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Responses and Actions taken on Reviewers’ Comments 

Journal: Natural Hazards and Earth System Sciences 

Manuscript Reference No.: nhess-2022- 18 

Title: Evolution of multivariate drought hazard, vulnerability and risk in India under climate 

change. 

Authors: Venkataswamy Sahana, Arpita Mondal 

We thank the Reviewer for reviewing our manuscript and providing valuable feedback that 

have helped improve the quality of the work significantly. In this document, we provide a point 

by point response and actions taken on the comments and suggestions from the reviewers.  

Responses to comments from Referee #1 

I have read your manuscript and think it covers an interesting topic. It is clearly the result of a 

major research effort. Including vulnerability in drought risk analysis is a known challenge, 

and I agree with you that looking at multiple physical drivers as well as at transient vulnerability 

are important steps for holistic drought risk assessments. The aim of the study is clearly stated 

and results are described in detail. However, the research is quite complex and so I think an 

extra effort is needed to make in understandable for readers of NHESS. I see some conceptual 

issues, but they may have been caused by a lack of understanding of the method due to its 

incomplete or undetailed description. In general, I think more of the method could be in the 

main manuscript and more details to the method (currently lacking) can be described in the 

supplementary material. Below, I will elaborate on the main points that I think can help 

improve/clarify the manuscript. In addition, I think the manuscript would benefit from a review 

by an English language editor, as there are multiple grammar mistakes in the manuscript and I 

see various possibilities for vocabulary improvements.  

We thank the reviewer for the positive and constructive feedback on our work. We have now 

provided more details and description about the methods and they will be included in the 

revised manuscript and the revised supplementary material. Further, we have proof-read the 

manuscript and corrected for grammar and language wherever necessary. We have addressed 

the comments provided by you in the below sections.  

I haven’t listed all grammar / vocabulary mistakes, but here are a few examples from the 

abstract: 
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e.g. L7 ”a” major threat 

e.g. L10 This study investigates and evaluates the change in projected drought risk under future 

climatic and socio-economic conditions by combining vulnerability and hazard information at 

a country-wide scale for future climatic and socio-economic conditions  

e.g. L18 “are found to be high risk under all scenarios” 

We will consider all the above suggestions from the reviewer and revise them in the manuscript. 

e.g. L15-17: Sentence is too long, it is unclear what is meant with “worst-case” scenario 

We have now simplified the sentence as “In the worst-case scenario for drought hazard 

(RCP2.6-Far future), there is a projected decrease in the area under high or very high drought 

hazard classes in the country by approximately 7%. Further, the worst-case scenario for drought 

vulnerability (RCP6.0-SSP2-Near future) shows a 33% rise in the areal extent of high or very 

high drought vulnerability classes.”  

I think maybe “The West Utter Pradesh, Haryana, …., regions” are meant rather than “regions 

of West Utter Pradesh,…” 

The sentence will be rewritten as “The West Uttar Pradesh, Haryana, West Rajasthan and 

Odisha regions are found to be high risk under all scenarios.” 

In general, in the manuscript there are many sentences that are difficult to understand (too long 

and/or with too complex structure). 

We will take care of the complex sentences and simplify them in the revised manuscript.  

Below, I add some general comments and questions structured following the study aims, 

highlighting the most pressing questions with respect to the method. 

 

1. Multivariate drought hazard projection using Multivariate Standardized Drought 

Index (MSDI) that considers concurrent deficits in precipitation and soil moisture for 

future warming scenarios. 

a) L81: “However, droughts can often manifest as a complex interplay of multiple influencing 

variables necessitating a multivariate approach for characterization of drought hazard 

(Sahana et al., 2020). For the agrarian country of India, agro-meteorological drought hazard 

projections should consider deficits in precipitation or soil moisture or both” I agree looking 

only at PR is too narrow. It is indeed interesting to look at both, but as far as I understand the 
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method, only events with both a SM-deficit and a PR-deficit are considered. Is this approach 

justified? I can think of cases where a SM-deficit alone is enough to cause a drought impact – 

I feel the hazard method does not sufficiently take into account the propagation of drought 

through the hydrological cycle, which involves attenuation and lag effects. The manuscript 

displays different results than other papers: how can it be evidenced that the presented method 

is better and the results are more reliable than those of other studies? 

