami scenarios. A Mw 

8.8 event is displayed as an example (subplot a). The processes regarding the natural hazardous events are highlighted in green. Blue and 495 

orange indicate the exposure and vulnerability processes, respectively. The spatially cross-correlated ground motion fields (subplot b) and 

an initial exposure model (with earthquake-oriented classes, in subplot d) are inputs for the seismic vulnerability process using analytical 

fragility functions for ground-shaking (subplot c), which provides the damage-updated exposure models (subplot f). The reference scheme 

conversion processes (building classes and damage states shown in subplot g) that generate the sets of damaged-exposure models are, 

together with the tsunami inundation models (subplot e) the inputs used by the state-dependent tsunami fragility functions (subplot h) to 500 

finally obtain the distribution of cumulative damages and losses (red box in subplot i) 
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4 Results 

The generated results are presented in the form of loss exceedance curves in Figure 12. This figure reports the 

probability of exceeding the selected loss metric (replacement cost in USD) for the six earthquake and tsunami scenarios that 

might impact the portion of the residential building stock of Lima that is commonly exposed to each pair of hazard scenarios. 505 

This figure shows five sets of curves, hereby described: 

1. Earthquake ground-shaking-induced loss (blue curves). They represent the direct losses due only to seismic ground 

shaking using the SARA scheme (Villar-Vega et al., 2017). They are obtained through 1,000 realisations of cross-

correlated seismic ground motion fields using the models described in section 3.2. 

1. Losses obtained from the sole use of empirical fragility functions as simulating a near field tsunami (red curves). 510 

These curves represent the losses from the cumulative effects of the shaking and the tsunami (without any possibility 

to separate both effects). Such losses prediction may be biased since the empirical fragility functions of (Suppasri et 

al., 2013) assuming an initial undamaged state (𝐷𝑘0
𝐴 ) has not been validated for smaller or larger events. Similarly as 

it was concluded in Gómez Zapata et al., (2021), we have also observed that as the earthquake magnitude increases, 

the differences between the two largest loss values in the curve (from the two finest resolution entities) are reduced. 515 

Losses obtained from the sole use of analytical fragility functions as simulating a far-field tsunami (purple curves. 

They represent the direct losses obtained solely through the implementation of the analytical tsunami fragility tsunami 

Medina, (2019), while assuming an initial undamaged state (𝐷𝑘0
𝐴 ), thus, neglecting seismic ground-shaking. Similarly, 

as done for the former case (empirical functions), the reduced variability of these results was accounted for through 

computations using seven exposure models, with variable spatial resolutions obtained from a recent study (Gómez 520 

Zapata et al., 2021e). This is a result of the lack of variability in the seismogenic parameters to vary only the Mw, and 

not having assumed distributions for slip-rates, but single values. 

2. The losses related to the tsunami event obtained after using our method (state-dependent fragility functions, orange 

curves). They represent the direct losses which were only derived from the updated exposure model (i.e., with non-

zero damage states)). This means that these curves only represent tsunami-induced losses for buildings that have 525 

already experienced earthquake-related damage. These loss exceedance curves are constructed using Eq. 11. Thus, 

this procedure implied the inter-scheme building conversion 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) derived in section 3.3, the inter-scheme 

damage state conversion 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) obtained in Sect. 3.4, as well as the state-dependent tsunami fragility functions 

constrained in Sect. 3.5. 

