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Abstract. Changes in climate and socio-economic conditions pose a major threat to water security, particularly in the densely-

populated, agriculture-dependent and rapidly developing country of India. Therefore, for cogent mitigation and adaptation 

planning, it is important to assess the future evolution of drought hazard, vulnerability and risk. Earlier studies demonstrate 

projected drought risk over India on the basis of frequency analysis and/or hazard assessment alone. This study investigates 10 

and evaluates the change in projected drought risk under future climatic and socio-economic conditions by combining drought 

hazard and vulnerability projections at a country-wide scale. A multivariate standardized drought index (MSDI) accounting 

for concurrent deficits in precipitation and soil moisture is chosen to quantify droughts. Drought vulnerability assessment is 

carried out combining exposure, adaptive capacity and sensitivity indicators, using a robust multi-criteria decision-making 

method called the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In the worst-case scenario for 15 

drought hazard (RCP2.6-Far future), there is a projected decrease in the area under high or very high drought hazard classes 

in the country by approximately 7%. Further, the worst-case scenario for drought vulnerability (RCP6.0-SSP2-Near future) 

shows a 33% rise in the areal extent of high or very high drought vulnerability classes. West Uttar Pradesh, Haryana and West 

Rajasthan regions are found to be high risk under all scenarios. Bivariate choropleth analysis shows that the projected drought 

risk is majorly driven by change in drought vulnerability attributable to societal developments, rather than changes in drought 20 

hazard resulting from climatic conditions. The present study can aid policy makers, administrators and drought managers in 

developing decision support systems for efficient drought management. 

1 Introduction  

Droughts play a major role in water resources planning and management, agronomy and freshwater availability (Mishra and 

Singh, 2010, 2011). Droughts may be exacerbated by climate change or societal developments or by a combination of the two. 25 

For building drought resilience, it is important to assess the role of these changes on the evolution of drought at regional scales, 

particularly for rapidly-growing heavily agriculture-dependent countries such as India. Though socio-economic development 

is reported to have a greater impact on the water availability as compared to the climate induced impacts in some regions across 
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the globe, the role of climate change cannot be entirely eliminated (Koutroulis et al., 2019a). Representative Concentration 

Pathways (RCPs; van Vuuren et al., 2011) that are radiative forcing scenarios for different greenhouse gas emission levels are 30 

commonly used for climate change impact studies. Shared Socio-economic Pathways (SSPs; O’Neill et al., 2017), on the other 

hand, provide different narratives of future societal development. Plausible combinations of different RCPs and SSPs are useful 

to study the future projections of drought risk (Kim et al., 2020). 

According to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) (IPCC, 2014), risk of 

an extreme event can be quantified as a product of hazard, vulnerability and exposure. Drought hazard is a function of 35 

magnitude and occurrence probability of drought events. On the other hand, drought vulnerability is the degree to which a 

region is susceptible to drought and is a function of sensitivity, adaptive capacity and exposure components. These components 

in turn describe the socio-economic, physical and infrastructural factors and are illustrated through drought vulnerability 

indicators. A comprehensive drought risk assessment involves proper selection of drought indicators for hazard analysis and 

proper selection of drought vulnerability indicators and reliable aggregation technique for vulnerability analysis (Carrão et al., 40 

2016; Naumann et al., 2014; Sahana et al., 2021). By virtue of taking into consideration both drought hazard and vulnerability, 

a combination of RCP and SSP scenarios offer a comprehensive approach for drought risk projection.   

Several studies have carried out risk assessment of drought and water availability across different regions of the world under 

changing climate and socio-economic conditions. Singh & Kumar (2019) quantified the water availability in the Indian region 

due to climate and demographic changes. Ahmadalipour et al. (2019) carried out drought risk assessment in the African region 45 

for different population growth and climate change scenarios. Chen et al. (2021) evaluated the effect of changing climate, 

population and GDP on the drought risk for China. Park et al. (2020) presented drought risk projections under changing 

meteorological conditions and socio-economic scenarios for South Korea. A comprehensive drought risk assessment for 

Europe was carried out by Koutroulis et al. (2018) under changing climate and socio-economic scenarios by evaluating 

exposure, sensitivity and adaptive capacity components for the projected period. Along similar lines, Koutroulis et al. (2019) 50 

quantified the global water availability under high-end climate change. Water use vulnerability was assessed by Kim et al. 

(2020) for a river basin in Korea for different climate and socio-economic scenarios.   

For the Indian region, projections of drought hazard/risk or water availability are developed in earlier studies using climate 

scenarios alone (Aadhar & Mishra, 2020, 2021; Gupta et al., 2020; Gupta & Jain, 2018) with the exception of Singh and Kumar 

(2019) who consider the role of both climate and socio-economic scenarios for obtaining future projections of water availability 55 

(Singh and Kumar, 2019). However, Singh and Kumar (2019) represent future socio-economic changes using a simplistic 

approach that considers changes in population alone. A combination of RCP and SSP scenarios by integrating hazard and 

vulnerability information is required to assess drought risk in India in the Near and Far future. Further, most studies that assess 

drought hazard under climate change scenarios consider either univariate or multivariate approaches based on precipitation 

deficits and temperature effects (Aadhar & Mishra, 2020, 2021; Gupta et al., 2020; Gupta & Jain, 2018). However, droughts 60 

can often manifest as a complex interplay of multiple influencing variables necessitating a multivariate approach for 
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characterization of drought hazard (Sahana et al., 2020). For the agrarian country of India, agro-meteorological drought hazard 

projections should consider deficits in precipitation or soil moisture or both.  

The present study aims at comprehensive drought risk projections for India by accomplishing the following objectives: a) 

Multivariate drought hazard projection using Multivariate Standardized Drought Index (MSDI) that considers concurrent 65 

deficits in precipitation and soil moisture for future warming scenarios. b) Drought vulnerability projection considering 

combinations of RCP and SSP scenarios, using a list of drought vulnerability indicators that represent exposure, sensitivity 

and adaptive capacity components. c) Drought risk projection integrating hazard and drought vulnerability information. d) 

Development of bivariate choropleth plots under future scenarios to quantify the individual roles of climate and societal 

changes in driving drought risk, and d) Identification of regions and zones that are expected to be under worst drought risk 70 

conditions in the Near and Far future. 

