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Abstract. This study analyses the relationship between satellite-measured fAPAR (Fraction 8 

of Absorbed Photosynthetically Active Radiation), which are continuously monitored by the 9 

European Drought Observatory (EDO) of the EU’s Copernicus Emergency Management 10 

Service, and crop yield data for cereals, which are collected by Eurostat. Different features of 11 

the relationship between annual yield and multiple time series of fAPAR, collected during 12 

different periods of the year, were investigated. Two key outcomes of the analysis were the 13 

identification of the period from March to October as that when the highest positive 14 

correlation between fAPAR and yield is detected in Europe on average, and February to May 15 

as the period when most of the negative correlation are observed. While both periods align 16 

well with the commonly assumed dynamic of the growing season, spatial differences are also 17 

observed across Europe. On the one hand, the Mediterranean regions report the highest 18 

correlation values (r > 0.8) and the longest continuous periods with positive statistically 19 

significant results (up to 7 months), covering most of the growing season. On the other hand, 20 

the central European region is characterized by the most limited positive correlation values, 21 

with only 2 months or less showing statistically significant results. While marked differences 22 

on the overall capability to capture the full dynamic of yield are observed across Europe, 23 

fAPAR anomalies seem capable to distinguish between drought and no/drought years in most 24 

of the cases if negative yield anomalies are used as a proxy variable for drought impacts. 25 
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1. Introduction 29 

Drought is a multifaceted phenomenon threatening societies, economies and ecosystems in a 30 

complex web of cascading effects (UNDRR, 2021). Amongst the major sectors that are 31 

impacted by drought, agriculture is still recognized as the most sensitive one (FAO, 2015; 32 

FAO et al., 2018), as reflected by the large share of reported impacts for agriculture over the 33 

majority of countries and drought events in Europe (Stahl et al., 2016). 34 

Most drought monitoring systems recognize the prominent role of agricultural drought, 35 

by refining indicators of meteorological drought in order to better account for impacts on 36 

vegetation growth (e.g. the Standardized Precipitation-Evapotranspiration Index – or SPEI; 37 

Vicente-Serrano et al., 2012), and/or by directly incorporating drought indicators that are 38 

based on remotely sensed vegetation indices (WMO and GWP, 2016). In particular, negative 39 

deviations from climatological values of satellite measurements of vegetation “greenness” – 40 

for example, the standardized anomalies of the fraction of Absorbed Photosynthetically 41 

Active Radiation (fAPAR) that are provided by the European and Global Drought 42 

Observatories (EDO and GDO, https://edo.jrc.ec.europa.eu) – are often adopted as a proxy 43 

variable for the adverse effects of drought on vegetation.  44 

While such approaches are logically based on the connection between reduced 45 

vegetation greenness and diminished plant productivity, it is also well known that droughts 46 

occurring during different phenological stages may have different impacts on yield and 47 

production (i.e. Barros et al., 2021; Ceglar et al., 2020; Chaves et al., 2002; Demirevska et al., 48 

2009; Stallmann et al., 2020; Zampieri et al., 2017). Consequently, greenness anomalies can 49 

be interpreted differently, depending on the development stages of the vegetative cycle when 50 

they manifest. Some studies have tried to account for this concept by limiting the analysis to 51 

the growing period and excluding data for the plant dormancy phase (e.g. Rojas et al., 2011), 52 

by deriving key variation metrics (i.e. amplitude, integral, maximum) from the full growing 53 

season (e.g. Kang et al., 2018), or by focusing only on key periods (i.e. a specific month) that 54 

have been shown to correlate well with deviations in annual yield for a given study area 55 

(Bachmair et al., 2018). 56 

Within the framework of the near real-time monitoring of drought events, the task of 57 

evaluating and quantifying the actual relevance of an observed anomaly in vegetation 58 

greenness is complicated by the need to update continuously the status based on newly 59 

acquired data, without the benefit of the full picture of the complete vegetation cycle. This 60 

limits the possibility to implement some of the above mentioned approaches as part of 61 
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operational drought monitoring systems, other than the simple masking of data acquired 62 

outside of a pre-defined growing season. An example of an early warning system that 63 

accounts for the timing of the observed anomalies is the Anomaly Hot Spots of Agricultural 64 

Production (ASAP) decision support system (Rembold et al., 2019), where the seasonal 65 

progression (expansion, maturity, senescence) is explicitly considered in determining the 66 

warning level. 67 

As part of the shift in the drought risk management paradigm from a reactive to a 68 

proactive approach, the move from simple hazard indicators to quantitative assessments of 69 

risk and impacts is likely to be further integrated within modern early warning systems 70 