We would like to clarify that the Multivariate Standardized Drought Index (MSDI) is equally 

capable of capturing deficits individually in precipitation or soil moisture, or their joint deficit, 

considering dependence between these two variables. This is a unique advantage of MSDI (Hao 

and AghaKouchak, 2014) over other univariate indices. This clarification will be included in 

the revised manuscript. Further, we have added Supplementary Figure S5 (given below) that 

shows how the MSDI is capable of representing the onset, propagation and termination of 

drought. In this figure, considering -0.8 as the threshold for drought trigger, it seen that 

whenever either the SPI or the SSI falls below this threshold, MSDI covers the critical 

trajectory and offers a conservative characterization of drought, thereby capturing attenuation 

and lag effects. Finally, our country-wide drought hazard map for the baseline period from the 

present study (Figure 3) matches well with hazard maps developed from other multivariate 

indices such as the SPEI (Gupta et al., 2020), as compared to those developed from the 

univariate SPI (Vittal et al., 2020). This comparison with other papers will be included in the 

revised manuscript.  
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Figure S5: Time series of SPI, SSI and MSDI for Marathwada region for 1980 – 2015 (a). Time 

window for 1980-1984 is expanded in (b). MSDI effectively captures the drought initiation, 

propagation and termination by correctly characterising drought events whenever either SPI, 

or SSI, or both fall below a chosen threshold (green horizontal line). 

b) L81: “The above two datasets are regridded to a common spatial resolution of 0.5° lat.× 

0.5° lon. and rescaled to monthly frequencies for the historical drought hazard assessment.” 

Could you please explain in the supplementary material how this is done?  

Re-gridding of the observed datasets to 0.5° lat.× 0.5° lon resolution is carried out using the 

Triangulation-based linear interpolation method (Watson and Philip, 1984). This information 

will be included in the Supplementary material. 

Is there an increased spatial variability included by this re-gridding to counteract an averaging 

effect? 

Further, monthly time series of spatial variation in terms of standard deviation of precipitation 

and soil moisture from their observed and rescaled datasets is now shown in Figure S6 (given 

below). It is observed that the rescaling of datasets from their parent resolution to 0.5° lat.× 

0.5° lon results in no additional variability.  
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Figure S6. Standard deviation of the country-wide cumulated observed and rescaled datasets 

of precipitation (top panel) and soil moisture (bottom panel). 

 

c) L75 + 83: “The drought hazard assessment for baseline period (1980-2015) requires 

observed hydroclimatic variables” + “In order to evaluate the projected drought hazard over 

India, the projected precipitation and soil moisture data at a spatial resolution of 0.5° lat.× 

0.5° lon. is obtained from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 

(Warszawski et al., 2014). The historical (1980-2005) and projected (2006-2099) data from 

available GCMs namely ….” How did you deal with the overlapping time period between 

observed and modelling data? Was, for example, the Delta Method (projecting the difference 

between modelled historic and projected onto the observed data; or; projecting to difference 

between observed and modelled historic onto the projected data) applied? I do not find 

information on how the final hazard dataset is constructed – so I suggest adding this to the 

supplementary material.  

Here, historical (1980-2015) hazard maps are generated only from observed datasets - IMD for 

precipitation and MERRA for soil moisture. The projected near (2021-2060) and far (2061-

2099) future hazard is obtained from the GCMs. We do not use the Delta Method or any such 

procedure to compare and ‘correct’ data from the GCMs, since the ISIMIP uses precipitation 

data that has already been downscaled and bias-corrected with respect to global level observed 

precipitation from EartH2Observe observations, WFDEI and ERA-Interim data. Further, for 
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obtaining projections of soil moisture, ISIMIP employs the global vegetation model, LPJmL, 

that is capable of representing fine resolution physical processes using carbon, water and 

energy balance equations (Schaphoff et al., 2018) under a changed climate, thereby, offering a 

significant improvement over simplistic data-based approaches such as the Delta Method. This 

information will be included in the revised manuscript under the Section 2.1.1.  

It would be nice to show with some figures how the ISIMIP data and the used observed IMD 

Pr and MERRA SM data compare? 

Further, based on the reviewer’s suggestion, we carry out an additional analysis for evaluation 

of ISIMIP simulations with respect to observed precipitation and soil moisture data, and present 

the results of such evaluation in Figure S7 in the revised manuscript (given below). The 

performance of all the ISIMIP models are comparable with that of the observed data, except 

for the soil moisture during monsoon months. The lowered soil moisture estimates from LPJmL 

model (ISIMIP experiments) simulations compared to the MERRA-Land soil moisture 

observations for the monsoon months could be due to overestimation of LPJmL’s simulated 

runoff  (Zaherpour et al., 2018). 

