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Abstract. A key component for Landslide early warning systems (LEWS) is constituted by thresholds providing the conditions 15 

above which a landslide can be triggered. Traditionally, thresholds based on rainfall characteristics have been proposed, but 

recently, the hydro-meteorological approach, combining rainfall with soil moisture or catchment storage information, is 

becoming widespread. Most of the hydro-meteorological thresholds proposed in the literature use the soil moisture from a 

single layer (i.e., depth or depth range). On the other hand, multi-layered soil moisture information can be measured, or can 

be available from reanalysis projects as well as from hydrological models. Approaches using this multi-layered information 20 

are lacking, perhaps because of the need of keeping simple and two-dimensional the thresholds. In this paper, we propose 

principal component analysis (PCA) as an approach for deriving two-dimensional hydro-meteorological thresholds that use 

multi-layered soil moisture information. To perform a more objective assessment we also propose a piece-wise linear equation 

for the identification of the threshold’s shape, which is more flexible than traditional choices (e.g., power-law or bi-linear). 

Comparison of the ROC performance (True Skill Statistic, TSS) of thresholds based on single and multi-layered soil moisture 25 

information also provides a novel tool for identifying the significance of multi-layered information on landslide triggering in 

a given region. Results for Sicily Island, considering the ERA5-Land Reanalysis soil moisture data (available at four different 

depth layers), corroborate the advantages of the hydro-meteorological approach, gained in spite of the coarse spatial resolution 

and the limited accuracy of reanalysis data. Specifically, the TSS of traditional precipitation intensity-duration threshold is 
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equal to 0.5, while those of the proposed hydro-meteorological thresholds is significantly higher (TSS = 0.71). For the analyzed 30 

region, however, multi-layered information seems not to be relevant, as performances in terms of TSS are similar to those 

obtained with single-layer soil moisture at the upper depths, namely 0-7 cm and 7-28 cm, which can imply that in Sicily 

landslide phenomena are mainly influenced by soil moisture in most shallow soil layers.   

In recent times, several efforts have been addressed to understand the extent to which soil moisture estimations may improve 

the performance of landslide early warning systems (LEWSs). These systems have been traditionally based on rainfall 35 

intensity-duration thresholds. Still a limited number of studies explore the possible enhancement of the performance of LEWSs 

through the identification of hydro-meteorological thresholds. In this study, we propose a methodology for developing regional 

hydro-meteorological landslide triggering thresholds coupling mean rainfall intensity and soil moisture information. To test 

the potential improvements in prediction we use ERA5-Land reanalysis soil moisture data, available at four depth levels and 

hourly resolution. Two different instances are investigated, namely the identification of triggering thresholds using rainfall 40 

intensity and the soil moisture at each of four depth levels, and the identification of triggering thresholds using rainfall intensity 

and a combination of soil moisture at the four depths as obtained by principal component analysis (PCA). We also propose n 

improvement of the thresholds’ parametric form, respect to traditional choices (power law or bi-linear), by using a piece-wise 

linear equation. The equation’s parameters are optimized to maximize the ROC True Skill Statistic (TSS) prediction 

performance metric. The proposed hydro-meteorological thresholds are tested on the case of Sicily Island (southern Italy) and 45 

the performance is compared to that of traditional rainfall intensity-duration (ID) power-law thresholds corresponding to 

maximum TSS. Overall, the results show that the soil moisture information allows an improvement of prediction performance, 

as the TSS increases from 0.50 to 0.71, passing from traditional to hydro-meteorological thresholds using soil moisture at the 

either the first or the second depth level. Using the first principal component, which combines in the most effective way soil 

moisture the four depth levels, similar performances are obtained. These improvements, gained in spite of the coarse spatial 50 

resolution and the limited accuracy of reanalysis data, provide further support to hydro-meteorological thresholds. At the same 

time, the study shows that the PCA can also be useful for the identification of hydro-meteorological thresholds, as it allows to 

easily combine multi-layer soil moisture information while keeping the thresholds two-dimensional, and thus easy to be 

communicated to landslide risk managers. 

1 Introduction 55 

The impact of landslides triggered by rainfall is constantly increasing due to landscape modifications, i.e. urbanization, 

deforestation, land-changes and the abandonment of rural areas (Roccati et al., 2019). Landslides can cause serious damage to 

man-made structures and land, as well as loss of natural resources and lives. The role of landslide risk in human well-being, is 

highlighted by the fact that more than 4800 landslide occurrences have been documented from 2004 to 2016, with over 55000 
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reported fatalities at a global scale (Froude and Petley 2018). Furthermore, landslides triggered by rainfall have been identified 60 

as the cause of approximately 90% of fatalities globally (Haque et al. 2016; Sultana 2020) and, from an economic point of 

view, annual losses were estimated to total USD 20 billion (Sim et al., 2022).  In the last decades, an increasing number of 

studies also focused on the potential effects of climate change on landslide phenomena (McInnes et al. 2007; Dijkstra and 

Dixon 2010; Crozier 2010), pointing out that there are some unresolved issues, such as the abundance, activity, frequency and 

return period of landslides in response to the projected climate change (Gariano and Guzzetti, 2016; Peres and Cancelliere, 65 

2018). In light of these considerations and, after recent catastrophic landslides worldwide, there is a high interest of scholars 

and civil protection agencies in the development of landslide early warning systems (LEWSs), which can serve as an aid in 

predicting possible slope movements, and thus as risk mitigation tool (Roccati et al., 2020; Highland and Bobrowsky, 2008; 

Chae et al., 2017).  