3. Cumulative losses (our method) induced by the ground-shaking and tsunami sequence (green curves). They represent 530 

the losses obtained by adding the shaking-induced losses (blue curves) with the aforementioned disaggregated 

tsunami-induced losses (orange curves), that is, the outcome of the method proposed in this paper. These green curves 

represent, according to our approach, the likely losses that would be expected from each magnitude-dependent 

scenario-based cascading sequence over the considered building stock. 
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 535 

Figure 12.  Five loss exceedance curves for the residential building portfolio of Lima are presented in six subplots per earthquake 

magnitude scenario (Mw (8.5-9.0). Three out of the five curves represent the disaggregated losses per hazard event: shaking-induced losses 

only (blue); far-field tsunami-induced losses (initial undamaged state, purple); state-dependent tsunami-induced losses (with pre-existing 

shaking induced damage, orange). The green curves represent the losses expected from the cascading sequence. The red ones show the 

losses derived solely using empirical tsunami fragility functions (implying that they have an implicit contribution by the earthquake phase) 540 

Hereafter we describe some observations that arise from Figure 12. 

1. The resultant losses obtained after having used the two sets (empirical or analytical) of tsunami fragility functions 

(while assuming initial undamaged states) are profoundly different. As expected, the use of the empirical tsunami 

fragility model (red curves) is, for all the magnitudes, leads to larger values in comparison with the values obtained 

from the analytically derived fragility functions (purple). These differences increase with magnitude. This feature 545 

might arise, not only from the fact that empirical fragility functions consider both earthquake and tsunami actions 

while the purple curves consider only the effects of the tsunami, but also because empirical fragility functions only 

account for flow depth as the IM. Conversely, the analytical fragility functions implemented were derived using the 

theoretical forces associated with the flow velocity tsunami waves as input in the generating numerical model. Similar 



25 

 

observations regarding the reduction in the loss estimations when flow velocity is included have been drawn by other 550 

studies (e.g., Attary et al., 2019; Park et al., 2017). 

2. We observe that the ground-shaking dominates the losses at lower magnitudes (Mw 8.5, 8.6), whilst the tsunami, 

either from analytical (emulating far-field tsunamis) or empirical fragility functions (near-field tsunamis), controls 

the losses for the rest of the scenarios with larger magnitudes. The former is aligned with the observations of Goda 

and De Risi, (2018) and (Gómez Zapata et al., 2021e) for the case of empirical tsunami models. Moreover, a similar 555 

trend is observed for the disaggregated tsunami-induced losses (assuming initial non-zero damage) whose respective 

loss values (orange curves) are larger than the shaking-induced losses for Mw 8.8, 8.9, and 9.0. Hence, these features 

highlight that as the magnitude increases, there is an increasing comparative importance of the tsunami risk within 

the considered sequence of hazards. 

3. Expected loss values from cumulative damages based on single-hazard vulnerability models (our method, green 560 

curves) are clearly different from the one produced by classical empirical tsunami models. Classical empirical tsunami 

fragility functions lead to considerable lower losses estimations for the low magnitudes earthquakes and substantial 

larger estimations for the larger ones. 

4. The differences between the loss exceedance curves derived from both sets of analytical fragility models (either from 

undamaged or with pre-existing damage) are larger for the lower magnitudes (Mw 8.5, 8.6) and decrease with 565 

increasing magnitude. As the magnitude increases, there is an increasing tendency of convergence between these two 

loss curves (Mw 8.9, 9.0). 

5. Consequently, since tsunami-induced losses either from analytical fragilities (initial undamaged states) or from state-

dependent and inter-scheme models converge for the larger magnitudes (Mw 8.9, 9.0), their respective summations 

with the shaking-induced losses would be approximately similar at the largest probabilities of exceedance. 570 

Nevertheless, this observation needs to be better investigated through more exhaustive simulations of tsunami 

inundation per considered scenario. 

6. Conversely, considering observation 3, (i.e., as the magnitude decreases, the differences between purple curves and 

orange curves increases), their respective summations with the shaking-induced losses will lead to very different 

results. Hence, this observation suggests that, although earthquake and tsunami structural responses can be separately 575 

approximated for very large magnitudes, it is still required to address cumulative damages from the vulnerability 

interactions that are expected on the lower magnitudes earthquakes we have considered (i.e., Mw. 8.5, 8.6). 

