
1 
 

Analyzing the informative value of alternative hazard indicators for 

monitoring drought risk for human water supply and river ecosys-

tems at the global scale 

Claudia Herbert1 and Petra Döll1,2 
1Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany 5 
2Senckenberg Leibniz Biodiversity and Climate Research Centre Frankfurt (SBiK-F), Frankfurt am Main, 60325, Germany 

 

Correspondence to: Claudia Herbert (c.herbert@em.uni-frankfurt.de) 

Abstract 

Streamflow drought hazard indicators (SDHIs) are mostly lacking in large-scale drought early warning systems (DEWS). This 10 

paper presents a new systematic approach for selecting and computing SDHIs for monitoring drought risk for human water 

supply from surface water and for river ecosystems that is also relevant for meteorological or soil moisture drought. We rec-

ommend considering the habituation of the system at risk to the streamflow regime (e.g., to a certain interannual variability or 

a certain relative reduction of streamflow) when selecting indicators. Distinguishing four indicator types, we classify indica-

tors of drought magnitude (water anomaly during a pre-defined period) and severity (cumulated magnitude since the onset of 15 

the drought event) and specify the many relevant decisions that need to be made when computing SDHIs and other drought 

hazard indicators. Using the global hydrological model WaterGAP2.2d, we quantify eight existing and three new SDHIs 

globally. For large-scale DEWS based on the output of hydrological models, we recommend specific SDHIs that are suitable 

for assessing the drought risk of 1) river ecosystems, 2) water users without access to large reservoirs, 3) water users with 

access to large reservoirs, and 4) that are suitable for informing reservoir managers. These SDHIs include both drought mag-20 

nitude and severity indicators that differ by the temporal averaging period and the habituation of the risk system to reduced 

water availability. Depending on the habituation of the risk system, drought magnitude is best quantified either by the relative 

deviation from the mean or by the return period of the streamflow value that is based on the frequency of non-exceedance. To 

compute the return period, we favor empirical percentiles over the standardized streamflow indicator as the former do not 

entail uncertainties due to the fitting of a probability distribution and can be computed for all streamflow time series. Drought 25 

severity should be assessed with indicators that imply habituation to a certain degree of interannual variability, to a certain 

reduction from mean streamflow, and to the ability to fulfill human water demand and environmental flows.  Reservoir man-

agers are best informed by the SDHIs of the grid cell that represents inflow into the reservoir. The DEWS must provide com-

prehensive and clear explanations about the suitability of the provided indicators for specific risk systems. 

 30 
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1 Introduction 

Drought occurs when there is a prolonged period with less water than normal in different components of the hydrological 

cycle (van Loon et al., 2016) but the term drought also has the connotation that during the drought period there is less water 

than required (Popat and Döll, 2021). No universal definition of “drought” exists (Lloyd-Hughes, 2014). While drought is a 35 

local to regional phenomenon, its impacts can have transnational to global dimensions, in particular related to crop production 

and trade (Wilhite and Glantz, 1985; van Loon, 2015; UNECE, 2015). Streamflow drought in transboundary basins implies 

direct international impacts. Hence, global-scale assessment, monitoring, and forecasting of drought hazards or risks have the 

potential to support drought risk management (Pozzi et al., 2013). 

A stakeholder survey encompassing 33 regional to global drought early warning systems (DEWS) revealed that stream-40 

flow drought hazard indicators (SDHIs) are rarely applied in DEWS, while drought hazard indicators based on meteorological 

variables, soil moisture, and remotely-sensed vegetation conditions dominate. Among SDHIs, streamflow percentiles are 

mostly applied, e.g. in the US Drought Monitor. Other indicators include the Palmer Hydrological Drought Severity Index 

(Palmer, 1965), cumulative streamflow anomalies (Fleig et al., 2006; Lehner et al., 2006; van Loon et al., 2012; Heudorfer 

and Stahl, 2017), and the standardized streamflow (Modarres, 2007; Nalbantis and Tsakiris, 2009) or runoff index ( Shukla 45 

and Wood, 2008; Satoh et al., 2021). At the continental scale, only the European Drought Monitor provides an SDHI (Ca-

mmalleri et al., 2016a), which has also been tested for global implementation in the Global Drought Observatory (Cammalleri 

et al., 2020). There is currently no global-scale operational streamflow drought hazard monitoring system. 

SDHIs are commonly classified into threshold-based and standardized indicators (van Loon, 2015). The threshold level 

method (TLM) was first applied by Yevjevich (1967), who defined that a drought event begins when streamflow falls below a 50 

certain threshold (e.g. a percentile) and ends as soon as the threshold is exceeded. Then, drought magnitude is the streamflow 

deficit at the considered period (computed as the difference between the threshold streamflow and the actual streamflow in 

that period), while drought severity is equivalent to the cumulative magnitude since the beginning of the drought event. 