2. Materials and methods 

2.1 Data 

2.1.1 Hydro-climatic variables 

The multivariate drought risk assessment focusing on agricultural drought, requires a combined analysis of precipitation as 75 

well as soil moisture deficiencies. The drought hazard assessment for baseline period (1980-2015) requires observed hydro-

climatic variables. Gridded daily precipitation data (mm) at 0.25° lat.× 0.25° lon. resolution is obtained from India 

Meteorological Department (IMD) (Pai et al., 2014). This dataset has been employed in various studies over Indian region 

(Sahana et al., 2021). Gridded monthly root-zone soil moisture data (m3/m3) over the Indian region at 1/2° lat.× 2/3° lon. 

resolution is obtained from Modern-Era Retrospective Analysis for Research and Application (MERRA-Land). This dataset 80 

has been employed for drought studies across the world (Farahmand & AghaKouchak, 2015; AghaKouchak, 2015) and also 

for Indian regions (Sahana et al., 2020; Sahana et al., 2021). The above two datasets are regridded to a common spatial 

resolution of 0.5° lat.× 0.5° lon. and rescaled to monthly frequencies for the historical drought hazard assessment. Re-gridding 

of the observed datasets to 0.5° lat.× 0.5° lon resolution is carried out using the Triangulation-based linear interpolation method 

(Watson and Philip, 1984). Further, monthly time series of spatial variation in terms of standard deviation of precipitation and 85 

soil moisture from their observed and rescaled datasets is shown in Figure S1. It is observed that the rescaling of datasets from 

their parent resolution to 0.5° lat.× 0.5° lon results in no additional variability.  

In order to evaluate the projected drought hazard over India, the projected precipitation and soil moisture data at a spatial 

resolution of 0.5° lat.× 0.5° lon. is obtained from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 

(Warszawski et al., 2014). The historical (1980-2005) and projected (2006-2099) data from available GCMs namely GFDL-90 

ESM2M, HADGEM2-ES, IPSL-CM5A-LR and MIROC5, and for two RCPs – RCP2.6 and RCP6.0 are downloaded from 

ISIMIP data portal (https://esg.pik-potsdam.de/search/isimip/). The daily precipitation data (kg m-2 s-1) is already been 

https://esg.pik-potsdam.de/search/isimip/
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downscaled and bias corrected with respect to global level observed precipitation from EartH2Observe observations, WFDEI 

and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). This data has been previously used to study the soil 

moisture droughts for Europe (Grillakis, 2019) and terrestrial water storage in mainland China (Jia et al., 2020). The country-95 

wide average annual precipitation for the projected period is higher compared to the baseline periods as shown in Figure S2. 

As a part of ISIMIP2b experiments, the LPJmL impact model (Sitch et al., 2003), a global vegetation model that is capable of 

representing fine resolution physical processes using carbon, water and energy balance equations (Schaphoff et al., 2018) 

under a changed climate, is driven by the bias-corrected GCM precipitation to simulate the root-zone soil moisture (kg m-2). 

For our study, the soil moisture data upto 3 layers accounting for 1 m depth is used. The country-wide average annual soil 100 

moisture for the projected period is slightly lower compared to the baseline periods as shown in Figure S3. The observed and 

simulated country-wide average of monthly precipitation and soil moisture for the period 1980-2005 is presented in Figure S4. 

The performance of all the ISIMIP models are comparable with that of the observed data, except for the soil moisture during 

monsoon months. The lowered soil moisture estimates from LPJmL model (ISIMIP experiments) simulations compared to the 

MERRA-Land soil moisture observations for the monsoon months could be due to overestimation of LPJmL’s simulated 105 

runoff  (Zaherpour et al., 2018). Although the simulated soil moisture data underestimates the monsoon months’ soil moisture 

(June, Jul, Aug, Sep) during the historic period (1980-2005) (Figure S4), we did not perform the bias correction, since we 

intend to capture the variability in the soil moisture rather than their magnitudes for drought index calculation. The projected 

daily precipitation is cumulated over each month to get the monthly precipitation values and converted its units from kg m-2 

s-1 to mm. The projected monthly soil moisture (average monthly soil moisture) from the model is converted from kg m-2 to 110 

m3/m3. The ensemble mean of monthly precipitation and soil moisture from different GCMs is computed. Further, these 

ensemble mean monthly precipitation and soil moisture time series is used for drought hazard assessment. Although climate 

variables from CMIP6 are available, drought responses by CMIP5 models are similar to that of CMIP6 (Cook et al., 2020). 

Hence we proceeded with the CMIP5 data for drought hazard assessment. 

2.1.2 Drought vulnerability indicators 115 

The country-wide drought vulnerability indicators adopted for drought vulnerability assessment are listed in Table 1, along 

with their sources, spatial and temporal distribution, units, method of data generation, relevance and correlation to drought 

vulnerability for both the observed (around the year 2010) and projected datasets (2005-2100). The presented drought 

vulnerability indicators comprises of sensitivity, exposure and adaptive capacity indicators (Table 1). Drought vulnerability 

indicators such as groundwater availability, irrigation index and waterbody fraction for the projected period are not directly 120 

available. Hence, these indicators are proxied by representative indicators (Table 1) through multiple linear regression (MLR). 

An extensive vulnerability assessment encompasses other social and economic vulnerability indicators such as those used by 

Meza et al. (2020). However, for a densely-populated and rapidly-developing nation such as India, acquisition of reliable 

datasets on these indicators is often challenging. Most importantly, unavailability of projections of these indicators over the 
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Indian region limits their use in this study, since our primary goal is to compare baseline drought risk with that under future 125 

projected climate change. Further, the weightages for the categorical vulnerability indicators for drought vulnerability 

assessment is adopted from (Ekrami et al., 2016; Sahana et al., 2021; Thomas et al., 2016), and is given in Table S1. Finally, 

drought vulnerability indicators are extracted for the RCP2.6-SSP2 and RCP6.0-SSP2 scenarios for the periods 2060 and 2100 

so as to represent different climate and socio-economic scenarios for the Near future and Far future periods respectively. In 

general, socio-economic development is a slow process, and takes time to reflect in terms of significant changes in the socio-130 

economic indicators (Dellink et al., 2017). Further, majority of the drought vulnerability/risk studies across the globe have 

adopted static vulnerability assessment that represent drought vulnerability snapshot in time (Hagenlocher et al., 2019). 

