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Abstract. In recent times, several efforts have been addressed to understand the extent to which soil moisture estimations 

may improve the performance of landslide early warning systems (LEWSs). These systems have been traditionally based on 

rainfall intensity-duration thresholds. Still a limited number of studies explore the possible enhancement of the performance 

of LEWSs through the identification of hydro-meteorological thresholds. In this study, we propose a methodology for 

developing regional hydro-meteorological landslide triggering thresholds coupling mean rainfall intensity and soil moisture 15 

information. To test the potential improvements in prediction we use ERA5-Land reanalysis soil moisture data, available at 

four depth levels and hourly resolution. Two different instances are investigated, namely the identification of triggering 

thresholds using rainfall intensity and the soil moisture at each of four depth levels, and the identification of triggering 

thresholds using rainfall intensity and a combination of soil moisture at the four depths as obtained by principal component 

analysis (PCA). We also propose n improvement of the thresholds’ parametric form, respect to traditional choices (power 20 

law or bi-linear), by using in the form of a piece-wise linear equation. The equation’s parameters are optimized in order to 

maximize the ROC True Skill Statistic (TSS) prediction performance metric. The proposed hydro-meteorological thresholds 

are tested on the case of Sicily Island (southern Italy) and the performance is compared with to those that obtained throughof 

the traditional rainfall intensity-duration (ID) power-law thresholds corresponding to maximum TSS. Overall, the results 

show that the soil moisture information allows an improvement of prediction performance, as adds a considerable value to 25 

the improved thresholds’ performance since the ROC True Skill StatisticTSS increases from 0.50 to 0.71, passing from 

traditional to hydro-meteorological thresholds using soil moisture at the either the first or the second depth level. Using the 

first principal component, which combines in the most effective way soil moisture the four depth levels, similar performances 

are obtained. These improvements, gained in spite of the coarse spatial resolution and the limited accuracy of reanalysis data, 

provide further support to hydro-meteorological thresholds. At the same time, the study shows that the PCA can also be A 30 
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similar performance is obtained when the first principal component derived from the PCA is used, proving PCA to be a 

valuableuseful support tool for the identification of the proposed hydro-meteorological thresholds, as it allows to easily 

combine take into account the multi-layer soil moisture information while keeping the thresholds two-dimensional and thus 

easy to be communicated to landslide risk managers. 

 35 

 

 

1 Introduction 

The impact of landslides triggered by rainfall, is constantly increasing due to landscape modifications, i.e. urbanization, 

deforestation, land-changes and the abandonment of rural areas (Roccati et al., 2019). They Landslides can cause serious 40 

damage to man-made structures and land, as well as loss of natural resources and lives (Froude and Petley, 2018). The role of 

landslide risk in human well-being, is highlighted by the fact that more than 4800 landslide occurrences have been documented 

from 2004 to 2016, with over 55000 reported fatalities at a global scale (Froude and Petley 2018). Furthermore, landslides 

triggered by rainfall have been identified as the cause of approximately 90% of fatalities globally (Haque et al. 2016; Sultana 

2020) and, from an economic point of view, annual losses were estimated to total USD 20 billion (Sim et al., 2022).  45 

Furthermore, Iin the last decades, an increasing number of studies also focused on the potential effects of climate change on 

landslide phenomena (McInnes et al. 2007; Dijkstra and Dixon 2010; Crozier 2010), pointing out that there are some 

unresolved issues, such as the abundance, activity, frequency and return period of landslides in response to the projected 

climate change (Gariano and Guzzetti, 2016; Peres and Cancelliere, 2018). In light of these considerations and, after recent 

catastrophic landslides worldwide, there is a high interest of scholars and civil protection agencies in the development of 50 

landslide early warning systems (LEWS), which can serve as an aid in predicting possible slope movements, and thus as risk 

mitigation tool (Roccati et al., 2020; Highland and Bobrowsky, 2008; Chae et al., 2017).  

Landslide triggering thresholds are a key component of LEWS. In general, even if LEWS vary widely in approaches and scale, 

empirical rainfall thresholds in combination with rainfall measurements and forecasts remain the most frequently applied 

approaches for the majority of regional LEWSs.  In the literature, several methods have been proposed for the identification 55 

of rainfall thresholds to landslides initiation (Guzzetti et al., 2007a, 2008; Segoni et al., 2018a; Aleotti, 2004). Empirical rainfall 

thresholds are usually obtained by drawing lower-bound lines to the rainfall conditions inducing landslides, plotted in 

Cartesian, semi-logarithmic, or logarithmic coordinates (e.g., rainfall duration on the abscissa axis and rainfall intensity on the 

vertical axis). When information on non-triggering rainfall is also available, thresholds can be determined as the best classifiers 
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based on the confusion matrix (Berti et al., 2012; Staley et al., 2013; Peres and Cancelliere, 2014; Postance et al., 2018; Marino 60 

et al., 2020; Peres and Cancelliere, 2021).  