Landslide triggering thresholds are a key component of LEWS. In general, empirical rainfall thresholds which relate the 70 

occurrence of landslides to rainfall event characteristics such as intensity, duration, total amounts, or a combination thereof, 

are commonly applied for the majority of regional LEWSseven if LEWS vary widely in approaches and scale, empirical 

rainfall thresholds in combination with rainfall measurements and forecasts remain the most frequently applied approaches for 

the majority of regional LEWSs.  In the literature, several methods have been proposed for the identification of rainfall 

thresholds to landslides initiation (Guzzetti et al., 2007, 2008; Segoni et al., 2018a; Aleotti, 2004). Empirical rainfall thresholds 75 

are usually obtained by drawing lower-bound lines to the rainfall conditions inducing landslides, plotted in Cartesian, semi-

logarithmic, or logarithmic coordinates (e.g., rainfall duration on the abscissa axis and rainfall intensity on the vertical axis). 

When information on non-triggering rainfall is also available, thresholds can be determined as the best classifiers based on the 

confusion matrix (Berti et al., 2012; Staley et al., 2013; Peres and Cancelliere, 2014; Postance et al., 2018; Marino et al., 2020; 

Peres and Cancelliere, 2021).  80 

In the last decade, there has been an increasing interest in the development of hydro-meteorological thresholds that consider 

rainfall characteristics and subsurface hydrological variables, such as soil moisture content and catchment storage information 

Commonly, these rainfall exceedance thresholds empirically relate the occurrence of landslides to rainfall event characteristics 

such as intensity, duration, total amounts, or a combination thereof (Wicki et al., 2020a). However, in many settings the 

antecedent soil wetness conditions influence the variability in rainfall triggering amounts, becoming a predisposing factor that 85 

plays a major role in landslide initiation ((Uwihirwe et al., 2022; Mirus et al., 2018b, a; Thomas et al., 2018; Segoni et al., 

2018c; Wicki et al., 2020; Wicki et al., 2021; Bogaard and Greco, 2018, 2016; Reder and Rianna, 2021; Palau et al., 2021; 

Conrad et al., 2021). These studies demonstrate improvements of the prediction performances with the hydrometeorological 

approach, respect to the traditional precipitation-based thresholds, even if not all climatic areas have been explored, so further 

applications are still useful. Furthermore, none of the previous studies take into account the possibility to exploit the 90 

information from a soil moisture profile or multi-layered soil moisture information, corresponding to several depths or depth 
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ranges. This is most likely because thresholds have to be kept simple, i.e., two-dimensional, for being effectively 

communicated to decision makers.  

In the present work, we propose an approach that allows taking into account the multi-layer soil moisture information within 

hydro-meteorological thresholds, while keeping these two-dimensional, thanks to a statistical technique named Principal 95 

Component Analysis (PCA) (Jolliffe, 2002). This technique allows to find the linear combination between soil moisture at 

different layers depth which retains as much as possible the information content of the multiple layers together, capitalizing 

on the presence of correlation between the soil moisture at different depths. The proposed approach is also intended to test 

whether multi-layer soil moisture information may provide better predictive performance than the single-layer one, by 

comparing the relative prediction performances in terms of Receiver operating characteristic (ROC) indices, such as the well-100 

known True Skill Statistic (TSS). We carry out our investigation using observed precipitation in combination with ERA5-Land 

reanalysis soil moisture data, available at four different depth layers with a 0.1° x 0.1° (≅ 9km) resolution (Hersbach et al., 

2020). Recent studies proved that the main climate variables (i.e., soil moisture, temperature, precipitation) obtained from 

third-generation atmospheric and reanalysis datasets, (i.e., ERA5 project) have a reasonable accuracy in reproducing in situ-

measurements (Dorigo et al., 2011; Li et al., 2020; Beck et al., 2021), though accuracy issues remain still significant. The case 105 

study of Sicily region is used to test the proposed methodology. 

This led to a more recent approach that relies not only on rainfall but, also, on subsurface hydrological measurements (e.g. soil 

moisture content), thus introducing hydro-meteorological thresholds (Uwihirwe et al., 2022; Mirus et al., 2018b, a; Thomas et 

al., 2018; Segoni et al., 2018c; Wicki et al., 2020a; Bogaard and Greco, 2018, 2016) for a better representation of landslide 

triggering. The term “hydro-meteorological” is because these threshold combine a meteorological (rainfall depth) with a 110 

hydrological variable (catchment storage or soil moisture), reflecting the water storage at the catchment or local scale (Gain et 

al., 2021). 

 In this regard, several attempts aimed at introducing, directly or with models, the effects of soil moisture information in the 

empirical thresholds for improving landslide prediction have been made (Crozier, 1999; Zhao et al., 2019; Brocca et al., 2016; 

Segoni et al., 2018c; Ponziani et al., 2012). For instance, Marino et al.  performed an explorative numerical investigation to 115 

understand whether soil moisture information can improve shallow landslide forecasting using the hydro-meteorological 

threshold approach. In their work, they used synthetic rainfall and landslide data obtained through Monte Carlo simulation. 

Their results showed that soil moisture information introduced within hydro-meteorological thresholds can significantly reduce 

the false alarm ratio of LEWS, while keeping at least unvaried the number of missed alarms. Along this path, Reder and Rianna 

(2021) addressed the extent to which soil moisture estimations can be useful to define a proxy for antecedent slope wetness 120 

conditions. In particular, they used the soil moisture data derived from the ERA5-Land reanalysis (Hersbach et al., 2020) as a 

support for LEWS, and more specifically as an initial filter for a pre-screening of the effective saturation degree. They showed 
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that the filter yielded by the ERA5 soil model is able to strengthen the regional warning system and that the ERA5 reanalysis 

provides estimations consistent with those retrieved by using more complex and detailed physically based models.  