When we consider analytical fragility functions with 𝐷𝑘0
𝐴  that only emulate the damaging actions of far-field tsunamis 

(without any ground shaking), we observe that as the magnitude increases, their respective loss exceedance curves converge 

with the ones that assumed state-dependency (𝐷𝑘𝑧
𝐴 ). This is because, for the larger magnitude events, the damaging actions due 580 

to seismic ground shaking will correspondingly increase. Hence, the available probabilistic damage transitions from the 

damage states within the earthquake (source) to tsunami (target) schemes will be consequently reduced. Therefore, we observe 
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that if far-field analytical tsunami fragility functions are used, their corresponding results will be very much alike, regardless 

of whether they are considered as being undamaged (𝐷𝑘0
𝐴 ) or with pre-existing damage (𝐷𝑘𝑧

𝐴 ). Therefore, for these larger 

magnitude events, regardless of which curve is summed up with the shaking-induced losses, the resulting loss distributions for 585 

the hazard sequence would lead to quite similar results. Thus, the implementation of state-dependency on tsunami fragility 

may not be fully necessary to be addressed for very large earthquake magnitudes (Mw 8.9, 9.0). This observation is aligned 

with studies (i.e., Petrone et al., 2020; Rossetto et al., 2018) that suggest that earthquake and tsunami structural responses can 

be separately approximated. However, the former statement would not apply to the low magnitude earthquakes investigated 

in Lima for which the pre-existing damage due to earthquakes must be addressed. No generalizations should therefore be done 590 

in this regard, with sensitivity analyses needing to be carried out in the future.  

5 Discussion 

This study has proposed a modular method to disaggregate the direct losses expected for building portfolios exposed 

to consecutive hazardous scenarios of different natures in which their individual components could be individually improved. 

Therefore, future sensitivity analyses on some of the modules related to damage-state would benefit the understanding of how 595 

their embedded uncertainties would impact their corresponding results. We can mention: 

1. The disaggregation of building classes into taxonomic attributes as presented in Sect. 2.1 is an important input to 

obtain the probabilistic inter-scheme compatibility matrices based on (Gómez Zapata et al., 2022b). However, it is 

worth noting the shortcoming described by Charvet et al., (2017) referring to the generalised poor taxonomic 

building characterizations of the currently available tsunami fragility models. They are, most of the time, only based 600 

on their main construction material, although sometimes they include the number of storeys, and rarely do they 

include other attributes such as the date of construction (e.g., Suppasri et al., (2015). When more enriched 

descriptions for tsunami vulnerability get available in the future, this approach will remain useful for similar 

purposes. 

2. When/if local high quality empirical data collection and analytical models), become available, they could be used to 605 

constrain the relationships between the failure mechanisms and attribute relevance for hazard-related susceptibilities. 

This might contribute to enhance the construction of heuristics that characterise the likely observable damage extent 

(per damage limit state, building type and hazard-dependent fragility model), that could be obtained through more 

refined approaches such as unsupervised machine learning. Its use applied on real datasets that document 

observations on building components (even different from the ones presented in Eq. 3) could contribute to refine 610 

state-dependent tsunami fragility functions and to restrict the heuristics on the likely observable damage (Sect. 2.2) 

and thus, minimizing subjective expert judgment. In this sense, it is worth noting that the set of predicted likelihood 

probabilities in the probabilistic compatibility degree between damage states from different hazard fragility functions 



27 

 

that we derived from the synthetic datasets created through the heuristics and the AeDES scoring system are not 

unique, as they depend on the choice of machine learning technique and on the heuristics derived through expert 615 

elicitation. In this sense, we have documented a preliminary sensitivity analysis on such parametrization in Gómez 

Zapata et al., (2022c). However, further investigation of the impact of such parametrization is still advised. 