 

 

Figure S7: Observed and ISIMIP-model simulated climatology of country-wide average 

monthly precipitation and soil moisture for the period 1980-2005. 

 

d) L93 “The spatial pattern of annual mean surface soil moisture for India from the LPJmL 

impact model is consistent with the satellite-based Essential Climate Variable soil moisture 
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product (Gu et al., 2019).” Is this ECV similar to the MERRA Land data used? Or how is it 

connected to the data used?  

We have performed an additional analysis to compare the LPJmL soil moisture dataset with 

MERRA. Therefore, we remove the statement regarding comparison of LPJmL soil moisture 

dataset with respect to ECV. We will refer to our Figure S7 and include the following 

discussion in the revised manuscript. “The performance of LPJmL simulated rootzone soil 

moisture (1980-2005) is comparable with that of the MERRA soil moisture (Figure S7), except 

for the monsoon months. The lowered soil moisture estimates from LPJmL model (ISIMIP 

experiments) simulations compared to the MERRA-Land soil moisture observations for the 

monsoon months could be due to overestimation of LPJmL’s simulated runoff  (Zaherpour et 

al., 2018).  

e) L95 “Although the simulated soil moisture data underestimates the monsoon months’ soil 

moisture (June, Jul, Aug, Sep) during the historic period (1980-2005), we did not perform the 

bias correction, since we intend to capture the variability in the soil moisture rather than their 

magnitudes for drought index calculation” – can you please add graphs / maps to show this in 

the supplementary please? 

We will include Figure S7 (given in Comment #1c) in the revised Supplementary material. 

f) In the Supplementary Material (drought hazard assessment and S1): Is the co-occurrence – 

covariance of Pr and SM modelled per ensemble member after which the mean of the DH value 

is calculated? Or are ensemble mean / median PR and SM used to calculate the DH value?  

The ensemble mean of monthly precipitation and soil moisture from different GCMs is 

computed. Further, these ensemble mean monthly precipitation and soil moisture time series is 

used to calculate the MSDI and DHI values. 

What are rk and sk in formula 2 – are they thresholds for droughts in SM and PR? 

𝑟𝑘 and 𝑠𝑘 denote the actual precipitation and soil moisture values for kth observation. In 

Gringorten plotting position method, the number of occurrences (𝑚𝑘) of precipitation and soil 

moisture pair below 𝑟𝑘 and 𝑠𝑘 from the whole set of observations is used to calculate empirical 

joint probability for kth observation. 

g) In the Supplementary Material (drought hazard assessment): Until “The MSDI series at each 

region is categorized into four groups similar to Mckee et al. (1993).” I could follow the 
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description, then it becomes unclear à please add more detail (e.g., on the weighing and rating: 

I do not understand why nor how this is done) and please add some examples to showcase and 

justify the method. 

We rewrote the methodology for drought hazard assessment and will be included in the main 

manuscript. An example on the calculation of drought hazard is also added. 

 “The method for drought hazard assessment followed in the present study is based on Kim et 

al. (2015). Hazard is measured as the product of magnitude and the associated frequency of 

occurrence of an event. The MSDI time series at each region is categorized into four groups 

similar to Mckee et al. (1993). These categories are assigned weights according to the 

magnitude of MSDI value. Higher weights will be assigned to worst (high negative) MSDI 

values, and vice versa. Further, each weight category is divided into different clusters based on 

the frequency of occurrence of MSDI values. The total number of clusters for ratings in each 

MSDI category is determined using the prominent k-means data clustering algorithm. Higher 

ratings will be assigned to the cluster with high frequency values, and vice versa. The 

weightage and rating scheme is depicted graphically in Figure 1. In the k-means clustering 

technique, distance between the data points is computed using the squared Euclidean distance 

metric. To avoid the convergence to local minima, the k-means algorithm is run with 100 

random initial seeds with 10000 iterations. The Calinski-Harabasz Index (CHI) (Caliński and 

Harabasz, 1974)  is used to determine the optimum number of clusters and is given by  

