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Responses and Actions taken on Reviewers’ Comments 

Journal: Natural Hazards and Earth System Sciences 

Manuscript Reference No.: nhess-2022- 18 

Title: Evolution of multivariate drought hazard, vulnerability and risk in India under climate 

change. 

Authors: Venkataswamy Sahana, Arpita Mondal 

We thank the Reviewers for reviewing our manuscript and providing valuable feedback that 

have helped improve the quality of the work significantly. In this document, we provide a point 

by point response and actions taken on the comments and suggestions from the reviewers. 

(Figure, line, table and page numbers referred to in this document are with respect to the revised 

manuscript unless mentioned otherwise.)  

Responses to comments from Referee #1 

I have read your manuscript and think it covers an interesting topic. It is clearly the result of a 

major research effort. Including vulnerability in drought risk analysis is a known challenge, 

and I agree with you that looking at multiple physical drivers as well as at transient vulnerability 

are important steps for holistic drought risk assessments. The aim of the study is clearly stated 

and results are described in detail. However, the research is quite complex and so I think an 

extra effort is needed to make in understandable for readers of NHESS. I see some conceptual 

issues, but they may have been caused by a lack of understanding of the method due to its 

incomplete or undetailed description. In general, I think more of the method could be in the 

main manuscript and more details to the method (currently lacking) can be described in the 

supplementary material. Below, I will elaborate on the main points that I think can help 

improve/clarify the manuscript. In addition, I think the manuscript would benefit from a review 

by an English language editor, as there are multiple grammar mistakes in the manuscript and I 

see various possibilities for vocabulary improvements.  

We thank the reviewer for the positive and constructive feedback on our work. We have now 

provided more details and description about the methods and are included in the revised 

manuscript and the revised supplementary material. Further, we have proof-read the manuscript 

and corrected for grammar and language wherever necessary. We have addressed the 

comments provided by you in the below sections.  
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I haven’t listed all grammar / vocabulary mistakes, but here are a few examples from the 

abstract: 

e.g. L7 ”a” major threat 

e.g. L10 This study investigates and evaluates the change in projected drought risk under future 

climatic and socio-economic conditions by combining vulnerability and hazard information at 

a country-wide scale for future climatic and socio-economic conditions  

e.g. L18 “are found to be high risk under all scenarios” 

Line 7, Page 1  

“…pose a major threat…”  

Line 10-12, Page 1 

“This study investigates and evaluates the change in projected drought risk under future 

climatic and socio-economic conditions by combining drought hazard and vulnerability 

projections at a country-wide scale.” 

Line 19, Page 1  

“…are found to be high risk under all scenarios.” 

e.g. L15-17: Sentence is too long, it is unclear what is meant with “worst-case” scenario 

We have now simplified the sentence as   

Line 15-18, Page 1 

“In the worst-case scenario for drought hazard (RCP2.6-Far future), there is a projected 

decrease in the area under high or very high drought hazard classes in the country by 

approximately 7%. Further, the worst-case scenario for drought vulnerability (RCP6.0-SSP2-

Near future) shows a 33% rise in the areal extent of high or very high drought vulnerability 

classes.”  

I think maybe “The West Utter Pradesh, Haryana, …., regions” are meant rather than “regions 

of West Utter Pradesh,…” 

The sentence is rewritten as  

Line 18-19, Page 1 
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“West Uttar Pradesh, Haryana and West Rajasthan regions are found to be high risk under all 

scenarios.” 

In general, in the manuscript there are many sentences that are difficult to understand (too long 

and/or with too complex structure). 

We have simplified complex sentences in the revised manuscript. 

Line 432-437, Page 21 

“Drought risk projection studies undertaken over the Indian region are based on drought hazard 

alone, and no consideration has been given to the drought vulnerability component. The present 

study quantifies the relative contribution of drought hazard and drought vulnerability to the 

overall drought risk projections under a comprehensive risk framework. Thus, our analysis can 

aid different stakeholders involved in drought management for adaptation and mitigation plans 

under changing climate and socio-economic conditions.” 

Line 299-301, Page 12 

“Further, frequency-based soil moisture droughts analysis by Aadhar & Mishra (2020, 2021) 

and SPEI-based drought frequency analysis by Zhai et al. (2020) show an increased drought 

frequency in the future period over South Asia compared to the baseline period.” 

Below, I add some general comments and questions structured following the study aims, 

highlighting the most pressing questions with respect to the method. 

 

1. Multivariate drought hazard projection using Multivariate Standardized Drought 

Index (MSDI) that considers concurrent deficits in precipitation and soil moisture for 

future warming scenarios. 

a) L81: “However, droughts can often manifest as a complex interplay of multiple influencing 

variables necessitating a multivariate approach for characterization of drought hazard 

(Sahana et al., 2020). For the agrarian country of India, agro-meteorological drought hazard 

projections should consider deficits in precipitation or soil moisture or both” I agree looking 

only at PR is too narrow. It is indeed interesting to look at both, but as far as I understand the 

method, only events with both a SM-deficit and a PR-deficit are considered. Is this approach 

justified? I can think of cases where a SM-deficit alone is enough to cause a drought impact – 

I feel the hazard method does not sufficiently take into account the propagation of drought 

through the hydrological cycle, which involves attenuation and lag effects. The manuscript 
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displays different results than other papers: how can it be evidenced that the presented method 

is better and the results are more reliable than those of other studies? 

We would like to clarify that the Multivariate Standardized Drought Index (MSDI) is equally 

capable of capturing deficits individually in precipitation or soil moisture, or their joint deficit, 

considering dependence between these two variables. This is a unique advantage of MSDI (Hao 

and AghaKouchak, 2014) over other univariate indices. This clarification is included in the 

revised manuscript. Further, we have added Supplementary Figure S6 (given below) that shows 

how the MSDI is capable of representing the onset, propagation and termination of drought. In 

this figure, considering -0.8 as the threshold for drought trigger, it seen that whenever either 

the SPI or the SSI falls below this threshold, MSDI covers the critical trajectory and offers a 

conservative characterization of drought, thereby capturing attenuation and lag effects. Finally, 

our country-wide drought hazard map for the baseline period from the present study (Figure 3) 

matches well with hazard maps developed from other multivariate indices such as the SPEI 

(Gupta et al., 2020), as compared to those developed from the univariate SPI (Vittal et al., 

2020). This comparison with other papers is now included in the revised manuscript.  

 

 

Figure S6. Time series of SPI, SSI and MSDI for Marathwada region for 1980 – 2015 (a). Time 

window for 1980-1984 is expanded in (b). MSDI effectively captures the drought initiation, 

propagation and termination by correctly characterising drought events whenever either SPI, 

or SSI, or both fall below a chosen threshold (green horizontal line). 
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Line 158-161, Page 6 

“Further, MSDI is capable of capturing deficits individually in precipitation or soil moisture, 

or their joint deficit, considering dependence between these two variables. This is a unique 

advantage of MSDI (Hao and AghaKouchak, 2014) over other univariate indices. In the Figure 

S6, considering -0.8 as the threshold for drought trigger, it seen that whenever either the SPI 

or the SSI falls below this threshold, MSDI covers the critical trajectory and offers a 

conservative characterization of drought, thereby capturing attenuation and lag effects.” 

Line 270-272, Page 11 

“The MSDI-based drought hazard maps developed for the baseline period matches well with 

hazard maps developed from other multivariate indices such as SPEI (Gupta et al., 2020), as 

compared to those developed from the univariate SPI (Vittal et al., 2020).” 

b) L81: “The above two datasets are regridded to a common spatial resolution of 0.5° lat.× 

0.5° lon. and rescaled to monthly frequencies for the historical drought hazard assessment.” 

Could you please explain in the supplementary material how this is done?  

Re-gridding of the observed datasets to 0.5° lat.× 0.5° lon resolution is carried out using the 

Triangulation-based linear interpolation method (Watson and Philip, 1984). This information 

is included in the revised manuscript. 

Line 83-85, Page 3 

“Re-gridding of the observed datasets to 0.5° lat.× 0.5° lon resolution is carried out using the 

Triangulation-based linear interpolation method (Watson and Philip, 1984).” 

Is there an increased spatial variability included by this re-gridding to counteract an averaging 

effect? 

Further, monthly time series of spatial variation in terms of standard deviation of precipitation 

and soil moisture from their observed and rescaled datasets is now shown in Figure S1 (given 

below). It is observed that the rescaling of datasets from their parent resolution to 0.5° lat.× 

0.5° lon results in no additional variability.  

Line 85-87, Page 3 

“Further, monthly time series of spatial variation in terms of standard deviation of precipitation 

and soil moisture from their observed and rescaled datasets is shown in Figure S1. It is observed 
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that the rescaling of datasets from their parent resolution to 0.5° lat.× 0.5° lon results in no 

additional variability.” 

 

Figure S1. Standard deviation of the country-wide cumulated observed and rescaled datasets 

of precipitation (top panel) and soil moisture (bottom panel). 

 

c) L75 + 83: “The drought hazard assessment for baseline period (1980-2015) requires 

observed hydroclimatic variables” + “In order to evaluate the projected drought hazard over 

India, the projected precipitation and soil moisture data at a spatial resolution of 0.5° lat.× 

0.5° lon. is obtained from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 

(Warszawski et al., 2014). The historical (1980-2005) and projected (2006-2099) data from 

available GCMs namely ….” How did you deal with the overlapping time period between 

observed and modelling data? Was, for example, the Delta Method (projecting the difference 

between modelled historic and projected onto the observed data; or; projecting to difference 

between observed and modelled historic onto the projected data) applied? I do not find 

information on how the final hazard dataset is constructed – so I suggest adding this to the 

supplementary material.  

Here, historical (1980-2015) hazard maps are generated only from observed datasets - IMD for 

precipitation and MERRA for soil moisture. The projected Near (2021-2060) and Far (2061-

2099) future hazard is obtained from the GCMs. We do not use the Delta Method or any such 

procedure to compare and ‘correct’ data from the GCMs, since the ISIMIP uses precipitation 
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data that has already been downscaled and bias-corrected with respect to global level observed 

precipitation from EartH2Observe observations, WFDEI and ERA-Interim data. Further, for 

obtaining projections of soil moisture, ISIMIP employs the global vegetation model, LPJmL, 

that is capable of representing fine resolution physical processes using carbon, water and 

energy balance equations (Schaphoff et al., 2018) under a changed climate, thereby, offering a 

significant improvement over simplistic data-based approaches such as the Delta Method. This 

information is included in the revised manuscript under the Section 2.1.1.  

Line 92-94, Page 3-4 

“The daily precipitation data (kg m-2 s-1) is already been downscaled and bias corrected with 

respect to global level observed precipitation from EartH2Observe observations, WFDEI and 

ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI).” 