Standardized indicators such as the standardized precipitation index (SPI) (McKee et al., 1993) and the standardized stream-

flow index (SSI) (Zaidman et al., 2002; Modarres, 2007; Nalbantis and Tsakiris, 2009) quantify the anomaly of the variable 55 

(e.g. precipitation or streamflow) during a certain period from the long-term mean in units of standard deviation. Negative 

values quantify the drought magnitude per time step. However, classification in threshold-based and standardized indicators is 

somewhat misleading, since standardized indicators can also be cumulated to derive drought severity, which requires setting 

of a threshold as is the case for TLM indicators (McKee et al., 1993; Barker et al., 2019, van Oel et al., 2018, Tijdeman et al., 

2020). On the other hand, comparing SSI and threshold-based indicators directly implies that different drought characteristics 60 

(magnitude and severity) are analysed. Moreover, the term drought severity is sometimes used to describe drought magnitude 

and vice versa (Steinemann et al., 2015, Vidal et al., 2009; López-Moreno et al., 2009). Certainly, an improved classification 

of drought hazard indicators would facilitate a better understanding of drought characteristics and guide the selection of ap-

propriate drought hazard indicators. 
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Previous research has revealed that there is often no common understanding among stakeholders about drought hazard 65 

concepts (Steinemann et al., 2015). Also, in most descriptions of drought indicator calculations, it is not made explicit what is 

assumed to be “normal”. For instance, defining the long-term mean value of the physical variable per calendar month as nor-

mal state implies that people and ecosystems are habituated and thus adapted to the seasonality of water availability. Applying 

percentiles per calendar month instead implies the habituation to interannual variability. Clearly, the conception or selection 

of hazard indicators needs to take into account the habituation and the related vulnerability of the system at risk. However, 70 

investigations and guidance on how to select the optimal SDHI, considering both the targeted risk and the habituation of the 

system at risk to the streamflow regime, are missing. 

A further consideration in designing SDHIs is how to conceptualize drought in intermittent or highly seasonal stream-

flow regimes. If periods of zero flow are a normal part of the streamflow regime, as is the case in arid regions, then it is mean-

ingless to assess streamflow deficits during these periods. Hence, arid regions are often excluded from global drought anal-75 

yses (Corzo Perez et al., 2011; Prudhomme et al., 2014; Spinoni et al., 2019). To overcome these limitations, van Huijgevoort 

et al. (2012) introduced a method that combines the TLM with the consecutive dry period method (CDPM) for streamflow, in 

analogy to the consecutive dry days (CDD) indicator for precipitation (Vincent and Mekis, 2006; Griffiths and Bradley, 

2007). However, this method may be too complex to be applied in DEWS. 

This paper analyzes which SDHIs are suitable for assessing and monitoring drought risk for human water supply from 80 

surface water and for river ecosystems in large-scale DEWS. We propose a systematic approach to indicator selection, which 

encompasses the explicit consideration of the habituation of people and river ecosystems to streamflow availability as well as 

a new classification system for drought hazard indicators. This new methodology is exemplified at the global scale for eight 

existing and three newly developed SDHIs using a) modeled output from the global water resources and use model Wa-

terGAP2.2d and b) observed monthly streamflow at four selected gauging stations. 85 

The following section describes how streamflow and other variables required for the computation of the SDHIs were 

computed and defines the eleven investigated SDHIs. In Sect. 3, we present the new systematic approach for selecting and 

computing SDHIs. In Sect. 4, we analyze spatial and temporal discrepancies and similarities of the indicators at the global 

scale. In Sect. 5, we give recommendations on the general suitability of the indicators as well as for large-scale applications. 

Finally, we draw conclusions in Sect. 6. 90 

2 Methods and data 

2.1 Streamflow data 

2.1.1 Streamflow observations 

Eight SDHIs were computed for four selected gauging stations using monthly streamflow data from the Global Runoff Data 

Centre (GRDC, 2019) for the period 1986-2015 (Figs. 6, S2, and S6). The stations comprise the Danube River at Hofkirchen 95 
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(Germany), the Angara River at Boguchany (Russia), the White River near Oacoma (U.S.), and the Orange River at Viools-

drif (South Africa). Moreover, a limited model validation was performed (supplementary material S2) using monthly stream-

flow data from 220 GRDC stations with continuous time series during the reference period 1986-2015. The model validation 

focused on the correlation between observed Q80 per calendar month (the streamflow that is exceeded in eight out of ten 

months) and Q80 as modeled by WaterGAP. 100 

2.1.2 Modeled streamflow 

Eleven SDHIs were computed for the whole land area except Greenland and Antarctica with a spatial resolution of 0.5° using 

monthly time series of WaterGAP 2.2d model output for the reference period 1986-2015 (Sect. 2.2). For computing each 

indicator, we used the 30 monthly values available for each of the 12 calendar months individually to determine distributions, 

thresholds, and deficits. All indicators were computed using streamflow of the standard model run (Qant) (“ant”: anthropo-105 

genic), in which the impact of human water use and man-made reservoirs on streamflow is simulated. Naturalized (“nat”) 

streamflow (Qnat) without these two types of human activities was only used for deriving environmental streamflow require-

ments for the indicator CQDI1(WUs-EFR) (Sect. 2.3.5). 