Therefore, we used the static vulnerability indicators for the year 2010, 2060 and 2099 to quantify drought vulnerability for 

the baseline, Far future and Near future period respectively. 

Drought vulnerability indicators such as population density and GDP for the year 2010 from SSP2 pathway are comparable 135 

with their respective observed dataset, with small/negligible difference between the observed and SSP-simulated datasets 

(Figure S5). Further, drought vulnerability indicators such as groundwater availability, irrigation index and waterbody fraction 

for the projected period are not directly available. Hence, these indicators are proxied by their representative indicators (Table 

1) using multiple linear regression (MLR). Consequently, irrigation ratio, groundwater availability and water body fraction for 

the projected period are derived based on relationships between them and the representative variables in the baseline period, 140 

and therefore consistency is ensured. The Land Use Harmonization (LUH) (Chini et al., 2014) dataset provides the fractional 

land use classes for the time period 1500-2100. The historical maps of crop and pasture data from HYDE 3.1 (Hurtt et al., 

2011), and estimates of historical national wood harvest and of shifting cultivation are used as input for 1500-2005. Further, 

the projections of LULC for 2005-2100 are based on the Integrated Assessment Model (IAM) implementations of the RCPs. 

Each IAM for different RCPs are used as input to the Earth System Models (ESMs) for future carbon-climate projections. 145 

Therefore, LULC scenarios are based on RCPs. LUH is a credible dataset for LULC projection and has been previously used 

for drought risk projection in South-Asian region (Chou et al., 2019). Further, LULC projections can also be derived based on 

the land use models, using past LULC data and socio-economic factors driving the land use change. However, development 

of such models at country scale is beyond the scope of the present study. 

2.2 Methods 150 

The methodology adopted to study the evolution of drought risk is given in Figure 1.  

2.2.1 Drought hazard assessment 

Drought hazard forms an important component of drought risk assessment. Here, we assess the country-wide drought hazard 

based on the deficiencies in precipitation and soil moisture. Therefore, the multivariate standardized drought index (MSDI) of 

the non-parametric form is computed using the bivariate case of Gringorten plotting position formula (Gringorten, 1963). 155 
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MSDI is equally capable of capturing deficits individually in precipitation or soil moisture, or their joint deficit, considering 

dependence between these two variables. This is a unique advantage of MSDI (Hao and AghaKouchak, 2014) over other 

univariate indices. Further, MSDI is capable of representing the onset, propagation and termination of drought. In the Figure 

S6, considering -0.8 as the threshold for drought trigger, it seen that whenever either the SPI or the SSI falls below this 

threshold, MSDI covers the critical trajectory and offers a conservative characterization of drought, thereby capturing 160 

attenuation and lag effects. The steps involved in the calculation of MSDI is presented below. 

1. The joint probability distribution of the 1-month time scale precipitation (𝑅) and soil moisture (𝑆) is given by 

 𝑃 (𝑅 ≤  𝑟, 𝑆 ≤  𝑠) = 𝑝           (1) 

              where 𝑝 represents the joint probability of the precipitation and soil moisture. 

2. For the sample size 𝑛, the count of occurrence of the pair (𝑟𝑖 , 𝑠𝑖) for 𝑟𝑖 ≤ 𝑟𝑘  and 𝑠𝑖 ≤ 𝑠𝑘 is denoted as 𝑚𝑘. Here 𝑟𝑘 165 

and 𝑠𝑘 denote the actual precipitation and soil moisture values for kth observation. The number of occurrences (𝑚𝑘) 

of precipitation and soil moisture pair below 𝑟𝑘  and 𝑠𝑘  from the whole set of observations is used to calculate 

empirical joint probability for kth observation based on bivariate Gringorten plotting position (Gringorten, 1963) as 

𝑃(𝑟𝑘 , 𝑠𝑘) =
𝑚𝑘−0.44

𝑛+0.12
            (2) 

3. The above empirical joint probability is then standardized to obtain the multivariate index MSDI. 170 

𝑀𝑆𝐷𝐼 =  𝜑−1(𝑃)          (3) 

where 𝜑 is the standard normal distribution function. Since the empirical distributions use ranks of data instead of 

actual values, the sample size should be sufficiently large. 

The method of drought hazard assessment followed in the present study is based on Kim et al. (2015). Hazard is measured as 

the product of magnitude and the associated frequency of occurrence of an event. The MSDI time series at each region is 175 

categorized into four groups similar to Mckee et al. (1993).  These categories are assigned weights according to the magnitude 

of MSDI value. Higher weights will be assigned to worst (high negative) MSDI values, and vice versa. Further, each weight 

category is divided into different clusters based on the frequency of occurrence of MSDI values. The total number of clusters 

for ratings in each MSDI category is determined using the prominent k-means data clustering algorithm. Higher ratings will 

be assigned to the cluster with high frequency values, and vice versa. The weightage and rating scheme is depicted graphically 180 

in Figure 1. In the k-means clustering technique, distance between the data points is computed using the squared Euclidean 

distance metric. To avoid the convergence to local minima, the k-means algorithm is run with 100 random initial seeds with 

10000 iterations. The Calinski-Harabasz Index (CHI) (Caliński and Harabasz, 1974)  is used to determine the optimum number 

of clusters and is given by  

𝐶𝐻𝐼 =  
𝑛−𝐾

𝐾−1
×

𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
             (4) 185 

where 𝑛= number of data points, 𝐾= number of clusters,  𝐵𝐺𝑆𝑆 =  ∑ 𝑛𝑘||𝐺{𝑘} − 𝐺||2𝐾
𝑘=1  is the between the group scatter, 

𝐺{𝑘} = centroid of the kth cluster, 𝐺 = centroid of all the observations, 𝑊𝐺𝑆𝑆 =  ∑ 𝑊𝐺𝑆𝑆{𝑘}𝐾
𝑘=1  is within the group scatter and 
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𝑊𝐺𝑆𝑆{𝑘} = ∑ ||𝑀𝑖
{𝑘}

− 𝐺{𝑘}||2
𝑖𝜖𝐼𝑘

, where 𝑀𝑖
{𝑘}

 are the observations.  The k-means clustering algorithm is driven for 1 to 𝑛 

clusters. The number of clusters that gives highest value of CHI is the optimum number of clusters. These optimum number 

of clusters is used for assigning ratings. The categorized weightages and computed ratings are used to calculate the drought 190 

hazard for every region as below. 