Line 97-99, Page 4 

“As a part of ISIMIP2b experiments, the LPJmL impact model (Sitch et al., 2003), a global 

vegetation model that is capable of representing fine resolution physical processes using 

carbon, water and energy balance equations (Schaphoff et al., 2018) under a changed climate, 

is driven by the bias-corrected GCM precipitation to simulate the root-zone soil moisture (kg 

m-2).” 

Page 10 

“Figure 1. Framework to assess drought risk evolution. Monthly rainfall and monthly soil 

moisture is used to compute multivariate standardized drought index (MSDI). Weights and 

ratings system of MSDI is adopted to further compute drought hazard index (DHI). Multi-

criteria decision making technique – TOPSIS is used to calculate drought vulnerability index 

(DVI) considering eight drought vulnerability indicators. The product of DHI and DVI is the 

drought risk index (DRI). Drought risk assessment is carried out for Baseline period (1980-

2015), Near future (2021-2050) and Far future (2061-2100) for various climate and socio-

economic scenarios.” 

It would be nice to show with some figures how the ISIMIP data and the used observed IMD 

Pr and MERRA SM data compare? 

Further, based on the reviewer’s suggestion, we carry out an additional analysis for evaluation 

of ISIMIP simulations with respect to observed precipitation and soil moisture data, and present 
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the results of such evaluation in Figure S4 in the revised manuscript (given below). The 

performance of all the ISIMIP models are comparable with that of the observed data, except 

for the soil moisture during monsoon months. The lowered soil moisture estimates from LPJmL 

model (ISIMIP experiments) simulations compared to the MERRA-Land soil moisture 

observations for the monsoon months could be due to overestimation of LPJmL’s simulated 

runoff  (Zaherpour et al., 2018). 

 

 

Figure S4. Observed and ISIMIP-model simulated climatology of country-wide average 

monthly precipitation and soil moisture for the period 1980-2005. 

 

Line 101-106, Page 4  

“The observed and simulated country-wide average of monthly precipitation and soil moisture 

for the period 1980-2005 is presented in Figure S4. The performance of all the ISIMIP models 

are comparable with that of the observed data, except for the soil moisture during monsoon 

months. The lowered soil moisture estimates from LPJmL model (ISIMIP experiments) 

simulations compared to the MERRA-Land soil moisture observations for the monsoon months 

could be due to overestimation of LPJmL’s simulated runoff  (Zaherpour et al., 2018).” 

 

 

d) L93 “The spatial pattern of annual mean surface soil moisture for India from the LPJmL 

impact model is consistent with the satellite-based Essential Climate Variable soil moisture 

product (Gu et al., 2019).” Is this ECV similar to the MERRA Land data used? Or how is it 

connected to the data used?  
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We have performed an additional analysis to compare the LPJmL soil moisture dataset with 

MERRA. Therefore, we remove the statement regarding comparison of LPJmL soil moisture 

dataset with respect to ECV. We refer to our Figure S4 and included the following discussion 

in the revised manuscript.  

Line 103-106, Page 4 

“The performance of all the ISIMIP models are comparable with that of the observed data, 

except for the soil moisture during monsoon months. The lowered soil moisture estimates from 

LPJmL model (ISIMIP experiments) simulations compared to the MERRA-Land soil moisture 

observations for the monsoon months could be due to overestimation of LPJmL’s simulated 

runoff  (Zaherpour et al., 2018).” 

e) L95 “Although the simulated soil moisture data underestimates the monsoon months’ soil 

moisture (June, Jul, Aug, Sep) during the historic period (1980-2005), we did not perform the 

bias correction, since we intend to capture the variability in the soil moisture rather than their 

magnitudes for drought index calculation” – can you please add graphs / maps to show this in 

the supplementary please? 

We have included Figure S4 (given in Comment #1c) in the revised Supplementary material. 

f) In the Supplementary Material (drought hazard assessment and S1): Is the co-occurrence – 

covariance of Pr and SM modelled per ensemble member after which the mean of the DH value 

is calculated? Or are ensemble mean / median PR and SM used to calculate the DH value?  

The ensemble mean of monthly precipitation and soil moisture from different GCMs is 

computed. Further, these ensemble mean monthly precipitation and soil moisture time series is 

used to calculate the MSDI and DHI values. 

Line 111-112, Page 4 

“The ensemble mean of monthly precipitation and soil moisture from different GCMs is 

computed. Further, these ensemble mean monthly precipitation and soil moisture time series is 

used for drought hazard assessment.” 

What are rk and sk in formula 2 – are they thresholds for droughts in SM and PR? 

𝑟𝑘 and 𝑠𝑘 denote the actual precipitation and soil moisture values for kth observation. In 

Gringorten plotting position method, the number of occurrences (𝑚𝑘) of precipitation and soil 
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moisture pair below 𝑟𝑘 and 𝑠𝑘 from the whole set of observations is used to calculate empirical 

joint probability for kth observation. 

Line 165-168, Page 6 

“For the sample size 𝑛, the count of occurrence of the pair (𝑟𝑖, 𝑠𝑖) for 𝑟𝑖 ≤ 𝑟𝑘  and 𝑠𝑖 ≤ 𝑠𝑘 is 

denoted as 𝑚𝑘. Here 𝑟𝑘 and 𝑠𝑘 denote the actual precipitation and soil moisture values for kth 

observation. The number of occurrences (𝑚𝑘) of precipitation and soil moisture pair below 𝑟𝑘 

and 𝑠𝑘 from the whole set of observations is used to calculate empirical joint probability for kth 

observation based on bivariate Gringorten plotting position (Gringorten, 1963) as” 

 

g) In the Supplementary Material (drought hazard assessment): Until “The MSDI series at each 

region is categorized into four groups similar to Mckee et al. (1993).” I could follow the 

description, then it becomes unclear à please add more detail (e.g., on the weighing and rating: 

I do not understand why nor how this is done) and please add some examples to showcase and 

justify the method. 

We rewrote the methodology for drought hazard assessment and is now included in the main 

manuscript. An example on the calculation of drought hazard is also added. 

Line 174-197, Page 6-7 

 “The method for drought hazard assessment followed in the present study is based on Kim et 

al. (2015). Hazard is measured as the product of magnitude and the associated frequency of 

occurrence of an event. The MSDI time series at each region is categorized into four groups 

similar to Mckee et al. (1993). These categories are assigned weights according to the 

magnitude of MSDI value. Higher weights will be assigned to worst (high negative) MSDI 

values, and vice versa. Further, each weight category is divided into different clusters based on 

the frequency of occurrence of MSDI values. The total number of clusters for ratings in each 

MSDI category is determined using the prominent k-means data clustering algorithm. Higher 

ratings will be assigned to the cluster with high frequency values, and vice versa. The 

weightage and rating scheme is depicted graphically in Figure 1. In the k-means clustering 

technique, distance between the data points is computed using the squared Euclidean distance 

metric. To avoid the convergence to local minima, the k-means algorithm is run with 100 

random initial seeds with 10000 iterations. The Calinski-Harabasz Index (CHI) (Caliński and 

Harabasz, 1974)  is used to determine the optimum number of clusters and is given by  
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𝐶𝐻𝐼 =  
𝑛 − 𝐾

𝐾 − 1
×

𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
                                                         … (4) 

where 𝑛= number of data points, 𝐾= number of clusters,  𝐵𝐺𝑆𝑆 =  ∑ 𝑛𝑘||𝐺{𝑘} − 𝐺||2𝐾
𝑘=1  is 

the between the group scatter, 𝐺{𝑘} = centroid of the kth cluster, 𝐺 = centroid of all the 

observations, 𝑊𝐺𝑆𝑆 =  ∑ 𝑊𝐺𝑆𝑆{𝑘}𝐾
𝑘=1  is within the group scatter and 𝑊𝐺𝑆𝑆{𝑘} =

∑ | |𝑀𝑖
{𝑘}

− 𝐺{𝑘}| |2
𝑖𝜖𝐼𝑘

, where 𝑀𝑖
{𝑘}

 are the observations.  The k-means clustering algorithm is 

driven for 1 to 𝑛 clusters. The number of clusters that gives highest value of CHI is the optimum 

number of clusters. These optimum number of clusters is used for assigning ratings. The 

categorized weightages and computed ratings are used to calculate the drought hazard for every 

region as below. 

𝐷𝐻 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 × 𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝑖

𝑡

𝑖=1

                                                 … (5) 

where 𝑡 is the length of MSDI time series. Although the weightages and ratings are intrinsically 

linked, the above scheme assures drought hazard quantification based on magnitudes and 

frequencies. The 𝐷𝐻 values from Eq 5 are standardized as shown below to obtain 𝐷𝐻𝐼 that 

varies between 0 and 1.  

𝐷𝐻𝐼 =
𝐷𝐻 − 𝐷𝐻𝑚𝑖𝑛

𝐷𝐻𝑚𝑎𝑥 − 𝐷𝐻𝑚𝑖𝑛
                                                   … (6) 

The weighing and rating scheme to calculate DHI for a randomly chosen grid is given in Table 

S2. ” 

Table S2. Weighting and rating scheme for DHI calculation for a randomly chosen grid (11˚ 
lat, 75˚ lon). 

MSDI Class Weight 
Frequency of 

occurence 
Rating 

 -0.99 to 0.99 Mild 1 

0.71-0.82 6 

0.60-0.68 5 

0.49-0.57 4 

0.37-0.46 3 

0.26-0.348 2 

0.18-0.24 1 

 -1 to -1.49 Moderate 2 

0.150-0.15 4 

0.13-0.13 3 

0.098-0.098 2 

0.07-0.07 1 
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 -1.5 to -1.99 Severe 3 0.04-0.04 1 

 -2 or less Extreme 4 0.016-0.016 1 

 

h) Supplementary “Further, each category is organised into sub-groups based on the 

occurrence probabilities of the selected category. While the weightages are assigned to MSDI 

categories to account for drought magnitude, ratings are assigned to the sub-groups of each 

MSDI category to account for drought occurrence probability.” -> which categories? And how 

does dividing based on occurrence probabilities differ from McKee et al? That is what they do, 

too, no? I do not understand why both are needed since they (intensity and probability) are 

intrinsically linked. 

The division of MSDI series into different drought groups based on Mckee et al. (1993) gives 

the magnitude of drought events alone. However, hazard is a measure of magnitude of the event 

as well as its associated frequency. Therefore from the available MSDI series, it is required to 

discretize magnitude (weights) and occurrence probability (ratings) (Kim et al., 2015), though 

they are intrinsically linked. This is clarified in the methods section. 

Line 193-194, Page 7 

“Although the weightages and ratings are intrinsically linked, the above scheme assures 

drought hazard quantification based on magnitudes and frequencies.” 

