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Abstract. In recent times, several efforts have been addressed to understand the extent to which soil moisture estimations 

may improve the performance of landslide early warning systems (LEWSs). These systems have been traditionally based 

on rainfall intensity-duration thresholds. Still a limited number of studies explore the possible enhancement of the 

performance of LEWSs through the identification of hydro-meteorological thresholds. In this study, we propose a 

methodology for developing regional hydro-meteorological landslide triggering thresholds coupling mean rainfall intensity 15 

and soil moisture information. To test the potential improvements in prediction we use ERA5-Land reanalysis soil moisture 

data, available at four depth levels and hourly resolution. Two different instances are investigated, namely the 

identification of triggering thresholds using rainfall intensity and the soil moisture at each of four depth levels, and the 

identification of triggering thresholds using rainfall intensity and a combination of soil moisture at the four depths as 

obtained by principal component analysis (PCA). We propose thresholds in the form of a piece-wise linear equation. The 20 

equation’s parameters are optimized in order to maximize the ROC True Skill Statistic (TSS) prediction performance 

metric. The proposed hydro-meteorological thresholds are tested on the case of Sicily Island (south Italy) and the 

performance is compared with those obtained through the traditional rainfall intensity-duration (ID) power-law thresholds. 

Overall, the results show that the soil moisture information adds a considerable value to the improved thresholds’ 

performance since the ROC True Skill Statistic increases from 0.50 to 0.71. A similar performance is obtained when the 25 

first principal component derived from the PCA is used, proving PCA to be a valuable support tool for the identification of 

the proposed hydro-meteorological thresholds, as it allows to take into account the multi-layer information while keeping 

the thresholds two-dimensional. 
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1 Introduction 

The impact of landslides triggered by rainfall, is constantly increasing due to landscape modifications, i.e. urbanization, 

deforestation, land-changes and the abandonment of rural areas (Roccati et al., 2019). They can cause serious damage to 35 

man-made structures and land, as well as loss of natural resources and lives (Froude and Petley, 2018). Furthermore, in the 

last decades, an increasing number of studies focused on the potential effects of climate change on landslide phenomena 

(McInnes et al. 2007; Dijkstra and Dixon 2010; Crozier 2010), pointing out that there are some unresolved issues, such as 

the abundance, activity, frequency and return period of landslides in response to the projected climate change (Gariano and 

Guzzetti, 2016; Peres and Cancelliere, 2018). In light of these considerations and, after recent catastrophic landslides 40 

worldwide, there is a high interest of scholars and civil protection agencies in the development of landslide early warning 

systems (LEWS), which can serve as an aid in predicting possible slope movements, and thus as risk mitigation tool (Roccati 

et al., 2020; Highland and Bobrowsky, 2008; Chae et al., 2017).  

Landslide triggering thresholds are a key component of LEWS. In general, even if LEWS vary widely in approaches and 

scale, empirical rainfall thresholds in combination with rainfall measurements and forecasts remain the most frequently 45 

applied approaches for the majority of regional LEWSs.  In the literature, several methods have been proposed for the 

identification of rainfall thresholds to landslides initiation (Guzzetti et al., 2007a, 2008; Segoni et al., 2018a; Aleotti, 2004). 

Empirical rainfall thresholds are usually obtained by drawing lower-bound lines to the rainfall conditions inducing 

landslides, plotted in Cartesian, semi-logarithmic, or logarithmic coordinates (e.g., rainfall duration on the abscissa axis and 

rainfall intensity on the vertical axis). When information on non-triggering rainfall is also available, thresholds can be 50 

determined as the best classifiers based on the confusion matrix (Berti et al., 2012; Staley et al., 2013; Peres and Cancelliere, 

2014; Postance et al., 2018; Marino et al., 2020; Peres and Cancelliere, 2021).  

Commonly, these rainfall exceedance thresholds empirically relate the occurrence of landslides to rainfall event 

characteristics such as intensity, duration, total amounts, or a combination thereof (Wicki et al., 2020a). However, in many 

settings the antecedent soil wetness conditions influence the variability in rainfall triggering amounts, becoming a 55 

predisposing factor that plays a major role in landslide initiation (Palau et al., 2021; Conrad et al., 2021). This led to a more 

recent approach that relies not only on rainfall but, also, on subsurface hydrological measurements (e.g. soil moisture 

content), thus introducing hydro-meteorological thresholds (Mirus et al., 2018b, a; Thomas et al., 2018; Segoni et al., 2018c; 

Wicki et al., 2020a; Bogaard and Greco, 2018, 2016) for a better representation of landslide triggering. The term “hydro-

meteorological” is because these threshold combine a meteorological variable (rainfall depth) with a hydrological one, 60 

reflecting the water storage at the catchment or local scale (Gain et al., 2021). 