𝐶𝐻𝐼 =  
𝑛 − 𝐾

𝐾 − 1
×

𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
                                                         … (4) 

where 𝑛= number of data points, 𝐾= number of clusters,  𝐵𝐺𝑆𝑆 =  ∑ 𝑛𝑘||𝐺{𝑘} − 𝐺||2𝐾
𝑘=1  is 

the between the group scatter, 𝐺{𝑘} = centroid of the kth cluster, 𝐺 = centroid of all the 

observations, 𝑊𝐺𝑆𝑆 =  ∑ 𝑊𝐺𝑆𝑆{𝑘}𝐾
𝑘=1  is within the group scatter and 𝑊𝐺𝑆𝑆{𝑘} =

∑ | |𝑀𝑖
{𝑘}

− 𝐺{𝑘}| |2
𝑖𝜖𝐼𝑘

, where 𝑀𝑖
{𝑘}

 are the observations.  The k-means clustering algorithm is 

driven for 1 to 𝑛 clusters. The number of clusters that gives highest value of CHI is the optimum 

number of clusters. These optimum number of clusters is used for assigning ratings. The 

categorized weightages and computed ratings are used to calculate the drought hazard for every 

region as below. 

𝐷𝐻 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 × 𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝑖

𝑡

𝑖=1

                                                 … (5) 
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where 𝑡 is the length of MSDI time series. Although the weightages and ratings are intrinsically 

linked, the above scheme assures drought hazard quantification based on magnitudes and 

frequencies. The 𝐷𝐻 values from Eq 5 are standardized as shown below to obtain 𝐷𝐻𝐼 that 

varies between 0 and 1.  

𝐷𝐻𝐼 =
𝐷𝐻 − 𝐷𝐻𝑚𝑖𝑛

𝐷𝐻𝑚𝑎𝑥 − 𝐷𝐻𝑚𝑖𝑛
                                                   … (6) 

The weighing and rating scheme to calculate DHI for a randomly chosen grid is given in Table 

S1. ” 

Table S1. Weighting and rating scheme for DHI calculation for a randomly chosen grid (11˚ 
lat, 75˚ lon). 

MSDI Class Weight 
Frequency of 

occurence 
Rating 

 -0.99 to 0.99 Mild 1 

0.71-0.82 6 

0.60-0.68 5 

0.49-0.57 4 

0.37-0.46 3 

0.26-0.348 2 

0.18-0.24 1 

 -1 to -1.49 Moderate 2 

0.150-0.15 4 

0.13-0.13 3 

0.098-0.098 2 

0.07-0.07 1 

 -1.5 to -1.99 Severe 3 0.04-0.04 1 

 -2 or less Extreme 4 0.016-0.016 1 

 

h) Supplementary “Further, each category is organised into sub-groups based on the 

occurrence probabilities of the selected category. While the weightages are assigned to MSDI 

categories to account for drought magnitude, ratings are assigned to the sub-groups of each 

MSDI category to account for drought occurrence probability.” -> which categories? And how 

does dividing based on occurrence probabilities differ from McKee et al? That is what they do, 

too, no? I do not understand why both are needed since they (intensity and probability) are 

intrinsically linked. 

The division of MSDI series into different drought groups based on Mckee et al. (1993) gives 

the magnitude of drought events alone. However, hazard is a measure of magnitude of the event 

as well as its associated frequency. Therefore from the available MSDI series, it is required to 
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discretize magnitude (weights) and occurrence probability (ratings) (Kim et al., 2015), though 

they are intrinsically linked. This will be clarified in the methods section. 

 

2. Drought vulnerability projection considering combinations of RCP and SSP scenarios, 

using a list of drought vulnerability indicators that represent exposure, sensitivity and 

adaptive capacity components. 

 

a) The manuscripts’ understanding of vulnerability (including exposure) does not fully match 

the understanding of this concept by the sources cited (IPCC AR5) and does not match L36 

(although it is true other authors see exposure as part of vulnerability – so I suggest look up 

other scholars who also include exposure as part of the vulnerability quantification). Besides, 

with respect to the chosen vulnerability factors, I think multiple interesting other social, 

economic vulnerability indicators could have been selected (e.g., Meza et al 2020 

https://nhess.copernicus.org/articles/20/695/2020/ )  

We agree with the reviewer that our characterization of drought vulnerability is not fully 

consistent with the IPCC (AR5)’s recommended definition of drought risk. Though the AR5 

delineates exposure as separate component of the risk, we have included exposure to be an 

integral part of the vulnerability following Vittal et al. (2020), since such a definition is unlikely 

to affect the overall conclusions of risk assessment. Further, the vulnerability indicators chosen 

in the present study comprises of sensitivity, exposure and adaptive capacity indicators and this 

information is updated in Table 1. 