Lastly, Wicki et al. (2021) compared the reliability of landslides forecast models based on simulated soil moisture with respect 125 

to models based on soil moisture measurements. Specifically, they assessed the potential and limitations of adopting 1D soil 

water transfer model for regional LEWS and disclosed the pros and cons compared of using soil moisture measurements. To 

this aim, they used plot-scale soil hydrological simulations to be able to directly compare the results to a landslide forecast 

model based on in situ soil moisture measurements and demonstrated a high information content of simulated soil moisture 

for regional landslide activity, which was even higher than when in situ soil moisture measurements were used (Wicki et al., 130 

2021). In this regard, Wicki et al. (2020b), demonstrated that the performance is strongly dependent on the distance between 

the soil moisture network location and landslide activity area and that the goodness increases with decreasing distances between 

measurement sites and landslides. Therefore, the density of the soil moisture measurement networks impacts the performance 

of a LEWS and these measurement networks should consider the spatial variability of meteorological events and soil properties 

(Wicki et al., 2020b). 135 

In light of these advances, in the present work we attempt to give a further contribution by analyzing the possible improvements 

of landslide prediction through hydro-meteorological thresholds coupling observed rainfall intensity and soil moisture 

information, an issue that needs further investigation. In particular, we carry out our investigation considering the ERA5-Land 

reanalysis data set. In fact, recent studies proved that the main climate variables (i.e., soil moisture, temperature, precipitation) 

obtained from third-generation atmospheric and reanalysis datasets, (i.e., ERA5 project) have a reasonable accuracy in 140 

reproducing in situ-measurements of the reference local weather stations from the International Soil Moisture Network (Dorigo 

et al., 2011; Li et al., 2020; Beck et al., 2021). However, accuracy issues remain still significant, also considering their relatively 

coarse resolution (0.1° x 0.1° ≅ 9km). 

A real case study is used to test the methodology, obtained by joining, over the period 2010-2018, the dataset of observed 

landslide and rainfall events with the dataset of soil moisture values reconstructed by the ERA5-Land reanalysis at the 145 

beginning of rainfall events. The proposed methodology involves the identification of the equation describing the threshold 

through a heuristic approach and an optimization procedure aimed at finding the optimal values of its parameters, in order to 

maximize the ROC True Skill Statistic (TSS). In order to combine the information of multiple layers of soil moisture data 

availability, we explore   the use of Principal Component Analysis (PCA) (Jolliffe, 2002), a multivariate statistical tool which 

capitalizes on the presence of correlation between the soil moisture at different depths. Thus, two different instances are 150 

investigated, namely the identification of four triggering thresholds using the rainfall intensity and the soil moisture at each of 

four depth levels, and the identification of the triggering threshold using the rainfall intensity and first principal component of 

soil moisture at all four depths. 
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The paper is organized as follows. First, the procedure for the dataset creation and description of the methodology leading to 

the proposed approach to implement multi-layer soil moisture data in the hydro-meteorological thresholds identification are 155 

presented in the “Material and Methods” section. Then, the “Study Area” section describes the relevant features of the study 

area, namely the Sicily Island (Southern Italy). Next, the results and discussion concerning the comparison between the 

performance obtained in correspondence of all identified through the traditional ID thresholds and the proposed hydro-

meteorological rainfall triggering thresholds are presented in the “Results and Discussion” section. Finally, conclusions are 

drawn in the last section. 160 

2 Materials and methods 

2.1 Dataset construction 

The construction of a rainfall and landslide events dataset is a key step that involves different types of data (i.e., observed 

landslides, rainfall events and, reanalysis data of soil moisture). As schematically illustrated in Fig. 1, in the first step, the 

FraneItalia project (Calvello and Pecoraro, 2018) is employed to collect information regarding the observed landslides, as it is 165 

a thorough spatio-temporal inventory of historical landslides that have impacted the Italian territory since 2010, including both 

occurrences that resulted in fatalities and occurrences that did not. 
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Figure 1: Schematization of the procedure followed for dataset construction. 

The first classification criterion by the FraneItalia catalogue is based on the number of landslides triggered by the same rainfall 170 

event in a given geographic area. Specifically, single landslide events (SLE) and areal landslide events (ALE) are distinguished 

for records referring to single or multiple landslides, respectively. Both SLEs and ALEs are then categorized into one of three 

classes in relation to their impacts, in order to track whether a landslide occurrence resulted in casualties or missing people 

(C1, very severe), injured people and evacuations (C2, severe), or no one was physically harmed (C3, minor). The data on 

occurrence location, the date the landslide occurred, the source of information, and the number of landslides for ALEs are 175 

further details that have been also included in the catalogue, together with the onset and duration of the landslide occurrence 

and its consequences. 

Thanks to this accurate level of detail, it is possible to filter only the landslide events triggered by rainfall, which are precisely 

those to take into consideration in our study.  

The CTRL-T (Calculation of Thresholds for Rainfall-induced Landslides-Tool) code (Melillo et al., 2018) is subsequently 180 

used for the identification of the rainfall events that were more likely to be responsible for the observed slope failures. 

Specifically, CTRL-T automatically and objectively reconstructs rainfall events and the triggering conditions responsible for 

the failure using a set of adjustable parameters to account for different morphological and climatic settings. Briefly, the tool 

consists of distinct modules with specific purposes. Among these, one module operates the reconstruction of rainfall events in 

term of duration (D, in hours) and, cumulated event rainfall (E, in mm) using continuous hourly rainfall time series and setting 185 

several climate and spatial parameters such as, the warm period in a year (CW); the cold period in a year (CC); the resolution 

of the rain gauge (GS); the instrumental sensitivity of the rain gauge and the minimum value exceeding which the isolated 

hourly measurements are considered relevant (ER); and  the radius of the buffer to assign each landslide to the closest rain 

gauge (RB). Furthermore, in order to account for seasonality (i.e., different evapotranspiration rates in different periods of the 

year), additional rainfall parameters can be set by the user, namely: the dry interval separating isolated rainfall measurements 190 

(P1); the time periods used to remove irrelevant amounts of rainfall, (P2), and (P3); and the minimum dry period separating 

two rainfall events, (P4). The readers are referred to Melillo et al., (2018) for more detailed information on these parameters. 

