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change. 

Authors: Venkataswamy Sahana, Arpita Mondal 

We thank the Reviewer for reviewing our manuscript and providing valuable feedback that 

have helped improve the quality of the work significantly. In this document, we provide a point 

by point response and actions taken on the comments and suggestions from the reviewers.  

Responses to comments from Referee #2 

Summary  

1) This paper presents a drought risk assessment for India for a baseline period and for two 

RCPs and two SSPs. The methodology used seems appropriate for the data used and spatial 

scale considered. The authors found that drought risk was primarily comprised of the drought 

vulnerability component, rather than the hazard, these results were shown effectively using 

bivariate maps. Overall, I found this an interesting paper with results and outcomes that could 

be useful for drought planning and mitigation at the high level in India. However, I found that 

the clarity of the paper could be improved and made more expansive making it easier to follow 

and reproduce elsewhere. Specific examples are discussed below. I recommend that this paper 

is revised before publication to clarify key methodological points highlighted below. 

We thank the reviewer for the positive and encouraging comments. We have addressed the 

reviewer concerns and provided explanation and clarity on the methods. 

 

Major comments  

2) I found the description of the methods to calculate the DHI and DVI in the supplementary 

information unclear, with not enough detail provided on the steps and processes with no further 

information provided (some examples listed below regarding weighting and standardisation). 

I would like to see the methods in the main body of the paper expanded. I recommend that all 

the whole methodology is moved to the main body of the paper, rather than the fundamental 

steps being in the supplementary information. I would also suggest that Figure 1 in the main 
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body of the paper is expanded, with more detail and steps added to fully capture the 

methodological steps described in the paper – this is further discussed below. 

We will move the methods on hazard and vulnerability computation to the main manuscript. 

Further, an example on the drought hazard calculation depicting the weights and ratings for a 

randomly chosen location is given in Table S2. We have included more details about the 

methods in Figure 1.  

Drought hazard assessment 

Drought hazard forms an important component of drought risk assessment. Here, we assess the 

country-wide drought hazard based on the deficiencies in precipitation and soil moisture. 

Therefore, the multivariate standardized drought index (MSDI) of the non-parametric form is 

computed using the bivariate case of Gringorten plotting position formula (Gringorten, 1963). 

The steps involved in the calculation of MSDI is presented below. 

1. The joint probability distribution of the 1-month time scale precipitation (𝑅) and soil 

moisture (𝑆) is given by 

𝑃 (𝑅 ≤  𝑟, 𝑆 ≤  𝑠) = 𝑝                                              … (1) 

where 𝑝 represents the joint probability of the precipitation and soil moisture. 

2. For the sample size 𝑛, the count of occurrence of the pair (𝑟𝑖, 𝑠𝑖) for 𝑟𝑖 ≤ 𝑟𝑘  and 𝑠𝑖 ≤

𝑠𝑘 is denoted as 𝑚𝑘. This count is used to derive the empirical joint probability for the 

bivariate case with the Gringorten plotting position (Gringorten, 1963) as 

𝑃(𝑟𝑘, 𝑠𝑘) =
𝑚𝑘 − 0.44

𝑛 + 0.12
                                                          … (2) 

3. The above empirical joint probability is then standardized to obtain the multivariate 

index MSDI. 

𝑀𝑆𝐷𝐼 =  𝜑−1(𝑃)                                                  … (3) 

where 𝜑 is the standard normal distribution function. Since the empirical distributions use ranks 

of data instead of actual values, the sample size should be sufficiently large. 

The method of drought hazard assessment followed in the present study is based on Kim et al. 

(2015). Hazard is measured as the product of magnitude and the associated frequency of 

occurrence of an event. The MSDI time series at each region is categorized into four groups 
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similar to Mckee et al. (1993).  These categories are assigned weights according to the 

magnitude of MSDI value. Higher weights will be assigned to worst (high negative) MSDI 

values, and vice versa. Further, each weight category is divided into different clusters based on 

the frequency of occurrence of MSDI values. The total number of clusters for ratings in each 

MSDI category is determined using the prominent k-means data clustering algorithm. Higher 

ratings will be assigned to the cluster with high frequency values, and vice versa. The 

weightage and rating scheme is depicted graphically in Figure 1. In the k-means clustering 

technique, distance between the data points is computed using the squared Euclidean distance 

metric. To avoid the convergence to local minima, the k-means algorithm is run with 100 

random initial seeds with 10000 iterations. The Calinski-Harabasz Index (CHI) (Caliński and 