We also agree that an extensive vulnerability assessment encompasses other social and 

economic vulnerability indicators such as those used by Meza et al. (2020). However, for a 

densely-populated and rapidly-developing nation such as India, acquisition of reliable datasets 

on these indicators is often challenging. Most importantly, unavailability of projections of these 

indicators over the Indian region limits their use in this study, since our primary goal is to 

compare baseline drought risk with that under future projected climate change. This discussion 

will be included in the revised manuscript.  
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Table 1. Drought vulnerability indicators used for drought vulnerability assessment. The sources for indicators in 

baseline period and projected period along with their relevance and correlation with drought vulnerability is presented. 

Representative indicators to arrive at the drought vulnerability indicators for projected period are also listed. 

Data 

Relevance to 

drought 

vulnerability 

Correlation 

with drought 

vulnerability 

Past 

studies 

using this 

data 

Observed Projected 

Source Period 
Spatial 

resolution 
Units Details Source Representative Indicator 

Population 

density 

Demographic 

attribute for 

assessing 

social 

vulnerability 

and exposure. 

Positive 

(Carrão et 

al., 2016; 

Rajsekhar 

et al., 

2015) 

NASA 

Socioeconomic 

Data and 

Applications 

Centre (SEDAC) 

(http://sedac.ciesin.

columbia.edu/data/

set/gpw-v4-

population-density) 

2010 1 km 
person/

km2 

 Population density estimates are 

based on the national censuses and 

population registers. 

 Given as population count by area. 

Inter-Sectoral Impact 

Model Intercomparison 

Project (ISIMIP2b 

experiments) data 

archive (Warszawski et 

al., 2014) 

Population (SSP2) 

GDP 

Economic 

welfare for 

assessing 

economic 

vulnerability 

as well as 

adaptive 

capacity. 

Negative 

(Carrão et 

al., 2016; 

Naumann 

et al., 

2014; Wu 

et al., 

2017) 

(Ghosh et al., 

2010) 
2006 1 km 

million

s of 

dollars 

 Defense Meteorological Satellite 

Program’s Operational Linescan 

System (DMSP-OLS) nighttime 

imagery by NOOA to calculate total 

GDP (Ghosh et al., 2010) 

GDP (SSP2) 

Irrigation 

Index 

Adaptive 

capacity 

component. 

High irrigation 

ratio implies 

high adaptive 

capacity and 

lower drought 

vulnerability. 

Negative 

 

(Murthy et 

al., 2015; 

Wu et al., 

2017) 

Web based land 

use statistics 

information system 

https://aps.dac.gov.

in/LUS/Index.htm 

2010 District - 

 Data published by Directorate of 

Economics & Statistics, Department 

Agriculture, Cooperation & Farmers 

Welfare. 

 Land use statistics information 

system is designed and developed by 

Agriculture Informatics Division, 

National Informatics Centre, 

Ministry of Communication & IT, 

Govt. of India, New Delhi. 

 Given as the ratio of irrigated area to 

cropped area. 

Irrigation water consumption, 

Irrigation water withdrawal 

(RCP2.6 –SSP2 & RCP6.0-

SSP2) 

Water bodies 

fraction 

Water 

resources 

(streams/rivers

) and water 

infrastructure 

(dams/reservoi

rs) for 

assessing the 

physical 

vulnerability, 

and provides 

adaptive 

capacity. 

Negative 

 

 

(Naumann 

et al., 

2014) 

Bhuvan-Indian Geo 

Platform 
2010 3’ - 

 Advanced Wide Field Sensor 

(AWiFS) satellite imagery is used by 

NRSC to extract the water bodies 

fraction. 

Surface runoff, Total runoff, 

Total water storage (RCP2.6 –

SSP2 & RCP6.0-SSP2) 

Groundwater 

Adaptive 

capacity 

component to 

cope with 

drought. 

Negative 
(Pandey et 

al., 2010) 

Dynamic Ground 

Water Resources of 

India, Central 

Ground Water 

Board Ministry of 

Water Resources, 

Report on July 

2011, (CGWB, 

2014) 

2011 District ham 

 Groundwater resources assessment 

based on the State and Central 

groundwater boards of India. 

 Net groundwater availability 

estimates are based on the annual 

replenishable groundwater resources 

and the natural discharge during non-

monsoon season. 