3. As described by Hill and Rossetto, (2008), we have observed that, when characterising damage states due to the 

impacts of natural hazards on buildings, there is still the need for standardisation in describing observable physical 

damage after any kind of hazardous event through the harmonisation of damage scales for data collection, not only 620 

on entire building units but also regarding the particular damage (and extent) experienced by certain individual 

components. In this regard, although we have used the AeDES scale, other damage scales could be more suitable to 

describe the observable damage to some building classes than for others (Hill and Rossetto, 2008; Turchi et al., 

2022). Nonetheless, the choice of a standard scale to transversally describe any observable set of damage on 

buildings will benefit the research in multi-hazard vulnerabilities. 625 

4. The integration of economic consequence models for physical vulnerability based on the replacement costs as a 

function of the buildings’ area, as for instance presented in Triantafyllou et al., (2019) for tsunami vulnerability is 

worth testing. This also depend on the available data and it is out of the scope of this paper, but it would be worth 

exploring their contribution once more refined estimations about replacement cost are available for Lima. 

Nevertheless, one should be aware on the uncertainties involved for large scale building exposure models.  630 

5. The derivation of the hazard intensities could also benefit from future enhancements. For instance, the GMPE-based 

seismic accelerations derived on a simplified Vs30 site-grid of ~1 km might be too coarse to capture local site effects 

in the expected ground motions. However, the performance of site-response analyses that account for the local 

geotechnical soil properties of site-specific soil profiles, as for instance reported by Aguilar et al., (2019), is a 

computationally demanding task that is out of the scope of this study, but when integrated it could benefit the overall 635 

quality of seismic risk calculations for the study area. Complementary, we strongly advise the physical to generate 

exhaustive sets of cross-correlated-ground motion fields (at the required spectral periods by the buildings classes) to 

address their aleatory uncertainty. The selection of this model, among the available ones, carries epistemic 

uncertainties. 

It is worth noting that the variability of the loss exceedance curves obtained for the cumulative damage (due to 640 

tsunamis) was derived from the damaged exposure models subjected to each realisation of cross-correlated ground motion 

fields (i.e., orange curves in Figure 12). Therefore, investigating the impact of other tsunami vulnerability and hazard data 

products (Behrens et al., 2021), which was beyond the scope of this paper, are nonetheless worth exploring. When such 

parametrisation in the tsunami data products becomes available for Lima, future studies could provide dimensionality of the 

contribution of the tsunami hazard upon the outlined method for scenario multi-risk estimates. 645 

For the commonly exposed residential building stock of Lima exposed to both perils, we have observed that assuming 

initial undamaged states in the selected tsunami empirical fragility functions leads to large underestimations for lower 
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magnitudes (Mw) and large overestimations for larger Mw events in comparison to when state-dependent models were used. 

Hence, the initial “undamaged state” assumption used to assess the tsunami vulnerability in former studies (e.g., Adriano et 

al., 2014; Gómez Zapata et al., 2021e) may not be completely accurate to represent the losses expected after this type of 650 

cascading sequence. This is because such an assumption misses the calculation of earthquake-related damage which is an 

important input needed to assess cumulative damage and losses through state-dependent analytical fragility models. On the 

other hand, adopting the larger value between independent earthquake and tsunami risk computations proposed by Goda and 

De Risi, (2018) may lead to better correspondence with our model (mostly for the lower Mw events) than the sole use of the 

selected non-state dependent analytical fragility functions.  655 

To give a perspective on the importance of addressing cumulative damage and losses for building stocks, let us recall 

some of the findings that the available studies of Gómez Zapata et al., (2021e) and Markhvida et al., (2017) found. They 

investigated the likely economic losses of the entire residential building portfolio Lima and Callao solely after seismic ground 

motion from a Mw 8.8 scenario addressing the variability induced by the same cross-correlation model we have implemented 

herein. In the first study, ~1,657,635 residential buildings were considered and both studies considered the SARA building 660 

classes and fragility functions, similar to what we have done. Both studies reported mean loss values of around 7 and a 

maximum of around USD 35 billion (among a stochastic sample of events). It is then interesting to compare such a range of 