2.2 Global-scale simulation of streamflow and surface water use 

SDHIs were computed using output from the global water availability and water use model WaterGAP2.2d (Müller Schmied 110 

et al., 2021). WaterGAP2.2d has a spatial resolution of 0.5 degrees latitude by 0.5 degrees longitude (55 km × 55 km at the 

equator) and covers the whole global land area except Antarctica. WaterGAP consists of the WaterGAP Global Hydrology 

Model (WGHM) and five water use models for the sectors households, manufacturing, and cooling of thermal power plants 

(Flörke et al., 2013) as well as irrigation and livestock. WGHM computes daily time series of fast surface and subsurface 

runoff, groundwater recharge, and streamflow as well as water storage variations in canopy, snow, soil, groundwater, lakes, 115 

reservoirs, wetlands, and rivers. Model input includes time series of climate data between 1901 and 2016 and physio-

geographic information, such as land cover, soil type, relief, and hydrogeology. For this study, WaterGAP 2.2d was forced by 

the WFDEI-GPCC climate data set (Weedon et al., 2014), which was developed by applying the forcing data methodology 

from the EU project WATCH on ERA-Interim reanalysis data. Daily model outputs of streamflow and surface water abstrac-

tions (WUs) were aggregated to monthly time series. WaterGAP total runoff is calibrated against long-term mean annual 120 

streamflow at 1319 gauging stations worldwide covering approximately 54% of the Earth’s land area (except Greenland and 

Antarctica). A detailed model description and evaluation can be found in Müller Schmied et al. (2021).  Please note that while 

WaterGAP simulates the impact of reservoirs on streamflow, the accuracy is very low as it is unknown how all man-made 

reservoirs on Earth are managed such that a generic algorithm is used to simulate human reservoir management decisions. 

In several model intercomparison and assessment studies, WaterGAP proved suitable for computing streamflow and 125 

SDHIs, although the discrepancies between simulated and observed low flows, seasonality, and interannual variability can be 

significant at the regional scale (see literature review in the supplementary material S1). A limited model validation of the 
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WaterGAP version 2.2d applied in this study (supplementary material S2) revealed that Q80 is overestimated by WaterGAP 

in 63% of all months and stations with median percent deviations between 35% in February and -7% in July (Fig. S1). In 

another model validation exercise, SSI3 as modeled by WaterGAP was compared to observed SSI3 at 183 gauging stations 130 

(supplementary material S2). With a median NSE of 0.5 and an interquartile range of 0.2-0.7, WaterGAP 2.2d model output 

showed a moderate agreement with the observations. NSE exceeded 0.7 at 25 out of the 183 stations mainly located in central 

and eastern Europe and the United States. 

2.3 SDHIs 

2.3.1 Standardized streamflow anomaly indicators SSI1 and SSI12 135 

SSI1 was computed using mean monthly streamflow Qant analogously to SPI1 (McKee et al., 1993) following the method 

provided in Kumar et al. (2009). First, the 30 monthly streamflow values per calendar month were fitted to the gamma distri-

bution using the R package fitdistrplus. The probabilities of the streamflow values were transformed to a variable Z with a 

normal distribution that has a mean of zero and a standard deviation of 1 (McKee et al., 1993, Stagge et al., 2015), using an 

approximation method introduced by Abramowitz and Stegun (1965). The value of the variable Z (also called z-score) is 140 

equal to the value of the SSI1. Thus, an SSI1 of -1 describes a streamflow value that is one standard deviation lower than the 

mean streamflow of the calendar month. The mean of the normal distribution is equal to the median of the fitted non-linear 

cumulative distribution function (Vicente-Serrano et al., 2010). The gamma distribution showed the best fit among 23 para-

metric probability distributions for most grid cells. The goodness-of-fit between simulated streamflow values and the proba-

bility distribution was assessed based on the one-sample Kolmogorov–Smirnov test (KS test) at the 0.05 significance level. 145 

The fits were rejected in 17% to 21% of all grid cells (excluding Greenland) depending on the calendar month. 

SSI12 was computed like SSI1, but with an averaging period of 12 months. For SSI12, the fits were rejected in around 

6% of all grid cells (excluding Greenland) with only slight variations among the calendar months. 

2.3.2 Cumulative streamflow deficit indicators CQDI1(Q50), CQDI1(Q80), CQDI1(Q80-HS), and CQDI6(Q80) 

CQDI1(Q50) is the cumulative, volume-based streamflow deficit computed following the threshold level method (TLM) 150 

(Sect. 1). It should be noted that the term “deficit”, which is generally used for the TLM, refers to the negative anomaly below 

a selected threshold, and not to an unsatisfied water demand. With CQDI1(Q50), a deficit is defined to occur if modeled 

monthly streamflow is lower than the 50th percentile (median) of the long-term calendar month streamflow (Eq. 1). The em-

pirical percentile Q50 was computed in R using the quantile function with the default quantile algorithm. The streamflow 

deficit is computed as 155 

 

streamflow deficitm,y = Q50m - Qm,y  (for Qm,y < Q50m)      (1) 

with m = month, y = year, Q50m = calendar month median, and Qm,y = current streamflow.  
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The last deficit month is the last month of the drought event. Monthly deficits (drought magnitude) are accumulated for 160 

all drought months to obtain severity. The cumulative streamflow deficit (in units of m3) is normalized by mean annual 

streamflow (in units of m3). A value of 2 [-], for example, indicates that the cumulative streamflow deficit in a certain month 

is twice the mean annual streamflow. Following Spinoni et al. (2019), a drought event is defined to start with at least two 

consecutive months with a deficit and it ends (deficit set to zero) if there are two consecutive months without a deficit (two 

months criterion, 2mc). This approach avoids that short-term streamflow deficits that hardly pose a drought hazard to humans 165 

and other biota are defined as drought events (Spinoni et al., 2019). Any streamflow surplus over the median in a single 

month between two deficit months does not decrease the cumulative deficit value. Q50 as a rather high threshold can be 

viewed as a “conservative upper bound for low flows” (Smakhtin, 2001: 153). 