(UNDRR, 2021). In this regard, independent estimates of actual drought impacts, such as 71 

records of yield deviations for different crop types, constitute a valuable reference to assess 72 

how the relationship between anomalies in vegetation indices and drought conditions varies in 73 

space and throughout the year. This also enables the evaluation of the efficiency of remotely 74 

sensed indicators as a proxy for the effect of drought on vegetated land, and the refinement of 75 

their use as stress-forcing data for agro-economic models, for the assessment of losses in 76 

agriculture due to droughts (García-León et al., 2021).  77 

In this context, the primary goal of this study is to analyse to what extent the year-by-78 

year dynamics of yield in Europe can be explained by a regularly updated operational drought 79 

indicator, in particular by the fAPAR anomalies produced by EDO. Yield data for cereals, 80 

recorded by Eurostat, are used as a general proxy for the impact of droughts on agriculture. 81 

The spatio-temporal variations in the relationship between dekadal (i.e. 10-day) fAPAR 82 

anomalies and yearly yield deviations can help in identifying the periods of the year when 83 

these two quantities are most closely related in the different parts of Europe, thus providing a 84 

quantitative basis for improving the assessment of drought impacts in agriculture, with 85 

potential benefits both for drought monitoring systems and for agro-economic models in 86 

Europe. 87 

2. Material and Methods 88 

2.1 Eurostat yield dataset 89 

Eurostat, the European Statistical Office, publishes regular reports of statistics on annual 90 

crops, including data on production, cultivated area and yield for different crop types, at both 91 

national and sub-national aggregation levels (Eurostat, 2020), with the aim of providing a 92 

harmonized database of data collected by EU Member States and neighbouring countries.  93 
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For the purposes of this study, annual data on yield for cereals have been retrieved 94 

between 2001 (first full year with available fAPAR data) and 2018 (last available year in the 95 

Eurostat database at the time of this study), mostly at the spatial scale of Eurostat’s so-called 96 

“NUTS 2” regions (hereafter referred to simply as regions). Only in the case of Germany and 97 

the UK data at the NUTS 1 level were used, in order to maximize both data coverage and 98 

consistency in region size with the rest of the domain.  99 

Because the yield data are to be used for computation of deviations from the long-term 100 

average, temporal consistency in the data records is essential. For this reason, records that are 101 

flagged by Eurostat as estimated, provisional, unreliable or with a definition that differs due to 102 

missing components, were excluded from the analysis. 103 

Systematic changes in the annual yield time series were removed by applying a 104 

Savitzky–Golay filter to account for advancement in technology and crop management 105 

(Tadesse et al., 2015), before standardized anomalies were computed only for those regions 106 

with more than 9 years of data (i.e. half of the analyzed period). In this way, 240 regions with 107 

valid time series were obtained. 108 

2.2 MODIS fAPAR dataset 109 

The fraction of Absorbed Photosynthetically Active Radiation (fAPAR) is one of the 50 110 

Essential Climate Variables recognized by the UN Global Climate Observing System 111 

(GCOS), mainly thanks to its direct relationship with primary production 112 

(https://gcos.wmo.int/en/essential-climate-variables/fapar). 113 

fAPAR, and in particular its deviations from historical climatology, constitutes the ideal 114 

proxy variable for the effects of drought on vegetated lands (Rossi et al., 2008). In this 115 

context, remote sensing images collected by the MODIS (MODerate resolution Imaging 116 

Spectroradiometer) sensor represent a unique data source for drought studies, due to the 117 

unprecedented longevity of the Terra satellite.  118 

In this study, the standard MODIS Terra LAI/fAPAR product (i.e. MOD15A2H, 119 

Collection 6) is used (Myneni, 2015), in which global fAPAR maps are derived from the 120 

atmospherically corrected Bidirectional Reflectance Distribution Function (BRDF) recorded 121 

by MODIS in 7 spectral bands, by solving the three-dimensional radiation transfer process 122 

through a look-up-table approach (Knyazikhin et al., 1998; Wang et al., 2001). 123 

The standard MODIS product is distributed as 8-day composites (using a maximum 124 

composite method) at a spatial resolution of 500-m in 1,200 × 1,200 km tiles on a sinusoidal 125 
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grid. Data include a quality assessment (QA) layer that allows to detect where the simplified 126 

back-up algorithm has been used. 127 

Datasets of both fAPAR and fAPAR anomalies based on MOD15A2H raw data are 128 

regularly produced as part of the European and Global Drought Observatories (EDO and 129 

GDO, https://edo.jrc.ec.europa.eu) of the EU’s Copernicus Emergency Management Service. 130 

The operational fAPAR dataset is obtained after a set of pre-processing procedures, including: 131 

1) screening of the low-quality data based on the QA flag; 2) spatial aggregation of the data 132 

