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Abstract. In recent times, several efforts have been addressed to understand the extent to which soil moisture estimations
may improve the performance of landslide early warning systems (LEWSs). These systems have been traditionally based
on rainfall intensity-duration thresholds. Still a limited number of studies explore the possible enhancement of the
performance of LEWSs through the identification of hydro-meteorological thresholds. In this study, we propose a
methodology for developing regional hydro-meteorological landslide triggering thresholds coupling mean rainfall intensity
and soil moisture information. To test the potential improvements in prediction we use ERAS5-Land reanalysis soil moisture

data, available at four depth levels and hourly resolution. Two different instances are investigated, namely the

identification of triggering thresholds using rainfall intensity and a combination of soil moisture at the four depths as

obtained by principal component analysis (PCA). We propose thresholds in the form of a piece-wise linear equation. The
equation’s parameters are optimized in-erder to maximize the ROC True Skill Statistic (TSS) prediction performance
metric. The proposed hydro-meteorological thresholds are tested on the case of Sicily Island (south Italy) and the
performance is compared with thesg obtained through the traditional rainfall intensity-duration (ID) power-law thresholds.
Overall, the results show that the soil moisture information adds a considerable value to the improved thresholds’
performance since the ROC True Skill Statistic increases from 0.50 to 0.71. A similar performance is obtained when the
first principal component derived from the PCA is used, proving PCA to be a valuable support tool for the identification of
the proposed hydro-meteorological thresholds, as it allows to take into account the multi-layer information while keeping

the thresholds two-dimensional.
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1 Introduction

The impact of landslides triggered by rainfall; is constantly increasing due to landscape modifications, i.e. urbanization,
deforestation, land-changes and the abandonment of rural areas (Roccati et al., 2019). They can cause serious damage to
man-made structures and land, as well as loss of natural resources and lives (Froude and Petley, 2018). Furthermore, in the
last decades, an increasing number of studies focused on the potential effects of climate change on landslide phenomena
(Mclnnes et al. 2007; Dijkstra and Dixon 2010; Crozier 2010), pointing out that there are some unresolved issues, such as
theqabundance, activity, frequency and return period of landslides in response to the projected climate change (Gariano and
Guzzetti, 2016; Peres and Cancelliere, 2018). In light of these considerations and, after recent catastrophic landslides
worldwide, there is a high interest of scholars and civil protection agencies in the development of landslide early warning
systems (LEWS), which can serve as an aid in predicting possible slope movements, and thus as risk mitigation tool (Roccati
et al., 2020; Highland and Bobrowsky, 2008; Chae et al., 2017).

Landslide triggering thresholds are a key component of LEWS. In general, even if LEWS vary widely in approaches and
scale, empirical rainfall thresholds in combination with rainfall measurements and forecasts remain the most frequently
applied approaches for the majority of regional LEWSs. In the literature, several methods have been proposed for the
identification of rainfall thresholds to landslides initiation (Guzzetti et al., 2007a, 2008; Segoni et al., 2018a; Aleotti, 2004).
Empirical rainfall thresholds are usually obtained by drawing lower-bound lines to the rainfall conditions inducing
landslides, plotted in Cartesian, semi-logarithmic, or logarithmic coordinates (e.g., rainfall duration on the abscissa axis and
rainfall intensity on the vertical axis). When information on non-triggering rainfall is also available, thresholds can be
determined as the best classifiers based on the confusion matrix (Berti et al., 2012; Staley et al., 2013; Peres and Cancelliere,
2014; Postance et al., 2018; Marino et al., 2020; Peres and Cancelliere, 2021).