Commonly, these rainfall exceedance thresholds empirically relate the occurrence of landslides to rainfall event characteristics 

such as intensity, duration, total amounts, or a combination thereof (Wicki et al., 2020a). However, in many settings the 

antecedent soil wetness conditions influence the variability in rainfall triggering amounts, becoming a predisposing factor that 

plays a major role in landslide initiation (Palau et al., 2021; Conrad et al., 2021). This led to a more recent approach that relies 65 

not only on rainfall but, also, on subsurface hydrological measurements (e.g. soil moisture content), thus introducing hydro-

meteorological thresholds (Uwihirwe et al., 2022; Mirus et al., 2018b, a; Thomas et al., 2018; Segoni et al., 2018c; Wicki et 

al., 2020a; Bogaard and Greco, 2018, 2016) for a better representation of landslide triggering. The term “hydro-

meteorological” is because these threshold combine a meteorological variable (rainfall depth) with a hydrological onevariable 

(catchment storage or soil moisture), reflecting the water storage at the catchment or local scale (Gain et al., 2021). 70 

 In this regard, several attempts aimed at introducing, directly or with models, the effects of soil moisture information in the 

empirical thresholds for improving landslide prediction have been made (Crozier, 1999; Zhao et al., 2019; Brocca et al., 2016; 

Segoni et al., 2018c; Ponziani et al., 2012). For instance, Marino et al. (2020) performed an explorative numerical investigation 

to understand whether soil moisture information can improve shallow landslide forecasting using the hydro-meteorological 

threshold approach. In their work, they used synthetic rainfall and landslide data obtained through Monte Carlo simulation. 75 

Their results showed that soil moisture information introduced within hydro-meteorological thresholds can significantly reduce 

the false alarm ratio of LEWS, while keeping at least unvaried the number of missed alarms. Along this path, Reder and Rianna 

(2021) addressed the extent to which soil moisture estimations can be useful to define a proxy for antecedent slope wetness 

conditions. In particular, they used the soil moisture data derived from the ERA5-Land reanalysis (Hersbach et al., 2020) as a 

support for LEWS, and more specifically as an initial filter for a pre-screening of the effective saturation degree. They showed 80 

that the filter yielded by the ERA5 soil model is able to strengthen the regional warning system and that the ERA5 reanalysis 

provides estimations consistent with those retrieved by using more complex and detailed physically based models.  

Lastly, Wicki et al. (2021) compared the reliability of landslides forecast models based on simulated soil moisture with respect 

to models based on soil moisture measurements. Specifically, they assessed the potential and limitations of adopting 1D soil 

water transfer model for regional LEWS and disclosed the pros and cons compared of using soil moisture measurements. To 85 

this aim, they used plot-scale soil hydrological simulations to be able to directly compare the results to a landslide forecast 

model based on in situ soil moisture measurements and demonstrated a high information content of simulated soil moisture 

for regional landslide activity, which was even higher than when in situ soil moisture measurements were used (Wicki et al., 

2021). In this regard, Wicki et al. (2020b), demonstrated that the performance is strongly dependent on the distance between 

the soil moisture network location and landslide activity area and that the goodness increases with decreasing distances between 90 

measurement sites and landslides. Therefore, the density of the soil moisture measurement networks impacts the performance 
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of a LEWS and these measurement networks should consider the spatial variability of meteorological events and soil properties 

(Wicki et al., 2020b). 

In light of these advances, in the present work we attempt to give a further contribution by investigating analyzing the possible 

improvements of landslide prediction through hydro-meteorological thresholds coupling observed rainfall intensity and soil 95 

moisture information, an issue that needs further investigation. In particular, we carry out our investigation considering the 

ERA5-Land reanalysis data set. In fact, recent studies proved that the main climate variables (i.e., soil moisture, temperature, 

precipitation) obtained from third-generation atmospheric and reanalysis datasets, (i.e., ERA5 project) have a reasonable 

accuracy in reproducing in situ-measurements of the reference local weather stations from the International Soil Moisture 

Network (Dorigo et al., 2011; Li et al., 2020; Beck et al., 2021). However, accuracy issues remain still significant, also 100 

considering their relatively coarse resolution (0.1° x 0.1° ≅ 9km). 

A real case study is used to test the methodology, obtained by joining, over the period 2010-2018, the dataset of observed 

landslide and rainfall events with the dataset of soil moisture values reconstructed by the ERA5-Land reanalysis at the 

beginning of rainfall events. The proposed methodology involves the identification of the equation describing the threshold 

through a heuristic approach and an optimization procedure aimed at finding the optimal values of its parameters, in order to 105 

maximize the ROC True Skill Statistic (TSS). In order to combine the information of multiple layers of soil moisture data 

availability, we explore   the use of the Principal Component Analysis (PCA) (Jolliffe, 2002) is used, a multivariate statistical 

tool which capitalizes on the presence of correlation between the soil moisture at different depths. Thus, two different instances 

are investigated, namely the identification of four triggering thresholds using the rainfall intensity and the soil moisture at each 

of four depth levels, and the identification of the triggering threshold using the rainfall intensity and first principal component 110 

of soil moisture at all four depths. 

The paper is organized as follows. First, the procedure for the dataset creation and the methodology leading to the hydro-

meteorological thresholds identification are presented in the “Material and Methods” section. Then, the “Study Area” section 

describes the relevant features of the study area, namely the Sicily Island (Southern Italy). Next, the results and discussion 

concerning the comparison between the performance obtained through the traditional ID thresholds and the proposed hydro-115 

meteorological thresholds, are presented in the “Results and Discussion” section. Finally, conclusions are drawn in the last 

section. 