Harabasz, 1974)  is used to determine the optimum number of clusters and is given by  

𝐶𝐻𝐼 =  
𝑛 − 𝐾

𝐾 − 1
×

𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
                                                         … (4) 

where 𝑛= number of data points, 𝐾= number of clusters,  𝐵𝐺𝑆𝑆 =  ∑ 𝑛𝑘||𝐺{𝑘} − 𝐺||2𝐾
𝑘=1  is 

the between the group scatter, 𝐺{𝑘} = centroid of the kth cluster, 𝐺 = centroid of all the 

observations, 𝑊𝐺𝑆𝑆 =  ∑ 𝑊𝐺𝑆𝑆{𝑘}𝐾
𝑘=1  is within the group scatter and 𝑊𝐺𝑆𝑆{𝑘} =

∑ | |𝑀𝑖
{𝑘}

− 𝐺{𝑘}| |2
𝑖𝜖𝐼𝑘

, where 𝑀𝑖
{𝑘}

 are the observations.  The k-means clustering algorithm is 

driven for 1 to 𝑛 clusters. The number of clusters that gives highest value of CHI is the optimum 

number of clusters. These optimum number of clusters is used for assigning ratings. The 

categorized weightages and computed ratings are used to calculate the drought hazard for every 

region as below. 

𝐷𝐻 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 × 𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝑖

𝑡

𝑖=1

                                                 … (5) 

where 𝑡 is the length of MSDI time series. Although the weightages and ratings are intrinsically 

linked, the above scheme assures drought hazard quantification based on magnitudes and 

frequencies. The 𝐷𝐻 values from Eq 5 are standardized as shown below to obtain 𝐷𝐻𝐼 that 

varies between 0 and 1.  

𝐷𝐻𝐼 =
𝐷𝐻 − 𝐷𝐻𝑚𝑖𝑛

𝐷𝐻𝑚𝑎𝑥 − 𝐷𝐻𝑚𝑖𝑛
                                                   … (6) 

The weighing and rating scheme to calculate DHI for a randomly chosen grid is given in Table 

S1. ” 
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Table S1. Weighting and rating scheme for DHI calculation for a randomly chosen grid (11˚ 
lat, 75˚ lon) 

MSDI Class Weight 
Frequency of 

occurence 
Rating 

 -0.99 to 0.99 Mild 1 

0.71-0.82 6 

0.60-0.68 5 

0.49-0.57 4 

0.37-0.46 3 

0.26-0.348 2 

0.18-0.24 1 

 -1 to 1.49 Moderate 2 

0.150-0.15 4 

0.13-0.13 3 

0.098-0.098 2 

0.07-0.07 1 

 -1.5 to -1.99 Severe 3 0.04-0.04 1 

 -2 or less Extreme 4 0.016-0.016 1 

 

Drought vulnerability assessment 

Drought vulnerability forms another important component of drought risk assessment. Several 

aggregation techniques have been employed in the past studies to combine the drought 

vulnerability indicators to assess drought vulnerability. However, we use the robust method – 

TOPSIS (Hwang and Yoon, 1981) owing to its lesser rank reversal probabilities (Sahana et al., 

2021). The steps involved in drought vulnerability assessment is outlined as below. 

1. Standardization of numerical drought vulnerability indicators (irrigation index, water 

body fraction, groundwater availability, population density and GDP) is carried out 

such that their values vary between 0 and 1.  

𝑆𝑡𝑑. 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 − 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑖𝑛

𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑎𝑥 − 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑚𝑖𝑛
                                                   … (7) 

Suitable weights are assigned to categorical drought vulnerability indicators (LULC, 

slope and soil texture), following  Thomas et al. (2016) and Sahana et al. (2021) (Table 

S2). This gives the decision matrix 𝑛𝑖𝑗, where 𝑖 = 1,2, … 𝑛 represents the number of 

regions and 𝑗 = 1,2, … 𝑚 represents the number of drought vulnerability indicators. 

2. The above decision matrix 𝑛𝑖𝑗 is associated with the indicator weights 𝑤𝑗 obtained from 

the Analytic Hierarchy Process (AHP) method (Sahana et al., 2021). This gives the 

weighted decision matrix 𝑣𝑖𝑗 

𝑣𝑖𝑗 = 𝑤𝑗𝑛𝑖𝑗                                                             … (8) 
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3. Positive (𝐴+) and Negative (𝐴−) Ideal solution is calculated for each of the indicators. 