Streamflow intermittency generally poses a problem, as in grid cells where the threshold (in this case Q50) is zero in a 

particular calendar month, droughts are never identified in this month. To overcome this problem, CQDI1(Q50) allows an 170 

existing drought to continue during months with Q50=0, but only if Q in the respective month is also zero. In months where 

Q50 is zero, but Q exceeds zero, the drought event ends. This approach implies that a drought event can be prolonged, but 

never begin in calendar months with Q50=0.  

CQDI1(Q80) was calculated in the same manner as CQDI1(Q50), but using Q80 per calendar month as threshold. With 

Q80, a deficit is computed in 20% of the 30 calendar months. Q80 was computed in R using the quantile function with the 175 

default quantile algorithm, such that Q80 is a streamflow value slightly higher than the sixth lowest calendar month stream-

flow. Daily or monthly Q80 is often used as a threshold for defining the onset and termination of a streamflow deficit period 

(van Huijgevoort et al., 2014; van Loon et al., 2014; Heudorfer and Stahl, 2017; Laaha et al., 2017), but the selected threshold 

should represent local water requirements (including environmental flow) (Cammalleri et al., 2016a). 

CQDI1(Q80-HS) is a variant of CQDI1(Q80) suitable in intermittent and highly seasonal (HS) streamflow regimes 180 

where people strongly rely on water storage in man-made reservoirs that needs to be replenished by streamflow. It allows an 

existing drought to continue in any month where Q80 is zero also if the current streamflow Q exceeds zero. However, the 

cumulative deficit is reduced by any streamflow surplus over the calendar month Q80. The rationale behind this approach is 

that streamflow during low-flow months (calendar months where Q80 is zero) is not relevant for people relying on large res-

ervoirs. Below-normal water storages can only marginally be replenished during a low-flow period, and hence drought severi-185 

ty should remain at the level of the preceding high-flow period. Like CQDI1(Q80), a drought can be prolonged but never 

begin, in months with Q80=0. 

CQDI6(Q80) is computed like CQDI1(Q80) but applying an averaging period of six months. The indicator is suitable in 

regions with access to large reservoirs. In each month, the streamflow deficit is computed by subtracting the average stream-

flow of the preceding six months (including the current month) from the long-term Q80 of the same six months during the 190 

reference period. 
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2.3.3 Empirical percentiles EP1 and cumulative empirical percentiles CEP1(20%) 

Empirical streamflow percentiles EP1 were computed per calendar month following Eq. (2) with an averaging period of one 

month. EP1 expresses the frequency of non-exceedance, while the inverse is the return period, in years, with 

 195 

EP1 = rank(Q)/n           (2) 

where rank(Q) is the rank of a streamflow value of a certain calendar month and n is the sample size, i.e., the number of 

years in the reference period.  

 

Rank 1 was assigned to the smallest streamflow value. If a sample contained several months with the same streamflow 200 

value, the largest rank among these months was assigned to the tied streamflow values. For a calendar month comprising, for 

instance, 26 out of 30 months with zero streamflow, a value of EP1=26/30 would be assigned to the respective 26 months 

corresponding to a return period of 1.2 years. This method slightly adjusts the approach by Tijdeman et al. (2020), who used 

the average rank among the tied values. In the given example, this would result in EP1=0.45 and a return period of 2.2 years 

for the first 26 values. In this study, we chose the largest EP1 for tied values to reflect that frequent streamflow values have a 205 

high frequency of non-exceedance and a low return period assuming that people and the ecosystem are habituated to more 

frequent values including zero streamflow. 

CEP1(20%) is the cumulative percentile-based deficit. The monthly percentile deficit is computed by subtracting the 

current streamflow percentile from a selected percentile threshold (Eq. 3). In this study, a deficit is computed for the six low-

est calendar month values (20% out of 30 values). Consequently, the selected threshold percentile is slightly higher than 20% 210 

depending on the sample size (22.7% in this study with a sample size of 30 and 22% for a sample size of 40). Monthly per-

centile deficits are accumulated for all drought months to obtain severity. Like CQDI1(Q80), CEP1(20%) allows an existing 

drought event to continue during months where both Q80 and the current streamflow are zero. The 2mc is also applied. 

Hence, CEP1(20%) identifies the same drought months as CQDI1(Q80). The percentile deficit is computed as 

 215 

percentile deficitm,y = P20 - EP1m,y  (for EP1m,y < P20)     (3) 

with m = month, y = year, and EP1m,y = current empirical streamflow percentile. With a sample size of 30 calendar 

month values, the percentile threshold P20m is 22.7% such that 20% of all calendar months are identified as drought 

months. 