 In this regard, several attempts aimed at introducing, directly or with models, the effects of soil moisture information in the 

empirical thresholds for improving landslide prediction have been made (Crozier, 1999; Zhao et al., 2019; Brocca et al., 

2016; Segoni et al., 2018c; Ponziani et al., 2012). For instance, Marino et al. (2020) performed an explorative numerical 

investigation to understand whether soil moisture information can improve shallow landslide forecasting using the hydro-65 
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meteorological threshold approach. In their work, they used synthetic rainfall and landslide data obtained through Monte 

Carlo simulation. Their results showed that soil moisture information introduced within hydro-meteorological thresholds can 

significantly reduce the false alarm ratio of LEWS, while keeping at least unvaried the number of missed alarms. Along this 

path, Reder and Rianna (2021) addressed the extent to which soil moisture estimations can be useful to define a proxy for 

antecedent slope wetness conditions. In particular, they used the soil moisture data derived from the ERA5-Land reanalysis 70 

(Hersbach et al., 2020) as a support for LEWS, and more specifically as an initial filter for a pre-screening of the effective 

saturation degree. They showed that the filter yielded by the ERA5 soil model is able to strengthen the regional warning 

system and that the ERA5 reanalysis provides estimations consistent with those retrieved by using more complex and 

detailed physically based models.  

Lastly, Wicki et al. (2021) compared the reliability of landslides forecast models based on simulated soil moisture with 75 

respect to models based on soil moisture measurements. Specifically, they assessed the potential and limitations of adopting 

1D soil water transfer model for regional LEWS and disclosed the pros and cons compared of using soil moisture 

measurements. To this aim, they used plot-scale soil hydrological simulations to be able to directly compare the results to a 

landslide forecast model based on in situ soil moisture measurements and demonstrated a high information content of 

simulated soil moisture for regional landslide activity, which was even higher than when in situ soil moisture measurements 80 

were used (Wicki et al., 2021). In this regard, Wicki et al. (2020b), demonstrated that the performance is strongly dependent 

on the distance between the soil moisture network location and landslide activity area and that the goodness increases with 

decreasing distances between measurement sites and landslides. Therefore, the density of the soil moisture measurement 

networks impacts the performance of a LEWS and these measurement networks should consider the spatial variability of 

meteorological events and soil properties (Wicki et al., 2020b). 85 

In light of these advances, in the present work we attempt to give a further contribution by investigating the possible 

improvements of landslide prediction through hydro-meteorological thresholds coupling observed rainfall intensity and soil 

moisture information. In particular, we carry out our investigation considering the ERA5-Land reanalysis data set. In fact, 

recent studies proved that the main climate variables (i.e., soil moisture, temperature, precipitation) obtained from third-

generation atmospheric and reanalysis datasets, (i.e., ERA5 project) have a reasonable accuracy in reproducing in situ-90 

measurements of the reference local weather stations from the International Soil Moisture Network (Dorigo et al., 2011; Li et 

al., 2020; Beck et al., 2021). 

A real case study is used to test the methodology, obtained by joining, over the period 2010-2018, the dataset of observed 

landslide and rainfall events with the dataset of soil moisture values reconstructed by the ERA5-Land reanalysis at the 

beginning of rainfall events. The proposed methodology involves the identification of the equation describing the threshold 95 

through a heuristic approach and an optimization procedure aimed at finding the optimal values of its parameters, in order to 

maximize the ROC True Skill Statistic (TSS). In order to combine the information of multiple layers of soil moisture data 

availability, the Principal Component Analysis (PCA) (Jolliffe, 2002) is used, a multivariate statistical tool which capitalizes 

on the presence of correlation between the soil moisture at different depths. Thus, two different instances are investigated, 
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namely the identification of four triggering thresholds using the rainfall intensity and the soil moisture at each of four depth 100 

levels, and the identification of the triggering threshold using the rainfall intensity and first principal component of soil 

moisture at all four depths. 

The paper is organized as follow. First the procedure for the dataset creation and the methodology leading to the hydro-

meteorological thresholds identification are presented in the “Material and Methods” section. Then, the “Study Area” section 

describes the relevant features of the study area, namely the Sicily Island (Southern Italy). Next, the results and discussion 105 

concerning the comparison between the performance obtained through the traditional ID thresholds and the proposed hydro-

meteorological thresholds, are presented in the “Results and Discussion” section. Finally, conclusions are drawn in the last 

section. 