Groundwater runoff, Total water 

storage (RCP2.6 –SSP2 & 

RCP6.0-SSP2) 

Land Use 

Land Cover 

(LULC) 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

The USGS Land 

Cover Institute 

(LCI) 

(https://landcover.u

sgs.gov/global_cli

matology.php) 

2001-

2010 
0.5 km - 

 The Collection 5.1 Moderate 

Resolution Imaging 

Spectroradiometer (MODIS) Land 

Cover Type (MCD12Q1) product for 

the period 2001-2010 isused by 

Broxton et al. (2014) to develop 

global land cover. 

NASA Earthdata from 

ORNL DAAC (Chini et 

al., 2014) 

(https://doi.org/10.3334/

ORNLDAAC/1248) 

Fractional Land Use Land Cover 

data (RCP2.6 & RCP6.0) 

Digital 

Elevation 

Model (DEM) 

Spare time for 

water retention 

bestows higher 

adaptive 

capacity in flat 

slope parts. 

Accounts for 

physical 

vulnerability 

to drought. 

Positive 

 

(Ekrami et 

al., 2016; 

Pandey et 

al., 2010) 

SRTM 90 m 

Digital Elevation 

Database v4.1 

(http://www.cgiar-

csi.org/data/srtm-

90m-digital-

elevation-database-

v4-1#download) 

2007 90 m m 
 NASA Shuttle Radar Topography 

Mission elevation data derived from 

interferometric techniques. 

Constant (same as observed) 

Soil Type 

Water holding 

capacity of soil 

based on the 

textural 

properties. 

Accounts for 

social 

vulnerability 

to drought due 

to exposure. 

Positive 

(Pandey et 

al., 2010; 

Thomas et 

al., 2016) 

FAO Harmonized 

World Soil  

Database (HWSD) 

(http://www.fao.or

g/soils-portal/soil-

survey/soil-maps-

and-

databases/harmoniz

ed-world-soil-

database-v12/en/) 

2003 1 km - 

 Major contributors of the soil data 

for the Indian regions are All India 

Soil and Land use Survey  (1965) 

and the International soil map of 

vegetation by India Council of 

Agricultural Research (FAO-

UNESCO, 1977). 

 Loamy soils are more vulnerable to 

drought compared to clayey soils. 

https://aps.dac.gov.in/LUS/Index.htm
https://aps.dac.gov.in/LUS/Index.htm
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b) Table 1: I do not always follow the reasoning regarding the relevance (I would not say 

population density and land use cover are proxies for social vulnerability) but more importantly: I 

would like to see some more information about how these indices are calculated (population 

density is pop sum / area; but how is the water bodies fraction calculated, or the irrigation index? 

How does the water holding capacity positively influence the vulnerability?).  

The drought vulnerability indicators chosen in this study, their sources, spatial and temporal 

distribution, units, method for data generation, relevance to the drought vulnerability, correlation 

with drought vulnerability, and previous studies who have employed such data for 

regional/national/global drought vulnerability studies are presented in Table S1 from Sahana et al. 

(2021). The population density is given as the population count by area, with its units as 

persons/km2. Irrigation index is the ratio of total irrigated area to the total cropped area. Further, 

soil textural properties range from clayey to loamy, with clayey soils having higher water holding 

capacity compared to loamy soils. Hence loamy soils are more vulnerable to drought compared to 

clayey soils. Also, weightages for different categories of soil texture is presented in Table S2. All 

the above information is now updated in Table 1.  

Besides, I see different sources used to the observed versus projected situation: how is consistency 

ensured? 

Drought vulnerability indicators such as population density and GDP for the year 2010 from SSP2 

pathway are comparable with their respective observed dataset, with small/negligible difference 

between the observed and SSP-simulated datasets (Figure S8). Further, drought vulnerability 

indicators such as groundwater availability, irrigation index and waterbody fraction for the 

projected period are not directly available. Hence, these indicators are proxied by their 

representative indicators (Table 1) using multiple linear regression (MLR). Consequently, 

irrigation ratio, groundwater availability and water body fraction for the projected period are 

derived based on relationships between them and the representative variables in the baseline 

period, and therefore consistency is ensured. The Land Use Harmonization (LUH) (Chini et al., 

2014) dataset provides the fractional land use classes for the time period 1500-2100. The historical 

maps of crop and pasture data from HYDE 3.1 (Hurtt et al., 2011), and estimates of historical 

national wood harvest and of shifting cultivation are used as input for 1500-2005. Further, the 

projections of LULC for 2005-2100 are based on the Integrated Assessment Model (IAM) 
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implementations of the RCPs. Each IAM for different RCPs are used as input to the Earth System 

Models (ESMs) for future carbon-climate projections. Therefore, LULC scenarios are based on 

RCPs. LUH is a credible dataset for LULC projection and has been previously used for drought 

risk projection in South-Asian region (Chou et al., 2019). Further, LULC projections can also be 

derived based on the land use models, using past LULC data and socio-economic factors driving 

the land use change. However, development of such models at country scale is beyond the scope 

of the present study. The above discussion will be included in the supplementary section. 