𝐷𝐻 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 × 𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝑖
𝑡
𝑖=1              (5) 

where 𝑡 is the length of MSDI time series. Although the weightages and ratings are intrinsically linked, the above scheme 

assures drought hazard quantification based on magnitudes and frequencies. The 𝐷𝐻 values from Eq 5 are standardized as 

shown below to obtain 𝐷𝐻𝐼 that varies between 0 and 1.  195 

𝐷𝐻𝐼 =
𝐷𝐻−𝐷𝐻𝑚𝑖𝑛

𝐷𝐻𝑚𝑎𝑥−𝐷𝐻𝑚𝑖𝑛
                (6) 

The weighing and rating scheme to calculate DHI for a randomly chosen grid is given in Table S2. 

2.2.2 Drought vulnerability assessment 

Drought vulnerability forms another important component of drought risk assessment. Several aggregation techniques have 

been employed in the past studies to combine the drought vulnerability indicators to assess drought vulnerability. However, 200 

we use the robust method – TOPSIS (Hwang and Yoon, 1981) owing to its lesser rank reversal probabilities (Sahana et al., 

2021). The steps involved in drought vulnerability assessment is outlined below. 

1. Standardization of numerical drought vulnerability indicators (irrigation index, water body fraction, groundwater 

availability, population density and GDP) is carried out such that their values vary between 0 and 1.  

𝑆𝑡𝑑. 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟−𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑖𝑛

𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑎𝑥−𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑖𝑛
         (7) 205 

Suitable weights are assigned to categorical drought vulnerability indicators (LULC, slope and soil texture), following  

Thomas et al. (2016) and Sahana et al. (2021) (Table S1). This gives the decision matrix 𝑛𝑖𝑗, where 𝑖 = 1,2, … 𝑛 

represents the number of regions and 𝑗 = 1,2, … 𝑚 represents the number of drought vulnerability indicators. 

2. The above decision matrix 𝑛𝑖𝑗  is associated with the indicator weights 𝑤𝑗  obtained from the Analytic Hierarchy 

Process (AHP) method (Sahana et al., 2021). This gives the weighted decision matrix 𝑣𝑖𝑗  210 

𝑣𝑖𝑗 = 𝑤𝑗𝑛𝑖𝑗             (8) 

3. Positive (𝐴+) and Negative (𝐴−) Ideal solution is calculated for each of the indicators. 

 𝐴+ = (𝜈1
+, 𝜈2

+, … 𝜈𝑚
+ ) = [(max 𝜈𝑖𝑗|𝑗 ∈ 𝐼), (min 𝜈𝑖𝑗|𝑗 ∈ 𝐽)]        (9) 

 

𝐴− = (𝜈1
−, 𝜈2

−, … 𝜈𝑚
− ) = [(min 𝜈𝑖𝑗|𝑗 ∈ 𝐼), (max 𝜈𝑖𝑗|𝑗 ∈ 𝐽)]        (10) 215 

where 𝐼 and 𝐽 are associated with the benefit and cost criteria respectively. Here population density, LULC, slope and 

soil texture that bear positive correlation with the drought vulnerability are considered as benefit criteria. On the other 
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hand, irrigation index, groundwater availability, waterbody fraction and GDP that bear negative correlation with 

drought vulnerability are considered as cost criteria.  

4. Positive (𝑑𝑖
+) and negative (𝑑𝑖

−) separation measures for each region 𝑖 are computed based on 𝐴+ and 𝐴− (also shown 220 

in Figure 1) 

𝑑𝑖
+ =  √∑ (𝜈𝑖𝑗 − 𝜈𝑗

+)2𝑚
𝑗=1            (11) 

𝑑𝑖
− =  √∑ (𝜈𝑖𝑗 − 𝜈𝑗

−)2𝑚
𝑗=1             (12) 

5. Relative closeness (𝑅𝑖) of each region to the Positive Ideal Solution is calculated as 

𝑅𝑖 =
𝑑𝑖

−

𝑑𝑖
−+𝑑𝑖

+              (13) 225 

𝑅𝑖 signifies vulnerability of region 𝑖 to drought. 𝑅 is further standardised to vary between 0 and 1 to obtain drought 

vulnerability index (DVI)  

𝐷𝑉𝐼 =
𝑅−𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
           (14) 

2.2.3 Drought risk assessment 

The hazard and vulnerability information computed in the form of DHI and DVI respectively, are combined to evaluate the 230 

drought risk. Accordingly, the drought hazard capturing the droughts in baseline (1980-2015), Near (2021-2060) and Far 

(2061-2099) future period is combined with drought vulnerability at 2010, 2060 and 2099 respectively. The definition of risk 

as provided by IPCC (AR5) (IPCC, 2014) is adopted. Though the AR5 delineates exposure as separate component of the risk, 

we have included exposure to be an integral part of the vulnerability following Vittal et al. (2020), since such a definition is 

unlikely to affect the overall conclusions of risk assessment. 235 

𝑅𝑖𝑠𝑘 = 𝑓(𝐻𝑎𝑧𝑎𝑟𝑑, 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 𝐷𝐻𝐼 × 𝐷𝑉𝐼            (15) 

Drought risk values computed using Eq 15 are further standardized spatially to obtain the Drought Risk Index (DRI). 

Standardization of drought risk at each grid is carried out using the equation 

𝐷𝑅𝐼 =
𝑅𝑠𝑖𝑘−𝑅𝑖𝑠𝑘𝑚𝑖𝑛

𝑅𝑖𝑠𝑘𝑚𝑎𝑥−𝑅𝑖𝑠𝑘𝑚𝑖𝑛
            (16) 

Standardization is performed such that the values are distributed between 0 and 1, so as to classify different risk categories. 240 

Further, circumstances such as highly vulnerable population being exposed to mild droughts or no droughts at all may arrive, 

and are handled well due to the integrated assessment of drought risk. For eg., if the hazard is low in a region, it is likely to be 

classified as ‘low to moderate’ in terms of drought risk, despite having high vulnerability. 

Apart from representing the risk as product of hazard and vulnerability, it can also be represented using bivariate choropleth 

(Mohanty et al., 2020). Colorscale of these bivariate choropleth is characterized by all possible combinations of DHI and DVI 245 

classes. Such maps clearly demarcate the hazard-driven and vulnerability-driven risk. 