2 Materials and method 

2.1 Dataset construction 

The construction of a rainfall and landslide events dataset is a key step, which that involves different types of data (i.e., 120 

observed landslides, rainfall events and, reanalysis data of soil moisture). As schematically illustrated in Fig. 1, in the first 
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step, the FraneItalia project (Calvello and Pecoraro, 2018) is employed to collect information regarding the observed 

landslides, as it is information is collected regarding the observed landslides from the FraneItalia project (Calvello and 

Pecoraro, 2018), a thorough spatio-temporal inventory of historical landslides that have impacted the Italian territory since 

2010, including both occurrences that resulted in fatalities and occurrences that did not. 125 

 

Figure 1: Schematization of the procedure followed for dataset construction. 

The first classification criterion by the FraneItalia catalogue is based on the number of landslides triggered by the same rainfall 

event in a given geographic area. Specifically, single landslide events (SLE) and areal landslide events (ALE) are distinguished 

for records referring to single or multiple landslides, respectively. Both SLEs and ALEs are then categorized into one of three 130 

classes in relation to their impacts, in order to track whether a landslide occurrence resulted in casualties or missing people 

(C1, very severe), injured people and evacuations (C2, severe), or no one was physically harmed (C3, minor). The data on 

occurrence location, the date the landslide occurred, the source of information, and the number of landslides for ALEs are 

further details that have been also included in the catalogue, together with the onset and duration of the landslide occurrence 

and its consequences. 135 

Thanks to this accurate level of detail, it is possible to filter only the landslide events triggered by rainfall, which are precisely 

those to take into consideration in our study.  
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The CTRL-T (Calculation of Thresholds for Rainfall-induced Landslides-Tool) code (Melillo et al., 2018) is subsequently 

used for the identification of the rainfall events that were more likely to be responsible for the observed slope failures. 

Specifically, CTRL-T automatically and objectively reconstructs rainfall events and the triggering conditions responsible for 140 

the failure using a set of adjustable parameters to account for different morphological and climatic settings. Briefly, the tool 

consists of distinct modules with specific purposes. Among these, one module operates the reconstruction of rainfall events in 

term of duration (D, in hours) and, cumulated event rainfall (E, in mm) using continuous hourly rainfall time series and setting 

several climate and spatial parameters such as, the warm period in a year (CW); the cold period in a year (CC); the resolution 

of the rain gauge (GS); the instrumental sensitivity of the rain gauge and the minimum value exceeding which the isolated 145 

hourly measurements are considered relevant (ER); and  the radius of the buffer to assign each landslide to the closest rain 

gauge (RB). Furthermore, in order to account for seasonality (i.e., different evapotranspiration rates in different periods of the 

year), additional rainfall parameters can be set by the user, namely: the dry interval separating isolated rainfall measurements 

(P1); the time periods used to remove irrelevant amounts of rainfall, (P2), and (P3); and the minimum dry period separating 

two rainfall events, (P4). The readers are referred to Melillo et al., (2018) for more detailed information on these parameters. 150 

time periods used to remove irrelevant amount of rain and to reconstruct rainfall events (P1, P2, P4); irrelevant rainfall sub-

events that had to be excluded in the calculation of the final events (P3); radius of the buffer to assign each landslide to the 

closest rain gauge (RB). Rainfall event parameters were calibrated adopting the monthly soil water balance model and 

evapotranspiration analysis. A further module, instead, performs selection of the rain gauge representative for the landslide. 

Defined tThe maximum allowed distance between a landslide and a rain gauge as a circle of radius RB specified by the user, if 155 

more than one rain gauge is located within the circle, the rainfall events from each rain gauge are weighted based on the rain 

gauge–landslide distance and the rainfall event characteristics (cumulated rainfall and duration). More specifically, given the 

is limited by the circumferential area with radius equal to RB. Single or multiple rainfall conditions (MRC) that are most likely 

responsible for the slope failures  are, then, identified. MRC can be a (DL, EL)as pair of rainfall event duration (DL) and 

cumulated event rainfall (EL), or a set of two or more pairs,. eEach MRC is assigned a weight to select the representative rain 160 

gauge and the rainfall conditions associated with the landslide. The weight is proportional to the inverse square distance 

between the rain gauge and the landslide (d−2), the cumulated rainfall (EL), and the rainfall mean intensity (ELDL
−1): 

𝑤 = 𝑓(𝑑, 𝐸𝐿 , 𝐷𝐿) = 𝑑−2𝐸𝐿
2𝐷𝐿

−1                                                                                                                                                                      (1) 

Thus, among all the identified MRCs, those with the highest weights w are defined as the maximum probability rainfall 

conditions (MPRCs) and, precisely these reconstructed rainfall conditions were assumed as the triggering rainfall triggering 165 

events. Lastly, Fig. 2, depicts how the duration of a triggering rainfall event is defined. Specifically, when a landslide occurs 

during a dry period the whole event that preceded it is considered as triggering rainfall event; otherwise, just the rainfall that 

occurred before the landslide occurrence is taken into account.  
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. . The landslides for which the rainfall conditions were not identified or with relevant uncertainties, were discarded.