 𝐴+ = (𝜈1
+, 𝜈2

+, … 𝜈𝑚
+ ) = [(max 𝜈𝑖𝑗|𝑗 ∈ 𝐼), (min 𝜈𝑖𝑗|𝑗 ∈ 𝐽)]                … (9) 

 

𝐴− = (𝜈1
−, 𝜈2

−, … 𝜈𝑚
− ) = [(min 𝜈𝑖𝑗|𝑗 ∈ 𝐼), (max 𝜈𝑖𝑗|𝑗 ∈ 𝐽)]               … (10)  

where 𝐼 and 𝐽 are associated with the benefit and cost criteria respectively. Here 

population density, LULC, slope and soil texture that bear positive correlation with the 

drought vulnerability are considered as benefit criteria. On the other hand, irrigation 

index, groundwater availability, waterbody fraction and GDP that bear negative 

correlation with drought vulnerability are considered as cost criteria.  

4. Positive (𝑑𝑖
+) and negative (𝑑𝑖

−) separation measures for each region 𝑖 are computed 

based on 𝐴+ and 𝐴− (also shown in Figure 1) 

𝑑𝑖
+ =  √∑ (𝜈𝑖𝑗 − 𝜈𝑗

+)2
𝑚

𝑗=1
                                  … (11) 

𝑑𝑖
− =  √∑ (𝜈𝑖𝑗 − 𝜈𝑗

−)2
𝑚

𝑗=1
                                   … (12) 

5. Relative closeness (𝑅𝑖) of each region to the Positive Ideal Solution is calculated as 

𝑅𝑖 =
𝑑𝑖

−

𝑑𝑖
− + 𝑑𝑖

+                                                        … (13) 

𝑅𝑖 signifies vulnerability of region 𝑖 to drought. 𝑅 is further standardised to vary 

between 0 and 1 to obtain drought vulnerability index (DVI)  

𝐷𝑉𝐼 =
𝑅 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
                                                    … (14) 

 

Table S2. Weightages for categorical vulnerability indicators used for vulnerability 

assessment (Thomas et al. 2016; Sahana et al. 2021) 

Vulnerability 

indicator 
Classification Weight 

Normalized 

Weight 

Land use 

Water Body 0 0 

Barren 1 0.04 

Scrub 3 0.12 

Forest 4 0.15 

Agriculture 8 0.31 

Habitation 10 0.38 

Soil 

Silty Clay 2 0.032 

Clay 3 0.048 

Silty Clay Loam 4 0.063 

Clay Loam 5 0.079 
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Silt Loam 7 0.111 

Loam 9 0.143 

Sandy Clay Loam 10 0.159 

Sandy Loam 11 0.175 

Loamy Sand 12 0.190 

Slope (%) 

0-1 1 0.048 

1-4 2 0.095 

4-6 4 0.190 

6-10 6 0.286 

>10 8 0.381 
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Figure 1. Framework to assess drought risk evolution. Monthly rainfall and monthly soil 

moisture is used to compute multivariate standardized drought index (MSDI). Weights and 

ratings system of MSDI is adopted to further compute drought hazard index (DHI). Multi-

criteria decision making technique – TOPSIS is used to calculate drought vulnerability index 

(DVI) considering eight drought vulnerability indicators. The product of DHI and DVI is the 

drought risk index (DRI). Drought risk assessment is carried out for baseline period (1980-

2015), near future (2021 2050) and far future (2061-2100) for various climate and socio-

economic scenarios. 
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3) Use of terminology – literature usually talks about vulnerability factors – i.e. the factors that 

make a person or location vulnerable to drought impacts. Also regarding vulnerability 

terminology, you mention components of vulnerability in the introduction (L35-38), how do 

the indicators (or factors) you used map onto these? This could be included in Table 1. Did you 

consider using for example, WorldPop data such that the vulnerability assessment could be 

disaggregated by sex?  

Table 1 is revised to represent sensitivity, adaptive capacity and exposure components of the 

drought vulnerability indicators in terms of their socio-economic, physical and infrastructural 

aspects. We agree with the reviewer that the study would be comprehensive with the inclusion 

of other socio-economic indicators. However, for a densely-populated and rapidly-developing 

nation such as India, acquisition of reliable datasets on these indicators is often challenging. 