9 

 

 

Table 1. Drought vulnerability indicators used for drought vulnerability assessment. The sources for indicators in baseline period 

and projected period along with their relevance and correlation with drought vulnerability is presented. Representative indicators 

to arrive at the drought vulnerability indicators for projected period are also listed. 

 250 

Data 

Relevance to 

drought 

vulnerability 

Correlation 

with drought 

vulnerability 

Past 

studies 

using this 

data 

Observed Projected 

Source Period 
Spatial 

resolution 
Units Details Source Representative Indicator 

Population 

density 

Demographic 

attribute for 
assessing social 

vulnerability and 

exposure. 

Positive 

(Carrão et al., 

2016; 

Rajsekhar et 
al., 2015) 

NASA 

Socioeconomic Data 
and Applications 

Centre (SEDAC) 

(http://sedac.ciesin.c
olumbia.edu/data/set

/gpw-v4-population-

density) 

2010 1 km 
person/k

m
2 

 Population density estimates are based 

on the national censuses and population 

registers. 

 Given as population count by area. 

Inter-Sectoral Impact Model 
Intercomparison Project 

(ISIMIP2b experiments) 

data archive (Warszawski et 

al., 2014) 

Population (SSP2) 

GDP 

Economic welfare 

for assessing 
economic 

vulnerability as 

well as adaptive 

capacity. 

Negative 

(Carrão et al., 

2016; 

Naumann et 

al., 2014; Wu 
et al., 2017) 

(Ghosh et al., 2010) 2006 1 km 
millions 

of dollars 

 Defense Meteorological Satellite 

Program’s Operational Linescan System 
(DMSP-OLS) nighttime imagery by 

NOOA to calculate total GDP (Ghosh et 

al., 2010) 

GDP (SSP2) 

Irrigation 

Index 

Adaptive capacity 
component. 

High irrigation 

ratio implies high 
adaptive capacity 

and lower drought 

vulnerability. 

Negative 

 

(Murthy et 

al., 2015; Wu 
et al., 2017) 

Web based land use 

statistics information 

system 
https://aps.dac.gov.in

/LUS/Index.htm 

2010 District - 

 Data published by Directorate of 

Economics & Statistics, Department 

Agriculture, Cooperation & Farmers 
Welfare. 

 Land use statistics information system is 

designed and developed by Agriculture 

Informatics Division, National 
Informatics Centre, Ministry of 

Communication & IT, Govt. of India, 

New Delhi. 

 Given as the ratio of irrigated area to 
cropped area. 

Irrigation water consumption, Irrigation 

water withdrawal (RCP2.6 –SSP2 & 
RCP6.0-SSP2) 

Water bodies 

fraction 

Water resources 
(streams/rivers) 

and water 

infrastructure 

(dams/reservoirs) 
for assessing the 

physical 

vulnerability, and 
provides adaptive 

capacity. 

Negative 

 

 

(Naumann et 
al., 2014) 

Bhuvan-Indian Geo 
Platform 

2010 3’ - 
 Advanced Wide Field Sensor (AWiFS) 

satellite imagery is used by NRSC to 
extract the water bodies fraction. 

Surface runoff, Total runoff, Total 

water storage (RCP2.6 –SSP2 & 

RCP6.0-SSP2) 

Groundwater 
Adaptive capacity 

component to cope 

with drought. 

Negative 
(Pandey et 
al., 2010) 

Dynamic Ground 

Water Resources of 

India, Central 

Ground Water Board 
Ministry of Water 

Resources, Report 

on July 2011, 
(CGWB, 2014) 

2011 District ham 

 Groundwater resources assessment based 

on the State and Central groundwater 

boards of India. 

 Net groundwater availability estimates 

are based on the annual replenishable 

groundwater resources and the natural 
discharge during non-monsoon season. 

Groundwater runoff, Total water 

storage (RCP2.6 –SSP2 & RCP6.0-

SSP2) 

Land Use 

Land Cover 

(LULC) 

Accounts for 
social 

vulnerability to 

drought due to 
exposure. 

Positive 

(Pandey et 

al., 2010; 
Thomas et 

al., 2016) 

The USGS Land 
Cover Institute (LCI) 

(https://landcover.us

gs.gov/global_climat
ology.php) 

2001-
2010 

0.5 km - 

 The Collection 5.1 Moderate Resolution 

Imaging Spectroradiometer (MODIS) 
Land Cover Type (MCD12Q1) product 

for the period 2001-2010 isused by 

Broxton et al. (2014) to develop global 
land cover. 

NASA Earthdata from 
ORNL DAAC (Chini et al., 

2014) 

(https://doi.org/10.3334/OR
NLDAAC/1248) 

Fractional Land Use Land Cover data 
(RCP2.6 & RCP6.0) 

Digital 

Elevation 

Model (DEM) 

(Slope) 

Spare time for 
water retention 

bestows higher 

adaptive capacity 

in flat slope parts. 
Accounts for 

physical 

vulnerability to 
drought. 

Positive 

 

(Ekrami et 

al., 2016; 

Pandey et al., 

2010) 

SRTM 90 m Digital 

Elevation Database 
v4.1 

(http://www.cgiar-

csi.org/data/srtm-

90m-digital-
elevation-database-

v4-1#download) 

2007 90 m m 
 NASA Shuttle Radar Topography 

Mission elevation data derived from 

interferometric techniques. 

Constant (same as observed) 

Soil Type 

Water holding 

capacity of soil 

based on the 
textural properties. 

Accounts for 

social 

vulnerability to 
drought due to 

exposure. 

Positive 

(Pandey et 

al., 2010; 
Thomas et 

al., 2016) 

FAO Harmonized 

World Soil  
Database (HWSD) 

(http://www.fao.org/

soils-portal/soil-
survey/soil-maps-

and-

databases/harmonize

d-world-soil-
database-v12/en/) 

2003 1 km - 

 Major contributors of the soil data for the 

Indian regions are All India Soil and 

Land use Survey  (1965) and the 

International soil map of vegetation by 
India Council of Agricultural Research 

(FAO-UNESCO, 1977). 