Commonly, these rainfall exceedance thresholds empirically relate the occurrence of landslides to rainfall event
characteristics such as intensity, duration, total amounts, or a combination thereof (Wicki et al., 2020a). However, in many
settings the antecedent soil wetness conditions influence the variability in rainfall triggering amounts, becoming a
predisposing factor that plays a major role in landslide initiation (Palau et al., 2021; Conrad et al., 2021). This led to a more
recent approach that relies not only on rainfall but, also, on subsurface hydrological measurements (e.g. soil moisture
content), thus introducing hydro-meteorological thresholds (Mirus et al., 2018b, a; Thomas et al., 2018; Segoni et al., 2018c;
Wicki et al., 2020a; Bogaard and Greco, 2018, 2016) for a better representation of landslide triggering. The term “hydro-
meteorological” is because these threshold combine a meteorological variable (rainfall depth) with a hydrological one,
reflecting the water storage at the catchment or local scale (Gain et al., 2021).

In this regard, several attempts aimed at introducing, directly or with models, the effects of soil moisture information in the
empirical thresholds for improving landslide prediction have been made (Crozier, 1999; Zhao et al., 2019; Brocca et al.,
2016; Segoni et al., 2018c; Ponziani et al., 2012). For instance, Marino et al. (2020) performed an explorative numerical

investigation to understand whether soil moisture information can improve shallow landslide forecasting using the hydro-
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meteorological threshold approach. In their work, they used synthetic rainfall and landslide data obtained through Monte
Carlo simulation. Their results showed that soil moisture information introduced within hydro-meteorological thresholds can
significantly reduce the false alarm ratio of LEWS, while keeping at least unvaried the number of missed alarms. Along this
path, Reder and Rianna (2021) addressed the extent to which soil moisture estimations can be useful to define a proxy for
antecedent slope wetness conditions. In particular, they used the soil moisture data derived from the ERAS5-Land reanalysis
(Hersbach et al., 2020) as a support for LEWS, and more specifically as an initial filter for a pre-screening of the effective
saturation degree. They showed that the filter yielded by the ERAS soil model is able to strengthen the regional warning
system and that the ERAS reanalysis provides estimations consistent with those retrieved by using more complex and
detailed physically based models.

Lastly, Wicki et al. (2021) compared the reliability of landslides forecast models based on simulated soil moisture with
respect to models based on soil moisture measurements. Specifically, they assessed the potential and limitations of adopting
1D soil water transfer model for regional LEWS and disclosed the pros and cons compared of using soil moisture
measurements. To this aim, they used plot-scale soil hydrological simulations to be able to directly compare the results to a
landslide forecast model based on in situ soil moisture measurements and demonstrated a high information content of
simulated soil moisture for regional landslide activity, which was even higher than when in situ soil moisture measurements
were used (Wicki et al., 2021). In this regard, Wicki et al. (2020b), demonstrated that the performance is strongly dependent
on the distance between the soil moisture network location and landslide activity area and that the goodness increases with
decreasing distances between measurement sites and landslides. Therefore, the density of the soil moisture measurement
networks impacts the performance of a LEWS and these measurement networks should consider the spatial variability of
meteorological events and soil properties (Wicki et al., 2020b).

In light of these advances, in the present work we attempt to give a further contribution by investigating the possible
improvements of landslide prediction through hydro-meteorological thresholds coupling observed rainfall intensity and soil
moisture information. In particular, we carry out our investigation considering the ERAS-Land reanalysis data set. In fact,
recent studies proved that the main climate variables (i.e., soil moisture, temperature, precipitation) obtained from third-
generation atmospheric and reanalysis datasets, (i.e., ERAS project) have a reasonable accuracy in reproducing in situ-
measurements of the reference local weather stations from the International Soil Moisture Network (Dorigo et al., 2011; Li et
al., 2020; Beck et al., 2021).

A real case study is used to test the methodology, obtained by joining, over the period 2010-2018, the dataset of observed
landslide and rainfall events with the dataset of soil moisture values reconstructed by the ERA5-Land reanalysis at the
beginning of rainfall events. The proposed methodology involves the identification of the equation describing the threshold
through a heuristic approach and an optimization procedure aimed at finding the optimal values of its parameters, in order to
maximize the ROC True Skill Statistic (TSS). In order to combine the information of multiple layers of soil moisture data
availability, the Principal Component Analysis (PCA) (Jolliffe, 2002) is used, a multivariate statistical tool which capitalizes

on the presence of correlation between the soil moisture at different depths. Thus, two different instances are investigated,
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namely the identification of four triggering thresholds using the rainfall intensity and the soil moisture at each of four depth
levels, and the identification of the triggering threshold using the rainfall intensity and first principal component of soil
moisture at all four depths.