2 Materials and method 

2.1 Dataset construction 110 

The construction of a rainfall and landslide events dataset is a key step, which involves different types of data (i.e., observed 

landslides, rainfall events and, reanalysis data of soil moisture). As schematically illustrated in Fig. 1, in the first step, 

information is collected regarding the observed landslides from the FraneItalia project (Calvello and Pecoraro, 2018), a 

thorough spatio-temporal inventory of historical landslides that have impacted the Italian territory since 2010, including both 

occurrences that resulted in fatalities and occurrences that did not. 115 

 
Figure 1: Schematization of the procedure followed for dataset construction. 
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The first classification criterion by the FraneItalia catalogue is based on the number of landslides triggered by the same 

rainfall event in a given geographic area. Specifically, single landslide events (SLE) and areal landslide events (ALE) are 

distinguished for records referring to single or multiple landslides, respectively. Both SLEs and ALEs are then categorized 120 

into one of three classes in relation to their impacts, in order to track whether a landslide occurrence resulted in casualties or 

missing people (C1, very severe), injured people and evacuations (C2, severe), or no one was physically harmed (C3, minor). 

The data on occurrence location, the date the landslide occurred, the source of information, and the number of landslides for 

ALEs are further details that have been also included in the catalogue, together with the onset and duration of the landslide 

occurrence and its consequences. 125 

Thanks to this accurate level of detail, it is possible to filter only the landslide events triggered by rainfall, which are 

precisely those to take into consideration in our study.  

The CTRL-T (Calculation of Thresholds for Rainfall-induced Landslides-Tool) code (Melillo et al., 2018) is subsequently 

used for the identification of the rainfall events that were more likely to be responsible for the observed slope failures. 

Specifically, CTRL-T automatically and objectively reconstructs rainfall events and the triggering conditions responsible for 130 

the failure using a set of adjustable parameters to account for different morphological and climatic settings. Briefly, the tool 

consists of distinct modules with specific purposes. Among these, one module operates the reconstruction of rainfall events 

in term of duration (D, in hours) and, cumulated event rainfall (E, in mm) using continuous hourly rainfall time series and 

setting several climate and spatial parameters such as, the warm period in a year (CW); the cold period in a year (CC); the 

resolution of the rain gauge (GS); time periods used to remove irrelevant amount of rain and to reconstruct rainfall events 135 

(P1, P2, P4); irrelevant rainfall sub-events that had to be excluded in the calculation of the final events (P3); radius of the 

buffer to assign each landslide to the closest rain gauge (RB). Rainfall event parameters were calibrated adopting the monthly 

soil water balance model and evapotranspiration analysis. A further module, instead, performs selection of the rain gauge 

representative for the landslide. The maximum allowed distance between a landslide and a rain gauge is limited by the 

circumferential area with radius equal to RB. Single or multiple rainfall conditions (MRC) that are most likely responsible for 140 

the slope failures are, then, identified. MRC can be a (DL, EL) pair of rainfall event duration (DL) and cumulated event 

rainfall (EL), or a set of two or more pairs. Each MRC is assigned a weight to select the representative rain gauge and the 

rainfall conditions associated with the landslide. The weight is proportional to the inverse square distance between the rain 

gauge and the landslide (d−2), the cumulated rainfall (EL), and the rainfall mean intensity (ELDL
−1): 

𝑤𝑤 = 𝑓𝑓(𝑑𝑑, 𝐸𝐸𝐿𝐿, 𝐷𝐷𝐿𝐿) = 𝑑𝑑−2𝐸𝐸𝐿𝐿2𝐷𝐷𝐿𝐿−1                                                                                                                                                                    (1) 145 

Thus, among all the identified MRCs, those with the highest weights w are defined as the maximum probability rainfall 

conditions (MPRCs) and, precisely these reconstructed rainfall conditions were assumed as the rainfall triggering events. 

The landslides for which the rainfall conditions were not identified or with relevant uncertainties, were discarded. 
As shown in Fig. 1, the last step for the dataset set up consists of the association of soil moisture data to the beginning of 

each rainfall event, both triggering and non-triggering ones. In this regard, the ERA5-Land reanalysis dataset is used. Indeed, 150 
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it provides the volume of water ϑ [m3/m3] at four distinct soil depths levels (i.e., 0-7 cm; 7-28 cm; 28-100 cm, and 100-289 

cm). The ERA5-Land soil moisture data are provided as grid data with a horizontal resolution of 0.1° x 0.1°. Thus, the soil 

moisture values representative of the closest cell to the rain gauge that recorded the rainfall event are associated to the 

considered event. Thereby, the dataset in the form shown in Fig. 1, was created. 

2.2 Principal component analysis 155 

Principal Components Analysis (PCA) (Jolliffe, 2002) is a multivariate technique that analyzes a data table in which 

observations are described by several inter-correlated quantitative dependent variables in order to extract the important 

information from the table and, to represent it as a set of new orthogonal variables called principal components (Abdi and 

Williams, 2010).  