 Loamy soils are more vulnerable to 

drought compared to clayey soils. 

https://aps.dac.gov.in/LUS/Index.htm
https://aps.dac.gov.in/LUS/Index.htm
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Figure 1. Framework to assess drought risk evolution. Monthly rainfall and monthly soil moisture is used to compute multivariate 

standardized drought index (MSDI). Weights and ratings system of MSDI is adopted to further compute drought hazard index 

(DHI). Multi-criteria decision making technique – TOPSIS is used to calculate drought vulnerability index (DVI) considering eight 255 
drought vulnerability indicators. The product of DHI and DVI is the drought risk index (DRI). Drought risk assessment is carried 

out for Baseline period (1980-2015), Near future (2021-2050) and Far future (2061-2100) for various climate and socio-economic 

scenarios. 
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3. Results and discussion 

3.1 Drought hazard 260 

3.1.1 Projection of hydro-climatic variables 

The multi-model ensemble precipitation and soil moisture data from the four GCMs is used for drought hazard assessment. 

The country-wide accumulated data (summed over all grids) of these hydro-climatic variables is shown in Figure 2. The 

projected precipitation as well as soil moisture for the RCP6.0 scenario is high compared to the RCP2.6 scenario. Further, it is 

noted that the variability in both the variables increases with time. However, the variability in the hydro-climatic variables in 265 

the baseline period is high compared to the projected period. 

3.1.2 Projection of drought hazard 

The multi-model ensemble drought hazard for different RCP scenarios and time slices along with the baseline period are shown 

in Figure 3. The indices representing drought hazard are classified into five categories based on equal classification scheme: 

0-0.2 (very low), 0.2-0.4 (low), 0.4-0.6 (medium), 0.6-0.8 (high) and 0.8-1 (very high).  The MSDI-based drought hazard maps 270 

developed for the baseline period matches well with hazard maps developed from other multivariate indices such as SPEI 

(Gupta et al., 2020), as compared to those developed from the univariate SPI (Vittal et al., 2020). It is observed that the 

projected hazard over many regions is less severe compared to the baseline period.  However, certain parts of north-western 

India and east coastal regions are under high drought hazard class. The hazard transition from the baseline to different scenarios 

is presented in Table 2. In the transition matrix we compute the % area of the country that transitioned from one hazard class 275 

to other, to quantify the effect of climate change. The upper triangle in the table represents % area transition from lower to 

higher hazard classes, the lower triangle represents % area transition from higher to lower hazard classes, and the diagonal 

elements represent % area with no transition.” 

 In general, a transition from higher hazard classes to lower hazard classes is observed under the projected scenarios, implying 

that more regions in the country are expected to come under low hazard category in the future. From Figure 2a, S2 and S3, we 280 

see that precipitation and soil moisture for the projected period show an increasing trend. Further, it is to be noted that the 

hazard assessment using MSDI is based on the long term mean and variability of these drought indicators under a probabilistic 

analysis framework, and not necessarily the magnitudes of precipitation and soil moisture. Here we see that the projections of 

these indicators exhibit lower variability compared to the baseline period (Figure 2a). Therefore, it is observed that many 

regions undergo transition from high hazard to low hazard. The future drought hazard assessment using the projected hydro-285 

climatic variables revealed that more than 35% area of the country is expected to be under the low hazard class, as compared 

to 8% in the baseline period (refer Table 2 and Figure 7). It is also interesting that the area under high hazard class is greater 

in the Far future as compared to the Near future irrespective of the RCP scenarios. This is ascribed to the higher variability of 

the hydro-climatic variables in Far future compared to the Near future period that resulted in higher magnitude of drought 
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events. Of all the future drought hazard scenarios considered, the RCP2.6-Far scenario revealed the largest area (2.8%) under 290 

high and very high hazard classes. This accounts for a 7% reduction in high and very high hazard classes compared to the 

baseline scenario. It is observed that North-Western India, parts of Jammu, Kashmir, Andhra Pradesh and Marathwada come 

under high hazard classes. 

It is interesting to note that the probabilistic Budyko framework-based projected annual per capita water availability analysis 

(PCWA) for the Indian region by Singh & Kumar (2019) show a decrease in PCWA in 2.0 °C warmer world compared to 1.5 295 

°C warmer world under CMIP5-based mitigation, medium stabilization and high-end (RCP8.5) climate change scenarios, 

indicating high hazard in the Far future. Similarly, higher drought hazard is observed in the Far future compared to the Near 

future by Gupta & Jain (2018) & Gupta et al. (2020), who performed SPEI-based drought hazard analysis using CMIP5 GCMs 

under high-end climate change. Further, frequency-based soil moisture droughts analysis by Aadhar & Mishra (2020, 2021) 

and SPEI-based drought frequency analysis by Zhai et al. (2020) show an increased drought frequency in the future period 300 

over South Asia compared to the baseline period. This shows that Far future period is more prone to drought hazard than the 

Near future. On the other hand, few studies such as Koutroulis et al. (2019) & Cook et al. (2020), who used CMIP5 and CMIP6 

simulations respectively show that drought exposure/frequency over the Indian region decrease with time. Such contradicting 

observations are possibly due to selection of low-skill GCMs (Aadhar and Mishra, 2020), in Koutroulis et al. (2019) & Cook 

et al. (2020). 305 
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Figure 2. Datasets used for drought risk assessment. a) Projected hydro-climatic variables such as monthly precipitation and 

monthly soil moisture are used for drought hazard assessment. b) Projected drought vulnerability indicators such as irrigation 

index, water body fraction, groundwater availability, population, GDP and land use land cover, along with static drought 

vulnerability indicators such as slope and soil texture are used for drought vulnerability assessment. Datasets for projected period 310 
are divided into Near future (2021-2060) and Far future (2061-2100) to check the evolution of drought risk. 
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Figure 3. Multi-model ensemble drought hazard maps for the scenarios a) Baseline, b) RCP2.6 Near future, c) RCP2.6 Far future, 

d) RCP6.0 Near future, e) RCP6.0 Far future. 