Most importantly, unavailability of projections of these indicators over the Indian region limits 

their use in this study, since our primary goal is to compare baseline drought risk with that 

under future projected climate change. This discussion will be included in the revised 

manuscript.  
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Table 1. Drought vulnerability indicators used for drought vulnerability assessment. The sources for indicators in baseline 

period and projected period along with their relevance and correlation with drought vulnerability is presented. 

Representative indicators to arrive at the drought vulnerability indicators for projected period are also listed. 

 

 

Data 

Relevance to 

drought 

vulnerability 

Correlation 

with drought 

vulnerability 

Past 

studies 

using this 

data 

Observed Projected 

Source Period 
Spatial 

resolution 
Units Details Source Representative Indicator 

Population 

density 

Demographic 

attribute for 

assessing 

social 

vulnerability 

and exposure. 

Positive 

(Carrão et 

al., 2016; 

Rajsekhar 

et al., 

2015) 

NASA 

Socioeconomic 

Data and 

Applications 

Centre (SEDAC) 

(http://sedac.ciesin.

columbia.edu/data/

set/gpw-v4-

population-density) 

2010 1 km 
person/

km2 

 Population density estimates are 

based on the national censuses and 

population registers. 

 Given as population count by area. 

Inter-Sectoral Impact 

Model Intercomparison 

Project (ISIMIP2b 

experiments) data 

archive (Warszawski et 

al., 2014) 

Population (SSP2) 

GDP 

Economic 

welfare for 

assessing 

economic 

vulnerability 

as well as 

adaptive 

capacity. 

Negative 

(Carrão et 

al., 2016; 

Naumann 

et al., 

2014; Wu 

et al., 

2017) 

(Ghosh et al., 

2010) 
2006 1 km 

million

s of 

dollars 

 Defense Meteorological Satellite 

Program’s Operational Linescan 

System (DMSP-OLS) nighttime 

imagery by NOOA to calculate total 

GDP (Ghosh et al., 2010) 

GDP (SSP2) 

Irrigation 

Index 

Adaptive 

capacity 

component. 

High irrigation 

ratio implies 

high adaptive 

capacity and 

lower drought 

vulnerability. 

Negative 

 

(Murthy et 

al., 2015; 

Wu et al., 

2017) 

Web based land 

use statistics 

information system 

https://aps.dac.gov.

in/LUS/Index.htm 

2010 District - 

 Data published by Directorate of 

Economics & Statistics, Department 

Agriculture, Cooperation & Farmers 

Welfare. 

 Land use statistics information 

system is designed and developed by 

Agriculture Informatics Division, 

National Informatics Centre, 

Ministry of Communication & IT, 

Govt. of India, New Delhi. 

 Given as the ratio of irrigated area to 

cropped area. 

Irrigation water consumption, 

Irrigation water withdrawal 

(RCP2.6 –SSP2 & RCP6.0-

SSP2) 

Water bodies 

fraction 

Water 

resources 

(streams/rivers

) and water 

infrastructure 

(dams/reservoi

rs) for 

assessing the 

physical 

vulnerability, 

and provides 

adaptive 

capacity. 

Negative 

 

 

(Naumann 

et al., 

2014) 

Bhuvan-Indian Geo 

Platform 
2010 3’ - 

 Advanced Wide Field Sensor 

(AWiFS) satellite imagery is used by 

NRSC to extract the water bodies 

fraction. 

Surface runoff, Total runoff, 

Total water storage (RCP2.6 –

SSP2 & RCP6.0-SSP2) 

Groundwater 

Adaptive 

capacity 

component to 

cope with 

drought. 

Negative 
(Pandey et 

al., 2010) 

Dynamic Ground 

Water Resources of 

India, Central 

Ground Water 

Board Ministry of 

Water Resources, 

Report on July 

2011, (CGWB, 

2014) 

2011 District ham 

 Groundwater resources assessment 

based on the State and Central 

groundwater boards of India. 

 Net groundwater availability 

estimates are based on the annual 

replenishable groundwater resources 

and the natural discharge during non-

monsoon season. 

Groundwater runoff, Total water 

storage (RCP2.6 –SSP2 & 

RCP6.0-SSP2) 

Land Use 

Land Cover 

(LULC) 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

The USGS Land 

Cover Institute 

(LCI) 

(https://landcover.u

sgs.gov/global_cli

matology.php) 

2001-

2010 
0.5 km - 

 The Collection 5.1 Moderate 

Resolution Imaging 

Spectroradiometer (MODIS) Land 

Cover Type (MCD12Q1) product for 

the period 2001-2010 isused by 

Broxton et al. (2014) to develop 

global land cover. 