 170 

Figure 2: Sketch illustrating how the duration of a triggering rainfall event is defined (adapted from Peres et al., 2018) 

As shown in Fig. 1, the last step for the dataset set up consists of the association of soil moisture data to the beginning of each 

rainfall event, both triggering and non-triggering ones. In this regard, the ERA5-Land reanalysis dataset is used. Indeed, Iit 

provides the volume of water ϑ [m3/m3] at four distinct soil depths levels (i.e., 0-7 cm; 7-28 cm; 28-100 cm, and 100-289 

cm). The ERA5-Land soil moisture data are provided at the hourly scale, as grid data with a horizontal resolution of 0.1° x 175 

0.1°. Thus, being at the same temporal resolution of rainfall time series, the soil moisture values representative of the closest 

cell to the rain gauge that recorded the rainfall event are associated, without delay, to to the considered event. Thereby, the 

dataset in the form shown in Fig. 1, was created. 

2.2 Principal component analysis 

Principal Components Analysis (PCA) (Jolliffe, 2002) is a multivariate technique that analyzes a data table in which 180 

observations are described by several inter-correlated quantitative dependent variables in order to extract the important 

information from the table and, to represent it as a set of new orthogonal variables called principal components (Abdi and 

Williams, 2010).  

Precisely, the data are transformed according to a new coordinate system having the x-axis, known as the first principal axis, 

characterized by the highest data variation. Along the successive after axes (e.g., the second principal axis, the third principal 185 

axis, and so on), the data are characterized by increasingly lower variation. Indeed, up until the entire data table is reduced, 

Eeach succeeding principal component explains the maximum amount of variance feasible with the requirement that it is 

orthogonal to the previous principal components. In practice, identifying the eigenvalues and eigenvectors of the covariance 

matrix is the formal mathematical equivalent of solving the PCA problem. Indeed, Tthe direction along which the data have 

the highest variance is the eigenvector, while, the related eigenvalue is a quantification of the variance in the data along the 190 

corresponding eigenvector. Accordingly, the first principal component is the eigenvector with the greatest eigenvalue, followed 
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by the eigenvector with the second-highest eigenvalue, and so on. Thus, the so computed principal components are employed 

for the projection of the data into the new coordinate space (Kherif and Latypova, 2019). 

Practically, in our study, 𝜽 (Eq. 2) represents the soil moisture data table for which to compute the principal components, 

specified as an n-by-p matrix. Rows correspond the total amount n of the considered rainfall events (i.e., observations), and 195 

the number of columns to the four depths levels at which the initial soil moisture data are provided (i.e., variables). 

𝜽 = [

𝜗11 𝜗12 𝜗13 𝜗14

𝜗21 𝜗22 𝜗23 𝜗24

⋮ ⋮ ⋮ ⋮
𝜗𝑛1 𝜗𝑛2 𝜗𝑛3 𝜗𝑛4

]                                                                                                                                          (2) 

𝑨 represents, instead, the principal components’ loadings (i.e., coefficients) table, specified as an p-by-p matrix. The rows of 

matrix A are called the eigenvectors, and these specify the orientation of the principal components relative to the original 

variables. 200 

𝑨 = [

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

]                                                                                                                                             (3) 

Thus, the principal components (𝑆𝑖) for the generic 𝑖𝑡ℎ row, are given by a linear combination of the variables 𝜽 and 𝑨, namely:  

𝑆𝑖1 = 𝑎11𝜗𝑖1 + 𝑎12𝜗𝑖2 + 𝑎13𝜗𝑖3 + 𝑎14𝜗𝑖4                                                                                                                                   (4) 

𝑆𝑖2 = 𝑎21𝜗𝑖1 + 𝑎22𝜗𝑖2 + 𝑎23𝜗𝑖3 + 𝑎24𝜗𝑖4                                                                                                                                    (5) 

𝑆𝑖3 = 𝑎31𝜗𝑖1 + 𝑎32𝜗𝑖2 + 𝑎33𝜗𝑖3 + 𝑎34𝜗𝑖4                                                                                                                                      (6) 205 

𝑆𝑖4 = 𝑎41𝜗𝑖1 + 𝑎42𝜗𝑖2 + 𝑎43𝜗𝑖3 + 𝑎44𝜗𝑖4                                                                                                                                     (7) 

with 𝑖 = 1, … , 𝑛. 

In matrix notation, the transformation of the original variables to the principal components is written as, 

𝑺 = 𝜽𝑨                                                                                                                                                                     (8) 

2.3 Threshold identification 210 

The methodology adopted in this work aims to improve the identification of regional landslides triggering thresholds by means 

of reanalysis soil moisture information and, to compare the obtained performance with those obtained through the traditional 

rainfall intensity-duration power-law thresholds (ID). Therefore, the rainfall intensity-duration threshold, the most common 

type of threshold proposed and adopted in the literature (Segoni et al., 2018b; Guzzetti et al., 2007b; Brunetti et al., 2010), is 

used as benchmark. The 𝐼𝐷 threshold assumes the form 𝐼 = 𝛼𝐷−𝛽, where 𝐼 [mm h⁄ ] represents the rainfall intensity, i.e., the 215 

average precipitation rate over the considered period; 𝐷 [h] represents the duration of the rainfall event; 𝛼 is the intercept 

parameter, and 𝛽 is the slope parameter. After reconstructing the rainfall events with the methodology explained for the dataset 

creation and, after calculating the main variables (i.e., mean rainfall intensity and duration), an optimization tool (i.e., the 
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MATLAB Particle Swarm optimization toolbox) is used with the aim to search for the best possible 𝛼 and 𝛽 curve parameters 

able to maximize the True Skill Statistic index (TSS) objective function (Eq. 11), which is based on the confusion matrix or 220 

the Receiver-Operating Characteristics (ROCs). The confusion matrix is expressed in terms of the count of true positives (TP), 

true negatives (TN), false positives (FP) and false negatives (FN) (Peirce, 1884) (Table 1). 