Precisely, the data are transformed according to a new coordinate system having the x-axis, known as the first principal axis, 160 

characterized by the highest data variation. Along the successive after axes (e.g., the second principal axis, the third principal 

axis, and so on) the data are characterized by increasingly lower variation. Indeed, up until the entire data table is reduced, 

each succeeding principal component explains the maximum amount of variance feasible with the requirement that it is 

orthogonal to the previous principal components. In practice, identifying the eigenvalues and eigenvectors of the covariance 

matrix is the formal mathematical equivalent of solving the PCA problem. Indeed, the direction along which the data have 165 

the highest variance is the eigenvector, while, the related eigenvalue is a quantification of the variance in the data along the 

corresponding eigenvector. Accordingly, the first principal component is the eigenvector with the greatest eigenvalue, 

followed by the eigenvector with the second-highest eigenvalue, and so on. Thus, the so computed principal components are 

employed for the projection of the data into the new coordinate space (Kherif and Latypova, 2019). 

Practically, in our study, 𝜽𝜽 (Eq. 2) represents the soil moisture data table for which to compute the principal components, 170 

specified as an n-by-p matrix. Rows correspond the total amount n of the considered rainfall events (i.e., observations), and 

the number of columns to the four depths levels at which the initial soil moisture data are provided (i.e., variables). 

𝜽𝜽 = �

𝜗𝜗11 𝜗𝜗12 𝜗𝜗13 𝜗𝜗14
𝜗𝜗21 𝜗𝜗22 𝜗𝜗23 𝜗𝜗24
⋮ ⋮ ⋮ ⋮
𝜗𝜗𝑛𝑛1 𝜗𝜗𝑛𝑛2 𝜗𝜗𝑛𝑛3 𝜗𝜗𝑛𝑛4

�                                                                                                                                        (2) 

𝑨𝑨 represents, instead, the principal components’ loadings (i.e., coefficients) table, specified as an p-by-p matrix. The rows of 

matrix A are called the eigenvectors, and these specify the orientation of the principal components relative to the original 175 

variables. 

𝑨𝑨 = �

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎14
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34
𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44

�                                                                                                                                        (3) 

Thus, the principal components (𝑆𝑆𝑖𝑖) for the generic 𝑖𝑖𝑡𝑡ℎ row, are given by a linear combination of the variables 𝜽𝜽 and 𝑨𝑨, 

namely:  
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𝑆𝑆𝑖𝑖1 = 𝑎𝑎11𝜗𝜗𝑖𝑖1 + 𝑎𝑎12𝜗𝜗𝑖𝑖2 + 𝑎𝑎13𝜗𝜗𝑖𝑖3 + 𝑎𝑎14𝜗𝜗𝑖𝑖4                                                                                                                                 (4) 180 

𝑆𝑆𝑖𝑖2 = 𝑎𝑎21𝜗𝜗𝑖𝑖1 + 𝑎𝑎22𝜗𝜗𝑖𝑖2 + 𝑎𝑎23𝜗𝜗𝑖𝑖3 + 𝑎𝑎24𝜗𝜗𝑖𝑖4                                                                                                                                 (5) 

𝑆𝑆𝑖𝑖3 = 𝑎𝑎31𝜗𝜗𝑖𝑖1 + 𝑎𝑎32𝜗𝜗𝑖𝑖2 + 𝑎𝑎33𝜗𝜗𝑖𝑖3 + 𝑎𝑎34𝜗𝜗𝑖𝑖4                                                                                                                                 (6) 

𝑆𝑆𝑖𝑖4 = 𝑎𝑎41𝜗𝜗𝑖𝑖1 + 𝑎𝑎42𝜗𝜗𝑖𝑖2 + 𝑎𝑎43𝜗𝜗𝑖𝑖3 + 𝑎𝑎44𝜗𝜗𝑖𝑖4                                                                                                                                 (7) 

with 𝑖𝑖 = 1, … ,𝑛𝑛. 

In matrix notation, the transformation of the original variables to the principal components is written as, 185 

𝑺𝑺 = 𝜽𝜽𝜽𝜽                                                                                                                                                                     (8) 

2.3 Threshold identification 

The methodology adopted in this work aims to improve the identification of regional landslides triggering thresholds by 

means of reanalysis soil moisture information and, to compare the obtained performance with those obtained through the 

traditional rainfall intensity-duration power-law thresholds (ID). Therefore, the rainfall intensity-duration threshold, the most 190 

common type of threshold proposed and adopted in the literature (Segoni et al., 2018b; Guzzetti et al., 2007b; Brunetti et al., 