 

2. Drought vulnerability projection considering combinations of RCP and SSP scenarios, 

using a list of drought vulnerability indicators that represent exposure, sensitivity and 

adaptive capacity components. 

 

a) The manuscripts’ understanding of vulnerability (including exposure) does not fully match 

the understanding of this concept by the sources cited (IPCC AR5) and does not match L36 

(although it is true other authors see exposure as part of vulnerability – so I suggest look up 

other scholars who also include exposure as part of the vulnerability quantification). Besides, 

with respect to the chosen vulnerability factors, I think multiple interesting other social, 

economic vulnerability indicators could have been selected (e.g., Meza et al 2020 

https://nhess.copernicus.org/articles/20/695/2020/ )  

We agree with the reviewer that our characterization of drought vulnerability is not fully 

consistent with the IPCC (AR5)’s recommended definition of drought risk. Though the AR5 
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delineates exposure as separate component of the risk, we have included exposure to be an 

integral part of the vulnerability following Vittal et al. (2020), since such a definition is unlikely 

to affect the overall conclusions of risk assessment. Further, the vulnerability indicators chosen 

in the present study comprises of sensitivity, exposure and adaptive capacity indicators and this 

information is updated in Table 1. 

We also agree that an extensive vulnerability assessment encompasses other social and 

economic vulnerability indicators such as those used by Meza et al. (2020). However, for a 

densely-populated and rapidly-developing nation such as India, acquisition of reliable datasets 

on these indicators is often challenging. Most importantly, unavailability of projections of these 

indicators over the Indian region limits their use in this study, since our primary goal is to 

compare baseline drought risk with that under future projected climate change. This discussion 

is included in the revised manuscript.  

Line 230-235, Page 8 

“The hazard and vulnerability information computed in the form of DHI and DVI respectively, 

are combined to evaluate the drought risk. Accordingly, the drought hazard capturing the 

droughts in baseline (1980-2015), Near (2021-2060) and Far (2061-2099) future period is 

combined with drought vulnerability at 2010, 2060 and 2099 respectively. The definition of 

risk as provided by IPCC (AR5) (IPCC, 2014) is adopted. Though the AR5 delineates exposure 

as separate component of the risk, we have included exposure to be an integral part of the 

vulnerability following Vittal et al. (2020), since such a definition is unlikely to affect the 

overall conclusions of risk assessment.” 

Line 118-119, Page 4 

“The presented drought vulnerability indicators comprises of sensitivity, exposure and adaptive 

capacity indicators (Table 1).” 

Line 122-126, Page 4-5 

“An extensive vulnerability assessment encompasses other social and economic vulnerability 

indicators such as those used by Meza et al. (2020). However, for a densely-populated and 

rapidly-developing nation such as India, acquisition of reliable datasets on these indicators is 

often challenging. Most importantly, unavailability of projections of these indicators over the 

Indian region limits their use in this study, since our primary goal is to compare baseline 

drought risk with that under future projected climate change.”
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Table 1. Drought vulnerability indicators used for drought vulnerability assessment. The sources for indicators in 

baseline period and projected period along with their relevance and correlation with drought vulnerability is presented. 

Representative indicators to arrive at the drought vulnerability indicators for projected period are also listed. 

Data 

Relevance to 

drought 

vulnerability 

Correlation 

with drought 

vulnerability 

Past 

studies 

using this 

data 

Observed Projected 

Source Period 
Spatial 

resolution 
Units Details Source Representative Indicator 

Population 

density 

Demographic 

attribute for 

assessing 

social 

vulnerability 

and exposure. 

Positive 

(Carrão et 

al., 2016; 

Rajsekhar 

et al., 

2015) 

NASA 

Socioeconomic 

Data and 

Applications 

Centre (SEDAC) 

(http://sedac.ciesin.

columbia.edu/data/

set/gpw-v4-

population-density) 

2010 1 km 
person/

km2 

 Population density estimates are 

based on the national censuses and 

population registers. 

 Given as population count by area. 

Inter-Sectoral Impact 

Model Intercomparison 

Project (ISIMIP2b 

experiments) data 

archive (Warszawski et 

al., 2014) 

Population (SSP2) 

GDP 

Economic 

welfare for 

assessing 

economic 

vulnerability 

as well as 

adaptive 

capacity. 

Negative 

(Carrão et 

al., 2016; 

Naumann 

et al., 

2014; Wu 

et al., 

2017) 

(Ghosh et al., 

2010) 
2006 1 km 

million

s of 

dollars 

 Defense Meteorological Satellite 

Program’s Operational Linescan 

System (DMSP-OLS) nighttime 

imagery by NOOA to calculate total 

GDP (Ghosh et al., 2010) 

GDP (SSP2) 

Irrigation 

Index 

Adaptive 

capacity 

component. 

High irrigation 

ratio implies 

high adaptive 

capacity and 

lower drought 

vulnerability. 

Negative 

 

(Murthy et 

al., 2015; 

Wu et al., 

2017) 

Web based land 

use statistics 

information system 

https://aps.dac.gov.

in/LUS/Index.htm 

2010 District - 

 Data published by Directorate of 

Economics & Statistics, Department 

Agriculture, Cooperation & Farmers 

Welfare. 

 Land use statistics information 

system is designed and developed by 

Agriculture Informatics Division, 

National Informatics Centre, 

Ministry of Communication & IT, 

Govt. of India, New Delhi. 

 Given as the ratio of irrigated area to 

cropped area. 

Irrigation water consumption, 

Irrigation water withdrawal 

(RCP2.6 –SSP2 & RCP6.0-

SSP2) 

Water bodies 

fraction 

Water 

resources 

(streams/rivers

) and water 

infrastructure 

(dams/reservoi

rs) for 

assessing the 

physical 

vulnerability, 

and provides 

adaptive 

capacity. 

Negative 

 

 

(Naumann 

et al., 

2014) 

Bhuvan-Indian Geo 

Platform 
2010 3’ - 

 Advanced Wide Field Sensor 

(AWiFS) satellite imagery is used by 

NRSC to extract the water bodies 

fraction. 

Surface runoff, Total runoff, 

Total water storage (RCP2.6 –

SSP2 & RCP6.0-SSP2) 

Groundwater 

Adaptive 

capacity 

component to 

cope with 

drought. 

Negative 
(Pandey et 

al., 2010) 

Dynamic Ground 

Water Resources of 

India, Central 

Ground Water 

Board Ministry of 

Water Resources, 

Report on July 

2011, (CGWB, 

2014) 

2011 District ham 

 Groundwater resources assessment 

based on the State and Central 

groundwater boards of India. 

 Net groundwater availability 

estimates are based on the annual 

replenishable groundwater resources 

and the natural discharge during non-

monsoon season. 

Groundwater runoff, Total water 

storage (RCP2.6 –SSP2 & 

RCP6.0-SSP2) 

Land Use 

Land Cover 

(LULC) 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

The USGS Land 

Cover Institute 

(LCI) 

(https://landcover.u

sgs.gov/global_cli

matology.php) 

2001-

2010 
0.5 km - 

 The Collection 5.1 Moderate 

Resolution Imaging 

Spectroradiometer (MODIS) Land 

Cover Type (MCD12Q1) product for 

the period 2001-2010 isused by 

Broxton et al. (2014) to develop 

global land cover. 

NASA Earthdata from 

ORNL DAAC (Chini et 

al., 2014) 

(https://doi.org/10.3334/

ORNLDAAC/1248) 

Fractional Land Use Land Cover 

data (RCP2.6 & RCP6.0) 

Digital 

Elevation 

Model (DEM) 

Spare time for 

water retention 

bestows higher 

adaptive 

capacity in flat 

slope parts. 

Accounts for 

physical 

vulnerability 

to drought. 

Positive 

 

(Ekrami et 

al., 2016; 

Pandey et 

al., 2010) 

SRTM 90 m 

Digital Elevation 

Database v4.1 

(http://www.cgiar-

csi.org/data/srtm-

90m-digital-

elevation-database-

v4-1#download) 

2007 90 m m 
 NASA Shuttle Radar Topography 

Mission elevation data derived from 

interferometric techniques. 

Constant (same as observed) 

Soil Type 

Water holding 

capacity of soil 

based on the 

textural 

properties. 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

FAO Harmonized 

World Soil  

Database (HWSD) 

(http://www.fao.or

g/soils-portal/soil-

survey/soil-maps-

and-

databases/harmoniz

ed-world-soil-

database-v12/en/) 

2003 1 km - 

 Major contributors of the soil data 

for the Indian regions are All India 

Soil and Land use Survey  (1965) 

and the International soil map of 

vegetation by India Council of 

Agricultural Research (FAO-

UNESCO, 1977). 

 Loamy soils are more vulnerable to 

drought compared to clayey soils. 

https://aps.dac.gov.in/LUS/Index.htm
https://aps.dac.gov.in/LUS/Index.htm
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b) Table 1: I do not always follow the reasoning regarding the relevance (I would not say 

population density and land use cover are proxies for social vulnerability) but more 

importantly: I would like to see some more information about how these indices are calculated 

(population density is pop sum / area; but how is the water bodies fraction calculated, or the 

irrigation index? How does the water holding capacity positively influence the vulnerability?).  

The drought vulnerability indicators chosen in this study, their sources, spatial and temporal 

distribution, units, method for data generation, relevance to the drought vulnerability, 

correlation with drought vulnerability, and previous studies who have employed such data for 

regional/national/global drought vulnerability studies are presented in Table S1 from Sahana 

et al. (2021). The population density is given as the population count by area, with its units as 

persons/km2. Irrigation index is the ratio of total irrigated area to the total cropped area. Further, 

soil textural properties range from clayey to loamy, with clayey soils having higher water 

holding capacity compared to loamy soils. Hence loamy soils are more vulnerable to drought 

compared to clayey soils. Also, weightages for different categories of soil texture is presented 

in Table S1. All the above information is now updated in Table 1.  

Line 126-127, Page 5 

“Further, the weightages for the categorical vulnerability indicators for drought vulnerability 

assessment is adopted from (Ekrami et al., 2016; Sahana et al., 2021; Thomas et al., 2016), and 

is given in Table S1.” 

Line 116-118, Page 4 

“The country-wide drought vulnerability indicators adopted for drought vulnerability 

assessment are listed in Table 1, along with their sources, sources, spatial and temporal 

distribution, units, method of data generation, relevance and correlation to drought 

vulnerability for both the observed (around the year 2010) and projected datasets (2005-2100).” 

Besides, I see different sources used to the observed versus projected situation: how is 

consistency ensured? 

The following discussion regarding the consistency of the datasets between baseline and 

projected datasets is now included in the revised manuscript. 