 

Table 1: Confusion matrix for ROC analysis. 

  Observed landslide 

  Landslide (P) No landslide (N)  

Predicted Landslide 
Landslide TP FP 

No landslide FN TN 

As a function of the variables reported in Table 1, the three reference standard ROC indices – namely, True Positive Rate, 225 

False Positive Rate and True Skill Statistic – are listed below (Eqs. 9, 10, 11): 

TPR =
TP

(TP + FN)
                                                                                                                                                                                           (9) 

FPR =
FP

(TN + FP)
                                                                                                                                                                                         (10) 

TSS = TPR − FPR                                                                                                                                                                                         (11) 

The highest performances correspond to TSS = 1, when, relatively to a given rainfall event, the model produces no false or 230 

missing predictions. 

Afterward, the analysis is focused on the identification of the parametric equation that represents the lower boundary between 

triggering and non-triggering rainfall events on the basis of the mean rainfall intensity and the reanalysis of soil moisture values 

at each depth level. In this context, we propose the following parametric threshold as a reliable relationship to classify the 

events on the semi-log plane: 235 

𝐼 =  {

𝑦0, 𝜗 <  𝑥0
𝑦1 − 𝑦0

𝑥1 − 𝑥0

 (𝜗 − 𝑥0) + 𝑦0, 𝑥0 ≤ 𝜗 ≤ 𝑥1

𝑦1, 𝜗 >  𝑥1

                                                                                                                                   (12) 

where 𝐼 and 𝜗 correspond to rainfall intensity and to soil moisture values, respectively. This parametric form of the threshold 

has been devised based on the visual inspection of the scatter plot of triggering and non-triggering events (i.e., heuristically), 

and corroborated by comparison with other relationships proposed in the literature – specifically, the power-law and the simple 

bilinear (as opposed to a linear or more complex power or high‐degree polynomial) (Uwihirwe et al., 2022; Thomas et al., 240 

2019; Mirus et al., 2018a).   Furthermore, 𝑥0, 𝑥1, 𝑦0, and 𝑦1 are the threshold’s parameters that must be estimated. In this 

regard, these parameters are computed by adopting the same objective function and optimization procedure as those used for 
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the identification of the parameters of the power-law ID threshold, i.e., the True Skill Statistic index (TSS) objective function 

(Eq. 11) and the MATLAB Particle Swarm global optimization toolbox. At this stage, the threshold identification 

methodology described so far is applied with the aim to identify triggering thresholds between the mean rainfall intensity (I) 245 

and the soil moisture expressed in two variants: i) soil moisture at each of the four depth levels (𝜗1, 𝜗2, 𝜗3, 𝜗4 ) available from 

the ERA 5 - reanalysis; ii) the first principal component of soil moisture, i.e. the linear combination of soil moisture at the four 

depths corresponding to the minimum information loss (highest explained variance). The TSS values obtained in the 

applications considering soil moisture (hereinafter indicated as 𝑇𝑆𝑆𝑝𝑎𝑟) were compared with the TSS values obtained for the 

reference scenario of the power-law ID threshold (hereinafter 𝑇𝑆𝑆𝑝𝑙). 250 

3 Study area 

The study area selected for our study is the island of Sicily (southern Italy, 37.75N-14.25 E) which, with an area of 

~25,700 km2, is the largest island of the Mediterranean Sea. A hilly morphology (62%) dominates the landscape in the island, 

while the rest is characterized by a mountainous and flat morphology, especially in the eastern part of the island around Catania. 

The terrain average elevation is about 400 meters above sea level, ranging from 0 to 3320 meters on the peak of the Etna 255 

volcano. Geologically, the Sicily Island arose during the Neogene, when the European and African plates converged. Thus, 

Sicily stands out for its complex geological and lithological features which, cooperatively with anthropic activities (e.g., 

changes in land use, management of forest, etc.), have generated a wide range of different types of soil (Venturella, 2004). 