The paper is organized as follow. Firsg the procedure for the dataset creation and the methodology leading to the hydro-
meteorological thresholds identification are presented in the “Material and Methods” section. Then, the “Study Area” section
describes the relevant features of the study area, namely the Sicily Island (Southern Italy). Next, the results and discussion
concerning the comparison between the performance obtained through the traditional ID thresholds and the proposed hydro-
meteorological thresholds; are presented in the “Results and Discussion” section. Finally, conclusions are drawn in the last

section.

2 Materials and method
2.1 Dataset construction

The construction of a rainfall and landslide events dataset is a key step;-whieh involves different types of data (i.e., observed
landslides, rainfall events and, reanalysis data of soil moisture). As schematically illustrated in Fig. 1, in the first step,
information is collected regarding the observed landslides from the Franeltalia project (Calvello and Pecoraro, 2018), a
thorough spatio-temporal inventory of historical landslides that have impacted the Italian territory since 2010, including both

occurrences that resulted in fatalities and occurrences that did not.

LANDSLIDES INVENTORY OBSERVED ERAS5-Land REANALYSIS
(Franeltalia) RAINFALL SOIL MOISTURE DATA

|
!

CTRL-T CODE (IRPI-CNR)

A 4

A4

1. RAINFALL TRIGGERING EVENTS SOIL MOISTURE
2. RAINFALL NON TRIGGERING EVENTS AT THE BEGINNING OF EVENTS

DATASET CREATION

D [h] I[mm/h]  9,[m3¥m®] 9, [m3m3]  I3[m3¥m3] I,[m3m?] Target
Rainfall Mean Binary vector containing 0
event rainfall Volumetric soil moisture at level L=1,2,3,4, at the beginning for non-triggering rainfall
. event of the rainfall event events, and 1 for triggering
duration . ) .
intensity rainfall events

Figure 1: Schematization of the procedure followed for dataset construction.
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The first classification criterion by the Franeltalia catalogue is based on the number of landslides triggered by the same
rainfall event in a given geographic area. Specifically, single landslide events (SLE) and areal landslide events (ALE) are
distinguished for records referring to single or multiple landslides, respectively. Both SLEs and ALEs are then categorized
into one of three classes in relation to their impacts, in order to track whether a landslide occurrence resulted in casualties or
missing people (C1, very severe), injured people and evacuations (C2, severe), or no one was physically harmed (C3, minor).
The data on occurrence location, the date the landslide occurred, the source of information, and the number of landslides for
ALEs are further details that have been also included in the catalogue, together with the onset and duration of the landslide
occurrence and its consequences.

Thanks to this accurate level of detail, it is possible to filter only the landslide events triggered by rainfall, which are
precisely those to take into consideration in our study.

The CTRL-T (Calculation of Thresholds for Rainfall-induced Landslides-Tool) code (Melillo et al., 2018) is subsequently
used for the identification of the rainfall events that were more likely to be responsible for the observed slope failures.
Specifically, CTRL-T automatically and objectively reconstructs rainfall events and the triggering conditions responsible for
the failure using a set of adjustable parameters to account for different morphological and climatic settings. Briefly, the tool
consists of distinct modules with specific purposes. Among these, one module operates the reconstruction of rainfall events
in term of duration (D, in hours) and, cumulated event rainfall (E, in mm) using continuous hourly rainfall time series and
setting several climate and spatial parameters such as, the warm period in a year (Cw); the cold period in a year (Cc); the
resolution of the rain gauge (Gs); time periods used to remove irrelevant amount of rain and to reconstruct rainfall events
(P, P2, P4); irrelevant rainfall sub-events that had to be excluded in the calculation of the final events (P3); radius of the
buffer to assign each landslide to the closest rain gauge (Rg). Rainfall event parameters were calibrated adopting the monthly
soil water balance model and evapotranspiration analysis. A further module, instead, performs selection of the rain gauge
representative for the landslide. The maximum allowed distance between a landslide and a rain gauge is limited by the
circumferential area with radius equal to Rg. Single or multiple rainfall conditions (MRC) that are most likely responsible for
the slope failures are, then, identified. MRC can be a (D, Er) pair of rainfall event duration (Dr) and cumulated event
rainfall (Ep), or a set of two or more pairs. Each MRC is assigned a weight to select the representative rain gauge and the
rainfall conditions associated with the landslide. The weight is proportional to the inverse square distance between the rain