 

 



16 

 

Line 135-149, Page 5 

“Drought vulnerability indicators such as population density and GDP for the year 2010 from 

SSP2 pathway are comparable with their respective observed dataset, with small/negligible 

difference between the observed and SSP-simulated datasets (Figure S5). Further, drought 

vulnerability indicators such as groundwater availability, irrigation index and waterbody 

fraction for the projected period are not directly available. Hence, these indicators are proxied 

by their representative indicators (Table 1) using multiple linear regression (MLR). 

Consequently, irrigation ratio, groundwater availability and water body fraction for the 

projected period are derived based on relationships between them and the representative 

variables in the baseline period, and therefore consistency is ensured. The Land Use 

Harmonization (LUH) (Chini et al., 2014) dataset provides the fractional land use classes for 

the time period 1500-2100. The historical maps of crop and pasture data from HYDE 3.1 (Hurtt 

et al., 2011), and estimates of historical national wood harvest and of shifting cultivation are 

used as input for 1500-2005. Further, the projections of LULC for 2005-2100 are based on the 

Integrated Assessment Model (IAM) implementations of the RCPs. Each IAM for different 

RCPs are used as input to the Earth System Models (ESMs) for future carbon-climate 

projections. Therefore, LULC scenarios are based on RCPs. LUH is a credible dataset for 

LULC projection and has been previously used for drought risk projection in South-Asian 

region (Chou et al., 2019). Further, LULC projections can also be derived based on the land 

use models, using past LULC data and socio-economic factors driving the land use change. 

However, development of such models at country scale is beyond the scope of the present 

study.” 
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Figure S5. Difference between the observed and SSP2 pathway dataset at the year 2010 for a) 

Population density and b) GDP. 

 

c) In the supplementary material: Please repeat the weights of Thomas and Sahana for the 

vulnerability indicators 

Done. 

Table S1. Weightages for categorical vulnerability indicators used for vulnerability 

assessment (Thomas et al. 2016; Sahana et al. 2021) 

Vulnerability 

indicator 
Classification Weight 

Normalized 

Weight 

Land use 

Water Body 0 0 

Barren 1 0.04 

Scrub 3 0.12 

Forest 4 0.15 

Agriculture 8 0.31 

Habitation 10 0.38 

Soil 

Silty Clay 2 0.032 

Clay 3 0.048 

Silty Clay Loam 4 0.063 

Clay Loam 5 0.079 

Silt Loam 7 0.111 

Loam 9 0.143 

Sandy Clay Loam 10 0.159 

Sandy Loam 11 0.175 

Loamy Sand 12 0.190 
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Slope (%) 

0-1 1 0.048 

1-4 2 0.095 

4-6 4 0.190 

6-10 6 0.286 

>10 8 0.381 

 

3. Drought risk projection integrating hazard and drought vulnerability information. 

 

a) In general, there is no validation of the presented risk approach since the past risk analysis 

(1980-2015) is not compared with observed risk / reported impacts. This should be done in 

order to give credibility to the method, or – if impossible – be addressed in the discussion 

section. 

Validation of the drought risk map for the baseline period (1980-2015) has been carried out by 

Sahana et al. (2021) (see Suppl. Figure S3 of Sahana et al., 2021), based on the disaster data in 

terms of number of people affected. It is noted that parts of Rajasthan, Madhya Pradesh, 

Maharashtra, Orissa and Tamil Nadu, Kerala, Chattisgarh, Haryana, Himachal Pradesh, 

Chandigarh, Assam and Nagaland that are under moderate to severe drought risk category, 

have experienced moderate to worst drought disaster. The above information on validation of 

drought risk is included in the revised manuscript. 

Line 367-371, Page 17 

“It is to be noted that the validation of drought risk map for the baseline period (1980-2015) 

has been carried out by Sahana et al. (2021), based on the based on the disaster data in terms 

of number of people affected. It is noted that parts of Rajasthan, Madhya Pradesh, Maharashtra, 

Orissa and Tamil Nadu, Kerala, Chattisgarh, Haryana, Himachal Pradesh, Chandigarh, Assam 

and Nagaland that are under moderate to severe drought risk category, have experienced 

moderate to worst drought disaster.” 

b) L119 “Drought risk values computed using Eq 1 are further standardized to obtain the 

Drought Risk Index (DRI).” Can you please elaborate how this is done? Two standardized 

indices are multiplied so I do not see the need to standardize the result again – this introduces 

some loss of information? 

The equation and need for standardization is now explained in the revised manuscript. 
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Line 237-240, Page 8 

“Standardization of drought risk at each grid is carried out using the equation 

𝐷𝑅𝐼 =
𝑅𝑠𝑖𝑘 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛

𝑅𝑖𝑠𝑘𝑚𝑎𝑥 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛
                                                   … (16) 

Standardization is performed such that the values are distributed between 0 and 1, so as to 

classify different risk categories.” 

c) The effect of climate change is taken into account in two ways: by changing vulnerability 

(multiple vulnerability indicators are based on average water availability) and by changing 

occurrence. I think this is interesting but it is a pity that social vulnerability factors, influenced 

by socio-economic development, are not taken into account – this might have changed the 

vulnerability trend hence risk trend. Would it be possible to account for this? 

The population density and GDP indicators, considered in the present study, accounts for social 

vulnerability, and the change in these indicators are accounted for vulnerability projections. 

Therefore, we do not agree that our study does not take into account social vulnerability factors.  

However, we do agree with the reviewer that the study would be comprehensive with the 

inclusion of other socio-economic indicators. However, for a densely-populated and rapidly-

developing nation such as India, acquisition of reliable datasets on these indicators is often 

challenging. Most importantly, unavailability of projections of these indicators over the Indian 

region limits their use in this study, since our primary goal is to compare baseline drought risk 

with that under future projected climate change. This discussion is included in the revised 

manuscript.  

Line 322, Page 15 

“The varying drought vulnerability indicators for the drought vulnerability assessment is shown 

in Figure 2.” 

Line 116-118, Page 4 

“The country-wide drought vulnerability indicators adopted for drought vulnerability 

assessment are listed in Table 1, along with their sources, sources, spatial and temporal 

distribution, units, method of data generation, relevance and correlation to drought 

vulnerability for both the observed (around the year 2010) and projected datasets (2005-2100).” 
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Line 122-126, Page 4-5 

“An extensive vulnerability assessment encompasses other social and economic vulnerability 

indicators such as those used by Meza et al. (2020). However, for a densely-populated and 

rapidly-developing nation such as India, acquisition of reliable datasets on these indicators is 

often challenging. Most importantly, unavailability of projections of these indicators over the 

Indian region limits their use in this study, since our primary goal is to compare baseline 

drought risk with that under future projected climate change.” 

d) The classification of very low to very high and transition plots are interesting but it is unclear 

how these classes are defined. Moreover, there are regions with a very high historic hazard that 

change to low hazard – this is remarkable since this is not immediately clear from the average 

SM - PR maps in figure S2. Can you please explain this difference? 

In each of the hazard, vulnerability and risk maps, the indices representing them are classified 

into five categories based on equal classification scheme: 0-0.2 (very low), 0.2-0.4 (low), 0.4-

0.6 (medium), 0.6-0.8 (high) and 0.8-1 (very high). In the transition matrix we compute the % 

area of the country that transitioned from one hazard/vulnerability/risk class to other. This 

quantifies the effect of climate change/socio-economic condition/both respectively. 

From Figure 2a, S2 and S3, we see that precipitation and soil moisture for the projected period 

show an increasing trend. Further, it is to be noted that the hazard assessment using MSDI is 

based on the long term mean and variability of these drought indicators under a probabilistic 

analysis framework, and not necessarily the magnitudes of precipitation and soil moisture. Here 

we see that the projections of these indicators exhibit lower variability compared to the baseline 

period (Figure 2a). Therefore, it is observed that many regions undergo transition from high 

hazard to low hazard. This information is updated in the revised manuscript. 

Line 269-270, Page 11 

“The indices representing drought hazard are classified into five categories based on equal 

classification scheme: 0-0.2 (very low), 0.2-0.4 (low), 0.4-0.6 (medium), 0.6-0.8 (high) and 

0.8-1 (very high).” 

Line 274-276, Page 11 

“The hazard transition from the baseline to different scenarios is presented in Table 2. In the 

transition matrix we compute the % area of the country that transitioned from one hazard class 

to other, to quantify the effect of climate change.” 
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Line 280-285, Page 11 

“From Figure 2a, S2 and S3, we see that precipitation and soil moisture for the projected period 

show an increasing trend. Further, it is to be noted that the hazard assessment using MSDI is 

based on the long term mean and variability of these drought indicators under a probabilistic 

analysis framework, and not necessarily the magnitudes of precipitation and soil moisture. Here 

we see that the projections of these indicators exhibit lower variability compared to the baseline 

period (Figure 2a). Therefore, it is observed that many regions undergo transition from high 

hazard to low hazard.” 
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Figure 2. Datasets used for drought risk assessment. a) Projected hydro-climatic variables such 

as monthly precipitation and monthly soil moisture are used for drought hazard assessment. b) 

Projected drought vulnerability indicators such as irrigation index, water body fraction, 

groundwater availability, population, GDP and land use land cover, along with static drought 

vulnerability indicators such as slope and soil texture are used for drought vulnerability 

assessment. Datasets for projected period are divided into Near future (2021-2060) and Far 

future (2061-2100) to check the evolution of drought risk. 

 

e) Fig2: I do not understand why land cover changes based on RCPs? Shouldn’t this be SSP? 

Besides, I wonder why baseline (1980-2015) isn’t shown? Now it is indicated as “2010” but 

that seems inconsistent with the method section. 

The projections of LULC for 2005-2100 are based on the Integrated Assessment Model (IAM) 

implementations of the RCPs, and not based on SSPs (Chini et al., 2014). Further, in the revised 

manuscript, we have included a discussion on why baseline LULC time series is not shown in 
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Figure 2. For correct representation of vulnerability indicators, we will replace their time series 

with bar graphs for the years 2010, 2060 and 2099 (Figure 2b, see comment #3d). 

Line 143-146, Page 5 

“Further, the projections of LULC for 2005-2100 are based on the Integrated Assessment 

Model (IAM) implementations of the RCPs. Each IAM for different RCPs are used as input to 

the Earth System Models (ESMs) for future carbon-climate projections. Therefore, LULC 

scenarios are based on RCPs.” 

Line 129-134, Page 5 

“In general, socio-economic development is a slow process, and takes time to reflect in terms 

of significant changes in the socio-economic indicators (Dellink et al., 2017). Further, majority 

of the drought vulnerability/risk studies across the globe have adopted static vulnerability 

assessment that represent drought vulnerability snapshot in time (Hagenlocher et al., 2019). 