A further module, instead, performs selection of the rain gauge representative for the landslide. Defined the maximum allowed 

distance between a landslide and a rain gauge as a circle of radius RB specified by the user, if more than one rain gauge is 

located within the circle, the rainfall events from each rain gauge are weighted based on the rain gauge–landslide distance and 195 

the rainfall event characteristics (cumulated rainfall and duration). More specifically, given the multiple rainfall conditions 

(MRC) that are most likely responsible for the slope failures as pair of rainfall event duration (DL) and cumulated event rainfall 

(EL), or a set of two or more pairs, each MRC is assigned a weight to select the representative rain gauge and the rainfall 

conditions associated with the landslide. The weight is proportional to the inverse square distance between the rain gauge and 

the landslide (d−2), the cumulated rainfall (EL), and the rainfall mean intensity (ELDL
−1): 200 
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𝑤 = 𝑓(𝑑, 𝐸𝐿 , 𝐷𝐿) = 𝑑−2𝐸𝐿
2𝐷𝐿

−1                                                                                                                                                                      (1) 

Thus, among all the identified MRCs, those with the highest weights w are defined as the maximum probability rainfall 

conditions (MPRCs) and, these reconstructed rainfall conditions were assumed as the triggering rainfall events. Lastly, Fig. 2, 

depicts how the duration of a triggering rainfall event is defined. Specifically, when a landslide occurs during a dry period the 

whole event that preceded it is considered as triggering rainfall event; otherwise, just the rainfall that occurred before the 205 

landslide occurrence is taken into account.  

  

Figure 2: Sketch illustrating how the duration of a triggering rainfall event is defined (adapted from Peres et al., 2018). 

As shown in Fig. 1, the last step for the dataset set up consists of the association of soil moisture data to the beginning of each 

rainfall event, both triggering and non-triggering ones. In this regard, the ERA5-Land reanalysis dataset is used. It provides 210 

the volume of water ϑ [m3/m3] at four distinct soil depths levels (i.e., 0-7 cm; 7-28 cm; 28-100 cm, and 100-289 cm). The 

ERA5-Land soil moisture data are provided at the hourly scale, as grid data with a horizontal resolution of 0.1° x 0.1°. Thus, 

being at the same temporal resolution of rainfall time series, the soil moisture values representative of the closest cell to the 

rain gauge that recorded the rainfall event are associated, without delay, to the considered event. Thereby the dataset in the 

form shown in Fig. 1 was created. 215 

2.2 Principal component analysis 

Principal Component Analysis (Jolliffe, 2002) is a multivariate technique that analyzes a data table in which observations are 

described by several inter-correlated quantitative dependent variables to extract the important information from the table and 

to represent it as a set of new orthogonal variables called principal components (Abdi and Williams, 2010).  

Precisely, the data are transformed according to a new coordinate system having the x-axis, known as the first principal axis, 220 

characterized by the highest data variation. Along the successive axes (e.g., the second principal axis, the third principal axis, 

and so on), the data are characterized by increasingly lower variation. Each succeeding principal component explains the 

maximum amount of variance feasible with the requirement that it is orthogonal to the previous principal components. In 
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practice, identifying the eigenvalues and eigenvectors of the covariance matrix is the formal mathematical equivalent of solving 

the PCA problem. The direction along which the data have the highest variance is the eigenvector, while the related eigenvalue 225 

is a quantification of the variance in the data along the corresponding eigenvector. Accordingly, the first principal component 

is the eigenvector with the greatest eigenvalue, followed by the eigenvector with the second-highest eigenvalue, and so on. 

Thus, the so computed principal components are employed for the projection of the data into the new coordinate space (Kherif 

and Latypova, 2019). 

Practically, in our study, 𝜽 (Eq. 2) represents the soil moisture data table for which to compute the principal components, 230 

specified as an n-by-p matrix. Rows correspond the total amount n of the considered rainfall events (i.e., observations), and 

the number of columns to the four depths levels at which the initial soil moisture data are provided (i.e., variables). 

𝜽 = [

𝜗11 𝜗12 𝜗13 𝜗14

𝜗21 𝜗22 𝜗23 𝜗24

⋮ ⋮ ⋮ ⋮
𝜗𝑛1 𝜗𝑛2 𝜗𝑛3 𝜗𝑛4

]                                                                                                                                          (2) 

𝑨 represents, instead, the principal components’ loadings (i.e., coefficients) table, specified as an p-by-p matrix. The rows of 

matrix A are called the eigenvectors, and these specify the orientation of the principal components relative to the original 235 

variables. 

𝑨 = [

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

]                                                                                                                                             (3) 

Thus, the principal components (𝑆𝑖) for the generic 𝑖𝑡ℎ row are given by a linear combination of the variables 𝜽 and 𝑨, namely:  

𝑆𝑖1 = 𝑎11𝜗𝑖1 + 𝑎12𝜗𝑖2 + 𝑎13𝜗𝑖3 + 𝑎14𝜗𝑖4                                                                                                                                   (4) 

𝑆𝑖2 = 𝑎21𝜗𝑖1 + 𝑎22𝜗𝑖2 + 𝑎23𝜗𝑖3 + 𝑎24𝜗𝑖4                                                                                                                                    (5) 240 

𝑆𝑖3 = 𝑎31𝜗𝑖1 + 𝑎32𝜗𝑖2 + 𝑎33𝜗𝑖3 + 𝑎34𝜗𝑖4                                                                                                                                      (6) 

𝑆𝑖4 = 𝑎41𝜗𝑖1 + 𝑎42𝜗𝑖2 + 𝑎43𝜗𝑖3 + 𝑎44𝜗𝑖4                                                                                                                                     (7) 

with 𝑖 = 1, … , 𝑛. 