NASA Earthdata from 

ORNL DAAC (Chini et 

al., 2014) 

(https://doi.org/10.3334/

ORNLDAAC/1248) 

Fractional Land Use Land Cover 

data (RCP2.6 & RCP6.0) 

Digital 

Elevation 

Model (DEM) 

Spare time for 

water retention 

bestows higher 

adaptive 

capacity in flat 

slope parts. 

Accounts for 

physical 

vulnerability 

to drought. 

Positive 

 

(Ekrami et 

al., 2016; 

Pandey et 

al., 2010) 

SRTM 90 m 

Digital Elevation 

Database v4.1 

(http://www.cgiar-

csi.org/data/srtm-

90m-digital-

elevation-database-

v4-1#download) 

2007 90 m m 
 NASA Shuttle Radar Topography 

Mission elevation data derived from 

interferometric techniques. 

Constant (same as observed) 

Soil Type 

Water holding 

capacity of soil 

based on the 

textural 

properties. 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

FAO Harmonized 

World Soil  

Database (HWSD) 

(http://www.fao.or

g/soils-portal/soil-

survey/soil-maps-

and-

databases/harmoniz

ed-world-soil-

database-v12/en/) 

2003 1 km - 

 Major contributors of the soil data 

for the Indian regions are All India 

Soil and Land use Survey  (1965) 

and the International soil map of 

vegetation by India Council of 

Agricultural Research (FAO-

UNESCO, 1977). 

 Loamy soils are more vulnerable to 

drought compared to clayey soils. 

https://aps.dac.gov.in/LUS/Index.htm
https://aps.dac.gov.in/LUS/Index.htm
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A final question on the factors used, how do the vulnerability factors selected address the 

exposure component? Although a population may be vulnerable to the impact of drought, they 

may not be exposed to drought or may be exposed to a lower severity of drought hazard than 

in other locations, for example. 

In this study, population density, land use and soil type constitute the exposure indicators for 

drought vulnerability assessment. We agree with the reviewer that a highly vulnerable 

population might be exposed to mild droughts or no droughts at all. These differences are 

precisely accounted in the overall drought risk estimates, since we characterize risk as a 

combination of vulnerability and hazard. For eg., if the hazard is low in a region, it is likely to 

be classified as ‘low to moderate’ in terms of drought risk, despite having high vulnerability. 

This discussion will be included in the revised manuscript.  

4) The baseline period used (1980-2015) excludes the past six years, excluding significant 

drought events in 2016-2018 and 2021. Is there a way that updated precipitation data could be 

obtained and analysed to include these recent events? 

We have used hydro-climatic and socio-economic variables for the period 1980-2015 to ensure 

overlap between drought hazard and vulnerability indicators for the baseline period. The 

overall risk estimates may be misleading if the exposure, adaptive capacity and sensitivity 

indicators are overlayed on hazard events of dissimilar timelines. Further, our analysis takes 

into account the major drought episodes of 1982, 1984, 1986, 1987, 1989, 1991, 2000, 2002 

and 2015 as identified by earlier study (Sahana et al., 2020). Among them, the major drought 

episodes of 2002 and 2015 had severely impacted multiple sectors of the country. For example, 

agricultural contributions to GDP dipped by 3.1% along with heavy agricultural income losses 

in the 2002 drought event (DownToEarth, 2015), while the 2015 drought event affected over 

330 million people (BBC India, 2016), and reservoir levels dropped to minimal values (The 

Times of India, 2016). These events contribute to the hazard assessment in this study. 

Additional inclusion of subsequent droughts of 2016-2018 and 2020 is unlikely to significantly 

alter our conclusions. 

5)  L140-142: the first sentence here states that variability of the two scenarios increased over 

time, but the second states that the baseline period is more variable than the projected period. 

I am not sure how both of these statements can be true, nor am I convinced I can see these 

difference in the time series for precipitation or soil moisture. Please clarify this point further.  
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Figure 2 is updated to include the time series of precipitation and soil moisture for the baseline 

period as well (1980-2015). It is observed that the variability of both the variables in the 

projected period increases with time. However, it is evident from Figure 2, that the variability 

in the hydro-climatic variables in the baseline period is high compared to the projected period.  