(simple average) at 1-km resolution and re-projection onto a lat/lon regular grid at 0.01° 133 

resolution with nearest neighbour resampling; 3) temporal aggregation at dekadal scale (three 134 

maps per month: days 1–10, 11–20 and 21–end-of-month) by means of a weighted average of 135 

the two closest 8-day images (weight proportional to the overlapping with the dekadal 136 

period); and 4) exponential temporal smoothing of the dekadal data (with smoothing 137 

parameter equal to 0.5; Brown and Meyer, 1961). 138 

Here, the fAPAR anomalies were computed as standardized deviations from the 139 

reference period (2001-2018), only if at least 6 years of data were available and only where 140 

the long term standard deviation was greater than 0.01 (to exclude areas of low variability, 141 

such as deserts or highly stable densely vegetated areas). The reference period of 2001-2018 142 

is consistent with the one used for the yield anomalies. 143 

2.3 Analysis strategy 144 

In this study, the analysis of the relationship between the dekad time series of fAPAR 145 

anomalies and yearly crop yield is based primarily on computation of the Spearman 146 

correlation coefficient (r). In order to carry out the analysis, the two main discrepancies 147 

between the two datasets, namely regarding the spatial units (i.e. regions versus cells) and 148 

temporal frequency (year versus dekad), must first be considered.  149 

Given the focus of the study, the only fAPAR conditions that are relevant are the ones 150 

observed over arable land. Therefore, the fAPAR anomaly data were first upscaled to NUTS 2 151 

regions as a weighted average of all the 0.01° resolution fAPAR anomaly values within a 152 

region, with a weighting factor based on the fraction of each grid-cell classified as arable land 153 

according to the latest Corine land cover map (CLC2018, https://land.copernicus.eu/pan-154 

european/corine-land-cover/clc2018). 155 

Regarding temporal frequency, while fAPAR anomaly data are available throughout the 156 

year, similar studies (e.g. Rojas et al., 2011) have focused only on data collected during the 157 

growing season. A north-to-south gradient have been observed in the start, the end, and the 158 
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length of the growing season in Europe, with April-September being a common period all 159 

over Europe, but with early start in February and late end in November over many areas 160 

(Rötzer and Chmielewski, 2001). Estimations of the growing season directly based on 161 

remotely sensed vegetation indices have also highlighted a very early start in the 162 

Mediterranean, around October/November of the previous year (i.e., Atzberger et al., 2014), 163 

likely related to the effect of infesting weeds on the remote sensing signal. Following these 164 

considerations, here we analyse an extended period, testing the relationship between the yield 165 

of a particular year and the fAPAR anomalies between the first dekad of October of the 166 

preceding year and the end of the current year, for a total of 45 dekadal time series. 167 

The set of correlation analyses between each of the 45 dekadal time series of fAPAR 168 

anomalies and yearly yield data is used to construct a “correlogram”, which relates the dekad 169 

with the corresponding r value (see example in Fig. 1 for the Tuscany region in Italy). 170 

Different analyses can be performed on the correlograms, depending on the critical values that 171 

are extracted from these plots and on the goal of the analysis. Here, we faced the problem in 172 

two different ways: a) detecting periods of similar behaviour and accuracy but variable length; 173 

and b) detecting periods of similar length but variable accuracy and behaviour. 174 

For these two analyses, we distinguished between two different behaviours in the 175 

fAPAR-yield relationship, a direct relationship (i.e. negative anomalies in fAPAR correspond 176 

to negative anomalies in yield) and an inverse relationship. The latter may occur when a 177 

strong vegetative growth in observed early in the season during drought years, especially in 178 

energy-limited conditions (van Hateren et al., 2021). We also distinguished between two 179 

levels of accuracy, statistically significant correlations (p < 0.05, either positive or negative) 180 

and at least different than zero r values (i.e. |r| > 0.15). 181 

Starting with a minimum length of 2 dekads, up to 990 periods of various length (L, 182 

from 2 up to 45 dekads) can be analyzed for each region, and for each of these periods four 183 

main metrics are computed: 1) Fp+, the fraction of r values in the period that are positive and 184 

statistically significant (i.e. r > 0 and p < 0.05; 2) Fp-, the fraction of r values in the period that 185 

are negative and statistically significant (i.e. r < 0 and p < 0.05); 3) F+, the fraction of r values 186 

in the period that are at least positive (i.e. r > 0.15), and 4) F-, the fraction of r values in the 187 

period that are at least negative (i.e. r < -0.15). We can then focus on the longest periods that 188 

have homogeneous behaviour and accuracy for a given region, namely homogeneous periods 189 

from hereafter (i.e. a period with Fp+ = 1 represents a continuous streak of dekads with all 190 

positive and statistical significant r values). In the example reported in Figure 1, the dekads 191 

between 23 and 36 (light grey area) are clearly part of the longest period with all positive and 192 
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statistically significant r values, L = 14, while the dark grey area demarks the longest period 193 

with F- = 1 (L = 6). 194 

A further set of analyses is focused on a fixed time window, or a limited range of 195 