In matrix notation, the transformation of the original variables to the principal components is written as, 

𝑺 = 𝜽𝑨                                                                                                                                                                     (8) 245 

2.3 Thresholds’ identification 

The methodology adopted in this work aims to improve the identification of regional landslides triggering thresholds by means 

of reanalysis soil moisture information and to compare the obtained performance with those obtained through theFirst, we 

identify the traditional rainfall intensity-duration power-law thresholds (ID). Therefore, the rainfall intensity-duration 

threshold, the most common type of threshold proposed and adopted in the literature (Segoni et al., 2018b; Guzzetti et al., 250 
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2007b; Brunetti et al., 2010), is used as benchmark. The 𝐼𝐷 threshold assumes has the form of a power-law 𝐼 = 𝛼𝐷−𝛽, where 

𝐼 [mm h⁄ ] represents the rainfall intensity, i.e., the average precipitation rate over the considered period; 𝐷 [h] represents the 

duration of the rainfall event; 𝛼 is the intercept parameter, and 𝛽 is the slope parameter. After reconstructing the rainfall events 

with the methodology explained for the dataset creation and, after calculating the main variables (i.e., mean rainfall intensity 

and duration), an optimization tool (i.e., the MATLAB Particle Swarm optimization toolbox) is used with the aim to search 255 

for the best possible 𝛼 and 𝛽 curve parameters able to maximize the True Skill Statistic index (TSS) objective function (Eq. 

11), which is based on the confusion matrix or the Receiver-Operating Characteristics (ROCs). The confusion matrix is 

expressed in terms of the count of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) (Peirce, 

1884) (Table 1). 

 260 

Table 1: Confusion matrix for ROC analysis. 

  Observed landslide 

  Landslide (P) No landslide (N)  

Predicted Landslide 
Landslide TP FP 

No landslide FN TN 

As a function of the variables reported in Table 1, the three reference standard ROC indices – namely, True Positive Rate, 

False Positive Rate and True Skill Statistic – are listed below (Eqs. 9, 10, 11): 

TPR =
TP

(TP + FN)
                                                                                                                                                                                           (9) 

FPR =
FP

(TN + FP)
                                                                                                                                                                                         (10) 265 

TSS = TPR − FPR                                                                                                                                                                                         (11) 

The highest performances correspond to TSS = 1, when, the model produces no false or missing predictions. 

Afterwards, the analysis is focused on the identification of the hydro-meteorological threshold trough a novel parametric 

equation that represents the lower boundary between triggering and non-triggering rainfall events on the basis of the mean 

rainfall intensity and the reanalysis of soil moisture values at each depth level. In this context, we propose a piece-wise linear 270 

equation the following parametric threshold as a reliable relationship able to well classify the events on the semi-log plane: 

𝐼 =  {

𝑦0, 𝜗 <  𝑥0
𝑦1 − 𝑦0

𝑥1 − 𝑥0

 (𝜗 − 𝑥0) + 𝑦0, 𝑥0 ≤ 𝜗 ≤ 𝑥1

𝑦1, 𝜗 >  𝑥1

                                                                                                                                   (12) 

where 𝐼 and 𝜗 correspond to rainfall intensity and to soil moisture values, respectively. This parametric form of the threshold 

has been devised based on the visual inspection of the scatter plot of triggering and non-triggering events (i.e., heuristically), 
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and corroborated by comparison with other relationships proposed in the literature – specifically, the power-law and the simple 275 

bilinear (as opposed to a linear or more complex power or high‐degree polynomial) (Uwihirwe et al., 2022; Thomas et al., 

2019; Mirus et al., 2018a). 𝑥0, 𝑥1, 𝑦0 , and 𝑦1  are the threshold’s parameters that must be estimated. In this regard, these 

parameters are computed by adopting the same objective function and optimization procedure as those used for the 

identification of the parameters of the power-law 𝐼𝐷 threshold, i.e., the TSS objective function (Eq. 11) and the MATLAB 

Particle Swarm global optimization toolbox. Therefore, Eq. 12 is used to derive the hydro-meteorological thresholds employing 280 

single- and multi-layer soil moisture data, respectively. Specifically, At this stage, the threshold identification methodology 

described so far is applied with the aim to identify triggering thresholds between the mean rainfall intensity (I) and the soil 

moisture expressed in two variants: i) soil moisture at each of the four depth levels (𝜗1, 𝜗2, 𝜗3, 𝜗4 ) available from the ERA5-

Land reanalysis data are used for the single-layer approach, while the mean rainfall intensity (I) together with ; ii) the first 

principal component of soil moisture, i.e. the linear combination of soil moisture at the four depths corresponding to the 285 

minimum information loss (highest explained variance), are used for the multi-layer approach. The TSS values obtained in the 

applications considering soil moisture, both single- and multi-layered, (hereinafter indicated as 𝑇𝑆𝑆𝑝𝑎𝑟 ) are being were 

compared to one another, as well as to with the TSS values obtained for the reference scenario of the power-law 𝐼𝐷 threshold 

(hereinafter 𝑇𝑆𝑆𝑝𝑙). 