Therefore, we used the static vulnerability indicators for the year 2010, 2060 and 2099 to 

quantify drought vulnerability for the baseline, Far future and Near future period respectively.” 

4. Development of bivariate choropleth plots under future scenarios to quantify the 

individual roles of climate and societal changes in driving drought risk 

 

a) This is a good way of visualising the results; but I would suggest to change the colour classes 

since now on e.g., the RCP6.0 near future, barely any variance is visible. 

The RCP6.0 Near future results in mostly high vulnerability and low hazard regions. It is to be 

noted that the low variability in this scenario is due to data and not necessarily due to selected 

color scheme, since parts of Bihar and Telangana are distinctive with moderate vulnerability 

and moderate hazard. For a better comparison of the future scenarios with the baseline period, 

we would retain the existing bivariate color scheme. 

5. Identification of regions and zones that are expected to be under worst drought risk 

conditions in the near and far future 

a) (Make sure that in the discussion, the results are compared with papers who have a similar 

conception of vulnerability – or discuss the difference – because that might also be the cause 

of the diverging results) 

We have now included the following discussion in Section 3.3.1 of the revised manuscript. 
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Line 371-373, Page 17 

“Further, the drought risk estimates for the baseline period from the present study compares 

well with regional-scale drought risk studies in India such as those for Andhra Pradesh (Murthy 

et al., 2015), Bearma basin (Thomas et al., 2016), Maharashtra (Swami and Parthasarathy, 

2021).” 

Line 389-392, Page 18 

“It is to be noted that the water availability projections for India by Koutroulis et al. (2019) 

show decreasing drought risk with time, as opposed to the increasing drought risk from the 

present study. The choice of climate change scenarios and climate models by Koutroulis et al. 

(2019) could be a possible reason for such difference.” 
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Responses to comments from Referee #2 

Summary  

1) This paper presents a drought risk assessment for India for a baseline period and for two 

RCPs and two SSPs. The methodology used seems appropriate for the data used and spatial 

scale considered. The authors found that drought risk was primarily comprised of the drought 

vulnerability component, rather than the hazard, these results were shown effectively using 

bivariate maps. Overall, I found this an interesting paper with results and outcomes that could 

be useful for drought planning and mitigation at the high level in India. However, I found that 

the clarity of the paper could be improved and made more expansive making it easier to follow 

and reproduce elsewhere. Specific examples are discussed below. I recommend that this paper 

is revised before publication to clarify key methodological points highlighted below. 

We thank the reviewer for the positive and encouraging comments. We have addressed the 

reviewer concerns and provided explanation and clarity on the methods. 

 

Major comments  

2) I found the description of the methods to calculate the DHI and DVI in the supplementary 

information unclear, with not enough detail provided on the steps and processes with no further 

information provided (some examples listed below regarding weighting and standardisation). 

I would like to see the methods in the main body of the paper expanded. I recommend that all 

the whole methodology is moved to the main body of the paper, rather than the fundamental 

steps being in the supplementary information. I would also suggest that Figure 1 in the main 

body of the paper is expanded, with more detail and steps added to fully capture the 

methodological steps described in the paper – this is further discussed below. 

We have now moved methods on hazard and vulnerability computation to the main manuscript. 

Further, an example on the drought hazard calculation depicting the weights and ratings for a 

randomly chosen location is given in Table S2. We have included more details about the 

methods in Figure 1.  

 

Line 152-197, Page 5-7 

“2.2.1 Drought hazard assessment 

Drought hazard forms an important component of drought risk assessment. Here, we assess the 

country-wide drought hazard based on the deficiencies in precipitation and soil moisture. 
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Therefore, the multivariate standardized drought index (MSDI) of the non-parametric form is 

computed using the bivariate case of Gringorten plotting position formula (Gringorten, 1963). 

MSDI is equally capable of capturing deficits individually in precipitation or soil moisture, or 

their joint deficit, considering dependence between these two variables. This is a unique 

advantage of MSDI (Hao and AghaKouchak, 2014) over other univariate indices. Further, 

MSDI is capable of representing the onset, propagation and termination of drought. In the 

Figure S3, considering -0.8 as the threshold for drought trigger, it seen that whenever either the 

SPI or the SSI falls below this threshold, MSDI covers the critical trajectory and offers a 

conservative characterization of drought, thereby capturing attenuation and lag effects. The 

steps involved in the calculation of MSDI is presented below. 

1. The joint probability distribution of the 1-month time scale precipitation (𝑅) and soil 

moisture (𝑆) is given by 

𝑃 (𝑅 ≤  𝑟, 𝑆 ≤  𝑠) = 𝑝                                                                                  … (1) 

where 𝑝 represents the joint probability of the precipitation and soil moisture. 

2. For the sample size 𝑛, the count of occurrence of the pair (𝑟𝑖, 𝑠𝑖) for 𝑟𝑖 ≤ 𝑟𝑘  and 𝑠𝑖 ≤

𝑠𝑘 is denoted as 𝑚𝑘. Here 𝑟𝑘 and 𝑠𝑘 denote the actual precipitation and soil moisture 

values for kth observation. The number of occurrences (𝑚𝑘) of precipitation and soil 

moisture pair below 𝑟𝑘 and 𝑠𝑘 from the whole set of observations is used to calculate 

empirical joint probability for kth observation based on bivariate Gringorten plotting 

position (Gringorten, 1963) as 

𝑃(𝑟𝑘, 𝑠𝑘) =
𝑚𝑘 − 0.44

𝑛 + 0.12
                                                                         … (2) 

3. The above empirical joint probability is then standardized to obtain the multivariate 

index MSDI. 

𝑀𝑆𝐷𝐼 =  𝜑−1(𝑃)                                                                                    … (3) 

where 𝜑 is the standard normal distribution function. Since the empirical distributions use ranks 

of data instead of actual values, the sample size should be sufficiently large. 

The method of drought hazard assessment followed in the present study is based on Kim et al. 

(2015). Hazard is measured as the product of magnitude and the associated frequency of 

occurrence of an event. The MSDI time series at each region is categorized into four groups 

similar to Mckee et al. (1993).  These categories are assigned weights according to the 

magnitude of MSDI value. Higher weights will be assigned to worst (high negative) MSDI 

values, and vice versa. Further, each weight category is divided into different clusters based on 
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the frequency of occurrence of MSDI values. The total number of clusters for ratings in each 

MSDI category is determined using the prominent k-means data clustering algorithm. Higher 

ratings will be assigned to the cluster with high frequency values, and vice versa. The 

weightage and rating scheme is depicted graphically in Figure 1. In the k-means clustering 

technique, distance between the data points is computed using the squared Euclidean distance 

metric. To avoid the convergence to local minima, the k-means algorithm is run with 100 

random initial seeds with 10000 iterations. The Calinski-Harabasz Index (CHI) (Caliński and 

Harabasz, 1974)  is used to determine the optimum number of clusters and is given by  

𝐶𝐻𝐼 =  
𝑛 − 𝐾

𝐾 − 1
×

𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
                                                         … (4) 

where 𝑛= number of data points, 𝐾= number of clusters,  𝐵𝐺𝑆𝑆 =  ∑ 𝑛𝑘||𝐺{𝑘} − 𝐺||2𝐾
𝑘=1  is 

the between the group scatter, 𝐺{𝑘} = centroid of the kth cluster, 𝐺 = centroid of all the 

observations, 𝑊𝐺𝑆𝑆 =  ∑ 𝑊𝐺𝑆𝑆{𝑘}𝐾
𝑘=1  is within the group scatter and 𝑊𝐺𝑆𝑆{𝑘} =

∑ | |𝑀𝑖
{𝑘}

− 𝐺{𝑘}| |2
𝑖𝜖𝐼𝑘

, where 𝑀𝑖
{𝑘}

 are the observations.  The k-means clustering algorithm is 

driven for 1 to 𝑛 clusters. The number of clusters that gives highest value of CHI is the optimum 

number of clusters. These optimum number of clusters is used for assigning ratings. The 

categorized weightages and computed ratings are used to calculate the drought hazard for every 

region as below. 

𝐷𝐻 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 × 𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝑖

𝑡

𝑖=1

                                                 … (5) 

where 𝑡 is the length of MSDI time series. Although the weightages and ratings are intrinsically 

linked, the above scheme assures drought hazard quantification based on magnitudes and 

frequencies. The 𝐷𝐻 values from Eq 5 are standardized as shown below to obtain 𝐷𝐻𝐼 that 

varies between 0 and 1.  

𝐷𝐻𝐼 =
𝐷𝐻 − 𝐷𝐻𝑚𝑖𝑛

𝐷𝐻𝑚𝑎𝑥 − 𝐷𝐻𝑚𝑖𝑛
                                                   … (6) 

The weighing and rating scheme to calculate DHI for a randomly chosen grid is given in Table 

S2.” 
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Table S2. Weighting and rating scheme for DHI calculation for a randomly chosen grid (11˚ 
lat, 75˚ lon) 

MSDI Class Weight 
Frequency of 

occurence 
Rating 

 -0.99 to 0.99 Mild 1 

0.71-0.82 6 

0.60-0.68 5 

0.49-0.57 4 

0.37-0.46 3 

0.26-0.348 2 

0.18-0.24 1 

 -1 to 1.49 Moderate 2 

0.150-0.15 4 

0.13-0.13 3 

0.098-0.098 2 

0.07-0.07 1 

 -1.5 to -1.99 Severe 3 0.04-0.04 1 

 -2 or less Extreme 4 0.016-0.016 1 

 

Line 198-228, Page 7-8 

“2.2.2 Drought vulnerability assessment 

Drought vulnerability forms another important component of drought risk assessment. Several 

aggregation techniques have been employed in the past studies to combine the drought 

vulnerability indicators to assess drought vulnerability. However, we use the robust method – 

TOPSIS (Hwang and Yoon, 1981) owing to its lesser rank reversal probabilities (Sahana et al., 

2021). The steps involved in drought vulnerability assessment is outlined below. 

1. Standardization of numerical drought vulnerability indicators (irrigation index, water 

body fraction, groundwater availability, population density and GDP) is carried out 

such that their values vary between 0 and 1.  

𝑆𝑡𝑑. 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 − 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑖𝑛

𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑎𝑥 − 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑖𝑛
                                                   … (7) 

Suitable weights are assigned to categorical drought vulnerability indicators (LULC, 

slope and soil texture), following  Thomas et al. (2016) and Sahana et al. (2021) (Table 

S1). This gives the decision matrix 𝑛𝑖𝑗, where 𝑖 = 1,2, … 𝑛 represents the number of 

regions and 𝑗 = 1,2, … 𝑚 represents the number of drought vulnerability indicators. 