 220 
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2.3.4 Relative deviation from mean conditions RQDI1, RQDI12 and cumulative CRQDI1(-50%) 

RQDI1 is the relative deviation of monthly streamflow from mean calendar month streamflow (MMQ) in percent. In each 

month, it is calculated as the difference between monthly streamflow and the respective MMQ, which is then divided by 

MMQ. 

RQDI12 is the relative deviation of mean streamflow during the preceding 12 months (in km³ month-1) from mean an-225 

nual streamflow (in km³ month-1) during the reference period. In this study, RQDI12 is only assessed for selected gauging 

stations (add reference supplement), but not at the global scale. 

The cumulative relative deviation CRQDI1(-50%) is computed using a threshold of RQDI1=-50% and applying the 

2mc (Sect. 2.3.2). Months with MMQ=0, where the relative deviation is not computable, are defined to end a drought event 

assuming that people are habituated to zero streamflow in this month. The percent deficit is computed as 230 

 

percent deficitm,y = -50% - RQDI1m,y  (for RQDI1 < 50%)     (4) 

with m = month, y = year, and RQDI1m,y = current relative streamflow deviation in percent. 

 

2.3.5 Water deficit indicators CQDI1(WUs) and CQDI1(WUs-EFR) 235 

The water deficit indicators CQDI1(WUs) and CQDI1(WUs-EFR) are computed like CQDI1(Q80) but using as thresholds 

mean monthly potential surface water abstraction WUs, and WUs plus environmental flow requirement (EFR), respectively. 

Following Richter et al. (2012), EFR is assumed to be 80% of mean monthly naturalized streamflow Qnat per calendar month 

such that 12 EFR values are obtained per grid cell. WUs is the simulated water demand (potential water abstractions from 

surface water bodies) and not the actual water abstractions (Müller Schmied et al., 2021), but both values are similar in most 240 

grid cells. The satisfied (or actual) water use is not suitable for identifying periods of water deficit because it decreases along 

with water availability during drought. Cumulative deficits are normalized by mean annual streamflow. The indicators were 

not computed in grid cells where mean annual surface water demand in the reference period is zero (approx. 9% of all grid 

cells excluding Greenland). For CQDI1(WUs), the water deficit is computed as 

 245 

water deficitm,y = WUsm - Qm,y   (for Qm,y < WUsm)     (5) 

with m = month, y = year, WUsm = mean potential surface water abstraction per calendar month, and Qm,y = current 

streamflow.  

 

For CQDI1(WUs-EFR), the water deficit in each month is computed as: 250 

 

water deficitm,y = WUsm + EFRm - Qm,y  (for Qm,y < (WUsm + EFRm))    (6) 
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with m = month, y = year, WUsm = mean potential surface water abstraction per calendar month, EFRm = 80% of mean 

monthly naturalized streamflow Qnat per calendar month, and Qm,y = current streamflow. 

 255 

2.4 Probability of non-exceedance and return period of drought events of a certain severity 

Following the approach of Cammalleri et al. (2016a) to compute the low-flow index LFI, the probability of drought events of 

a certain severity was computed for six cumulative indicators, CEP1(20%), four CQDI1 variants (thresholds Q50, Q80, WUs, 

and WUs+EFR) and CRQDI1(-50%). First, the partial duration series of drought events was derived based on the severities of 

all drought events of the reference period. Grid cells with less than six drought events were excluded. The exponential cumu-260 

lative distribution function proposed in Cammalleri et al. (2016a) was used to estimate the probability of non-exceedance p of 

a certain cumulative streamflow deficit: 

 

�(��; ) = 1 − ����  (with Si > 0)        (7) 

 265 

where the variable Si is the severity of drought event i, as quantified by a cumulative indicator, and the parameter  is 

the inverse of the mean of the severities of all completed drought events. For instance, a value of p=0.7 in a certain month 

denotes that, if the drought event ended in this month, its severity would be larger than the severity of 70% of the drought 

events in the reference period. Different from LFI, which is based on daily streamflow data, time series of monthly stream-

flow were used for all indicators and the 2mc (see Sect. 2.3.2) was applied. Since p was computed for each month of the ref-270 

erence period, it describes the non-exceedance probability (or rather frequency) of both completed drought events and contin-

uing droughts. Following Sharma and Panu (2015) and Beguería (2005), the return period Tri of a drought event with severity 

Si is computed as 

��� =
�

�(���(��))
           (8) 

where  is the average number of drought events per year during the reference period. 275 

3 Proposed systematic approach for selecting and computing SDHIs 

Wilhite and Glantz (1985) suggested distinguishing between a conceptual and an operational drought definition, with the 

former referring to the general qualitative concept of drought and the latter allowing for a quantitative drought characteriza-

tion including onset, severity, termination, and spatial extent. In the following Sect. 3.1, aspects that relate to the conceptual 

drought definition are discussed comprising the description of the targeted drought risk and the system at risk. In particular, 280 

assumptions about the habituation of the system at risk to the streamflow regime are discussed, an aspect that is currently not 

taken into account or not made explicit in drought hazard studies. To translate these conceptual definitions into operational 
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drought hazard indicators, a new classification system for hazard indicators is proposed in Sect. 3.2. The new systematic ap-

proach is illustrated in Sect. 4 using modeled SDHIs at the global scale as well as observation-based SDHIs at four gauging 

stations with different streamflow regimes and different assumed levels of vulnerability. 285 

3.1 Assumptions about habituation inherent in drought hazard indicators 

The selection of drought hazard indicators for a DEWS requires a clear definition of “the risk of what for whom”. 