lengths, which boundary values can be derived from the previous tests. Within these limits, an 196 

optimal positive (negative) period for each region can be defined as the period with the 197 

maximum (minimum) average r value. Differently from the first group of analyses, these 198 

optimal periods have varying Fp+ and F+ (Fp+ and F+) values that can be used to quantify the 199 

robustness of the relationship between fAPAR and yield.  200 

Finally, while the analyses based on correlation give an insight on the relationship 201 

between fAPAR and yield over the full spectrum of variability, a further test focused only on 202 

drought conditions is also performed, given that in the context of drought monitoring it would 203 

be sufficient to be able to distinguish drought-affected years from the rest. Here, the total 204 

number of cells for each region with fAPAR anomalies < -1 is computed during the drought 205 

years (yield anomalies < -1), and it is compared with the same during no-drought years (yield 206 

anomalies ≥ -1). The assumption here is that the ratio of these two quantities should be greater 207 

than one in the case of a direct relationship. 208 

3. Results and Discussion 209 

3.1 Yield anomalies as a proxy variable for drought impacts 210 

Since standardized yield anomalies for cereals, as described in Section 2.1, are here used as a 211 

proxy variable for the effects of droughts on vegetated land, a preliminary analysis was 212 

performed to evaluate the reliability of this assumption for the derived dataset.  213 

Figure 2 depicts the temporal evolution of yearly yield deviations, highlighting some 214 

clear spatial patterns of significantly negative anomalies (i.e. yield anomaly < -1). Following a 215 

review of the scientific literature for past drought events, it is possible to associate a 216 

documented main drought event to each of these large clusters, as summarized in Table 1.  217 

Seven main droughts are reported, ranging from the well-known drought in central Europe of 218 

2003 (Rebetez et al., 2006) to the central-north European drought of 2018 (Buras et al., 2020; 219 

Toreti et al., 2019). 220 

The existence of a cause-effect relationship between the largest spatial patterns 221 

observed in negative yield anomalies and the listed major drought events is further supported 222 

by the study of Spinoni et al. (2015), which categorized the listed events (except the last two, 223 

which occurred after that study) as being among the most severe in Europe according to 224 

meteorological drought indices. 225 

https://doi.org/10.5194/nhess-2022-178
Preprint. Discussion started: 6 July 2022
c© Author(s) 2022. CC BY 4.0 License.



 8

For each of the drought events listed in Table 1, specific independent scientific 226 

references are also provided, which include details on the evolution of the meteorological 227 

conditions, and the potential impacts on agriculture. Overall, analyses of these data tend to 228 

support the underlying assumption that yield anomalies can be used as a reliable independent 229 

estimate of drought impacts on vegetation, in conformance with the conclusions of other 230 

studies at regional level in Europe (Bachmair et al., 2018; Potopová et al., 2015), or for other 231 

parts of the world (e.g. Yang et al., 2020). 232 

3.2 Detection of the homogeneous periods in the fAPAR-yield relationship 233 

While many studies focused on the local maximum r value to detect when and where 234 

fAPAR and annual yield anomalies best correlate, isolated peak values may alter the 235 

perception of the robustness of fAPAR as a proxy variable of yield. In the context of an 236 

operational drought monitoring system, where continuous estimates should be provided rather 237 

than “one shot” predictions, information on longer homogeneous time periods are more 238 

valuable. 239 

Focusing first on the positive r values, we analysed the periods with only statistically 240 

significant values (Fp+ = 1), or only at least positive values (F+ = 1). The maps in Fig. 3 241 

reports the local maximum lengths corresponding to these two quantities, namely positive 242 

homogeneous periods. Both of these maps show generally longer homogeneous periods in 243 

southern Europe, with the largest values observed for some Mediterranean regions (e.g. most 244 

of Spain, Cyprus, Sicily, Apulia and the Aegean/Mediterranean Turkey), and the smallest 245 

values (or no homogeneous period at all) mostly located in Central Europe (i.e. Germany, 246 

Poland and north-eastern France). On average, the maximum length of the periods with Fp+ 247 

=1 is limited in most of the cases (5.5 ± 4.3 dek, almost 2 months), whereas the values more 248 

than double in the case of F+ = 1 (13.0 ± 8.3 dek, more than 4 months). 249 

Generally, almost all the maximum r values in the correlograms are obtained in the 250 

dekads between mid-February and mid-September, which is expected since this period aligns 251 

well with what is commonly considered the growing season in Europe (Atzberger et al., 2014; 252 

Rötzer and Chmielewski, 2001). Nonetheless, a large variability in the length of both positive 253 

homogeneous periods is observed, with southern and central Europe confirmed to be not only 254 

the areas with highest and lowest r values, respectively, but also the areas with the longest (i.e. 255 