 

Figure S8. Difference between the observed and SSP2 pathway dataset at the year 2010 for a) 

Population density and b) GDP. 

 

c) In the supplementary material: Please repeat the weights of Thomas and Sahana for the 

vulnerability indicators 

Done. 

Table S2. Weightages for categorical vulnerability indicators used for vulnerability assessment 

(Thomas et al. 2016; Sahana et al. 2021) 

Vulnerability 

indicator 
Classification Weight 

Normalized 

Weight 

Land use 

Water Body 0 0 

Barren 1 0.04 

Scrub 3 0.12 

Forest 4 0.15 

Agriculture 8 0.31 
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Habitation 10 0.38 

Soil 

Silty Clay 2 0.032 

Clay 3 0.048 

Silty Clay Loam 4 0.063 

Clay Loam 5 0.079 

Silt Loam 7 0.111 

Loam 9 0.143 

Sandy Clay Loam 10 0.159 

Sandy Loam 11 0.175 

Loamy Sand 12 0.190 

Slope (%) 

0-1 1 0.048 

1-4 2 0.095 

4-6 4 0.190 

6-10 6 0.286 

>10 8 0.381 

 

3. Drought risk projection integrating hazard and drought vulnerability information. 

 

a) In general, there is no validation of the presented risk approach since the past risk analysis 

(1980-2015) is not compared with observed risk / reported impacts. This should be done in order 

to give credibility to the method, or – if impossible – be addressed in the discussion section. 

Validation of the drought risk map for the baseline period (1980-2015) has been carried out by 

Sahana et al. (2021) (see Suppl. Figure S3 of Sahana et al., 2021), based on the disaster data in 

terms of number of people affected. It is noted that parts of Rajasthan, Madhya Pradesh, 

Maharashtra, Orissa and Tamil Nadu, Kerala, Chattisgarh, Haryana, Himachal Pradesh, 

Chandigarh, Assam and Nagaland that are under moderate to severe drought risk category, have 

experienced moderate to worst drought disaster. The above information on validation of drought 

risk will be included in the revised manuscript. 

b) L119 “Drought risk values computed using Eq 1 are further standardized to obtain the Drought 

Risk Index (DRI).” Can you please elaborate how this is done? Two standardized indices are 

multiplied so I do not see the need to standardize the result again – this introduces some loss of 

information? 

Standardization of drought risk at each grid is carried out using  
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𝐷𝑅𝐼 =
𝑅𝑠𝑖𝑘 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛

𝑅𝑖𝑠𝑘𝑚𝑎𝑥 − 𝑅𝑖𝑠𝑘𝑚𝑖𝑛
                                                   … (16) 

 

Standardization is performed such that the values are distributed between 0 and 1, so as to classify 

different risk categories. This information will be included in the revised manuscript. 

c) The effect of climate change is taken into account in two ways: by changing vulnerability 

(multiple vulnerability indicators are based on average water availability) and by changing 

occurrence. I think this is interesting but it is a pity that social vulnerability factors, influenced by 

socio-economic development, are not taken into account – this might have changed the 

vulnerability trend hence risk trend. Would it be possible to account for this? 

The population density and GDP indicators, considered in the present study, accounts for social 

vulnerability, and the change in these indicators are accounted for vulnerability projections. 

Therefore, we do not agree that our study does not take into account social vulnerability factors.  

However, we do agree with the reviewer that the study would be comprehensive with the inclusion 

of other socio-economic indicators. However, for a densely-populated and rapidly-developing 

nation such as India, acquisition of reliable datasets on these indicators is often challenging. Most 

importantly, unavailability of projections of these indicators over the Indian region limits their use 

in this study, since our primary goal is to compare baseline drought risk with that under future 

projected climate change. This discussion will be included in the revised manuscript.  

d) The classification of very low to very high and transition plots are interesting but it is unclear 

how these classes are defined. Moreover, there are regions with a very high historic hazard that 

change to low hazard – this is remarkable since this is not immediately clear from the average SM 

- PR maps in figure S2. Can you please explain this difference? 