gauge and the landslide (d72), the cumulated rainfall (E;)), and the rainfall mean intensity (E; D ?):
w = f(dl EL! DL) = d_ZEEDlTl (1)

Thus, among all the identified MRCs, those with the highest weights w are defined as the maximum probability rainfall
conditions (MPRCs) and, precisely these reconstructed rainfall conditions were assumed as the rainfall triggering events.
The landslides for which the rainfall conditions were not identified or with relevant uncertainties, were discarded.

As shown in Fig. 1, the last step for the dataset set up consists of the association of soil moisture data to the beginning of

each rainfall event, both triggering and non-triggering ones. In this regard, the ERA5-Land reanalysis dataset is used. Indeed,
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it provides the volume of water 9 [m3/m?3] at four distinct soil depths levels (i.e., 0-7 cm; 7-28 c¢m; 28-100 cm, and 100-289
cm). The ERAS5-Land soil moisture data are provided as grid data with a horizontal resolution of 0.1° x 0.1°. Thus, the soil
moisture values representative of the closest cell to the rain gauge that recorded the rainfall event are associated to the

considered event. Thereby, the dataset in the form shown in Fig. 15 was created.

2.2 Principal component analysis

Principal Components Analysis (PCA) (Jolliffe, 2002) is a multivariate technique that analyzes a data table in which
observations are described by several inter-correlated quantitative dependent variables in—erder to extract the important
information from the table and; to represent it as a set of new orthogonal variables called principal components (Abdi and
Williams, 2010).

Precisely, the data are transformed according to a new coordinate system having the x-axis, known as the first principal axis,
characterized by the highest data variation. Along the successive after axes (e.g., the second principal axis, the third principal
axis, and so on) the data are characterized by increasingly lower variation. fadeed;-up until the entire data table is reduced,
each succeeding principal component explains the maximum amount of variance feasible with the requirement that it is
orthogonal to the previous principal components. In practice, identifying the eigenvalues and eigenvectors of the covariance
matrix is the formal mathematical equivalent of solving the PCA problem. Indeed, the direction along which the data have
the highest variance is the eigenvector, while; the related eigenvalue is a quantification of the variance in the data along the
corresponding eigenvector. Accordingly, the first principal component is the eigenvector with the greatest eigenvalue,
followed by the eigenvector with the second-highest eigenvalue, and so on. Thus, the so computed principal components are
employed for the projection of the data into the new coordinate space (Kherif and Latypova, 2019).

Practically, in our study, 8 (Eq. 2) represents the soil moisture data table for which to compute the principal components,
specified as an n-by-p matrix. Rows correspond the total amount » of the considered rainfall events (i.e., observations), and

the number of columns to the four depths levels at which the initial soil moisture data are provided (i.e., variables).
1911 1912 1913 1914

0 = 1921 1922 1923 1924—

: 2)
Uni Onz Unz s
A represents, instead, the principal components’ loadings (i.e., coefficients) table, specified as an p-by-p matrix. The rows of
matrix A are called the eigenvectors, and these specify the orientation of the principal components relative to the original
variables.
11 Q12 Q13 Qq4
Q21 Gz Q23 Qp4
A= Q31 d3zz 0d3z3 d3q )
41 Q4 Q43 Qgg
Thus, the principal components (S;) for the generic i;, row; are given by a linear combination of the variables 6 and A4,

namely:
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Sit = a119i1 + @129 + a130;3 + 41494 “)
Siz = 191 + A0 + ap39;3 + a2404 (5)
Siz = a319j1 + az0;2 + 3393 + aza iy (6)
Sia = 419j1 + 420 + A439;3 + 4404 (7

withi =1,...,n.
In matrix notation, the transformation of the original variables to the principal components is written as,