2010), is used as benchmark. The 𝐼𝐼𝐼𝐼  threshold assumes the form 𝐼𝐼 = 𝛼𝛼𝐷𝐷−𝛽𝛽 , where 𝐼𝐼 [mm h⁄ ]  represents the rainfall 

intensity, i.e., the average precipitation rate over the considered period; 𝐷𝐷 [h] represents the duration of the rainfall event; 𝛼𝛼 

is the intercept parameter, and 𝛽𝛽  is the slope parameter. After reconstructing the rainfall events with the methodology 

explained for the dataset creation and, after calculating the main variables (i.e., mean rainfall intensity and duration), an 195 

optimization tool (i.e., the MATLAB Particle Swarm optimization toolbox) is used with the aim to search for the best 

possible 𝛼𝛼 and 𝛽𝛽 curve parameters able to maximize the True Skill Statistic index (TSS) objective function (Eq. 11), which 

is based on the confusion matrix or the Receiver-Operating Characteristics (ROCs). The confusion matrix is expressed in 

terms of the count of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) (Peirce, 1884) 

(Table 1). 200 
Table 1: Confusion matrix for ROC analysis. 

  Observed landslide 
  Landslide (P) No landslide (N)  

Predicted Landslide 
Landslide TP FP 

No landslide FN TN 
As a function of the variables reported in Table 1, the three reference standard ROC indices – namely, True Positive Rate, 

False Positive Rate and True Skill Statistic – are listed below (Eqs. 9, 10, 11): 

TPR =
TP

(TP + FN)
                                                                                                                                                                                           (9) 

FPR =
FP

(TN + FP)
                                                                                                                                                                                         (10) 205 

TSS = TPR − FPR                                                                                                                                                                                         (11) 
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The highest performances correspond to TSS = 1, when, relatively to a given rainfall event, the model produces no false or 

missing predictions. 

Afterward, the analysis is focused on the identification of the parametric equation that represents the lower boundary 

between triggering and no-triggering rainfall events on the basis of the mean rainfall intensity and the reanalysis of soil 210 

moisture values at each depth level. In this context, we propose the following parametric threshold as a reliable relationship 

to classify the events on the semi-log plane: 

𝐼𝐼 =  �

𝑦𝑦0, 𝜗𝜗 <  𝑥𝑥0
𝑦𝑦1 − 𝑦𝑦0
𝑥𝑥1 − 𝑥𝑥0

 (𝜗𝜗 − 𝑥𝑥0) + 𝑦𝑦0, 𝑥𝑥0 ≤ 𝜗𝜗 ≤ 𝑥𝑥1

𝑦𝑦1, 𝜗𝜗 >  𝑥𝑥1

                                                                                                                                   (12) 

where 𝐼𝐼 and 𝜗𝜗 correspond to rainfall intensity and to soil moisture values, respectively. This parametric form of the threshold 

has been devised based on the visual inspection of the scatter plot of triggering and non-triggering events (i.e., heuristically), 215 

and corroborated by comparison with other relationships proposed in the literature – specifically, the power-law and the 

simple bilinear (as opposed to a linear or more complex power or high‐degree polynomial) (Thomas et al., 2019; Mirus et al., 

2018a).   Furthermore, 𝑥𝑥0, 𝑥𝑥1,𝑦𝑦0 , and 𝑦𝑦1  are the threshold’s parameters that must be estimated. In this regard, these 

parameters are computed by adopting the same objective function and optimization procedure as those used for the 

identification of the parameters of the power-law ID threshold, i.e., the True Skill Statistic index (TSS) objective function 220 

(Eq. 11) and the MATLAB Particle Swarm global optimization toolbox. At this stage, the threshold identification 

methodology described so far is applied with the aim to identify triggering thresholds between the mean rainfall intensity (I) 

and the soil moisture expressed in two variants: i) soil moisture at each of the four depth levels (𝜗𝜗1,𝜗𝜗2,𝜗𝜗3,𝜗𝜗4 ) available from 

the ERA 5 - reanalysis; ii) the first principal component of soil moisture, i.e. the linear combination of soil moisture at the 

four depths corresponding to the minimum information loss (highest explained variance). The TSS values obtained in the 225 

applications considering soil moisture (hereinafter indicated as 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝) were compared with the TSS values obtained for the 

reference scenario of the power-law ID threshold (hereinafter 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝). 