The climate is warm-temperate, with hot and dry summers, especially on the southern coasts, and higher and more frequent 

precipitation during the colder winter months, in the mountainous internal areas (Pumo et al., 2019).  Mean annual precipitation 260 

ranges between 700 and 800 mm and, autumn and winter are the rainiest seasons. The most severe rainfall events frequently 

hit the eastern side of the island and specifically, the eastern side of the Etna volcano and the flanks of the Peloritani Mountains, 

with the greatest precipitation peaks on the Ionian side  (Gariano et al., 2015). On the other hand, south Sicily is distinguished 

by lower precipitation than the mean values recorded in the rest of the region, since it is located at a lower height and is exposed 

to the hot and dry African winds (Alecci and Rossi, 2007). 265 

Fig. 3 shows the geographical context of Sicily, the rain gauge locations for the period 2009-2018 (Distefano et al., 2021) and 

the observed landslide locations. In more detail, 207 landslide events were retrieved by the FraneItalia database from 2010 to 

2018 and, for each of them, longitude-latitude coordinates (WGS84 datum), together with the initiation time, are retrieved. 
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Figure 3: Elevation map of the study area (Sicily region), showing the location of the rain gauges and landslide occurrences. (Credit 270 
to: http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais and ESRI 2020). 

Concerning the observed rainfall measurements, we consulted the data provided by the regional water observatory 

(Osservatorio delle Acque, OdA), the SIAS (Sicilian Agro-meteorological Information Service), and the Regional Civil 

Protection Department (DRPC), namely the three main gauging networks installed in Sicily.  

This enabled an hourly time series to be reconstructed for the precipitation over the period 2009-2018. As previously explained 275 

in Section 2.1, using these continuous rainfall time series, the rainfall events were identified using the CTRL-T research code. 

For the calibration of these regional parameters required by CTRL-T, we referred to a previous application of the algorithm to 

the Sicily Island (Melillo et al., 2015). Specifically, according to this approach, the dry period (no rain) has been set equal to 

48 hours (P4, warm) between April and October (warm season, Cw), while it has been set equal to 96 hours (P4, cold) from 

November to March (cold season, Cc). Indeed, in line with Köppen (1931) and Trewartha (1968), it is reasonable to assume 280 

that in Sicily, due to the Mediterranean climate, the warm period is longer than the cold one. The rain gauge sensitivity GS has 

set equal to 0.2 mm, while the rain gauge search radius RB has been established equal to 16 km. Table 2 summarizes adopted 

values for mentioned CTRL-T parameters.Specifically, the minimum dry period separating two rainfall events was set equal 

to 48 hours in the warm period CW (April-October) and, equal to 96 hours in the cold period CC (November- March). 

 285 

 

http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais
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Table 2: CTRL-T parameters for the reconstruction of the rainfall events used in the present study 

GS 

[mm] 

ER 

[mm] 

RB 

[km] 

P1 [h] P2 [h] P3 [h] P4 [h] 

Cw Cc Cw Cc Cw Cc Cw Cc 

0.2 0.2 16 3 6 6 12 1 1 48 96 

 

4 Results and discussion 

4.1 Principal Component Analysis 290 

An explorative analysis was, initially, carried out, in order to investigate the correlation between the four soil moisture depths 

(𝜗1, 𝜗2, 𝜗3, 𝜗4). The plot shown in Fig. 4 represents the correlation matrix between all pairs of variables, together with the 

Pearson’s correlation coefficients. 

Overall, all the four soil moisture depths are related to each other. Specifically, the diagonal subplot between the upper two 

depths levels 𝜗1 and 𝜗2 has the highest correlation with a Pearson correlation coefficient R equal to 0.85. This suggest that the 295 

Principal Component AnalysisPCA can be adopted in order to find out the linear combination expressing the correlation 

between the involved soil moisture variables. 
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Figure 4: Correlation matrix between the four soil moisture level depths (𝝑𝟏, 𝝑𝟐, 𝝑𝟑, 𝝑𝟒). Each off-diagonal subplot contains a 

scatterplot of a pair of variables with a least-squares reference line, the slope of which is equal to the displayed Pearson correlation 300 
coefficient. Each diagonal subplot contains the distribution of a variable as a histogram. 

The preliminary step, required when the principal component analysisPCA is performed, is to center the data on the mean 

values of each variable, namely by subtracting the mean of a variable from all values of that variable. This step allows the 

cloud of data to be centered on the origin of the principal components, but it affects neither the spatial relationships of the data, 

nor the explained variance along the variables. At this stage, it was possible to proceed with the Principal Component 305 

AnalysisPCA and, according to Eqs. 4, 5, 6, and 7, the four principal components of soil moisture were defined as follow: 

𝑆𝑖1 = 0.65𝜗𝑖1 + 0.58𝜗𝑖2 + 0.47𝜗𝑖3 + 0.15𝜗𝑖4                                                                                                                                                               (13) 

𝑆𝑖2 = −0.54𝜗𝑖1 − 0.04𝜗𝑖2 + 0.63𝜗𝑖3 + 0.55𝜗𝑖4                                                                                                                            (14) 

𝑆𝑖3 = 0.37𝜗𝑖1 − 0.29𝜗𝑖2 − 0.39𝜗𝑖3 + 0.79𝜗𝑖4                                                                                                                          (15) 

𝑆𝑖4 = −0.38𝜗𝑖1 + 0.76𝜗𝑖2 − 0.48𝜗𝑖3 + 0.23𝜗𝑖4                                                                                                                       (16) 310 
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The loadings values of each principal component are intended as the weights 𝑎𝑖𝑗  (Eq. 3): therefore, the higher the value of the 

weight, the larger the contribution of a variable to the component associated with the weight. The sign of a loading indicates 

whether a variable and a principal component are positively or negatively correlated. Here, although overall slightly large 

loadings correspond to the first principal component, none of the four variables has a strong relationship with a particular 

principal component. 315 

Fig. 5(a) shows, instead, the scree plot representing the total percentage of variance explained by each of the four principal 

components. The chart reveals the decreasing rate at which variance is explained by additional principal components. Fig. 5(b) 

represents a grouped bar plot indicating the estimated loadings corresponding to each of four principal components as reported 

at Eqs. 13, 14, 15, and 16. 