 

Figure 2. Datasets used for drought risk assessment. a) Projected hydro-climatic variables such 

as monthly precipitation and monthly soil moisture are used for drought hazard assessment. b) 

Projected drought vulnerability indicators such as irrigation index, water body fraction, 

groundwater availability, population, GDP and land use land cover, along with static drought 

vulnerability indicators such as slope and soil texture are used for drought vulnerability 

assessment. Datasets for projected period are divided into near future (2021-2060) and far 

future (2061-2100) to check the evolution of drought risk. 

 

This also applies to Table 3 and the text in L199-205, and Table 4 and text L232-233. 

Table 3 and Table 4 represent the transition of drought vulnerability/risk from one class of 

vulnerability/risk from baseline to another class of vulnerability/risk in the future. In general, 
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socio-economic development is a slow process, and takes time to reflect in terms of significant 

changes in the socio-economic indicators (Dellink et al., 2017). Further, majority of the drought 

vulnerability/risk studies across the globe have adopted static vulnerability assessment that 

represent drought vulnerability snapshot in time (Hagenlocher et al., 2019). Therefore, we used 

the static vulnerability indicators for the year 2010, 2060 and 2099 to quantify drought 

vulnerability for the baseline, far future and near future period respectively. In the case of 

drought risk assessment, the drought hazard capturing the droughts in baseline (1980-2015), 

near (2021-2060) and far (2061-2099) future period is combined with drought vulnerability at 

2010, 2060 and 2099 respectively. This will be clarified in the revised manuscript. 

Figure 7 is mentioned only on two lines at the end of Section 3.3.1, could this summary be 

referred to in the previous discussions of hazard, vulnerability and risk as it is a more intuitive 

figure to understand than tables shown in Tables 2, 3 and 4. 

Figure 7 will be referred for the discussion on hazard, vulnerability and risk projections. 

Section 3.1.2 – “Of all the future drought hazard scenarios considered, the RCP2.6-Far scenario 

revealed the largest area (2.8%) under high and very high hazard classes (Figure 7).” Section 

3.2.2 – “As high as 42.9% area transits from lower vulnerability classes to higher vulnerability 

classes under RCP6.0-SSP2 Near future, with 93% area of the country under high and very 

high drought vulnerability class (Figure 7).” Section 3.3.1 – “In the worst case drought risk 

scenario (RCP6.0-SSP2 Far future), it is observed that 2.7% area of the country is under high 

and very high drought risk class (Figure 7).” 

 
6)  L233-238: Here you state that the RCP6.0-SSP2 Far future scenario is not the worst case 

for drought vulnerability, but was the most severe for drought risk due to the hazard component 

(L233-235). Then on L236-238 in the discussion of Figure 6, you state that drought 

vulnerability makes up the majority of the drought risk for the same scenarios. Please could 

you clarify these seemingly contradictory statements. I do not disagree with the point that we 

need more holistic drought risk assessment though. 

Risk is an outcome of interaction between hazard and vulnerability, and is also a function of 

time. The fact that worst case scenarios are different for drought hazard and drought 

vulnerability, indicates dissimilar behavior of drought hazard and vulnerability indicators in   

inducing drought risk. For eg. population density is high in the near future period (2060) as 

compared to the far future (2100), while precipitation is continuously increasing in the 
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projected period. A combination of such different hazard and vulnerability behavior in a given 

time period is effectively captured through comprehensive risk analysis. Therefore, though 

RCP6.0-SSP2 Far future scenario is not the worst-case scenario for drought vulnerability 

compared to RCP6.0-SSP2 Near future, interaction of high hazard with moderate to high 

vulnerability resulted in worst drought risk scenario in the case of RCP6.0-SSP2 Far future. 

However, in general, when the change in drought risk for all the future scenarios are compared 

with the baseline, it is observed that area falling under drought risk due to drought vulnerability 

is increased (Figure 6). Therefore, though seemingly contradictory, the statements pointed out 

by the reviewer reflect realistic and to a large extent, expected drought risk behavior. 

Clarification on the above discussion will be included in the revised manuscript. 

7) Section 3.3.2: At what spatial scale is this information useful to policy makers? You could 

consider whether the gridded data used here is relevant to that of decision makers.  