3 Study area 290 

The study area selected for our study is the island of Sicily (southern Italy, 37.75N-14.25 E) which, with an area of 

~25,700 km2, is the largest island of the Mediterranean Sea. A hilly morphology (62%) dominates the landscape in the island, 

while the rest is characterized by a mountainous and flat morphology, especially in the eastern part of the island around Catania. 

The terrain average elevation is about 400 meters above sea level, ranging from 0 to 3320 meters on the peak of the Etna 

volcano. Geologically, the Sicily Island arose during the Neogene, when the European and African plates converged. Thus, 295 

Sicily stands out for its complex geological and lithological features which, cooperatively with anthropic activities (e.g., 

changes in land use, management of forest, etc.), have generated a wide range of different types of soil (Venturella, 2004). 

The climate is warm-temperate, with hot and dry summers, especially on the southern coasts, and higher and more frequent 

precipitation during the colder winter months, in the mountainous internal areas (Pumo et al., 2019).  Mean annual precipitation 

ranges between 700 and 800 mm and, autumn and winter are the rainiest seasons. The most severe rainfall events frequently 300 

hit the eastern side of the island and specifically, the eastern side of the Etna volcano and the flanks of the Peloritani Mountains, 

with the greatest precipitation peaks on the Ionian side  (Gariano et al., 2015). On the other hand, south Sicily is distinguished 

by lower precipitation than the mean values recorded in the rest of the region, since it is located at a lower height and is exposed 

to the hot and dry African winds (Alecci and Rossi, 2007). 
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Fig. 3 shows the geographical context of Sicily, the rain gauge locations for the period 2009-2018 (Distefano et al., 2021) and 305 

the observed landslide locations. In more detail, 207 landslide events were retrieved by the FraneItalia database from 2010 to 

2018 and, for each of them, longitude-latitude coordinates (WGS84 datum), together with the initiation time, are retrieved. 

 

  

Figure 3: Elevation map of the study area (Sicily region), showing the location of the rain gauges and landslide occurrences. (Credit 310 
to: http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais and ESRI 2020). 

Concerning the observed rainfall measurements, we consulted the data provided by the regional water observatory 

(Osservatorio delle Acque, OdA), the SIAS (Sicilian Agro-meteorological Information Service), and the Regional Civil 

Protection Department (DRPC), namely the three main gauging networks installed in Sicily.  

This enabled an hourly time series to be reconstructed for the precipitation over the period 2009-2018. As previously explained 315 

in Section 2.1, using these continuous rainfall time series, the rainfall events were identified using the CTRL-T research code. 

For the calibration of these regional parameters required by CTRL-T, we referred to a previous application of the algorithm to 

the Sicily Island (Melillo et al., 2015). Specifically, according to this approach, the dry period (no rain) has been set equal to 

48 hours (P4, warm) between April and October (warm season, Cw), while it has been set equal to 96 hours (P4, cold) from 

November to March (cold season, Cc). Indeed, in line with Köppen (1931) and Trewartha (1968), it is reasonable to assume 320 

that in Sicily, due to the Mediterranean climate, the warm period is longer than the cold one. The rain gauge sensitivity GS has 

http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais
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set equal to 0.2 mm, while the rain gauge search radius RB has been established equal to 16 km. Table 2 summarizes adopted 

values for mentioned CTRL-T parameters. 

Table 2: CTRL-T parameters for the reconstruction of the rainfall events used in the present study. 

GS 

[mm] 

ER 

[mm] 

RB 

[km] 

P1 [h] P2 [h] P3 [h] P4 [h] 

Cw Cc Cw Cc Cw Cc Cw Cc 

0.2 0.2 16 3 6 6 12 1 1 48 96 

4 Results and discussion 325 

4.1 Principal Component Analysis 

An explorative analysis was carried out, to investigate the correlation between the four soil moisture depths (𝜗1, 𝜗2, 𝜗3, 𝜗4). 

The plot shown in Fig. 4 represents the correlation matrix between all pairs of variables, together with the Pearson’s correlation 

coefficients. 

Overall, all the four soil moisture depths are related to each other. Specifically, the diagonal subplot between the upper two 330 

depths levels 𝜗1 and 𝜗2 has the highest correlation with a Pearson correlation coefficient equal to 0.85. This suggest that PCA 

can be adopted in order to find out the linear combination expressing the correlation between the involved soil moisture 

variables. 
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Figure 4: Correlation matrix between the four soil moisture level depths (𝝑𝟏, 𝝑𝟐, 𝝑𝟑, 𝝑𝟒). Each off-diagonal subplot contains a 335 
scatterplot of a pair of variables with a least-squares reference line, the slope of which is equal to the displayed Pearson correlation 

coefficient. Each diagonal subplot contains the distribution of a variable as a histogram. 

The preliminary step, required when PCA is performed, is to center the data on the mean values of each variable, namely by 

subtracting the mean. This step allows the cloud of data to be centered on the origin of the principal components, but it affects 

neither the spatial relationships of the data, nor the explained variance along the variables. At this stage, it was possible to 340 

proceed with PCA and, according to Eqs. 4, 5, 6, and 7, the four principal components of soil moisture were defined as follow: 

𝑆𝑖1 = 0.65𝜗𝑖1 + 0.58𝜗𝑖2 + 0.47𝜗𝑖3 + 0.15𝜗𝑖4                                                                                                                                                               (13) 

𝑆𝑖2 = −0.54𝜗𝑖1 − 0.04𝜗𝑖2 + 0.63𝜗𝑖3 + 0.55𝜗𝑖4                                                                                                                            (14) 

𝑆𝑖3 = 0.37𝜗𝑖1 − 0.29𝜗𝑖2 − 0.39𝜗𝑖3 + 0.79𝜗𝑖4                                                                                                                          (15) 

𝑆𝑖4 = −0.38𝜗𝑖1 + 0.76𝜗𝑖2 − 0.48𝜗𝑖3 + 0.23𝜗𝑖4                                                                                                                       (16) 345 
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The loadings values of each principal component are intended as the weights 𝑎𝑖𝑗  (Eq. 3): therefore, the higher the value of the 

weight, the larger the contribution of a variable to the component associated with the weight. The sign of a loading indicates 

whether a variable and a principal component are positively or negatively correlated. Here, although overall slightly large 

loadings correspond to the first principal component, none of the four variables has a strong relationship with a particular 

principal component. 350 

Fig. 5(a) shows the scree plot representing the total percentage of variance explained by each of the four principal components. 