S =04 ®)

2.3 Threshold identification

The methodology adopted in this work aims to improve the identification of regional landslides triggering thresholds by
means of reanalysis soil moisture information and; to compare the obtained performance with those obtained through the
traditional rainfall intensity-duration power-law thresholds (/D). Therefore, the rainfall intensity-duration threshold, the most
common type of threshold proposed and adopted in the literature (Segoni et al., 2018b; Guzzetti et al., 2007b; Brunetti et al.,
2010), is used as benchmark. The ID threshold assumes the form I = aD~#, where I [mm/h] represents the rainfall
intensity, i.e., the average precipitation rate over the considered period; D [h] represents the duration of the rainfall event; a
is the intercept parameter, and [ is the slope parameter. After reconstructing the rainfall events with the methodology
explained for the dataset creation and, after calculating the main variables (i.e., mean rainfall intensity and duration), an
optimization tool (i.e., the MATLAB® Particle Swarm optimization toolbox) is used with the aim to search for the best
possible a and S curve parameters able to maximize the True Skill Statistic index (TSS) objective function (Eq. 11), which
is based on the confusion matrix or the Receiver-Operating Characteristics (ROCs). The confusion matrix is expressed in
terms of the count of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) (Peirce, 1884)
(Table 1).

Table 1: Confusion matrix for ROC analysis.

Observed landslide
Landslide (P) No landslide (N)
Predicted Landslide LandshdF TP kP
No landslide FN TN

As a function of the variables reported in Table 1, the three reference standard ROC indices — namely, True Positive Rate,

False Positive Rate and True Skill Statistic — are listed below (Egs. 9, 10, 11):

TPR= — 9)
(TP + FN)

FPR= — & (10)
(TN + FP)

TSS = TPR — FPR (11)
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The highest performances correspond to TSS = 1, when;relativelyto-a-givenrainfall-event; the model produces no false or

missing predictions.

Afterward, the analysis is focused on the identification of the parametric equation that represents the lower boundary
between triggering and nae triggering rainfall events on the basis of the mean rainfall intensity and the reanalysis of soil
moisture values at each depth level. In this context, we propose the following parametric threshold as a reliable relationship

to classify the events on the semi-log plane:

Voo 9 < xq
| = u(19—x0)+yo, X <9< x (12)
X1 — Xp
Vi, 9> x;

where I and 9 correspond to rainfall intensity and to soil moisture values, respectively. This parametric form of the threshold
has been devised based on the visual inspection of the scatter plot of triggering and non-triggering events (i.e., heuristically),
and corroborated by comparison with other relationships proposed in the literature — specifically, the power-law and the
simple bilinear (as opposed to a linear or more complex power or high-degree polynomial) (Thomas et al., 2019; Mirus et al.,
2018a).  Furthermere;-xy, X1,Yo, and y; are the threshold’s parameters that must be estimated. In this regard, these
parameters are computed by adopting the same objective function and optimization procedure as those used for the
identification of the parameters of the power-law ID threshold, i.e., the True Skill Statistic index (TSS) objective function
(Eq. 11) and the MATLAB® Particle Swarm global optimization toolbox. At this stage, the threshold identification
methodology described so far is applied with the aim to identify triggering thresholds between the mean rainfall intensity (I)
and the soil moisture expressed in two variants: i) soil moisture at each of the four depth levels (9;,9,, U3, 9, ) available from
the ERA 5 - reanalysis; i) the first principal component of soil moisture, i.e. the linear combination of soil moisture at the
four depths corresponding to the minimum information loss (highest explained variance). The TSS values obtained in the
applications considering soil moisture (hereinafter indicated as TSS,,,,) were compared with the TSS values obtained for the

reference scenario of the power-law ID threshold (hereinafter T'SS,,).