The drought hazard, vulnerability and risk projection maps from the present study, developed 

at 0.5° lat.× 0.5° lon spatial resolution are comparable with blocks/district level area. Therefore, 

these maps can assist the block-level administrators to know region-specific causative factors 

inducing severe drought risk both in baseline and projected period, besides the indigenous 

components governing the drought risk. Also, these maps can inform the state or federal 

disaster management authorities concerning the climate action plans. The change in drought 

risk at different projected periods can modulate adaptation and mitigation strategies and can be 

included in decision support system for drought management. Since drought risk is found to be 

mainly driven by societal factors, action plans should be directed to improve socio-economic 

conditions. Groundwater conservation, conjunctive use of surface and groundwater, farmer 

participation in crop insurance, water saving farm practices and technologies are some 

important measures that can be adopted for raising the socio-economic standards. Further, the 

framework of our study is applicable for state-wise drought risk assessment with reliable hydro-

climatic and socio-economic indicators. Such an assessment is can recommend measures for 

watershed management, irrigation and agricultural practices and reorganizing water demand 

and supply management at a local scale. 

8) L269-270: You say here that this study is an improvement for decision makers over existing 

drought risk assessment in India. Please briefly state what this improvement is. 

Drought risk projection studies undertaken over the Indian region are based on drought hazard 

alone, and no consideration has been given to the drought vulnerability component. The present 
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study quantifies the relative contribution of drought hazard and drought vulnerability to the 

overall drought risk projections under a comprehensive risk framework. Thus, our analysis can 

aid different stakeholders involved in drought management for adaptation and mitigation plans 

under changing climate and socio-economic conditions. This marks the significant 

improvement of our study over existing studies on drought risk assessment in India under 

climate change. 

Supplementary information  

 

9) The description of the categorisation of the MSDI at the bottom of page 2 is not clear and 

should be expanded – for example, it should be clearly stated which categories from McKee et 

al., - presumably extreme drought, severe drought, moderate drought etc., but you should 

include the thresholds and categories used in this study here. The meaning of the following two 

sentences (“Further, each category is organised into sub-groups based on the occurrence 

probabilities of the selected category. While the weightages are assigned to MSDI categories 

to account for drought magnitude, ratings are assigned to the sub-groups of each MSDI 

category to account for drought occurrence probability”) are aren’t sufficiently clear; the 

methodology of how weights were assigned should be described more clearly – for example, 

you start talking about ratings and clusters, and it is not clear what these are used for. 

Our response to Reviewer #2, comment #2 addresses this comment. 

10) The description of the drought vulnerability index is also overly complex and should be 

clarified by describing the process in words. You should also be specific for example on how 

exactly data were standardised and what is meant by ‘suitable weights’ – what makes them 

suitable, how have these be validated and checked. 

Drought vulnerability assessment method will be moved to main manuscript with detailed 

explanation starting from data standardization. Weights for categorical indicators are shown in 

Table S2. Further, our response to Reviewer #2, comment #2 clarifies the concerns from this 

comment. 

Minor issues  

11) In several places e.g. L119 and in the supplementary information you mention that data 

have been standardised, please explain how these data are standardised (e.g. across time or 

space).  
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Drought risk values derived from 𝑅𝑖𝑠𝑘 = 𝐷𝐻𝐼 × 𝐷𝑉𝐼 is standardized spatially to obtain DRI, 

such that the DRI values vary between 0 and 1. 

𝐷𝑅𝐼 =
𝑅𝑖𝑠𝑘 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛

𝑅𝑖𝑠𝑘𝑚𝑎𝑥 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛
                                                    … (16) 

12) L99-100: ‘…and brought to a monthly time-scales.’ This isn’t clear – how and what metric? 

Total precipitation? Average soil moisture? Please expand on this comment.  

The projected daily precipitation is cumulated over each month to get the monthly precipitation 

values and converted its units from kg m-2 s-1 to mm. The projected monthly soil moisture 

(average monthly soil moisture) from the model is converted from kg m-2 to m3/m3. This will 

be clarified in the revised manuscript. 

13) L139: ‘the country-accumulated data of these hydro-climatic variables…’ please clarify 

how these data were accumulated  

Data is summed over all grids. 

14) L145: ‘ …many regions is less severe compared to the baseline period.’ Word missing  

We will make the correction as “…many regions is less severe compared to the baseline 

period.” 

15) L168-169: It is not clear whether this choice of low skill GCMs was in the current study or 

Koutroulis et al and Cook et al. – note that this same comment is also made on L209-210.  