In each of the hazard, vulnerability and risk maps, the indices representing them are classified into 

five categories based on equal classification scheme: 0-0.2 (very low), 0.2-0.4 (low), 0.4-0.6 

(medium), 0.6-0.8 (high) and 0.8-1 (very high). In the transition matrix we compute the percentage 

area of the country that transitioned from one hazard/vulnerability/risk class to other. This 

quantifies the effect of climate change/socio-economic condition/both respectively. 
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From Figure 2a, S1 and S2, we see that precipitation and soil moisture for the projected period 

show an increasing trend. Further, it is to be noted that the hazard assessment using MSDI is based 

on the long term mean and variability of these drought indicators under a probabilistic analysis 

framework, and not necessarily the magnitudes of precipitation and soil moisture. Here we see that 

the projections of these indicators exhibit lower variability compared to the baseline period (Figure 

2a). Therefore, it is observed that many regions undergo transition from high hazard to low hazard. 

This information will be updated in the revised manuscript. 

 

Figure 2. Datasets used for drought risk assessment. a) Projected hydro-climatic variables such as 

monthly precipitation and monthly soil moisture are used for drought hazard assessment. b) 

Projected drought vulnerability indicators such as irrigation index, water body fraction, 

groundwater availability, population, GDP and land use land cover, along with static drought 
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vulnerability indicators such as slope and soil texture are used for drought vulnerability 

assessment. Datasets for projected period are divided into near future (2021-2060) and far future 

(2061-2100) to check the evolution of drought risk. 

 

e) Fig2: I do not understand why land cover changes based on RCPs? Shouldn’t this be SSP? 

Besides, I wonder why baseline (1980-2015) isn’t shown? Now it is indicated as “2010” but that 

seems inconsistent with the method section. 

The projections of LULC for 2005-2100 are based on the Integrated Assessment Model (IAM) 

implementations of the RCPs, and not based on SSPs (Chini et al., 2014). Further, in the revised 

manuscript, we will include a discussion on why baseline LULC time series is not shown in Figure 

2, as follows.  “In general, socio-economic development is a slow process, and takes time to reflect 

in terms of significant changes in the socio-economic indicators (Dellink et al., 2017). Further, 

majority of the drought vulnerability/risk studies across the globe have adopted static vulnerability 

assessment that represent drought vulnerability snapshot in time (Hagenlocher et al., 2019). 

Therefore, we used the static vulnerability indicators for the year 2010, 2060 and 2099 to quantify 

drought vulnerability for the baseline, far future and near future period respectively.” For correct 

representation of vulnerability indicators, we will replace their time series with bar graphs for the 

years 2010, 2060 and 2099 (Figure 2b, see comment #3d). 

 

4. Development of bivariate choropleth plots under future scenarios to quantify the 

individual roles of climate and societal changes in driving drought risk 

 

a) This is a good way of visualising the results; but I would suggest to change the colour classes 

since now on e.g., the RCP6.0 near future, barely any variance is visible. 

The RCP6.0 Near future results in mostly high vulnerability and low hazard regions. It is to be 

noted that the low variability in this scenario is due to data and not necessarily due to selected 

color scheme, since parts of Bihar and Telangana are distinctive with moderate vulnerability and 

moderate hazard. For a better comparison of the future scenarios with the baseline period, we 

would retain the existing bivariate color scheme. 

5. Identification of regions and zones that are expected to be under worst drought risk 

conditions in the near and far future 
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a) (Make sure that in the discussion, the results are compared with papers who have a similar 

conception of vulnerability – or discuss the difference – because that might also be the cause of 

the diverging results) 

 We will include the following discussion in Section 3.3.1. “The drought risk estimates for the 

baseline period from the present study compares well with regional-scale drought risk studies in 

India such as those for Andhra Pradesh (Murthy et al., 2015), Bearma basin (Thomas et al., 2016), 

Maharashtra (Swami and Parthasarathy, 2021). However, the water availability projections for 

India by Koutroulis et al. (2019) show decreasing drought risk with time, as opposed to the 

increasing drought risk from the present study. The choice of climate change scenarios and climate 

models by Koutroulis et al. (2019) could be a possible reason for such difference.” 
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