 315 

Table 2. Transition of drought hazard from baseline period to projected period. The value in each cell represents the change in % 

area of the country from one hazard class to another. Red color shows transition, and blue represents no transition.
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3.2 Drought vulnerability  320 

3.2.1 Projection of drought vulnerability indicators 

The varying drought vulnerability indicators for the drought vulnerability assessment is shown in Figure 2. It is observed that 

GDP increases with time continuously, whereas population reaches its peak during the end of Near future (2060) and decreases 

gradually by the end of the century. The representative indicators obtained through human influences, varying land use and 

water abstractions according to the RCP2.6-SSP2 and RCP6.0-SSP2 conditions are used to derive the drought vulnerability 325 

indicators such as irrigation index, waterbody fraction and groundwater availability for the projected period. It is observed that 

the irrigation index decrease with time for RCP2.6-SSP2 and RCP6.0-SSP2 projections. Water body fraction remains constant 

for RCP2.6-SSP2 projection and increases with time for RCP6.0-SSP2 projection. Further, groundwater availability remains 

constant for RCP2.6-SSP2 and RCP6.0-SSP2 projections. The biggest difference in land use land cover changes is observed 

in RCP6.0 condition compared to RCP2.6. It is also seen that % area under habitation increases continuously with time in the 330 

case of RCP6.0. Slope and soil texture data is assumed to be constant (Figure S7). 

3.2.2 Projection of drought vulnerability 

The multi-model ensemble drought vulnerability projections for different scenarios is presented in Figure 4. It is observed that 

many regions of the country are expected to be more vulnerable to drought compared to the baseline period. In general, parts 

of North-Western, eastern India and southern coast are observed to be under high vulnerability class in the future scenarios. 335 

The transition of drought vulnerability from one class of vulnerability from baseline to another class of vulnerability in the 

future is given in Table 3. It can be observed that the drought vulnerability under RCP6.0-SSP2 scenario is worst compared to 

the RCP2.6-SSP2 scenario, since high transition from lower vulnerability classes to higher vulnerability classes is observed in 

the former case. As high as 42.9% area transits from lower vulnerability classes to higher vulnerability classes under RCP6.0-

SSP2 Near future. Also, a 33% increase in the area under high and very high vulnerability classes is observed in this worst-340 

case scenario, with North-Western India, Western Coast and parts of Chattisgarh, Odisha and Jharkhand under very high 

vulnerability class. 

In the global freshwater vulnerability analysis conducted by Koutroulis et al. (2019), although they show that sensitivity 

component of the overall freshwater vulnerability is increasing with time, an increasing adaptive capacity and decreasing 

exposure is reducing India’s vulnerability to drought. However, our study shows an increasing vulnerability to drought, 345 

considering sensitivity, adaptive capacity as well as exposure factors. Such contradicting observations in drought vulnerability 

is possibly due to the choice of low-skill GCMs in Koutroulis et al. (2019). 

Next, we aggregate hazard and vulnerability information on meteorological sub-division scale (Meteorological sub-divisions 

are the meteorologically homogenous regions identified by India Meteorological Department (Kelkar and Sreejith, 2020)) to  
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 350 

Figure 4. Multi-model ensemble drought vulnerability maps for the scenarios a) Baseline, b) RCP2.6-SSP2 Near future, c) RCP2.6-

SSP2 Far future, d) RCP6.0-SSP2 Near future, e) RCP6.0-SSP2 Far future. 

 

Table 3. Transition of drought vulnerability from baseline period to projected period. The value in each cell represents the change 

in % area of the country from one vulnerability class to another. Red color shows transition, and blue represents no transition. 355 
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identify the sub-divisions under critical drought condition due to the interplay of hazard and vulnerability . Scatter of drought 

hazard and drought vulnerability for 30 sub-divisions is shown in Figure S8. It is seen that West Rajasthan, Haryana and West  

Uttar Pradesh sub-divisions are expected to have high drought risk compared to the other sub-divisions in all the scenarios. 360 

Further, the number of sub-divisions falling under critical drought risk (DHI > 0.25, DVI > 0.75) is high in the case of RCP6.0-

SSP2 scenario, with 22 meteorological subdivisions under high vulnerability (DVI > 0.75), particularly in RCP6.0-SSP2-Near 

future scenario. 

3.3 Drought risk 

3.3.1 Projection of drought risk 365 

The multi-model ensemble drought hazard and vulnerability projections under different scenarios are combined according to 

Eq 15 to obtain drought risk projections (Figure 5). It is to be noted that the validation of drought risk map for the baseline 

period (1980-2015) has been carried out by Sahana et al. (2021), based on the disaster data in terms of number of people 

affected. It is noted that parts of Rajasthan, Madhya Pradesh, Maharashtra, Orissa and Tamil Nadu, Kerala, Chattisgarh, 

Haryana, Himachal Pradesh, Chandigarh, Assam and Nagaland that are under moderate to severe drought risk category, have 370 

experienced moderate to worst drought disaster. Further, the drought risk estimates for the baseline period from the present 

study compares well with regional-scale drought risk studies in India such as those for Andhra Pradesh (Murthy et al., 2015), 

Bearma basin (Thomas et al., 2016), Maharashtra (Swami and Parthasarathy, 2021). From the drought risk projections, it is 

noted that parts of the North-Western India is expected to be more prone to drought risk compared to the baseline period. On 

the other hand, Central Indian regions are expected to switch to lower risk classes. The transition of drought risk from one 375 

class of vulnerability from baseline to another class of risk in the future is given in Table 4. Highest transition (30% area) from 

lower risk to higher risk classes is observed in RCP6.0-SSP2-Far future scenario. Also, overall drought risk reduces by 0.8% 

in this scenario compared to the baseline. It is interesting to note that the RCP6.0-SSP2 Far future scenario is not the worst-

case scenario in drought vulnerability projection, yet it turned out to be worst-case scenario in drought risk projection due to 

high drought hazard projection, revealing the importance of comprehensive drought risk assessment. Risk is an outcome of 380 

interaction between hazard and vulnerability, and is also a function of time. The fact that worst case scenarios are different for 

drought hazard and drought vulnerability, indicates dissimilar behavior of drought hazard and vulnerability indicators in   

inducing drought risk. For eg. population density is high in the Near future period (2060) as compared to the Far future (2100), 

while precipitation is continuously increasing in the projected period. A combination of such different hazard and vulnerability 

behavior in a given time period is effectively captured through comprehensive risk analysis. Therefore, though RCP6.0-SSP2 385 