2. The above decision matrix 𝑛𝑖𝑗 is associated with the indicator weights 𝑤𝑗 obtained from 

the Analytic Hierarchy Process (AHP) method (Sahana et al., 2021). This gives the 

weighted decision matrix 𝑣𝑖𝑗 

𝑣𝑖𝑗 = 𝑤𝑗𝑛𝑖𝑗                                                                      … (8) 
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3. Positive (𝐴+) and Negative (𝐴−) Ideal solution is calculated for each of the indicators. 

 𝐴+ = (𝜈1
+, 𝜈2

+, … 𝜈𝑚
+ ) = [(max 𝜈𝑖𝑗|𝑗 ∈ 𝐼), (min 𝜈𝑖𝑗|𝑗 ∈ 𝐽)]                            … (9) 

 

𝐴− = (𝜈1
−, 𝜈2

−, … 𝜈𝑚
− ) = [(min 𝜈𝑖𝑗|𝑗 ∈ 𝐼), (max 𝜈𝑖𝑗|𝑗 ∈ 𝐽)]                          … (10)  

where 𝐼 and 𝐽 are associated with the benefit and cost criteria respectively. Here 

population density, LULC, slope and soil texture that bear positive correlation with the 

drought vulnerability are considered as benefit criteria. On the other hand, irrigation 

index, groundwater availability, waterbody fraction and GDP that bear negative 

correlation with drought vulnerability are considered as cost criteria.  

4. Positive (𝑑𝑖
+) and negative (𝑑𝑖

−) separation measures for each region 𝑖 are computed 

based on 𝐴+ and 𝐴− (also shown in Figure 1) 

𝑑𝑖
+ =  √∑ (𝜈𝑖𝑗 − 𝜈𝑗

+)2
𝑚

𝑗=1
                                                                  … (11) 

𝑑𝑖
− =  √∑ (𝜈𝑖𝑗 − 𝜈𝑗

−)2
𝑚

𝑗=1
                                                                   … (12) 

5. Relative closeness (𝑅𝑖) of each region to the Positive Ideal Solution is calculated as 

𝑅𝑖 =
𝑑𝑖

−

𝑑𝑖
− + 𝑑𝑖

+                                                        … (13) 

𝑅𝑖 signifies vulnerability of region 𝑖 to drought. 𝑅 is further standardised to vary 

between 0 and 1 to obtain drought vulnerability index (DVI)  

𝐷𝑉𝐼 =
𝑅−𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
                                                                  … (14)" 
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Table S1. Weightages for categorical vulnerability indicators used for vulnerability 

assessment (Thomas et al. 2016; Sahana et al. 2021) 

Vulnerability 

indicator 
Classification Weight 

Normalized 

Weight 

Land use 

Water Body 0 0 

Barren 1 0.04 

Scrub 3 0.12 

Forest 4 0.15 

Agriculture 8 0.31 

Habitation 10 0.38 

Soil 

Silty Clay 2 0.032 

Clay 3 0.048 

Silty Clay Loam 4 0.063 

Clay Loam 5 0.079 

Silt Loam 7 0.111 

Loam 9 0.143 

Sandy Clay Loam 10 0.159 

Sandy Loam 11 0.175 

Loamy Sand 12 0.190 

Slope (%) 

0-1 1 0.048 

1-4 2 0.095 

4-6 4 0.190 

6-10 6 0.286 

>10 8 0.381 
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Figure 1. Framework to assess drought risk evolution. Monthly rainfall and monthly soil 

moisture is used to compute multivariate standardized drought index (MSDI). Weights and 

ratings system of MSDI is adopted to further compute drought hazard index (DHI). Multi-

criteria decision making technique – TOPSIS is used to calculate drought vulnerability index 

(DVI) considering eight drought vulnerability indicators. The product of DHI and DVI is the 

drought risk index (DRI). Drought risk assessment is carried out for Baseline period (1980-

2015), Near future (2021 2050) and Far future (2061-2100) for various climate and socio-

economic scenarios. 
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3) Use of terminology – literature usually talks about vulnerability factors – i.e. the factors that 

make a person or location vulnerable to drought impacts. Also regarding vulnerability 

terminology, you mention components of vulnerability in the introduction (L35-38), how do 

the indicators (or factors) you used map onto these? This could be included in Table 1. Did you 

consider using for example, WorldPop data such that the vulnerability assessment could be 

disaggregated by sex?  

Table 1 is revised to represent sensitivity, adaptive capacity and exposure components of the 

drought vulnerability indicators in terms of their socio-economic, physical and infrastructural 

aspects. We agree with the reviewer that the study would be comprehensive with the inclusion 

of other socio-economic indicators. However, for a densely-populated and rapidly-developing 

nation such as India, acquisition of reliable datasets on these indicators is often challenging. 

Most importantly, unavailability of projections of these indicators over the Indian region limits 

their use in this study, since our primary goal is to compare baseline drought risk with that 

under future projected climate change. This discussion is included in the revised manuscript.  

Line 122-126, Page 4-5 

“An extensive vulnerability assessment encompasses other social and economic vulnerability 

indicators such as those used by Meza et al. (2020). However, for a densely-populated and 

rapidly-developing nation such as India, acquisition of reliable datasets on these indicators is 

often challenging. Most importantly, unavailability of projections of these indicators over the 

Indian region limits their use in this study, since our primary goal is to compare baseline 

drought risk with that under future projected climate change.
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Table 1. Drought vulnerability indicators used for drought vulnerability assessment. The sources for indicators in baseline 

period and projected period along with their relevance and correlation with drought vulnerability is presented. 

Representative indicators to arrive at the drought vulnerability indicators for projected period are also listed. 

 

 

Data 

Relevance to 

drought 

vulnerability 

Correlation 

with drought 

vulnerability 

Past 

studies 

using this 

data 

Observed Projected 

Source Period 
Spatial 

resolution 
Units Details Source Representative Indicator 

Population 

density 

Demographic 

attribute for 

assessing 

social 

vulnerability 

and exposure. 

Positive 

(Carrão et 

al., 2016; 

Rajsekhar 

et al., 

2015) 

NASA 

Socioeconomic 

Data and 

Applications 

Centre (SEDAC) 

(http://sedac.ciesin.

columbia.edu/data/

set/gpw-v4-

population-density) 

2010 1 km 
person/

km2 

 Population density estimates are 

based on the national censuses and 

population registers. 

 Given as population count by area. 

Inter-Sectoral Impact 

Model Intercomparison 

Project (ISIMIP2b 

experiments) data 

archive (Warszawski et 

al., 2014) 

Population (SSP2) 

GDP 

Economic 

welfare for 

assessing 

economic 

vulnerability 

as well as 

adaptive 

capacity. 

Negative 

(Carrão et 

al., 2016; 

Naumann 

et al., 

2014; Wu 

et al., 

2017) 

(Ghosh et al., 

2010) 
2006 1 km 

million

s of 

dollars 

 Defense Meteorological Satellite 

Program’s Operational Linescan 

System (DMSP-OLS) nighttime 

imagery by NOOA to calculate total 

GDP (Ghosh et al., 2010) 

GDP (SSP2) 

Irrigation 

Index 

Adaptive 

capacity 

component. 

High irrigation 

ratio implies 

high adaptive 

capacity and 

lower drought 

vulnerability. 

Negative 

 

(Murthy et 

al., 2015; 

Wu et al., 

2017) 

Web based land 

use statistics 

information system 

https://aps.dac.gov.

in/LUS/Index.htm 

2010 District - 

 Data published by Directorate of 

Economics & Statistics, Department 

Agriculture, Cooperation & Farmers 

Welfare. 

 Land use statistics information 

system is designed and developed by 

Agriculture Informatics Division, 

National Informatics Centre, 

Ministry of Communication & IT, 

Govt. of India, New Delhi. 

 Given as the ratio of irrigated area to 

cropped area. 

Irrigation water consumption, 

Irrigation water withdrawal 

(RCP2.6 –SSP2 & RCP6.0-

SSP2) 

Water bodies 

fraction 

Water 

resources 

(streams/rivers

) and water 

infrastructure 

(dams/reservoi

rs) for 

assessing the 

physical 

vulnerability, 

and provides 

adaptive 

capacity. 

Negative 

 

 

(Naumann 

et al., 

2014) 

Bhuvan-Indian Geo 

Platform 
2010 3’ - 

 Advanced Wide Field Sensor 

(AWiFS) satellite imagery is used by 

NRSC to extract the water bodies 

fraction. 

Surface runoff, Total runoff, 

Total water storage (RCP2.6 –

SSP2 & RCP6.0-SSP2) 

Groundwater 

Adaptive 

capacity 

component to 

cope with 

drought. 

Negative 
(Pandey et 

al., 2010) 

Dynamic Ground 

Water Resources of 

India, Central 

Ground Water 

Board Ministry of 

Water Resources, 

Report on July 

2011, (CGWB, 

2014) 

2011 District ham 

 Groundwater resources assessment 

based on the State and Central 

groundwater boards of India. 

 Net groundwater availability 

estimates are based on the annual 

replenishable groundwater resources 

and the natural discharge during non-

monsoon season. 

Groundwater runoff, Total water 

storage (RCP2.6 –SSP2 & 

RCP6.0-SSP2) 

Land Use 

Land Cover 

(LULC) 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

The USGS Land 

Cover Institute 

(LCI) 

(https://landcover.u

sgs.gov/global_cli

matology.php) 

2001-

2010 
0.5 km - 

 The Collection 5.1 Moderate 

Resolution Imaging 

Spectroradiometer (MODIS) Land 

Cover Type (MCD12Q1) product for 

the period 2001-2010 isused by 

Broxton et al. (2014) to develop 

global land cover. 

NASA Earthdata from 

ORNL DAAC (Chini et 

al., 2014) 

(https://doi.org/10.3334/

ORNLDAAC/1248) 

Fractional Land Use Land Cover 

data (RCP2.6 & RCP6.0) 

Digital 

Elevation 

Model (DEM) 

Spare time for 

water retention 

bestows higher 

adaptive 

capacity in flat 

slope parts. 

Accounts for 

physical 

vulnerability 

to drought. 

Positive 

 

(Ekrami et 

al., 2016; 

Pandey et 

al., 2010) 

SRTM 90 m 

Digital Elevation 

Database v4.1 

(http://www.cgiar-

csi.org/data/srtm-

90m-digital-

elevation-database-

v4-1#download) 

2007 90 m m 
 NASA Shuttle Radar Topography 

Mission elevation data derived from 

interferometric techniques. 