4-7 months) and shortest (up to 2 months) periods with consecutive statistically significant 256 

positive correlations. 257 
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In order to evaluate synthetically the temporal location of these homogeneous periods, 258 

we analyzed which dekads each of them covers, and computed for every dekad the fraction of 259 

NUTS 2 regions (out of 240) that includes that particular dekad in the homogeneous period 260 

(Fig. 4). For example, dekad 27 (i.e. the first dekad of July starting from the beginning of 261 

October of the previous year) is part of the maximum homogeneous period in about 20% and 262 

50% of the regions, for Fp+ and F+, respectively. It is worth noting that about 21% of the 263 

NUTS 2 regions do not have a period (minimum 2 consecutive dekads) with Fp+ = 1. 264 

It is possible to observed two “flexing points” in each of the two time series in Fig. 4: 265 

both around the values 0.1 for Fp+ and around 0.2 for F+. Starting from these values, we can 266 

detect two optimal homogeneous periods: from end-of-April to mid-October (6 months) for 267 

Fp+, and from March to early-November (8 months) for F+. 268 

Moving to the negative correlation values, two maps analogous to the ones in Fig. 3 are 269 

reported in Fig. 5 for Fp- (panel a) and F- (panel b). These two maps show how the longest 270 

negative homogeneous periods are in general shorter than the ones for positive correlations, 271 

with an average value of 3.0 ± 1.6 dekads for Fp- and 7.0 ± 3.9 for F-. The lack of statistically 272 

significant negative r values is especially evident, with almost 50% of the regions having no 273 

homogeneous periods with Fp- = 1. The map for F- (Fig. 5b) allows for some additional 274 

considerations on the spatial distribution, with moderate maximum lengths (around 9 dekads) 275 

in most of western and central Europe, and some high values (higher than 15 dekads) in some 276 

regions of southern Europe. 277 

In terms of temporal distribution, the histograms on Fig. 6 depict the fraction of NUTS 278 

2 regions that includes that particular dekad in the negative homogeneous periods. Overall, 279 

the fraction values are lower than the ones observed for the positive periods (see Fig. 4), with 280 

two distinguishable peak periods in the F- values, the first in early season (February-May) and 281 

the second at the end of the season (October-December). 282 

Most of the homogeneous periods early in the season correspond to regions in western 283 

and southern Europe, and the late season periods are mostly located in central and northern 284 

Europe. In the framework of drought monitoring, the first can be potentially exploited as early 285 

warning signals of subsequent reduction in fAPAR due to drought (as seen in the positive 286 

homogenous periods), while the second mostly occur very close to the harvesting season.   287 

3.3 Performance for a fixed time-window 288 

A clear outcome of the previous analyses is that the length of the homogeneous periods 289 

with negative correlations is limited compared to the positive correlations, and mostly useful 290 
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for drought monitoring only early in the growing season. Therefore, we focus only on the 291 

positive correlation values for the successive analyses. The two lengths (6 and 8 months) 292 

derived from the data depicted in Fig. 4 are used as the minimum and maximum boundary 293 

values to find the local optimal period for each region (see Section 2.3). 294 

The results of this bounded analysis of the local optimal period are shown in Fig. 7, 295 

where the starting dekad (di, panel a) and ending dekad (de, panel b) of the optimal period are 296 

depicted for every region. Fig. 7a shows a general pattern of an early start in Central Europe 297 

(i.e. February/March), and in few southern regions of the Mediterranean, and a late start (i.e. 298 

May/June) in most of southern and western Europe. This late start is of course in line with the 299 

previously observed negative correlations in February/May over the same regions. 300 

Analogously, Fig. 7b shows that the end of the optimal period occurs mostly around 301 

October/November in both southern and western Europe, and August/September in central 302 

Europe, with then mostly negative correlations in central and north Europe occurring after this 303 

period. 304 

Given that these optimal periods have been derived based on the average r values in the 305 

6 to 8-month period, both Fp+ and F+ can assume any values between 0 and 1. For this reason, 306 

we classified each region based on the combined values of these two metrics, as represented 307 

by the legend included in Fig. 8. In this map, the green areas show a good capability to 308 

reproduce the dynamic of yield deviation for the whole optimal period, with the regions in 309 

dark green having the overall best performance (over half of dekads with statistically 310 

significant r values and more than 2/3 with at least positive values). Conversely, the red 311 

regions show a poor capability of the fAPAR anomalies to capture the yield dynamic, with the 312 

dark red regions having less than 1/10 of statistically significant values (i.e. less than a month) 313 

and less than 1/3 of positive correlations during the optimal period. 314 

Overall, slightly more than half (i.e. 55.8%) of the study regions are classified in one of 315 

the green classes, with a predominance of these regions in Mediterranean and south-eastern 316 