Drought hazard indicators are risk system-specific (Blauhut et al., 2021), and there is not one that fits all. Drought is usually 

conceptualized as anomaly (“less water than normal”) and/or deficit (“less water than needed”). Consequently, the selection 

of an indicator requires a definition, often based on assumptions, about “what is normal or needed”, i.e., to what the risk sys-290 

tem is habituated to. In the case of streamflow, people and ecosystems are assumed to have adapted to certain characteristics 

of the flow regime. For example, if drought indicators are computed based on the calendar month-specific distribution of 

streamflow values, it is implicitly assumed that the risk system has adapted to the seasonality of streamflow. But also tempo-

rally constant thresholds, which have traditionally been used to define hydrological droughts (Stahl et al., 2020), are suitable 

for certain systems, e.g., for computing drought risk for electricity generation by thermal power plants, which require a certain 295 

minimum streamflow for operation. 

At the global scale, it is unknown to which streamflow characteristics different risk systems such as drinking water 

supply, irrigation water supply, hydropower production, and the river ecosystem are accustomed. Therefore, the eleven glob-

al-scale drought hazard indicators analyzed in this study (Table 1) cover different types of habituation, including the habitua-

tion to a certain degree of interannual variability of streamflow, to streamflow seasonality, to a certain reduction from mean 300 

calendar month or mean annual streamflow, and to being able to fulfill the demand for surface water abstractions and envi-

ronmental flow. It is up to the user of a large-scale DEWS, who understands the local risk system-specific habituation to re-

duced water availability, to select the hazard indicator that is appropriate for the risk system of interest.  
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Table 1: Characteristics of SDHIs suitable for global-scale assessments, classified according to inherent assumptions about 305 
habituation of people or other biota. The general terms “a certain degree” or “a certain reduction” in the first column are spec-
ified in a drought assessment by selected thresholds for drought definition. 
 

Assumed habituation and suitable indicator 

People or other biota accustomed to 

Characteristics 

a certain degree of inter-
annual variability 

SSI12, EP121, 
CQDI1(Q80-HS), 
CQDI6(Q80) 

Suitable for quantifying 1) risk for human water supply in regions with large 
man-made reservoirs or lakes that buffer seasonal streamflow deficits as 
well as 2) risk for large lake and wetland ecosystems. 

seasonality and a certain 
degree of  interannual 
variability 

SSI1, EP1, CQDI1(Q80) Suitable risk for human water supply and for risk for river ecosystems in 
regions without access to reservoirs. Streamflow drought hazard might be 
underestimated in regions with high vulnerability and interannual variability. 

seasonality 

and median calendar 
month streamflow 

CQDI1(Q50) 

Using such a high threshold (median of calendar monthly streamflow) can 
be beneficial in highly vulnerable regions where people cannot even cope 
with small reductions from median calendar month streamflow. 

being able to fulfill de-
mand for surface water 
abstractions 

CQDI1(WUs) 

The system at risk is accustomed to the seasonality of human water demand 
(WUs). People are used to being able to fulfill human water demand. 

The health of river ecosystems is not taken into account. 

An indicator of water deficit rather than drought hazard. 

being able to fulfill de-
mand for surface water 
abstractions and envi-
ronmental flow 

CQDI1(WUs-EFR) 

The system at risk is accustomed to the seasonality of human water demand 
(WUs) and to the seasonality of environmental flow requirements (EFR). 

Alternative 1: EFR based on Qant2: The river ecosystem has adjusted to the 
altered flow regime over the last decades, which is considered the “new 
normal status”. 

Alternative 2: EFR based on Qnat2: the natural flow regime is the aspired 
status. 

a certain reduction from 
mean calendar month 
streamflow RQDI1 

Suitable in highly vulnerable regions where people cannot even cope with 
small reductions from mean calendar month streamflow. 

Drought hazard might be overestimated in regions with low vulnerability 
and low interannual variability. 

a certain reduction from 
mean annual streamflow  

RQDI12 Suitable in study regions with large man-made reservoirs or lakes, which 
buffer seasonal streamflow deficits. 

Drought hazard might be overestimated in regions with low vulnerability 
and interannual variability. 

temporally constant min-
imum streamflow             

Not included in this 
study               

Identifies drought hazard whenever water availability drops beneath a cer-
tain level (e.g., water intake for cooling of thermal power plants has to be 
reduced). Identifies no drought in the wet season. 

1 EP12: Empirical streamflow percentile with an averaging period of 12 months (not analyzed in this study) 
2 Qant, Qnat: Modeled anthropogenic streamflow altered by human water use and man-made reservoirs (Qant) and natural-310 

ized modeled streamflow (Qnat) 
 

Percentile-based indicators including empirical streamflow percentiles, standardized indicators, and TLM indicators 

with a low streamflow percentile as threshold are often applied in DEWS (Bachmair et al., 2016; Cammalleri et al., 2016a). 