values with the mean loss values reported for a similar Mw (Fig 11-d). Notably, the forecasted losses per event (shaking and 

tsunami) and inferred from cumulative damage were derived from the much smaller commonly exposed building stock to each 

pair of hazard scenarios (see Fig 8-c), which constitute ~ 21,209 buildings. This means that the building count for the entire 665 

residential stock of Lima (Fig 6-a) is around 78 times larger than the commonly exposed to both perils (Fig 6-b). Hence, can 

note the important role of tsunami-induced losses in the study area. The mean losses expected from the cascading sequence of 

that Mw 8.8 (i.e. value for the 50th percentile on the green curve in Fig. 11b) is ~ USD 0.75 billion and a maximum of around 

USD 0.94 billion. Therefore, given the difference between the size of both building portfolios, finding out that the losses for 

the entire city are expected to be only 9 times larger than the ones forecasted after the action of both earthquake and tsunami, 670 

tells us that the crucial importance of carefully addressing the cumulative damage due to tsunami in the study area. Moreover, 

this tell us that, besides all of the secondary effects of the tsunami, these types of future scenarios in Lima will constitute a 

huge driving source of direct economic losses for building portfolios, but also uncertainties due to the lack of data to calibrate 

or validate these types of risk assessment after the action of cascading hazards.  

6 Conclusions  675 

We have proposed a modular method that allows us to consistently re-use existing single hazard fragility models that 

are being developed by experts in various research fields and integrate each other for multi-hazard risk assessment for extended 

building portfolios. This integration aims for the probabilistic harmonisation of diverse hazard-dependent building classes and 

damage states which are included in their associated fragility functions. Through this integration, we aim to provide an 



29 

 

alternative approach to conventional ones (e.g., HAZUS-MH (FEMA, 2003, 2017)) that consider a single building class with 680 

sets of fragility functions for a variety of hazards. In this sense, the method we have developed can be particularly useful to 

assess the cumulative damage in hazard sequences of different natures and forces that might induce various failure mechanisms 

upon the exposed buildings. Thereby, the presented integrative method contributes to reducing the existing gaps due to the 

typical lack of collective calibration and validation of multi-hazard risk methods. This is due, for instance, when triggered 

events act on damaged assets right after the first hazard or even simultaneously experiencing compound hazards with no time 685 

for damage reconnaissance or disaggregation of the damage features induced by the individual hazards. 

We have proposed a modular method composed of the following components: 

1. The selection of existing hazard-dependent vulnerability schemes to model the building portfolio under each hazard-

dependent vulnerability scheme of interest. They contain sets of building classes and associated fragility functions. 

To model the physical vulnerability of the building portfolio towards the triggering event (in this case, earthquake), 690 

no preference on whether empirical or analytical fragility functions should be used.  

2. On the other hand, to model the physical vulnerability of the building stock towards the triggered event, sets of state-

dependent fragility functions must be derived for each building type within the selected scheme. For this purpose, it 

is important to use models that do not involve the damaging effects of the triggered event as the starting point. (i.e., 

avoiding empirical models and using analytical ones). This proposal overcomes the assumption of initial undamaged 695 

states for the structures exposed to the triggered event and allows to account for the differential cumulative damage 

between hazards.  

3. The characterisation of building classes through their disaggregation into building taxonomic attributes. This 

description allows the harmonisation between the building classes belonging to different hazard-dependent 

vulnerability schemes through the probabilistic inter-scheme compatibility matrix proposed in Gómez Zapata et al., 700 

(2022b).  

4. The exposure models are spatially aggregated into optimal geographic entities (i.e. CVT-based models) that account 

for the spatial variability of low-correlated hazard IM in their derivation (Gómez Zapata et al., 2021e). This selection 

was taken due to performance purposes only, but a more refined block-based model could also have been used.  