3 Study area 

The study area selected for our study is the island of Sicily (southern Italy, 37.75N-14.25 E) which, with an area of 

~25,700 km2, is the largest island of the Mediterranean Sea. A hilly morphology (62%) dominates the landscape in the 230 

island, while the rest is characterized by a mountainous and flat morphology, especially in the eastern part of the island 

around Catania. The terrain average elevation is about 400 meters above sea level, ranging from 0 to 3320 meters on the 

peak of the Etna volcano. Geologically, the Sicily Island arose during the Neogene, when the European and African plates 

converged. Thus, Sicily stands out for its complex geological and lithological features which, cooperatively with anthropic 

activities (e.g., changes in land use, management of forest, etc.), have generated a wide range of different types of soil 235 

(Venturella, 2004). 
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The climate is warm-temperate, with hot and dry summers, especially on the southern coasts, and higher and more frequent 

precipitation during the colder winter months, in the mountainous internal areas (Pumo et al., 2019).  Mean annual 

precipitation ranges between 700 and 800 mm and, autumn and winter are the rainiest seasons. The most severe rainfall 

events frequently hit the eastern side of the island and specifically, the eastern side of the Etna volcano and the flanks of the 240 

Peloritani Mountains, with the greatest precipitation peaks on the Ionian side  (Gariano et al., 2015). On the other hand, 

south Sicily is distinguished by lower precipitation than the mean values recorded in the rest of the region, since it is located 

at a lower height and is exposed to the hot and dry African winds (Alecci and Rossi, 2007). 

Fig. 2 shows the geographical context of Sicily, the rain gauge locations for the period 2009-2018 (Distefano et al., 2021) 

and the observed landslide locations. In more detail, 207 landslide events were retrieved by the FraneItalia database from 245 

2010 to 2018 and, for each of them, longitude-latitude coordinates (WGS84 datum), together with the initiation time, are 

retrieved. 

 Figure 2: Elevation map of the study area (Sicily region), showing the location of the rain gauges and landslide occurrences. 
(Credit to: http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais and ESRI 2020). 250 

Concerning the observed rainfall measurements, we consulted the data provided by the regional water observatory 

(Osservatorio delle Acque, OdA), the SIAS (Sicilian Agro-meteorological Information Service), and the Regional Civil 

Protection Department (DRPC), namely the three main gauging networks installed in Sicily.  

This enabled an hourly time series to be reconstructed for the precipitation over the period 2009-2018. As previously 

explained in Section 2.1, using these continuous rainfall time series, the rainfall events were identified using the CTRL-T 255 

research code. Specifically, the minimum dry period separating two rainfall events was set equal to 48 hours in the warm 

period CW (April-October) and, equal to 96 hours in the cold period CC (November- March). 
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4 Results and discussion 

4.1 Principal Component Analysis 

An explorative analysis was, initially, carried out, in order to investigate the correlation between the four soil moisture 260 

depths (𝜗𝜗1,𝜗𝜗2,𝜗𝜗3,𝜗𝜗4). The plot shown in Fig. 3 represents the correlation matrix between all pairs of variables, together with 

the Pearson’s correlation coefficients. 

Overall, all the four soil moisture depths are related to each other. Specifically, the diagonal subplot between the upper two 

depths levels 𝜗𝜗1 and 𝜗𝜗2 has the highest correlation with a correlation coefficient R equal to 0.85. This suggest that the 

Principal Component Analysis can be adopted in order to find out the linear combination expressing the correlation between 265 

the involved soil moisture variables. 

 
Figure 3: Correlation matrix between the four soil moisture level depths (𝝑𝝑𝟏𝟏,𝝑𝝑𝟐𝟐,𝝑𝝑𝟑𝟑,𝝑𝝑𝟒𝟒). Each off-diagonal subplot contains a 
scatterplot of a pair of variables with a least-squares reference line, the slope of which is equal to the displayed correlation 
coefficient. Each diagonal subplot contains the distribution of a variable as a histogram. 270 
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The preliminary step, required when the principal component analysis is performed, is to center the data on the mean values 

of each variable, namely by subtracting the mean of a variable from all values of that variable. This step allows the cloud of 

data to be centered on the origin of the principal components, but it affects neither the spatial relationships of the data, nor 

the explained variance along the variables. At this stage, it was possible to proceed with the Principal Component Analysis 

and, according to Eqs. 4, 5, 6, and 7, the four principal components of soil moisture were defined as follow: 275 

𝑆𝑆𝑖𝑖1 = 0.65𝜗𝜗𝑖𝑖1 + 0.58𝜗𝜗𝑖𝑖2 + 0.47𝜗𝜗𝑖𝑖3 + 0.15𝜗𝜗𝑖𝑖4                                                                                                                        (13) 

𝑆𝑆𝑖𝑖2 = −0.54𝜗𝜗𝑖𝑖1 − 0.04𝜗𝜗𝑖𝑖2 + 0.63𝜗𝜗𝑖𝑖3 + 0.55𝜗𝜗𝑖𝑖4                                                                                                                     (14) 

𝑆𝑆𝑖𝑖3 = 0.37𝜗𝜗𝑖𝑖1 − 0.29𝜗𝜗𝑖𝑖2 − 0.39𝜗𝜗𝑖𝑖3 + 0.79𝜗𝜗𝑖𝑖4                                                                                                                        (15) 