They are perceived as statistically consistent across different temporal and spatial scales, indicating the rarity of the event 315 
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(Steinemann et al., 2015; WMO and GWP, 2016). Utilization of percentile-based indicators (e.g., SSI12, SSI1, and 

CQDI1(Q80) in Table 1) implies that people in different climate regions and social systems are equally habituated to a certain 

interannual variability, which is most likely not the case. The 20th streamflow percentile (or SSI1 = -0.84) would correspond 

to a low relative streamflow deviation (e.g. -20%) in a humid region (low interannual variability) compared to a higher devia-

tion (e.g. -50%) in a semi-arid region (high interannual variability). Hence, percentile-based indicators might underestimate 320 

streamflow drought hazard in semi-arid areas where people (and ecosystems, albeit possibly to a lower degree) are often more 

vulnerable to reductions in water availability. Regions with high interannual variability are depicted in Fig. A1b. Here, 

drought hazard indicators that quantify relative deviations from the long-term mean or median (RQDI1, RQDI12 in Table 1) 

or TLM indicators with higher percentiles as threshold (CQDI1(Q50) in Table 1) might be better suited to define drought 

conditions. Such indicators appear to be less preferred as periods with the same indicator value have different probabilities of 325 

occurrence in different regions and thus not the same rarity (Steinemann et al., 2015). Contrastingly, river ecosystems are, in 

the ideal case, perfectly adjusted to interannual variability of streamflow such that percentile-based drought hazard indicators 

are often suitable for drought risk assessment for river ecosystems. In conclusion, percentile-based hazard indicators and 

relative deviations from the long-term mean or median should be used complementarily in large-scale DEWS to cover differ-

ent drought risks. 330 

The selected averaging period defines whether people are habituated to the annual or seasonal flow regime. One can as-

sume that river ecosystems are generally accustomed to seasonality. Therefore, indicators with a short averaging period of, for 

example, one month (EP1, SSI1, RQDI1 and CQDI1 variants in Table 1) are appropriate for quantifying drought hazard for 

river ecosystems. Furthermore, short averaging periods are suitable in regions where farmers and other water users do not 

have access to large water storages such as reservoirs, lakes, or groundwater (either due to missing infrastructure or due to 335 

water use restrictions). As these users abstract water directly from the stream, they are very vulnerable to seasonal (monthly) 

streamflow deficits. Indicators with longer averaging periods (SSI12, RQDI12), on the other hand, are suitable in regions with 

large man-made reservoirs, which are usually replenished during the wet season such that streamflow deficits during the low-

flow months are irrelevant. People in these regions are therefore only vulnerable to either interannual variability (SSI12) or 

mean annual conditions (RQDI12), but not to seasonality. Certainly, other averaging periods may be suitable depending on 340 

the region-specific storage capacity. Since volume-based indicators (TLM indicators) are also important components in water 

resources management (van Loon, 2015), the indicators CQDI1(Q80-HS) and CQDI6(Q80) are assessed as alternatives for 

SSI12 and RQDI12 (or rather the cumulated variants CSSI12 and CRQDI12) in regions with highly seasonal streamflow 

regimes (Fig. A1a) and large reservoirs. 

For water managers, the status of the actual water deficit in terms of unsatisfied water demand might be as informative 345 

as the status of streamflow anomaly. Drought hazard is generally defined as a climate-induced anomaly, i.e., a period of be-

low-normal water availability (McKee et al., 1993; van Lanen, 2006; van Loon, 2015). This concept can be broadened by 

assuming that a drought only occurs if the anomaly coincides with a water deficit for people or ecosystems (Cammalleri et al., 

2016b; Popat and Döll, 2021; Wilhite and Glantz, 1985). Nevertheless, only a few studies exist where the combination of 
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anomaly and deficit was translated into drought hazard indicators for soil moisture (Palmer, 1965; Cammalleri et al., 2016b; 350 

Popat and Döll, 2021) and streamflow (Popat and Döll, 2021). In the present study, the water deficit aspect of drought is rep-

resented by the indicators CQDI1(WUs) and CQDI1(WUs-EFR) (Table 1). Application of these indicators implies that the 

system at risk is habituated to the satisfaction of seasonal water demand. While CQDI1(WUs) neglects the water requirements 

of the ecosystem, CQDI1(WUs-EFR) assumes that the river ecosystem is habituated to the seasonality and magnitude of natu-

ral streamflow. As EFR might never be fulfilled in the case of strongly altered streamflow regimes, Qnat in the EFR computa-355 

tion can be replaced by Qant implying that the river ecosystem has already adapted to the altered streamflow conditions (Ta-

ble 1). Figure A1c shows regions where human water demand is high compared to available streamflow and where a drought 

hazard due to unsatisfied human surface water demand is likely. 