 320 

Figure 5: (a) Total variance explain ed by each principal component; (b) Estimated loadings for each principal component Si 

Because dimensionality reduction is a goal of PCA, several criteria can be considered for determining how many principal 

components should be examined and how many should be ignored (Rencher, 1998). Just to list a few: i) ignore principal 

components at the point at which the next principal component offers little increase in the total explained variation; ii) ignore 

the last principal component whose explained variation are all roughly equal; iii) include all principal components up to a 325 

predetermined total explained variation. In our study, the third criterion was applied considering a threshold value of 75%. 

Therefore, only the first principal component was considered as it guaranteed by itself the desired explained variation of about 

75 %.   
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4.2 Thresholds identification 

CTRL-T tool reconstructed 144 landslide events out of the 207 landslides retrieved by the FraneItalia database. Four different 330 

triggering rainfall events, representing a range of triggering conditions, were selected within the database, and the precipitation 

time series together with the soil moisture time series are plotted in Fig. 6.  

 

Figure 6: Panel showing four different triggering rainfall events. For each of them the precipitation time series together with the soil 

moisture time series (𝝑𝟏, 𝝑𝟐, 𝝑𝟑, 𝝑𝟒) are reported, as well as the first principal component of soil moisture 𝑺𝟏 and the timing of each 335 
landslide. 

(a) 

(b) 

(c) 

(d) 
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The light green window, within each graph, represents the triggering rainfall event in relation to the wider window of the 

corresponding entire month. As expected, especially the upper two soil moisture layers are those that are most similar to reflect 

the precipitation trends, as well as the first principal component of soil moisture 𝑆1, computed using Eq. 13. Overall, a greater 

variability in soil moisture values can be observed in correspondence to 𝜗1 and 𝜗2, which assume maximum values about equal 340 

to 0.4 in correspondence of all the analyzed triggering rainfall events. Furthermore, Fig.6 shows as in correspondence of longer 

rainfall duration, lower precipitation values have triggered landslides (Fig.6 (c)) and vice-versa (Fig.6 (a)). 

First, the power-law 𝐼𝐷 threshold maximizing TSS was identified (Fig. 7). In particular, the plot shows the triggering events 

as red points, while the non-triggering, since there are in a very large number, are better represented by a colormap indicating 

the relative frequency of non-triggering rainfall events, following a plotting technique inspired to Leonarduzzi et al. (2017).  345 

 

 

Figure 7: Traditional power-law threshold on the log-log plane between observed mean rainfall intensity (I) and duration (D). 

For this threshold a 𝑇𝑆𝑆𝑝𝑙 = 0.50, corresponding to a 𝑇𝑃𝑅𝑝𝑙 = 0.76 and  𝐹𝑃𝑅𝑝𝑙 = 0.26, is obtained, and this value was taken 

as benchmark for comparison to with the hydro-meteorological thresholds. constructed considering the two variants of hydro-350 

meteorological thresholds described in subsection 2.3. Fig. 8 shows the obtained thresholds when the mean rainfall intensity 

and the soil moisture at each of the four depth levels are considered. As can be seen, especially in correspondence to the upper 

two depths (i.e., 0-7 cm, 7-28 cm), the triggering rainfall events are located, for the most, on the right-upper side of the graph, 

suggesting that the equation proposed for the identification of the thresholds (Eq. 12) fits this trend well. Furthermore, at all 

depths taken into consideration, there is a noticeable clustering of the highest relative frequency values of non-triggering 355 

rainfall events below the related parametric threshold. All the four identified thresholds have better performance than ID 
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threshold. Specifically, higher TSS values were obtained for the first two depths, with a 𝑇𝑆𝑆𝑝𝑎𝑟  equal to 0.71 while 

significantly lower values of 𝑇𝑆𝑆𝑝𝑎𝑟  (0.61 and 0.54), are obtained with the third and fourth soil moisture level, respectively.  

 

  

  

Figure 8: Parametric thresholds on the semi-log plane between mean rainfall intensity and soil moisture at the four distinct depths: 360 
(a) 𝝑𝟏 0-7 cm; (b) 𝝑𝟐 7-28 cm; (c) 𝝑𝟑 28-100 cm; (d) 𝝑𝟒 100-289 cm. 

As mentioned beforepreviously mentioned, the second analysis concerns the identification of the optimal parametric thresholds 

when the mean rainfall intensity and first principal component of soil moisture are considered (Fig. 9). In this variantcase, a 

𝑇𝑆𝑆𝑝𝑎𝑟 = 0.71 was obtained once again., reaching an equal performance to the best case of the first variant and, thus, improved 

results in comparison with the 𝐼𝐷 approach.   365 

(a) (b) 

(c) (d) 
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Figure 9: Parametric threshold on the semi-log plane between observed mean rainfall intensity (I) and first principal component of 

soil moisture (S1). 