Constant (same as observed) 

Soil Type 

Water holding 

capacity of soil 

based on the 

textural 

properties. 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

FAO Harmonized 

World Soil  

Database (HWSD) 

(http://www.fao.or

g/soils-portal/soil-

survey/soil-maps-

and-

databases/harmoniz

ed-world-soil-

database-v12/en/) 

2003 1 km - 

 Major contributors of the soil data 

for the Indian regions are All India 

Soil and Land use Survey  (1965) 

and the International soil map of 

vegetation by India Council of 

Agricultural Research (FAO-

UNESCO, 1977). 

 Loamy soils are more vulnerable to 

drought compared to clayey soils. 

https://aps.dac.gov.in/LUS/Index.htm
https://aps.dac.gov.in/LUS/Index.htm
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A final question on the factors used, how do the vulnerability factors selected address the exposure 

component? Although a population may be vulnerable to the impact of drought, they may not be 

exposed to drought or may be exposed to a lower severity of drought hazard than in other locations, 

for example. 

In this study, population density, land use and soil type constitute the exposure indicators for 

drought vulnerability assessment (Table 1). We agree with the reviewer that a highly vulnerable 

population might be exposed to mild droughts or no droughts at all. These differences are precisely 

accounted in the overall drought risk estimates, since we characterize risk as a combination of 

vulnerability and hazard. For eg., if the hazard is low in a region, it is likely to be classified as ‘low 

to moderate’ in terms of drought risk, despite having high vulnerability. This discussion is included 

in the revised manuscript.  

Line 241-243, Page 8 

“Further, circumstances such as highly vulnerable population being exposed to mild droughts or 

no droughts at all may arrive, and are handled well due to the integrated assessment of drought 

risk. For eg., if the hazard is low in a region, it is likely to be classified as ‘low to moderate’ in 

terms of drought risk, despite having high vulnerability.” 

4) The baseline period used (1980-2015) excludes the past six years, excluding significant drought 

events in 2016-2018 and 2021. Is there a way that updated precipitation data could be obtained 

and analysed to include these recent events? 

We have used hydro-climatic and socio-economic variables for the period 1980-2015 to ensure 

overlap between drought hazard and vulnerability indicators for the baseline period. The overall 

risk estimates may be misleading if the exposure, adaptive capacity and sensitivity indicators are 

overlayed on hazard events of dissimilar timelines. Further, our analysis takes into account the 

major drought episodes of 1982, 1984, 1986, 1987, 1989, 1991, 2000, 2002 and 2015 as identified 

by earlier study (Sahana et al., 2020). Among them, the major drought episodes of 2002 and 2015 

had severely impacted multiple sectors of the country. For example, agricultural contributions to 

GDP dipped by 3.1% along with heavy agricultural income losses in the 2002 drought event 
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(DownToEarth, 2015), while the 2015 drought event affected over 330 million people (BBC India, 

2016), and reservoir levels dropped to minimal values (The Times of India, 2016). These events 

contribute to the hazard assessment in this study. Additional inclusion of subsequent droughts of 

2016-2018 and 2020 is unlikely to significantly alter our conclusions.  

5)  L140-142: the first sentence here states that variability of the two scenarios increased over time, 

but the second states that the baseline period is more variable than the projected period. I am not 

sure how both of these statements can be true, nor am I convinced I can see these difference in the 

time series for precipitation or soil moisture. Please clarify this point further.  

Figure 2 is updated to include the time series of precipitation and soil moisture for the baseline 

period as well (1980-2015). It is observed that the variability of both the variables in the projected 

period increases with time. However, it is evident from Figure 2, that the variability in the hydro-

climatic variables in the baseline period is high compared to the projected period. This is clarified 

in the revised manuscript. 

Line 280-285, Page 11 

“From Figure 2a, S1 and S2, we see that precipitation and soil moisture for the projected period 

show an increasing trend. Further, it is to be noted that the hazard assessment using MSDI is based 

on the long term mean and variability of these drought indicators under a probabilistic analysis 

framework, and not necessarily the magnitudes of precipitation and soil moisture. Here we see that 

the projections of these indicators exhibit lower variability compared to the baseline period (Figure 

2a). Therefore, it is observed that many regions undergo transition from high hazard to low 

hazard.” 
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Figure 2. Datasets used for drought risk assessment. a) Projected hydro-climatic variables such as 

monthly precipitation and monthly soil moisture are used for drought hazard assessment. b) 

Projected drought vulnerability indicators such as irrigation index, water body fraction, 

groundwater availability, population, GDP and land use land cover, along with static drought 

vulnerability indicators such as slope and soil texture are used for drought vulnerability 

assessment. Datasets for projected period are divided into Near future (2021-2060) and Far future 

(2061-2100) to check the evolution of drought risk. 

 

This also applies to Table 3 and the text in L199-205, and Table 4 and text L232-233. 

Table 3 and Table 4 represent the transition of drought vulnerability/risk from one class of 

vulnerability/risk from baseline to another class of vulnerability/risk in the future. In general, 



37 

 
 

 

socio-economic development is a slow process, and takes time to reflect in terms of significant 

changes in the socio-economic indicators (Dellink et al., 2017). Further, majority of the drought 

vulnerability/risk studies across the globe have adopted static vulnerability assessment that 

represent drought vulnerability snapshot in time (Hagenlocher et al., 2019). Therefore, we used 

the static vulnerability indicators for the year 2010, 2060 and 2099 to quantify drought 

vulnerability for the baseline, Far future and Near future period respectively. In the case of drought 

risk assessment, the drought hazard capturing the droughts in baseline (1980-2015), Near (2021-

2060) and Far (2061-2099) future period is combined with drought vulnerability at 2010, 2060 and 

2099 respectively. This is clarified in the revised manuscript. 

Line 336-337, Page 15 

“The transition of drought vulnerability from one class of vulnerability from baseline to another 

class of vulnerability in the future is given in Table 3.” 

Line 375-376, Page 17 

“The transition of drought risk from one class of vulnerability from baseline to another class of 

risk in the future is given in Table 4.” 

Line 129-134, Page 5 

“In general, socio-economic development is a slow process, and takes time to reflect in terms of 

significant changes in the socio-economic indicators (Dellink et al., 2017). Further, majority of the 

drought vulnerability/risk studies across the globe have adopted static vulnerability assessment 

that represent drought vulnerability snapshot in time (Hagenlocher et al., 2019). Therefore, we 

used the static vulnerability indicators for the year 2010, 2060 and 2099 to quantify drought 

vulnerability for the baseline, Near future and Far future period respectively.” 

Line 231-232, Page 8 

“Accordingly, the drought hazard capturing the droughts in baseline (1980-2015), Near (2021-

2060) and Far (2061-2099) future period is combined with drought vulnerability at 2010, 2060 and 

2099 respectively.” 



38 

 
 

 

Figure 7 is mentioned only on two lines at the end of Section 3.3.1, could this summary be referred 

to in the previous discussions of hazard, vulnerability and risk as it is a more intuitive figure to 

understand than tables shown in Tables 2, 3 and 4. 

Figure 7 is referred for the discussion on hazard, vulnerability and risk projections.  

Line 397-401, Page 18 

“Of all the future drought hazard scenarios considered, the RCP2.6-Far scenario revealed the 

largest area (2.8%) under high and very high hazard classes. In the case of drought vulnerability, 

as high as 42.9% area transits from lower vulnerability classes to higher vulnerability classes under 

RCP6.0-SSP2 Near future, with 93% area of the country under high and very high drought 

vulnerability class. Further, in the worst case drought risk scenario (RCP6.0-SSP2 Far future), it 

is observed that 2.7% area of the country is under high and very high drought risk class.” 

 
6)  L233-238: Here you state that the RCP6.0-SSP2 Far future scenario is not the worst case for 

drought vulnerability, but was the most severe for drought risk due to the hazard component (L233-

235). Then on L236-238 in the discussion of Figure 6, you state that drought vulnerability makes 

up the majority of the drought risk for the same scenarios. Please could you clarify these seemingly 

contradictory statements. I do not disagree with the point that we need more holistic drought risk 

assessment though. 

Risk is an outcome of interaction between hazard and vulnerability, and is also a function of time. 

The fact that worst case scenarios are different for drought hazard and drought vulnerability, 

indicates dissimilar behavior of drought hazard and vulnerability indicators in   inducing drought 

risk. For eg. population density is high in the Near future period (2060) as compared to the Far 

future (2100), while precipitation is continuously increasing in the projected period. A 

combination of such different hazard and vulnerability behavior in a given time period is 

effectively captured through comprehensive risk analysis. Therefore, though RCP6.0-SSP2 Far 

future scenario is not the worst-case scenario for drought vulnerability compared to RCP6.0-SSP2 

Near future, interaction of high hazard with moderate to high vulnerability resulted in worst 

drought risk scenario in the case of RCP6.0-SSP2 Far future. However, in general, when the 
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change in drought risk for all the future scenarios are compared with the baseline, it is observed 

that area falling under drought risk due to drought vulnerability is increased (Figure 6). Therefore, 

though seemingly contradictory, the statements pointed out by the reviewer reflect realistic and to 

a large extent, expected drought risk behavior. Clarification on the above discussion is included in 

the revised manuscript. 

Line 380-389, Page 17-18 

“Risk is an outcome of interaction between hazard and vulnerability, and is also a function of time. 

The fact that worst case scenarios are different for drought hazard and drought vulnerability, 

indicates dissimilar behavior of drought hazard and vulnerability indicators in   inducing drought 

risk. For eg. population density is high in the Near future period (2060) as compared to the Far 

future (2100), while precipitation is continuously increasing in the projected period. A 

combination of such different hazard and vulnerability behavior in a given time period is 

effectively captured through comprehensive risk analysis. Therefore, though RCP6.0-SSP2 Far 

future scenario is not the worst-case scenario for drought vulnerability compared to RCP6.0-SSP2 

Near future, interaction of high hazard with moderate to high vulnerability resulted in worst 

drought risk scenario in the case of RCP6.0-SSP2 Far future. However, in general, when the 

change in drought risk for all the future scenarios are compared with the baseline, it is observed 

that area falling under drought risk due to drought vulnerability is increased (Figure 6).” 

7) Section 3.3.2: At what spatial scale is this information useful to policy makers? You could 

consider whether the gridded data used here is relevant to that of decision makers.  

The usability of the developed hazard, vulnerability and risk maps in terms of their spatial scale, 

and potential applications by stakeholders and decision makers are elaborated in the revised 

manuscript. 