3 Study area

The study area selected for our study is the island of Sicily (southern Italy, 37.75N-14.25 E) which, with an area of
~25,700 km?, is the largest island of the Mediterranean Sea. A hilly morphology (62%) dominates the landscape in the
island, while the rest is characterized by a mountainous and flat morphology, especially in the eastern part of the island
around Catania. The terrain average elevation is about 400 meters above sea level, ranging from 0 to 3320 meters on the
peak of the Etna volcano. Geologically, the Sicily Island arose during the Neogene, when the European and African plates
converged. Thus, Sicily stands out for its complex geological and lithological features which, cooperatively with anthropic
activities (e.g., changes in land use, management of forest, etc.), have generated a wide range of different types of soil

(Venturella, 2004).
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The climate is warm-temperate, with hot and dry summers, especially on the southern coasts, and higher and more frequent
precipitation during the colder winter months, in the mountainous internal areas (Pumo et al., 2019). Mean annual
precipitation ranges between 700 and 800 mm and, autumn and winter are the rainiest seasons. The most severe rainfall
events frequently hit the eastern side of the island and specifically, the eastern side of the Etna volcano and the flanks of the
Peloritani Mountains, with the greatest precipitation peaks on the Ionian side (Gariano et al., 2015). On the other hand,
south Sicily is distinguished by lower precipitation than the mean values recorded in the rest of the region, since it is located
at a lower height and is exposed to the hot and dry African winds (Alecci and Rossi, 2007).

Fig. 2 shows the geographical context of Sicily, the rain gauge locations for the period 2009-2018 (Distefano et al., 2021)
and the observed landslide locations. In more detail, 207 landslide events were retrieved by the Franeltalia database from
2010 to 2018 and, for each of them, longitude-latitude coordinates (WGS84 datum), together with the initiation time, are

retrieved.
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Figure 2: Elevation map of the study area (Sicily region), showing the location of the rain gauges and landslide occurrences.
(Credit to: http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais and ESRI 2020).

Concerning the observed rainfall measurements, we consulted the data provided by the regional water observatory
(Osservatorio delle Acque, OdA), the SIAS (Sicilian Agro-meteorological Information Service), and the Regional Civil
Protection Department (DRPC), namely the three main gauging networks installed in Sicily.

This enabled an hourly time series to be reconstructed for the precipitation over the period 2009-2018. As previously
explained in Section 2.1, using these continuous rainfall time series, the rainfall events were identified using the CTRL-T
research code. Specifically, the minimum dry period separating two rainfall events was set equal to 48 hours in the warm

period Cw (April-October) and, equal to 96 hours in the cold period Cc (November- March).

9
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4 Results and discussion
4.1 Principal Component Analysis

260 An explorative analysis was;—initially; carried out;—in—erder to investigate the correlation between the four soil moisture
depths (94, 9,,93,9,). The plot shown in Fig. 3 represents the correlation matrix between all pairs of variables, together with
the Pearson’s correlation coefficients.

Overall, all the four soil moisture depths are related to each other. Specifically, the diagonal subplot between the upper two
depths levels 9, and 9, has the highest correlation with a correlation coefficient R equal to 0.85. This suggest that the

265 Principal Component Analysis can be adopted in order to find out the linear combination expressing the correlation between

the involved soil moisture variables.

Figure 3: Correlation matrix between the four soil moisture level depths (94, 9,,93,9,). Each off-diagonal subplot contains a
scatterplot of a pair of variables with a least-squares reference line, the slope of which is equal to the displayed correlation
270  coefficient. Each diagonal subplot contains the distribution of a variable as a histogram.
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The preliminary step, required when the principal component analysis is performed, is to center the data on the mean values
of each variable, namely by subtracting the mean ef-a-variablefrom-al-values-of-that-variable. This step allows the cloud of
data to be centered on the origin of the principal components, but it affects neither the spatial relationships of the data, nor
the explained variance along the variables. At this stage, it was possible to proceed with the Principal Component Analysis

and, according to Eqs. 4, 5, 6, and 7, the four principal components of soil moisture were defined as follow:

Siy = 0.659; + 0.589;, + 0.470;5 + 0.159;, (13)
Si; = —0.549;; — 0.040;, + 0.639;5 + 0.559;, (14)
Siz = 0.379; — 0.299,, — 0.399;5 + 0.799,, (15)
Siy = —0.389;, + 0.760;, — 0.489;5 + 0.239;, (16)

The loadings values of each principal component are intended as the weights a;; (Eq. 3): therefore, the higher the value of
the weight, the larger the contribution of a variable to the component associated with the weight. The sign of a loading
indicates whether a variable and a principal component are positively or negatively correlated. Here, although overall
slightly large loadings correspond to the first principal component, none of the four variables has a strong relationship with a
particular principal component.

Fig. 4 shows;instead; the scree plot representing the total percentage of variance explained by each of the four principal

components. The chart reveals the decreasing rate at which variance is explained by additional principal components.

100
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Figure 4: Total variance explained by each principal component.

Because dimensionality reduction is a goal of PCA, several criteria can be considered for determining how many principal
components should be examined and how many should be ignored (Rencher, 1998). Just to list a few: #) ignore principal
components at the point at which the next principal component offers little increase in the total explained variation; i) ignore

the last principal component whose explained variation are all roughly equal; #ii) include all principal components up to a
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predetermined total explained variation. In our study, the third criterion was applied considering a threshold value of 75%.
Therefore, only the first principal component was considered as it guaranteed by itself the desired explained variation of

about 75 %.

4.2 Thresholds identification

CTRL-T tool reconstructed 144 landslide events out of the 207 landslides retrieved by the Franeltalia database. Four
different triggering rainfall events, representing a range of triggering conditions, were selected within the database, and the

precipitation time series together with the soil moisture time series are plotted in Fig. 5.
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Figure 5: Panel showing four different triggering rainfall events. For each of them the precipitation time series together with the
soil moisture time series (91, 93, 93, 9,4) are reported, as well as the first principal component of soil moisture S;.
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The light green window, within each graph, represents the triggering rainfall event in relation to the wider window of the
corresponding entire month. As expected, especially the upper two soil moisture layers reflect the precipitation trends, as
well as the first principal component of soil moisture S;, computed using Eq. 13. Overall, a greater variability in soil
moisture values can be observed in correspondence to ¥; and 9,, which assume maximum values about equal to 0.4 in
correspondence of all the analyzed triggering rainfall events. Furthermore, Fig.5 shows as in correspondence of longer
rainfall duration, lower precipitation values have triggered landslides (Fig.5 (c)) and vice-versa (Fig.5 (a)).

First, the power-law ID threshold maximizing TSS was identified (Fig. 6).
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Figure 6: Traditional power-law threshold on the log-log plane between observed mean rainfall intensity (I) and duration (D).

For this threshold a TSS,; = 0.50 is obtained, and this value was taken as benchmark for comparison with the hydro-
meteorological thresholds constructed considering the two variants of hydro-meteorological thresholds described in
subsection 2.3. Fig. 7 shows the obtained thresholds when the mean rainfall intensity and the soil moisture at each of the four
depth levels are considered. As can be seen, especially in correspondence to the upper two depths (i.e., 0-7 cm, 7-28 cm), the
triggering rainfall events are located, for the most, on the right-upper side of the graph, suggesting that the equation proposed
for the identification of the thresholds (Eq. 12) fits this trend well. All the four identified thresholds have better performance
than ID threshold. Specifically, higher TSS values were obtained for the first two depths, with a TSS,,4, equal to 0.71 while

slightly lower values of TSS,, (0.61 and 0.54), are obtained with the third and fourth soil moisture level, respectively.
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Figure 7: Parametric thresholds on the semi-log plane between mean rainfall intensity and soil moisture at the four distinct
depths: (a) 9, 0-7 cm; (b) ¥, 7-28 cm; (¢) 93 28-100 cm; (d) 9, 100-289 cm.