Europe. The rest of the study area is almost equally split between regions with average 317 

performance (yellow class, 23.3%), and poor performance (red classes, 20.9%). Among the 318 

red classes, the majority of the regions fall in the category with intermediate F+ values (1/3 < 319 

F+ < 2/3) but low statistically significance (Fp+ < 1/10). Most of these regions are located in 320 

central Europe, between northern France, the United Kingdom, Germany and Poland. 321 

Spain stands out as having particularly robust performances, even among the generally 322 

good performing Mediterranean area. While the start and end of the optimal period varies 323 

across the area (March to May, and September to November, respectively), the results are 324 
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consistently in the best class (dark green in Fig. 8). Among the Mediterranean countries, some 325 

mixed results can be observed in Italy and Greece.  326 

3.4 Drought vs. no-drought years 327 

The previous analyses show a noticeable difference in the capability of fAPAR 328 

anomalies to capture the full range of variability of yield anomalies across Europe, as 329 

quantified by the results on the optimal periods summarize in Fig. 8. For the same optimal 330 

periods, the number of fAPAR anomalies < -1 where cumulated for drought and no-drought 331 

years, separately, and the ratio between these two quantities is depicted in Fig. 9. 332 

Overall, values greater than 1 are observed over most of Europe in Fig. 9, suggesting a 333 

good capability of fAPAR anomalies to detect the effects of drought on annual yield. While 334 

the ratio is only slightly higher than one in some regions where the previous analyses 335 

highlight poor performances (i.e. UK and France), effects of the main drought events on yield 336 

are still well-captured. 337 

Finally, the plot in Fig. 10 show a comparison between the ratio computed on the 338 

optimal period (grey area) and the one computed on the full year (all 36 dekads, black area). 339 

This plot show an overall increase in the ratio when only the dekads in the optimal period are 340 

considered, which translate in a better ability to discriminate between drought and no/drought 341 

years compared to simply account for all the anomalies observed across the full year.    342 

4. Discussion 343 

The results reported in the previous section are based on the assumption that anomalies 344 

of cereal yields are a good proxy variable for drought impacts, as demonstrated for example 345 

by Brás et al. (2021) who quantified an approximately 9% reduction in European cereal yields 346 

due to historical droughts (1961-2018), with an increasing intensity in more recent years. The 347 

spatial patterns in negative yield anomalies used in this study, and the cross comparison with 348 

documented past drought events, confirm this general assumption. 349 

The common element for all the performed analyses is the independent use of each 350 

dekadal fAPAR time series, since this is how data are commonly used in operational 351 

monitoring systems. While different results may be achieved by using metrics based on the 352 

full growing season (e.g. Kang et al., 2018), such analyses are not easily transferable to a 353 

near-real time monitoring framework. Overall, the correlation coefficients computed using 354 

fAPAR collected during multiple dekads suggests a predominance of positive values over all 355 

regions. This is in line with the expected direct relationship between fAPAR and yield during 356 

the core growing season, as well as with most of the past studies which focused primarily on 357 
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the positive correlation. Indeed, most of the maximum values of correlation seems to be 358 

located within the conventional growing season, and the south-north gradient observed in 359 

both of the positive homogeneous period maps (Fig. 3) is in broad agreement with the 360 

expected increasing gradient in growing season length observed over Europe (Rötzer and 361 

Chmielewski, 2001). However, while studies on satellite-derived phenology have detected 362 

growing season lengths ranging from 5 to 9 months (Rötzer and Chmielewski, 2001), the 363 

average length of the periods with positive and statistically significant correlations seems to 364 

be shorter. 365 

Consistently high positive correlation values are obtained over most of Spain, in line 366 

with a recent study over the region (García-León et al., 2019), which reported good 367 

performances of the satellite-based Vegetation Condition Index (VCI) for different type of 368 

cereals, especially for winter wheat and barley. Over central Italy, Todisco et al. (2008) 369 

observed good correlation between yield in sunflower and sorghum with common drought 370 

indices (Standardized Precipitation Index, SPI, and Soil Moisture Severity Index), with a 371 

maximum correlation around weeks 27-29 of the growing season (i.e. July) and statistically 372 

significant values for periods ranging from 2 to 4 months. Similar timing, but with a slightly 373 

shorter optimal length, has been observed in our analysis for the same area.  374 

For Germany, Bachmair et al. (2018) found significant correlation values between VCI 375 

and Vegetation Health Index (VHI) anomalies in the month of August, and yield deviations 376 

for maize, that are comparable with the maximum values observed for western Germany in 377 

our study. A mix of high correlation and missing data is reported in that study for eastern 378 

Germany, where our results are statistically significant only for a very limited period. These 379 

differences may be explained by the focus on specific crop types, as the same authors also 380 

highlight how their results varied for the different crops. 381 

Similar to our results, Labudová et al. (2017) found significant correlation with SPI and 382 