Far future scenario is not the worst-case scenario for drought vulnerability compared to RCP6.0-SSP2 Near future, interaction 

of high hazard with moderate to high vulnerability resulted in worst drought risk scenario in the case of RCP6.0-SSP2 Far 

future. However, in general, when the change in drought risk for all the future scenarios are compared with the baseline, it is 
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observed that area falling under drought risk due to drought vulnerability is increased (Figure 6).  It is to be noted that the 

water availability projections for India by Koutroulis et al. (2019) show decreasing drought risk with time, as opposed to the 390 

increasing drought risk from the present study. The choice of climate change scenarios and climate models by Koutroulis et 

al. (2019) could be a possible reason for such difference. Further, projected bivariate choropleth maps for unique combinations 

of DHI and DVI is presented in Figure 6. It is seen that most of the regions are constituted by low hazard and high vulnerability 

indicating high impact of societal developments rather than climate-invoked changes. Hence it is important to take the drought 

mitigation plans based on the socio-economic conditions instead of just considering hydro-climatic conditions of the interested 395 

region. Consolidated results showing the % area of different classes of drought hazard, vulnerability and risk under various 

climate and socio-economic scenarios are given in Figure 7. Of all the future drought hazard scenarios considered, the RCP2.6-

Far scenario revealed the largest area (2.8%) under high and very high hazard classes. In the case of drought vulnerability, as 

high as 42.9% area transits from lower vulnerability classes to higher vulnerability classes under RCP6.0-SSP2 Near future, 

with 93% area of the country under high and very high drought vulnerability class. Further, in the worst case drought risk 400 

scenario (RCP6.0-SSP2 Far future), it is observed that 2.7% area of the country is under high and very high drought risk class. 

3.3.2 Potential applications 

The drought hazard, vulnerability and risk projection maps from the present study, developed at 0.5° lat.× 0.5° lon spatial 

resolution are comparable with blocks/district level area. Therefore, these maps can assist the block-level administrators to 

know region-specific causative factors inducing severe drought risk both in baseline and projected period, besides the 405 

indigenous components governing the drought risk. Also, these maps can inform the state or federal disaster management 

authorities concerning the climate action plans. The change in drought risk at different projected periods can modulate 

adaptation and mitigation strategies and can be included in decision support system for drought management. Since drought 

risk is found to be mainly driven by societal factors, action plans should be directed to improve socio-economic conditions. 

Groundwater conservation, conjunctive use of surface and groundwater, farmer participation in crop insurance, water saving 410 

farm practices and technologies are some important measures that can be adopted for raising the socio-economic standards. 

Further, the framework of our study is applicable for state-wise drought risk assessment with reliable hydro-climatic and socio-

economic indicators. Such an assessment can recommend measures for watershed management, irrigation and agricultural 

practices and reorganizing water demand and supply management at a local scale.  
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 415 

Figure 5. Multi-model ensemble drought risk maps for the scenarios a) Baseline, b) RCP2.6-SSP2 Near future, c) RCP2.6-SSP2 Far 

future, d) RCP6.0-SSP2 Near future, e) RCP6.0-SSP2 Far future. 

 

Table 4. Transition of drought risk from baseline period to projected period. The value in each cell represents the change in % 

area of the country from one risk class to another. Red color shows transition, and blue represents no transition. 420 
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Figure 6. Bivariate choropleth drought risk maps showing hazard-driven and vulnerability-driven drought risk for the scenarios a) 

baseline, b) RCP2.6-SSP2 Near future, c) RCP2.6-SSP2 Far future, d) RCP6.0-SSP2 Near future, e) RCP6.0-SSP2 Far future. 

 425 

Figure 7. Summary of drought risk evolution. % area of different classes of drought hazard, vulnerability and risk under various 

climate and socio-economic scenarios. 
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4. Concluding remarks 

This study presents future projections of drought risk over India under changing climate and socio-economic conditions. This 

is achieved combining the drought hazard and drought vulnerability projections. Drought hazard assessment is carried out 430 

using a multivariate drought index known as MSDI, an indicator of agro-meteorological drought. Drought vulnerability is 

assessed using a robust MCDM technique called TOPSIS, considering changes in relevant socio-economic indicators. Drought 

risk projection studies undertaken over the Indian region are based on drought hazard alone, and no consideration has been 

given to the drought vulnerability component. The present study quantifies the relative contribution of drought hazard and 

drought vulnerability to the overall drought risk projections under a comprehensive risk framework. Thus, our analysis can aid 435 

different stakeholders involved in drought management for adaptation and mitigation plans under changing climate and socio-

economic conditions. This marks the significant improvement of our study over existing studies on drought risk assessment in 

India under climate change. Further, we present for the first time, future projected bivariate choropleth plots to identify the 

drivers of overall drought risk across the country. The multi-model ensemble drought hazard and drought vulnerability are 

computed for the two RCP-SSP scenarios- RCP2.6-SSP2 and RCP6.0-SSP2 for the Near and Far future timelines. The current 440 

study is limited by simulations from a single global vegetation model rather than multiple impact models including hydrologic 

or land surface simulations. Important conclusions of the study are outlined below. 

1. The MSDI-based drought hazard assessment reveals that more than 35% area in India is projected to be under low 

hazard class as opposed to 8% in the baseline period, possibly due to rising precipitation in the region as projected by 

climate models. RCP2.6-Far scenario shows 2.8% area of the country under high and very high hazard classes, 445 

accounting for 7% reduction in those two drought hazard categories. In general, the spatial extent of high and very 

high hazard classes is greater in Far future as compared to the Near future. 

2. Drought vulnerability is projected to increase for all scenarios, with 77% area under high or very high vulnerability 

class as compared to 66% in the baseline period. A rise in 33% of area under high or very high vulnerability class is 

observed in RCP6.0-SSP2-Near future scenario.  450 

3. Among the two RCP-SSP scenarios considered, RCP6.0-SSP2 scenario exhibits worst case of drought vulnerability 

due to high transition from lower to higher vulnerability classes as compared to RCP2.0-SSP2 scenario. 

4. Integration of drought hazard and vulnerability projections shows an overall decrease in drought risk projections, 

resulting primarily from reduction in drought hazard. However, a transition from lower to higher risk classes ranging 

upto 30% is observed in RCP6.0-SSP2 future Far scenario. 455 

5. Meteorological sub-divisions such as West Rajasthan, Haryana and West Uttar Pradesh are expected to be under high 

risk in the projected period under all the scenarios.  
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6. Bivariate choropleth analysis show that future drought risk is significantly driven by increased vulnerability resulting 

from societal developments rather than climate-induced changes in hazard. Therefore, future efforts on building 

drought resilience in the country must include strengthening socio-economic conditions. 460 
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