As mentioned before, the second analysis concerns the identification of the optimal parametric thresholds when the mean
rainfall intensity and first principal component of soil moisture are considered (Fig. 8). In this variant, a TSSpq, = 0.71 was

obtained once again, reaching an equal performance to the best case of the first variant and, thus, improved results in

comparison with the /D approach.
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Table 2 summarizes the TSS values in correspondence of the analyzed thresholds, together with the values of parameters
(Eq. 12) estimated for the parametric thresholds.

Table 2: TSS values in correspondence to each analyzed scenario, and parameters (X Yo, X1,y1) estimated for the parametric
thresholds.

Threshold TPRpar FPRyar TSSpar X0 Yo X1 yi

19, 0.84 0.14 0.71 -0.33 27.23 0.38 0.09
19, 0.84 0.14 0.71 0.05 5.73 0.39 0.02
193 0.73 0.12 0.61 -0.03 6.98 0.40 0.02
19, 0.79 0.25 0.54 -0.08 6.82 0.35 0.09
1S, 0.85 0.14 0.71 -0.12 3.28 0.23 0.02

Overall, the proposed hydro-meteorological thresholds proved able to better predict the landslide occurrences, if compared
with the performance of the traditional /D approach.

Indeed, the hydro-meteorological parametric threshold resulted in T'SS,,, values up to 0.71, confirming that considering soil
moisture information in landslide triggering thresholds can significantly improve their predictive performance. As expected,
the higher TSS values have been obtained in correspondence of the upper layers (99,,9,) for which there is the highest

correlation (Fig. 3).
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Moreover, the study revealed that the inclusion of PCA allows obtaining a more generalized approach, which keeps

unaltered the prediction performance while not requiring any prior identification of the most influential soil layer.

The parametric form proposed in this work in equation (12) was also compared with other more canonical expressions.

Taking as reference variables the observed mean rainfall intensity (/) and first principal component of soil moisture (S1), it
345 proved superior to the power-law threshold within the log-log plane and to the bi-linear threshold within the semi-log plane,

which scored lower values of 7SS, equal to 0.51 and 0.66, respectively. This highlights the importance of defining thresholds

using an adequate parametric equation, as this choice can jeopardize the exploitation of soil moisture information for

improving their prediction performance.

5 Conclusions

350 In this study, the potential improvements of regional landslide prediction by the use of soil moisture information and multi-
variate statistical analysis (Principal component analysis) were explored, with reference to the case study of Sicily, Italy. For
the investigation, we have used ERAS5-Land reanalysis soil moisture information. The hydro-meteorological thresholds,
combining precipitation and soil moisture information, proved better at classifying triggering and non-triggering rainfall
events when compared to the traditional ID power-law thresholds. Specifically, a valuable improvement was found when the

355 upper layers of soil moisture are used for the hydro-meteorological threshold identification, leading to TSS,, values up to
0.71, which were much higher than those obtained with the traditional approach (i.e., TSS,; = 0.50). The application of the
Principal Component Analysis to soil moisture data at various depths enables by-passing the problem of identifying the most
influential soil layer on landslide triggering, without deteriorating significantly performance and keeping the thresholds
simple (two-dimensional).

360 In real situations, the use of the reanalysis data is limited by the fact that they are made available to the public
with a delay of some weeks from present. This delay is expected to be significantly reduced in the near future, in
light of the increasing computational capabilities. Furthermore, our study corroborates with real data the potential
improvements of the prediction capabilities of landslide triggering thresholds that use soil moisture information,
which can be even greater with more accurate in-situ distributed soil moisture measurements. In this regard,

365 given the appreciable improvements obtained despite the inherent uncertainty of the reanalysis global dataset,
future perspectives will involve the identification of the proposed hydro-meteorological thresholds using surface
soil moisture products with enhanced spatial and temporal resolution (i.e., in situ measurements, reanalysis and
satellite soil moisture data provided at real or near real time). Finally, our study will evaluate, in the near future,

the applicability of the proposed methodology to other climate regions than the Mediterranean one, in-erder to
370 assess, more in depth, the petentialities-efthe-presented-results.
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