𝑆𝑆𝑖𝑖4 = −0.38𝜗𝜗𝑖𝑖1 + 0.76𝜗𝜗𝑖𝑖2 − 0.48𝜗𝜗𝑖𝑖3 + 0.23𝜗𝜗𝑖𝑖4                                                                                                                     (16) 

The loadings values of each principal component are intended as the weights 𝑎𝑎𝑖𝑖𝑖𝑖 (Eq. 3): therefore, the higher the value of 280 

the weight, the larger the contribution of a variable to the component associated with the weight. The sign of a loading 

indicates whether a variable and a principal component are positively or negatively correlated. Here, although overall 

slightly large loadings correspond to the first principal component, none of the four variables has a strong relationship with a 

particular principal component. 

Fig. 4 shows, instead, the scree plot representing the total percentage of variance explained by each of the four principal 285 

components. The chart reveals the decreasing rate at which variance is explained by additional principal components. 

  
Figure 4: Total variance explained by each principal component. 

Because dimensionality reduction is a goal of PCA, several criteria can be considered for determining how many principal 

components should be examined and how many should be ignored (Rencher, 1998). Just to list a few: i) ignore principal 290 

components at the point at which the next principal component offers little increase in the total explained variation; ii) ignore 

the last principal component whose explained variation are all roughly equal; iii) include all principal components up to a 
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predetermined total explained variation. In our study, the third criterion was applied considering a threshold value of 75%. 

Therefore, only the first principal component was considered as it guaranteed by itself the desired explained variation of 

about 75 %.   295 

4.2 Thresholds identification 

CTRL-T tool reconstructed 144 landslide events out of the 207 landslides retrieved by the FraneItalia database. Four 

different triggering rainfall events, representing a range of triggering conditions, were selected within the database, and the 

precipitation time series together with the soil moisture time series are plotted in Fig. 5.  

 300 
Figure 5: Panel showing four different triggering rainfall events. For each of them the precipitation time series together with the 
soil moisture time series (𝝑𝝑𝟏𝟏, 𝝑𝝑𝟐𝟐, 𝝑𝝑𝟑𝟑, 𝝑𝝑𝟒𝟒) are reported, as well as the first principal component of soil moisture 𝑺𝑺𝟏𝟏. 
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The light green window, within each graph, represents the triggering rainfall event in relation to the wider window of the 

corresponding entire month. As expected, especially the upper two soil moisture layers reflect the precipitation trends, as 

well as the first principal component of soil moisture 𝑆𝑆1 , computed using Eq. 13. Overall, a greater variability in soil 305 

moisture values can be observed in correspondence to 𝜗𝜗1 and 𝜗𝜗2, which assume maximum values about equal to 0.4 in 

correspondence of all the analyzed triggering rainfall events. Furthermore, Fig.5 shows as in correspondence of longer 

rainfall duration, lower precipitation values have triggered landslides (Fig.5 (c)) and vice-versa (Fig.5 (a)). 

First, the power-law 𝐼𝐼𝐼𝐼 threshold maximizing TSS was identified (Fig. 6). 

 310 

 
Figure 6: Traditional power-law threshold on the log-log plane between observed mean rainfall intensity (I) and duration (D). 

For this threshold a 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝 = 0.50 is obtained, and this value was taken as benchmark for comparison with the hydro-

meteorological thresholds constructed considering the two variants of hydro-meteorological thresholds described in 

subsection 2.3. Fig. 7 shows the obtained thresholds when the mean rainfall intensity and the soil moisture at each of the four 315 

depth levels are considered. As can be seen, especially in correspondence to the upper two depths (i.e., 0-7 cm, 7-28 cm), the 

triggering rainfall events are located, for the most, on the right-upper side of the graph, suggesting that the equation proposed 

for the identification of the thresholds (Eq. 12) fits this trend well. All the four identified thresholds have better performance 

than ID threshold. Specifically, higher TSS values were obtained for the first two depths, with a 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 equal to 0.71 while 

slightly lower values of 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 (0.61 and 0.54), are obtained with the third and fourth soil moisture level, respectively. 320 
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Figure 7: Parametric thresholds on the semi-log plane between mean rainfall intensity and soil moisture at the four distinct 
depths: (a) 𝝑𝝑𝟏𝟏 0-7 cm; (b) 𝝑𝝑𝟐𝟐 7-28 cm; (c) 𝝑𝝑𝟑𝟑 28-100 cm; (d) 𝝑𝝑𝟒𝟒 100-289 cm. 