We will clarify the statement on L168-169 as “Such contradicting observations are possibly 

due to selection of low-skill GCMs (Aadhar and Mishra, 2020) in Koutroulis et al. (2019) & 

Cook et al. (2020).” and L209-210  as “Such contradicting observations in drought 

vulnerability is possibly due the choice of low-skill GCMs in Koutroulis et al. (2019).” 

16) L193: Highest differences…  The biggest difference in…  

17) L198: many region of the country are expected to  

18) L211: …sub-division-wise…  

Write up of comments #16, #17 and #18 will be corrected in the revised manuscript. 

19) L211: Here you mention meteorological sub-divisions, what exactly does this mean, how 

were these defined? 
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Meteorological sub-divisions are the meteorologically homogenous regions identified by India 

Meteorological Department (Kelkar and Sreejith, 2020). This will be clarified in the revised 

manuscript. 

20) L222: …expected to be under high risk to drought compared…  …expected to have a 

high drought risk compared…  

Will be corrected in the revised manuscript. 

21) A mix of tenses seems to be used throughout, this should be reviewed, ensuing that the past 

tense is used where appropriate.  

Noted and will be revised. 

22) In some places ‘Far Future’ is capitalised and others it is not – you should ensure this is 

consistent. 

Noted and will be revised. 

Tables and Figures  

23) Table 1: Please also included the last date that the factors were updated and the date range 

that was available. Some of the descriptions of the datasets are unclear, for example, Water 

Bodies Fraction and Groundwater – it is not clear what these data actually are, and what they’re 

measuring. It would be useful to include the unit of each factor where appropriate, e.g. for 

‘Groundwater’, ‘Water Bodies Fraction’  

We have revised Table 1 to include all the details pointed out by the reviewer.  

24) Table 2: I find these tables unintuitive and difficult to marry up with the description of 

results in the text. e.g. L149-15150: ‘The future drought hazard assessment using the projected 

hydro-climatic variables revealed that more than 35% area of the country is expected to be 

under the low hazard class, as compared to 8% in the baseline period’ – I can’t seem to make 

any of the very low hazard boxes up to these numbers or the difference between them. You 

could consider adding a more detailed example walk through of what this table means. There 

is also no reference to or legend for the colour scheme used here.  

We will refer to Figure 7 for these numbers as “The future drought hazard assessment using 

the projected hydro-climatic variables revealed that more than 35% area of the country is 

expected to be under the low hazard class, as compared to 8% in the baseline period (Figure 
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7).” Caption for Table 2 will be revised and explained as “Table 2. Transition of drought hazard 

from baseline period to projected period. The value in each cell represents the change in % area 

of the country from one hazard class to another. Red color shows transition, and blue represents 

no transition.” A detailed explanation of the table will be included as “The hazard transition 

from the baseline to different scenarios is presented in Table 2. The upper triangle in the table 

represents % area transition from lower to higher hazard classes, the lower triangle represents 

% area transition from higher to lower hazard classes, and the diagonal elements represent % 

area with no transition.” 

25) Table 3 & 4: I assume these are all showing SSP2 scenarios, please clarify in the caption.  

Tables will be updated indicating the SSP2 scenarios. 

26) Figure 1: it would be helpful to refer to this figure in the description of methods included 

in the Supplementary Information. The DHI and DVI should be directly referenced in this 

figure to clarify when these are calculated in the processing chain – including mention of the 

baseline period.  

In the revised methodology we will refer to Figure 1 in the calculation of DHI and DVI as “The 

weightage and rating scheme is depicted graphically in Figure 1.” and “Positive (𝑑𝑖
+) and 

negative (𝑑𝑖
−) separation measures for each region 𝑖 are computed based on 𝐴+ and 𝐴− (also 

shown in Figure 1).” 

27) Figure 4: There are some parts that are white, yet white is not mentioned in the legend.  

White regions represent no data region.  Legend for Figure 4 will be revised accordingly.  

28) Figure 5: I recommend adding another colour to the legend here to highlight the higher risk 

areas (such as a dark red or similar). Do the classes used represent any specific categories of 

risk? 

Color of the legend is changed as per the suggestion. The classes here represent very low, low, 

medium, high and very high risk categories. 
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Figure 5. Multi-model ensemble drought risk maps for the scenarios a) baseline, b) RCP2.6-

SSP2 Near future, c) RCP2.6-SSP2 Far future, d) RCP6.0-SSP2 Near future, e) RCP6.0-SSP2 

Far future. 
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