The chart reveals the decreasing rate at which variance is explained by additional principal components. Fig. 5(b) represents a 

grouped bar plot indicating the estimated loadings corresponding to each of four principal components as reported at Eqs. 13, 

14, 15, and 16. 

 355 

Figure 5: (a) Total variance explain ed by each principal component; (b) Estimated loadings for each principal component Si. 

Because dimensionality reduction is a goal of PCA, several criteria can be considered for determining how many principal 

components should be examined and how many should be ignored (Rencher, 1998). Just to list a few: i) ignore principal 

components at the point at which the next principal component offers little increase in the total explained variation; ii) ignore 

the last principal component whose explained variation are all roughly equal; iii) include all principal components up to a 360 

predetermined total explained variation. In our study, the third criterion was applied considering a threshold value of 75%. 

Therefore, only the first principal component was considered as it guaranteed the desired explained variation of about 75 %.   
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4.2 Thresholds’ identification 

CTRL-T tool reconstructed 144 landslide events out of the 207 landslides retrieved by the FraneItalia database. Four different 

triggering rainfall events, representing a range of triggering conditions, were selected within the database, and the precipitation 365 

time series together with the soil moisture time series are plotted in Fig. 6.  

 

Figure 6: Panel showing four different triggering rainfall events. For each of them the precipitation time series together with the soil 

moisture time series (𝝑𝟏, 𝝑𝟐, 𝝑𝟑, 𝝑𝟒) are reported, as well as the first principal component of soil moisture 𝑺𝟏 and the timing of each 

landslide. 370 

(a) 

(b) 

(c) 

(d) 



17 

 

As expected, the upper two soil moisture layers are those that are most similar to precipitation trends, as well as the first 

principal component of soil moisture 𝑆1, computed using Eq. 13. Overall, a greater variability in soil moisture values can be 

observed in correspondence to 𝜗1 and 𝜗2, which assume maximum values about equal to 0.4 in correspondence of all the 

analyzed triggering rainfall events.  

First, the power-law 𝐼𝐷 threshold maximizing TSS was identified (Fig. 7). In particular, the plot shows the triggering events 375 

as red points, while the non-triggering, since there are in a very large number, are better represented by a colormap indicating 

the relative frequency of non-triggering rainfall events, following a plotting technique inspired to Leonarduzzi et al. (2017). 

 

Figure 7: Traditional power-law threshold on the log-log plane between observed mean rainfall intensity (I) and duration (D). 

For this threshold a 𝑇𝑆𝑆𝑝𝑙 = 0.50, corresponding to a 𝑇𝑃𝑅𝑝𝑙 = 0.76 and  𝐹𝑃𝑅𝑝𝑙 = 0.26, is obtained, and this value was taken 380 

as benchmark for comparison to the hydro-meteorological thresholds. Fig. 8 shows the obtained thresholds when the mean 

rainfall intensity and the soil moisture at each of the four depth levels are considered. As can be seen, especially in 

correspondence to the upper two depths (i.e., 0-7 cm, 7-28 cm), the triggering rainfall events are located, for the most, on the 

right-upper side of the graph, suggesting that the equation proposed for the identification of the thresholds (Eq. 12) well fits 

this trend well. Furthermore, at all depths taken into consideration, there is a noticeable clustering of the highest relative 385 

frequency values of non-triggering rainfall events below the related parametric threshold. All four identified thresholds have 

better performance than ID threshold. Specifically, higher TSS values were obtained for the first two depths, with a 𝑇𝑆𝑆𝑝𝑎𝑟  

equal to 0.71, while significantly lower values of 𝑇𝑆𝑆𝑝𝑎𝑟 (0.61 and 0.54) are obtained with the third and fourth soil moisture 

level, respectively.  

 390 
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Figure 8: Parametric thresholds on the semi-log plane between mean rainfall intensity and soil moisture at the four distinct depths: 

(a) 𝝑𝟏 0-7 cm; (b) 𝝑𝟐 7-28 cm; (c) 𝝑𝟑 28-100 cm; (d) 𝝑𝟒 100-289 cm. 

Moving to the multi-layer approach, As previously mentioned, the second analysis concerns the identification of the optimal 

parametric thresholds identified using when the mean rainfall intensity and first principal component of soil moisture are is 

considered presented in (Fig. 9). In this case, a 𝑇𝑆𝑆𝑝𝑎𝑟 = 0.71 was obtained once again.  395 

(a) (b) 

(c) (d) 
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Figure 9: Parametric threshold on the semi-log plane between observed mean rainfall intensity (I) and first principal component of 

soil moisture (S1). 

Table 3 summarizes the 𝑇𝑆𝑆 values in correspondence of the analyzed thresholds, together with the values of parameters (Eq. 

12) estimated for the parametric thresholds.  400 

Table 3: TSS values in correspondence to each analyzed scenario, and parameters (𝒙𝟎, 𝒚𝟎, 𝒙𝟏, 𝒚𝟏) estimated for the parametric 

thresholds. 