Table 3 summarizes the 𝑇𝑆𝑆 values in correspondence of the analyzed thresholds, together with the values of parameters (Eq. 

12) estimated for the parametric thresholds.  370 

Table 3: TSS values in correspondence to each analyzed scenario, and parameters (𝒙𝟎, 𝒚𝟎, 𝒙𝟏, 𝒚𝟏) estimated for the parametric 

thresholds. 

Parametric threshold TPRpar FPRpar TSSpar x0 y0 x1 y1 

𝐼𝜗1 0.84 0.14 0.71 -0.33 27.23 0.38 0.09 

𝐼𝜗2 0.84 0.14 0.71 0.05 5.73 0.39 0.02 

𝐼𝜗3 0.73 0.12 0.61 -0.03 6.98 0.40 0.02 

𝐼𝜗4 0.79 0.25 0.54 -0.08 6.82 0.35 0.09 

𝐼𝑆1 0.85 0.14 0.71 -0.12 3.28 0.23 0.02 

 

Overall, the proposed hydro-meteorological thresholds proved able to better predict the landslide occurrences , ifwhen 

compared with to the performance of the traditional  𝐼𝐷 approach.  375 

Indeed, the hydro-meteorological parametric threshold resulted in 𝑇𝑆𝑆𝑝𝑎𝑟  values up to 0.71, confirming that considering soil 

moisture information in landslide triggering thresholds can significantly improve their predictive performance. As expected, 

the higher TSS values have been obtained in correspondence of the upper layers (𝜗1, 𝜗2) for which there is the highest 

correlation (Fig. 3). For the specific case study of Sicily Island, thus the use of PCA has no significant advantages in terms of 
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prediction performance. Nevertheless, PCA still remains a valid approach to combining the information of the four available 380 

layers and can be applied to avoid the trial-and-error testing of the use of the various single layers, as the performances are at 

least as good. At the same time, this calls for further investigations about the possible increase in performances thanks to the 

combination of multi-layered information in a single variable through PCA. These investigations may involve other case study 

areas (different climates and quality of the landslide and rainfall datasets), as well as more specific analyses focused for 

instance on landslide type, seasonality, etc., which are out of the scope of the present work, given also the lack of the needed 385 

data. 

Moreover, the study revealed that the inclusion of PCA allows obtaining a more generalized approach, which keeps unaltered 

the prediction performance while not requiring any prior identification of the most influential soil layer. 

The parametric form proposed in this work in equation Eq. (12) was also compared with other more canonical traditional 

expressionsones. Taking as reference variables the observed mean rainfall intensity (I) and first principal component of soil 390 

moisture (S1), it proved to be better superior to than the power-law threshold within the log-log plane and to the bi-linear 

threshold within the semi-log plane, which scored lower values of TSS, equal to 0.51 and 0.66, respectively. This highlights 

the importance of defining thresholds using an adequate parametric equation, as this choice can jeopardize limit the exploitation 

of soil moisture information for improving their prediction performance.e.  

5 Conclusions 395 

In this study, the potential improvements of regional landslide prediction by the use of soil moisture information and multi-

variate statistical analysis (Principal component analysisPCA) were explored, with reference to the case study of Sicily, Italy. 

For the investigation, we have used ERA5-Land reanalysis soil moisture information. The hydro-meteorological thresholds, 

combining precipitation and soil moisture information, proved better at classifying triggering and non-triggering rainfall events 

when compared to the traditional ID power-law thresholds. Specifically, a valuable improvement was found when the upper 400 

layers of soil moisture are used for the hydro-meteorological threshold identification, leading to TSSpar values up to 0.71, 

which were much higher than those obtained with the traditional approach (i.e., TSSpl = 0.50). Moreover, The the application 

of the Principal Component AnalysisPCA to soil moisture data at various depths enables by-passing the problem of identifying 

the most influential soil layer on landslide triggering, without deteriorating significantly performance and keeping the 

thresholds simple (two-dimensional). In real situations, the use of the reanalysis data is limited by the fact that they are made 405 

available to the public with a delay of some weeks from present. This delay is expected to be significantly reduced in the near 

future, in light of the increasing computational capabilities. FurthermoreFinally, our study corroborates with real data the 

potential improvements of the prediction capabilities of landslide triggering thresholds that use soil moisture information, 

which can be even greater with more accurate in-situ distributed soil moisture measurements. In this regard, given the 
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appreciable improvements obtained despite the inherent uncertainty of the reanalysis global dataset, future perspectivesfurther 410 

encourages will involve the identification of the proposed hydro-meteorological thresholds using surface soil moisture products 

with enhanced spatial and temporal resolution (i.e., in situ measurements, reanalysis and satellite soil moisture data provided 

at real or near real time). Future developments of the work will consider other Finally, our study will evaluate, in the near 

future, the applicability of the proposed methodology to other climate regions than the Mediterranean one,in order in order to 

assessinvestigate, more in depth, the potentialitiesities of the presentedPCA in improving landslide prediction performance, 415 

also by taking into account further information on landslides - e.g., spatial patterns, landslides properties, seasonality - not 

easily available for the region considered in this study. results. 
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