5. A generalized description of the damage states based on a set of observable damage types on individual building 705 

components. This is done through a scoring system based on an underlying common scale (employing, for example, 

the AeDES form) that ultimately allows us to get the damage-state inter-scheme conversion. We use the total 

probability theorem, a Bayesian formulation, and machine learning techniques. 

6. The vulnerability assessment for sequences of cascading hazards scenarios through the proposal of consistent 

economical consequence models across hazard-dependent vulnerability schemes. They must define replacement cost 710 

ratios per damage state and per fragility function associated with each vulnerability scheme. 



30 

 

The joint combination of these components creates a method to update the damage states throughout the multi-hazard 

sequence while allowing us to exploit existing hazard-specific risk-oriented taxonomies (i.e., building classifications with 

corresponding fragility functions and defined damage states) available in the literature for a wide range of natural hazards. 

This is a modular method in which each one of their individual components can be separately customized when seeking future 715 

improvements. 

When applying this method on the residential building stock of Lima (Peru), we have observed, on the one hand, that 

considering the risk metrics from tsunami vulnerability only from the selected set of empirical fragility functions (derived from 

near-field tsunamis) as representative of the shaking and tsunami sequences leads to underestimations for the lower 

magnitudes. On the other hand, we have observed overestimations for the larger magnitude scenarios in comparison with the 720 

state-dependent method that accounts for the accumulated damage due to the former earthquake solicitations. We have 

observed that the use of the proposed method to assess the cumulative damage is more relevant for the lower magnitude 

scenarios than we have considered (Mw 8.5 and 8.6). This might be due to the greater damage extension on the exposed 

buildings that is expected from the seismic demands in comparison with those imposed by their corresponding tsunamis, and 

thus, there is greater chance to obtain cumulative damage. On the contrary, for larger magnitudes, the use of state-dependent 725 

fragilities and analytical functions assuming no pre-existing damage are converging, and thus, the importance of assessing 

state-dependency is reduced. 

Considering the limitations and simplifications assumed in this study, we are not claiming that the resulting economic 

losses we have calculated for the residential building stock of Lima from multi-hazard scenario-based risk computations are 

totally exhaustive. Thus, caution should be taken with the interpretation and extrapolation of these conclusions to other study 730 

areas and combinations of models. Nevertheless, awareness of these uncertainties for the reliable quantification of risk towards 

these cascading hazards is increasingly important to enhance mitigation strategies for disaster risk reduction (Imamura et al., 

2019). Furthermore, it is worth recalling that the method herein proposed has been exclusively designed for spatially extended 

residential building buildings as a proof of concept for integrating existing fragility models. We do not provide a complete 

validation of multi-vulnerabilities approaches, but rather we offer a holistic and novel harmonising method to track such 735 

dynamics in a consistent manner. Hence, our method is not meant to replace more detailed analytical analyses required to 

determine the structural response of individual buildings subjected to seismic and tsunami loading (e.g., Petrone et al., 2017; 

Rossetto et al., 2019). 

 

Code and data availability. The data used in the elaboration of this study are available in open repositories. The scenario-based ground 740 

motions and tsunami inundation maps are available in Gómez Zapata et al., (2021c); Harig and Rakowsky, (2021), respectively. The first 

set was calculated making use of the Shakyground script (Weatherill et al., 2021) which relies on the OpenQuake Engine (Pagani et al., 

2014), whilst the second set was calculated using the TsunAWI software. The exposure and fragility models for both hazard-vulnerability 

schemes (earthquake and tsunami) are available in Gómez Zapata et al., (2021a, b) and were adapted to fulfil the data formats required by 

the scripts provided by Assetmaster and Modelprop (Pittore et al., 2021). They were used as inputs for the scenario-based seismic risk 745 
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assessment (Sect. 3.6) using the DEUS software (Brinckmann et al., 2021). The scenario-based risk estimates for earthquakes and tsunami 

using analytical and empirical fragility functions respectively are provided in Gómez Zapata et al., (2021d). 
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