Parametric threshold TPRpar FPRpar TSSpar x0 y0 x1 y1 

𝐼𝜗1 0.84 0.14 0.71 -0.33 27.23 0.38 0.09 

𝐼𝜗2 0.84 0.14 0.71 0.05 5.73 0.39 0.02 

𝐼𝜗3 0.73 0.12 0.61 -0.03 6.98 0.40 0.02 

𝐼𝜗4 0.79 0.25 0.54 -0.08 6.82 0.35 0.09 

𝐼𝑆1 0.85 0.14 0.71 -0.12 3.28 0.23 0.02 

 

Overall, the results relative to theproposed hydro-meteorological thresholds corroborate other studies showing their better 

predictive performanceproved able to better predict the landslide occurrences when compared to the performance of the 405 

traditional  𝐼𝐷 approachthreshold.  

 For the specific case study of Sicily Island, thresholds based on multi-layered soil moisture information have similar predictive 

performances than thresholds based on single-layered information. This points out that the two shallowest depth layers are of 

the greatest relevance for landslide triggering in Sicily. This may not be the case for other case study areas, and the proposed 
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approach of comparing multi- vs single-layer information allows to define which layers of soil are most relevant in controlling 410 

landslide triggering in a given region. thus the use of PCA has no significant advantages in terms of prediction performance. 

Nevertheless, PCA still remains a valid approach to combining the information of the four available layers and can be applied 

to avoid the trial-and-error testing of the use of the various single layers, as the performances are at least as good. At the same 

time, this calls for further investigations about the possible increase in performances thanks to the combination of multi-layered 

information in a single variable through PCA. These investigations may involve other case study areas (different climates and 415 

quality of the landslide and rainfall datasets), as well as more specific analyses focused, for instance, on landslide type, 

seasonality, etc., which are out of the scope of the present work, given also the lack of the needed data. The parametric form 

proposed in this work in Eq. (12) was also compared with other more traditional ones. Taking as reference variables the 

observed mean rainfall intensity (I) and first principal component of soil moisture (S1), it proved to be better than the power-

law threshold within the log-log plane and to the bi-linear threshold within the semi-log plane, which scored lower values of 420 

TSS, equal to 0.51 and 0.66, respectively. This highlights the importance of defining thresholds using an adequate parametric 

equation, as this choice can limit the exploitation of soil moisture information for improving their prediction performance. 

5 Conclusions 

In this study, a framework based on PCA aimed at introducing multi-layer soil moisture information within hydro-

meteorological threshold identification has been proposedthe potential improvements of regional landslide prediction by the 425 

use of soil moisture information and multi-variate statistical analysis (PCA) were explored, with reference to the case study of 

Sicily, Italy. Our investigation, relative to Sicily, corroborates previous studies showing higher performances for For the 

investigation, we have used ERA5-Land reanalysis soil moisture information. The hydro-meteorological thresholds respect to, 

combining precipitation and soil moisture information, proved better at classifying triggering and non-triggering rainfall events 

when compared to the traditional ID power-law thresholds. Specifically, a significant valuable improvement of performances 430 

was found with when the upper layers of soil moisture are used for the hydro-meteorological thresholds identification, leading 

to TSS TSSpar values up to 0.71, which were much higher than those obtained with the traditional approach (i.e., TSSplTSS=

0.50). The application of PCA to soil moisture data at various depths turned out to be a valuable approach to include multi-

layer soil moisture information while keeping the thresholds two-dimensional, though for the case study region, multi-layer 

information seemed not so relevant, as performances corresponding to the two uppermost layers are similar to those 435 

corresponding to the PCA combination of all four layers. Comparison of prediction performances relative to thresholds based 

on multi- versus single-layer soil moisture information, provides a mean to assess which soil depth intervals retain the most 

relevant information for improving thresholds’ predictive performances. This represents a strategic tool supporting decision-

making in LEWSs development.Moreover, the application of the PCA to soil moisture data at various depths enables by-
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passing the problem of identifying the most influential soil layer on landslide triggering, without deteriorating significantly 440 

performance and keeping the thresholds simple (two-dimensional). In real situations, the use of the reanalysis data is limited 

by the fact that they are made available to the public with a delay of some weeks from present. This delay is expected to be 

significantly reduced in the near future, in light of the increasing computational capabilities. Finally, it is worth to mention that 

our investigation exploited ERA5-Land soil moisture data, which use in real situations is limited by the fact it is available with 

a delay of some weeks from real time, though this delay is expected to be significantly reduced in the near future, in light of 445 

the increasing computational capabilities. In this regard, the valuable improvements gained despite the inherent uncertainty of 

reanalysis data, further encourages the installation of monitoring networks for direct in-situ soil moisture measurements with 

enhanced spatial and temporal resolutions, as with these observations even higher improvements are to be expected.  Future 

developments of this research will consider other geographical regions in order to further explore the role of multi-layer soil 

moisture. 450 

our study corroborates with real data the potential improvements of the prediction capabilities of landslide triggering thresholds 

that use soil moisture information, which can be even greater with more accurate in-situ distributed soil moisture 

measurements. In this regard, the appreciable improvements obtained despite the inherent uncertainty of the reanalysis global 

dataset, further encourages the identification of the hydro-meteorological thresholds using surface soil moisture products with 

enhanced spatial and temporal resolution (i.e., in situ measurements, reanalysis and satellite soil moisture data provided at real 455 

or near real time). Future developments of the work will consider other regions in order to investigate more in depth the 

potentialities of PCA in improving landslide prediction performance, also by taking into account further information on 

landslides - e.g., spatial patterns, landslides properties, seasonality - not easily available for the region considered in this study. 
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