Standardized Precipitation Evapotranspiration Index (SPEI) in the Danubian lowlands only 383 

for summer months, or for a very limited time (i.e. June) in the Eastern Slovak lowlands. For 384 

these regions, the values of the maximum homogeneous period with Fp+ =1 ranged between 3 385 

and 9 dekads as shown in Fig. 3. 386 

 The presence of limited periods with consecutive negative correlations early in the 387 

growing season may be related to the lagged response of vegetation to water deficits (Crow et 388 

al., 2012), as well as to the limited immediate effect of water deficit during energy-limited 389 

periods (Zscheischler et al., 2015). This inverse relationship is currently under-explored in 390 

drought monitoring systems, which mostly focus on the direct relationship, and it may have 391 
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an interesting role as an early warning tool under specific conditions. However, the results 392 

obtained in this study suggest a limited temporal extension and statistical robustness of the 393 

periods with inverse relationships, which usually are followed by much longer and robust 394 

periods of direct relationship.    395 

The late start of the optimal period in many regions of the Mediterranean and western 396 

Europe, compared to the rest of the domain, is associate to the presence of these periods of 397 

inverse relationship early in the growing season. Given the particular climate of the 398 

Mediterranean region, and the key role of the dry and hot summer months in propagating the 399 

droughts in the area, a lagged response in vegetation is expected. In contrast, Central Europe 400 

is characterized by an early start of the optimal period (March to August) that seems to 401 

precede the expected growing season (June to October). For central Europe, Potopová et al. 402 

(2015) found high yield-drought correlation for cereals (better than other crops) over Czech 403 

Republic between April-June, a result in line with our findings. The late start (April/May) in 404 

the northern regions of Scandinavia compared to central Europe, is mostly explained by the 405 

lack of reliable fAPAR data earlier in the year, due to low sun angles. 406 

Focusing on the optimal period, mixed performances are obtained in Italy, with low 407 

agreement particularly in Sardinia and regions along the Apennine mountains. Although 408 

García-León et al. (2021) found a positive relationship between annual-cumulated fAPAR 409 

anomalies and yield for most main crop types, the aggregation of the results at national scale 410 

does not allow the detection of differences among regions. Given the complex morphology of 411 

those regions, potential unreliability in the fAPAR estimates may be a possible cause for the 412 

poor performances. Complex morphology can also be the reason for poor results over few 413 

other Mediterranean areas, such as Greece. 414 

One possible contributing factor underlying the spatial differences in the retrieved 415 

optimal periods, is the effects of different predominant cereal types that are cultivated locally. 416 

This is supported by other studies that have demonstrated different responses for different 417 

crop types (García-León et al., 2021; Labudová et al., 2017). While applying the analysis to 418 

different plant types may be useful to understand better the relationship between drought 419 

conditions and yield for each specific crop, the results of this study for all cereals provide 420 

valuable experimental information that can be more easily ingested into an operational 421 

drought monitoring system, which specializes not only in agricultural drought impacts. 422 

 423 

 424 
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5. Summary and Conclusions 425 

In this study, records of annual crop yield data for cereals, which are collected by Eurostat, 426 

were used to evaluate the capability of satellite-derived fAPAR time series data to capture the 427 

effect of drought events on crop production for different periods of the year and growth stages 428 

of vegetation. 429 

Overall, the analysis of the correlograms computed by plotting anomalies of dekadal 430 

fAPAR values against yearly yield deviations, was used for three main purposes: 431 

 Investigation on continuous streaks of dekads with homogeneous behaviour (direct vs. 432 

inverse) and agreement (i.e. statistical significance) but with different temporal length. 433 

 Investigation of fixed length (6 to 8 months) optimal periods, defined as function of 434 

the maximum average r within the given range of lengths.  435 

 Evaluation of the capability of fAPAR anomalies during the optimal periods to 436 

discriminate between drought and no-drought years. 437 

The analyses confirm the March to October period as the most relevant to positively 438 

correlate anomalies of fAPAR and crop yield, being the period when most of the highest 439 

values of correlation are observed, and when most of the continuous periods with statistically 440 

significant and positive r values are located. There is a generally good agreement comparing 441 

these findings with both the duration and temporal location of the commonly defined growing 442 

seasons in Europe. While some periods with consistent negative correlations are also observed 443 

between February and May, these are generally limited in length to be considered as primary 444 

source of information to reproduce yield dynamics, but they have potential as valuable early 445 

warning information.     446 

The average growing period in Europe is usually characterized by a marked south-to-447 

north gradient, which is also observed in our analysis of the 6 to 8-month optimal periods 448 

based on average r values. Some clear spatial patterns emerge in this analysis, such as the 449 

early start in most of central Europe and the southern Mediterranean, and the late start in 450 

southern and western Europe. While these spatial patterns do not exactly match commonly 451 

observed satellite-derived growing seasons, they provide potentially valuable information that 452 

can be incorporated into operational drought monitoring systems.  453 

Another key output of the study is the generally good correlation between fAPAR 454 

anomalies and crop yield anomalies over most of the Mediterranean regions and across the 455 

full range of variability of yield data. Given the well documented high vulnerability of this 456 

region to drought and the increasing threat posed by climate change (Cammalleri et al., 2020; 457 
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Dubrovský et al., 2014), the ability to link satellite-observed fAPAR anomalies with actual 458 

impacts in agriculture is a promising new development that merits further exploration. 459 