As mentioned before, the second analysis concerns the identification of the optimal parametric thresholds when the mean 

rainfall intensity and first principal component of soil moisture are considered (Fig. 8). In this variant, a 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 = 0.71 was 

obtained once again, reaching an equal performance to the best case of the first variant and, thus, improved results in 325 

comparison with the 𝐼𝐼𝐼𝐼 approach.  

(a) (b) 

(c) (d) 
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Figure 8: Parametric threshold on the semi-log plane between observed mean rainfall intensity (I) and first principal component of 
soil moisture (S1). 

Table 2 summarizes the 𝑇𝑇𝑇𝑇𝑇𝑇 values in correspondence of the analyzed thresholds, together with the values of parameters 330 

(Eq. 12) estimated for the parametric thresholds.  
Table 2: TSS values in correspondence to each analyzed scenario, and parameters (𝒙𝒙𝟎𝟎, 𝒚𝒚𝟎𝟎,𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏) estimated for the parametric 
thresholds. 

Threshold TPRpar FPRpar TSSpar x0 y0 x1 y1 

𝐼𝐼𝐼𝐼1 0.84 0.14 0.71 -0.33 27.23 0.38 0.09 

𝐼𝐼𝐼𝐼2 0.84 0.14 0.71 0.05 5.73 0.39 0.02 

𝐼𝐼𝐼𝐼3 0.73 0.12 0.61 -0.03 6.98 0.40 0.02 

𝐼𝐼𝐼𝐼4 0.79 0.25 0.54 -0.08 6.82 0.35 0.09 

𝐼𝐼𝑆𝑆1 0.85 0.14 0.71 -0.12 3.28 0.23 0.02 

 

Overall, the proposed hydro-meteorological thresholds proved able to better predict the landslide occurrences, if compared 335 

with the performance of the traditional  𝐼𝐼𝐼𝐼 approach.  

Indeed, the hydro-meteorological parametric threshold resulted in 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑟𝑟 values up to 0.71, confirming that considering soil 

moisture information in landslide triggering thresholds can significantly improve their predictive performance. As expected, 

the higher TSS values have been obtained in correspondence of the upper layers (𝜗𝜗1,𝜗𝜗2) for which there is the highest 

correlation (Fig. 3). 340 
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Moreover, the study revealed that the inclusion of PCA allows obtaining a more generalized approach, which keeps 

unaltered the prediction performance while not requiring any prior identification of the most influential soil layer. 

The parametric form proposed in this work in equation (12) was also compared with other more canonical expressions. 

Taking as reference variables the observed mean rainfall intensity (I) and first principal component of soil moisture (S1), it 

proved superior to the power-law threshold within the log-log plane and to the bi-linear threshold within the semi-log plane, 345 

which scored lower values of TSS, equal to 0.51 and 0.66, respectively. This highlights the importance of defining thresholds 

using an adequate parametric equation, as this choice can jeopardize the exploitation of soil moisture information for 

improving their prediction performance.  

5 Conclusions 

In this study, the potential improvements of regional landslide prediction by the use of soil moisture information and multi-350 

variate statistical analysis (Principal component analysis) were explored, with reference to the case study of Sicily, Italy. For 

the investigation, we have used ERA5-Land reanalysis soil moisture information. The hydro-meteorological thresholds, 

combining precipitation and soil moisture information, proved better at classifying triggering and non-triggering rainfall 

events when compared to the traditional ID power-law thresholds. Specifically, a valuable improvement was found when the 

upper layers of soil moisture are used for the hydro-meteorological threshold identification, leading to TSSpar values up to 355 

0.71, which were much higher than those obtained with the traditional approach (i.e., TSSpl = 0.50). The application of the 

Principal Component Analysis to soil moisture data at various depths enables by-passing the problem of identifying the most 

influential soil layer on landslide triggering, without deteriorating significantly performance and keeping the thresholds 

simple (two-dimensional).  

In real situations, the use of the reanalysis data is limited by the fact that they are made available to the public 360 

with a delay of some weeks from present. This delay is expected to be significantly reduced in the near future, in 

light of the increasing computational capabilities. Furthermore, our study corroborates with real data the potential 

improvements of the prediction capabilities of landslide triggering thresholds that use soil moisture information, 

which can be even greater with more accurate in-situ distributed soil moisture measurements. In this regard, 

given the appreciable improvements obtained despite the inherent uncertainty of the reanalysis global dataset, 365 

future perspectives will involve the identification of the proposed hydro-meteorological thresholds using surface 

soil moisture products with enhanced spatial and temporal resolution (i.e., in situ measurements, reanalysis and 

satellite soil moisture data provided at real or near real time). Finally, our study will evaluate, in the near future, 

the applicability of the proposed methodology to other climate regions than the Mediterranean one, in order to 

assess, more in depth, the potentialities of the presented results. 370 
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