Line 403-414, Page 18 

“The drought hazard, vulnerability and risk projection maps from the present study, developed at 

0.5° lat.× 0.5° lon spatial resolution are comparable with blocks/district level area. Therefore, these 

maps can assist the block-level administrators to know region-specific causative factors inducing 
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severe drought risk both in baseline and projected period, besides the indigenous components 

governing the drought risk. Also, these maps can inform the state or federal disaster management 

authorities concerning the climate action plans. The change in drought risk at different projected 

periods can modulate adaptation and mitigation strategies and can be included in decision support 

system for drought management. Since drought risk is found to be mainly driven by societal 

factors, action plans should be directed to improve socio-economic conditions. Groundwater 

conservation, conjunctive use of surface and groundwater, farmer participation in crop insurance, 

water saving farm practices and technologies are some important measures that can be adopted for 

raising the socio-economic standards. Further, the framework of our study is applicable for state-

wise drought risk assessment with reliable hydro-climatic and socio-economic indicators. Such an 

assessment can recommend measures for watershed management, irrigation and agricultural 

practices and reorganizing water demand and supply management at a local scale.” 

8) L269-270: You say here that this study is an improvement for decision makers over existing 

drought risk assessment in India. Please briefly state what this improvement is. 

A brief explanation of the improvement made in our study is now included in the revised 

manuscript. 

Line 432-438, Page 21 

“Drought risk projection studies undertaken over the Indian region are based on drought hazard 

alone, and no consideration has been given to the drought vulnerability component. The present 

study quantifies the relative contribution of drought hazard and drought vulnerability to the overall 

drought risk projections under a comprehensive risk framework. Thus, our analysis can aid 

different stakeholders involved in drought management for adaptation and mitigation plans under 

changing climate and socio-economic conditions. This marks the significant improvement of our 

study over existing studies on drought risk assessment in India under climate change.” 

Supplementary information  

 

9) The description of the categorisation of the MSDI at the bottom of page 2 is not clear and should 

be expanded – for example, it should be clearly stated which categories from McKee et al., - 
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presumably extreme drought, severe drought, moderate drought etc., but you should include the 

thresholds and categories used in this study here. The meaning of the following two sentences 

(“Further, each category is organised into sub-groups based on the occurrence probabilities of the 

selected category. While the weightages are assigned to MSDI categories to account for drought 

magnitude, ratings are assigned to the sub-groups of each MSDI category to account for drought 

occurrence probability”) are aren’t sufficiently clear; the methodology of how weights were 

assigned should be described more clearly – for example, you start talking about ratings and 

clusters, and it is not clear what these are used for. 

Our response to Reviewer #2, comment #2 addresses this comment. 

10) The description of the drought vulnerability index is also overly complex and should be 

clarified by describing the process in words. You should also be specific for example on how 

exactly data were standardised and what is meant by ‘suitable weights’ – what makes them 

suitable, how have these be validated and checked. 

Drought vulnerability assessment method is moved to main manuscript with detailed explanation 

starting from data standardization. Weights for categorical indicators are shown in Table S1. 

Further, our response to Reviewer #2, comment #2 clarifies the concerns from this comment. 

Minor issues  

11) In several places e.g. L119 and in the supplementary information you mention that data have 

been standardised, please explain how these data are standardised (e.g. across time or space).  

Drought risk values are standardized spatially. This is clarified in the revised manuscript. 

Line 237-240, Page 8 

“Drought risk values computed using Eq 15 are further standardized spatially to obtain the 

Drought Risk Index (DRI). Standardization of drought risk at each grid is carried out using the 

equation 

𝐷𝑅𝐼 =
𝑅𝑠𝑖𝑘 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛

𝑅𝑖𝑠𝑘𝑚𝑎𝑥 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛  
                                … (16) 



42 

 
 

 

Standardization is performed such that the values are distributed between 0 and 1, so as to 

classify different risk categories." 

12) L99-100: ‘…and brought to a monthly time-scales.’ This isn’t clear – how and what metric? 

Total precipitation? Average soil moisture? Please expand on this comment.  

The projected daily precipitation is cumulated over each month to get the monthly precipitation 

values and converted its units from kg m-2 s-1 to mm. The projected monthly soil moisture (average 

monthly soil moisture) from the model is converted from kg m-2 to m3/m3. This is clarified in the 

revised manuscript. 

Line 108-111, Page 4 

“The projected daily precipitation is cumulated over each month to get the monthly precipitation 

values and converted its units from kg m-2 s-1 to mm. The projected monthly soil moisture (average 

monthly soil moisture) from the model is converted from kg m-2 to m3/m3.” 

13) L139: ‘the country-accumulated data of these hydro-climatic variables…’ please clarify how 

these data were accumulated  

Data is summed over all grids. This is clarified in the revised manuscript. 

Line 263, Page 11 

“The country-wide accumulated data (summed over all grids) of these hydro-climatic variables is 

shown in Figure 2.” 

14) L145: ‘ …many regions is less severe compared to the baseline period.’ Word missing  

This is corrected in the revised manuscript. 

Line 273, Page 11 

 “…many regions is less severe compared to the baseline period.” 

15) L168-169: It is not clear whether this choice of low skill GCMs was in the current study or 

Koutroulis et al and Cook et al. – note that this same comment is also made on L209-210.  
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We have now clarified these statements in the revised manuscript. 

Line 303-305, Page 12 

“Such contradicting observations are possibly due to selection of low-skill GCMs (Aadhar and 

Mishra, 2020) in Koutroulis et al. (2019) & Cook et al. (2020).”  

Line 346-347, page 15 

“Such contradicting observations in drought vulnerability is possibly due the choice of low-skill 

GCMs in Koutroulis et al. (2019).” 

16) L193: Highest differences…  The biggest difference in…  

Done. 

Line 329, Page 15 

“The biggest difference in land use land cover…” 

17) L198: many region of the country are expected to  

Done 

Line 333-334, Page 15 

“It is observed that many regions of the country are…” 

18) L211: …sub-division-wise…  

Done 

Line 348, Page 15 

“…meteorological sub-division scale…” 

19) L211: Here you mention meteorological sub-divisions, what exactly does this mean, how were 

these defined? 
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Meteorological sub-divisions are the meteorologically homogenous regions identified by India 

Meteorological Department (Kelkar and Sreejith, 2020). This is clarified in the revised manuscript. 

Line 348-349, Page 15 

“Meteorological sub-divisions are the meteorologically homogenous regions identified by India 

Meteorological Department (Kelkar and Sreejith, 2020).” 

20) L222: …expected to be under high risk to drought compared…  …expected to have a high 

drought risk compared…  

Done. 

Line 360, Page 17 

“…are expected to have high drought risk compared…” 

21) A mix of tenses seems to be used throughout, this should be reviewed, ensuing that the past 

tense is used where appropriate.  

Noted and revised. 

22) In some places ‘Far Future’ is capitalised and others it is not – you should ensure this is 

consistent. 

Noted and revised.  

Tables and Figures  

23) Table 1: Please also included the last date that the factors were updated and the date range that 

was available. Some of the descriptions of the datasets are unclear, for example, Water Bodies 

Fraction and Groundwater – it is not clear what these data actually are, and what they’re measuring. 

It would be useful to include the unit of each factor where appropriate, e.g. for ‘Groundwater’, 

‘Water Bodies Fraction’  

Table 1 is revised as per the reviewer’s suggestion, and included in the revised manuscript. 
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24) Table 2: I find these tables unintuitive and difficult to marry up with the description of results 

in the text. e.g. L149-15150: ‘The future drought hazard assessment using the projected hydro-

climatic variables revealed that more than 35% area of the country is expected to be under the low 

hazard class, as compared to 8% in the baseline period’ – I can’t seem to make any of the very low 

hazard boxes up to these numbers or the difference between them. You could consider adding a 

more detailed example walk through of what this table means. There is also no reference to or 

legend for the colour scheme used here.  

We have referred to Figure 7 for these numbers as 

Line 285-287, Page 11 

 “The future drought hazard assessment using the projected hydro-climatic variables revealed that 

more than 35% area of the country is expected to be under the low hazard class, as compared to 

8% in the baseline period (refer Table 2 and Figure 7).”  

Caption for Table 2 is revised and explained as  

Page 14 

“Table 2. Transition of drought hazard from baseline period to projected period. The value in each 

cell represents the change in % area of the country from one hazard class to another. Red color 

shows transition, and blue represents no transition.”  

A detailed explanation of the table is included. 

Line 274-278, Page 11 

“The hazard transition from the baseline to different scenarios is presented in Table 2. In the 

transition matrix we compute the % area of the country that transitioned from one hazard class to 

other, to quantify the effect of climate change. The upper triangle in the table represents % area 

transition from lower to higher hazard classes, the lower triangle represents % area transition from 

higher to lower hazard classes, and the diagonal elements represent % area with no transition.” 

25) Table 3 & 4: I assume these are all showing SSP2 scenarios, please clarify in the caption.  
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Tables are now updated in the revised manuscript indicating SSP2 scenarios. 

Page 16 

Table 3. Transition of drought vulnerability from baseline period to projected period. The value in 

each cell represents the change in % area of the country from one vulnerability class to another. 

Red color shows transition, and blue represents no transition. 

 

Page 19 

Table 4. Transition of drought risk from baseline period to projected period. The value in each cell 

represents the change in % area of the country from one risk class to another. Red color shows 

transition, and blue represents no transition. 
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26) Figure 1: it would be helpful to refer to this figure in the description of methods included in 

the Supplementary Information. The DHI and DVI should be directly referenced in this figure to 

clarify when these are calculated in the processing chain – including mention of the baseline 

period.  

In the revised methodology have referred to Figure 1 in the calculation of DHI and DVI as  

Line 180-181, Page 6 

“The weightage and rating scheme is depicted graphically in Figure 1.”  

Line 220-221, Page 8 

“Positive (𝑑𝑖
+) and negative (𝑑𝑖

−) separation measures for each region 𝑖 are computed based on 𝐴+ 

and 𝐴− (also shown in Figure 1).” 

27) Figure 4: There are some parts that are white, yet white is not mentioned in the legend.  

White regions represent no data region.  Legend for Figure 4 is revised accordingly.  
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Page 16 

 

Figure 4. Multi-model ensemble drought vulnerability maps for the scenarios a) Baseline, b) 

RCP2.6-SSP2 Near future, c) RCP2.6-SSP2 Far future, d) RCP6.0-SSP2 Near future, e) RCP6.0-

SSP2 Far future. 

28) Figure 5: I recommend adding another colour to the legend here to highlight the higher risk 

areas (such as a dark red or similar). Do the classes used represent any specific categories of risk? 

Color of the legend is changed as per the suggestion. The classes here represent very low, low, 

medium, high and very high risk categories, and are indicated in the legend of the figure. 
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Page 19 

Figure 5. Multi-model ensemble drought risk maps for the scenarios a) Baseline, b) RCP2.6-SSP2 

Near future, c) RCP2.6-SSP2 Far future, d) RCP6.0-SSP2 Near future, e) RCP6.0-SSP2 Far future. 
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