This study also highlighted the overall limited correlation, outside of very short time 460 

periods, between fAPAR and yield over most of the NUTS 2 regions in central Europe. 461 

Further analyses may be needed to better understand the reason behind this result. In this 462 

context, a recent study by Beillouin et al. (2020) has demonstrated how simple climate 463 

variables (i.e. high temperature and low precipitation) can explain much of the yield 464 

variability in central Europe, in contrast with the situation in southern Europe. It is important 465 

to further remark that even over these regions where the overall performance is limited, 466 

fAPAR anomalies are still successful in discriminating between drought and no-drought 467 

conditions, which is a major requirement in drought monitoring systems.   468 

 469 
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Tables 654 

 655 

Table 1. Main European drought events between 2001 and 2018 according to the maps 656 

reported in Fig. 2, and corresponding references in the scientific literature. 657 

Year of 

drought event 

Area affected Reference 

2003 Central Europe Rebetez et al. (2006) 

2005 Iberia Peninsula García-Herrera et al. (2007) 

2006 North-Eastern Europe Valiukas (2015); Somorowska (2016) 

2007 Eastern Europe Bogdan et al. (2008); Sima et al. (2015) 

2012 Eastern Europe Sima et al. (2015) 

2017 Southern Europe García-Herrera et al. (2019) 

2018 Central-Northern Europe Buras et al. (2020); Toreti et al. (2019) 

 658 

659 
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Figures 660 

 661 

 662 

Fig. 1. Example of correlogram for one NUTS 2 region in Italy (ITI1, Tuscany). Each value 663 

represents the Spearman correlation coefficient between the fAPAR anomaly time series of a 664 

specific dekad and the yearly yield anomalies. The two horizontal dashed lines represent the 665 

positive statistical significant value at p = 0.05 and the minimum negative threshold (r = -666 

0.15). Dekads are defined starting from the first dekad of October of the previous year (e.g. 667 

dek = 23 refers to the last dekad of May of the current year). 668 

669 
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 670 

Fig. 2. Spatial distribution of annual standardized yield anomalies for the period 2001-2018. 671 

Anomalies are mapped at NUTS 2 level, with the exception of the areas detailed in Section 672 

2.1. Data in grey are missing. 673 

674 
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 675 

Fig. 3. Spatial distribution of the length (in dekads) of the longest period with Fp+ = 1 (panel 676 

a) and F+ = 1 (panel b). 677 
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 679 

Fig. 4. Fraction of NUTS 2 regions for which each dekad is included in the longest 680 

homogeneous period with Fp+ = 1 (black) or F+ = 1 (grey). 681 
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 683 

Fig. 5. Spatial distribution of the length (in dekads) of the longest period with Fp- = 1 (panel 684 

a) and F- = 1 (panel b). 685 
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 687 

Fig. 6. Fraction of NUTS 2 regions for which each dekad is included in the longest 688 

homogeneous period with Fp- = 1 (black) or F- = 1 (grey). 689 
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 691 

Fig. 7. Spatial distribution of (a) the starting dekad, and (b) the ending dekad, of the local 692 

optimal period based on the average correlation and bounded by a length from 6 to 8 months. 693 
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 695 

Fig. 8. Synthetic representation of the performance of dekadal fAPAR anomalies in 696 

reproducing the yearly yield variations during the local optimal period. The inserted legend 697 

shows the values of Fp+ and F+ for each category, with the numbers inside each square 698 

representing the percentage (%) of the total NUTS 2 regions (out of 240) that falls under each 699 

category. 700 
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 702 

Fig. 9. Spatial distribution of the ratio between the number of fAPAR anomalies < -1 in the 703 

optimal period (see section 3.3) during drought years (yield anomalies < -1) and no-drought 704 

years (yield anomalies ≥ -1).  705 
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 707 

Fig. 10. Cumulated frequency of: i) the ratio between the number of fAPAR anomalies < -1 in 708 

the optimal period (see section 3.3) during drought years (yield anomalies < -1) and no-709 

drought years (yield anomalies ≥ -1) (optimal, grey area); and ii) the ratio between the number 710 

of fAPAR anomalies < -1 in the full year (36 dekads) during drought and no-drought years 711 

(year, black area).  712 
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