3.2 Levels of drought characterization 

Translating conceptual drought definitions into operational, quantitative drought hazard indicators is not straightforward due 360 

to the complexity of the underlying natural processes and the large number of indicators and methods that can be applied. In 

the literature, there is agreement about which drought characteristics are relevant for operational applications comprising the 

temporal component (onset, termination, duration) and the spatial extent as well as drought magnitude and severity, from 

which other metrics such as intensity, return period, and frequency or probability of occurrence can be derived (van Lanen et 

al., 2017). We understand drought magnitude as an anomaly or deficit occurring within a pre-defined period and severity as 365 

the accumulated deficit between the magnitude and a selected threshold since the onset of drought, which is defined by water 

availability dropping below the threshold (van Lanen et al., 2017). However, the terms drought magnitude and severity, which 

represent different levels of drought characterization, are not applied consistently in the literature. The terms are not made 

explicit and are sometimes interchanged (Steinemann et al., 2015, Vidal et al., 2009; López-Moreno et al., 2009). In particu-

lar, the commonly accepted classification of SDHIs into threshold-based and standardized indicators (van Loon, 2015) is 370 

somewhat misleading, since the former represents time series of severity and the latter time series of magnitude. 

To facilitate a better understanding of the informative value of SDHIs, we suggest a new indicator classification that in-

cludes four types of indicators and distinguishes severity from magnitude indicators (Fig. 1). The indicator types (columns in 

Fig. 1) include the volume-based anomaly, the standardized or percentile-based anomaly, and the relative deviation (Sect. 

2.3). Deficit-anomaly indicators (last column in Fig. 1) combine an anomaly indicator with an indicator of the deficit with 375 

respect to optimal water availability (e.g., Popat and Döll, 2021). For each indicator type, two levels of drought characteriza-

tion, drought magnitude (level 1) and severity (level 2), can be computed.  
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Figure 1: Classification system including four types of drought hazard indicators, indicating 1) magnitude of the drought at a cer-380 

tain time step as deficit and/or anomaly (level 1) or 2) severity of the drought event, i.e. the cumulative magnitude of drought since 
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drought onset (level 2). Both magnitude and severity can be expressed in terms of frequency/probability to compare the drought of 

interest to other droughts. The dark grey boxes indicate decisions that have to be made when computing the indicators, e.g. which 

averaging period is selected. Indicators in bold have already been applied in the literature. Assumptions about the habituation of 

people and ecosystems determine the selection of the type of indicator, the averaging period, and the threshold (see Table 1). 385 

 

The dark grey boxes in Fig. 1 represent decisions regarding time step length and averaging period, drought threshold and 

definition of drought events (minimum length of drought event, pooling of drought events). These decisions depend on the 

assumed habituation of people and ecosystems to certain streamflow conditions (Sect. 3.1 and Table 1). Beige and orange 

boxes contain indicators that are expressed in absolute or relative values and in frequency/probability of occurrence, respec-390 

tively. Indicators applied in drought monitoring (CQDI1, low-flow index LFI, percentiles, SSI, RDPI) or in the literature (pQ, 

cumulative SSI, streamflow deficit anomaly indicator QDAI) are written in bold. The units of the four indicator types differ 

both at level 1 and 2, but indicators can be directly compared when expressed in units of probability (or frequency) of non-

exceedance. 

Figure 1 shows that drought hazard indicators pertaining to one of the four indicator types can be transformed between 395 

level 1 (magnitude) and level 2 (severity) while still sharing the type-specific conceptual drought definition. Furthermore, the 

classification system clarifies that each indicator type requires a threshold setting either at level 1 or 2. Hence, the term 

“threshold-based” applies to any indicator of drought severity and it is therefore not a suitable criterion for distinguishing 

types of indicators. 

The differentiation of indicator types can be ambiguous. For instance, standardized and percentile-based anomaly indica-400 

tors are subsumed in Fig. 1 (column 2), although there is a minor conceptual difference between them as highlighted by 

Tijdeman et al. (2020). While standardized indicators show the non-exceedance probability enabling extrapolation, empirical 

percentiles represent the historical non-exceedance frequency within the boundaries of observations. We account for this 

aspect by including the terms frequency and probability in Fig. 1. 

On the other hand, volume-based and standardized or percentile-based anomaly indicators are presented as different in-405 

dicator types, although they can be based on the same conceptual drought definition if equivalent thresholds are applied. If 

Q80 is used as threshold for CQDI1 and -0.84 for cumulative SSI1 (corresponding to the 20th percentile for cumulative EP1 

and a return period of 5 years), both indicators capture the same drought signal. Differences between the drought signals are 

then attributable to the computational methods for the standardization of streamflow. Analyzing the sensitivity of SSI1 to 

different parametric and nonparametric standardization methods in European river basins, Tijdeman et al. (2020) revealed 410 

considerable differences in computed SSI1 among seven probability distributions (and two fitting methods) and five non-

parametric methods. A major difference between volume-based and standardized indicators is that the former detect absolute 

drought deficits and the latter relative drought deficits. This can result in different frequency values for the same drought 

event. 
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4 Similarities and discrepancies in SDHIs as quantified by a global hydrological model 415 

The objective of this chapter is to identify which of the SDHIs presented in Table 1 can be meaningfully quantified at the 

global scale using WaterGAP 2.2d and which SDHIs are appropriate for monitoring different drought risks in large-scale 

DEWS. We emphasize that the objective is not a drought impact assessment, which is beyond the scope of this study. We 

want to show how the conceptual discrepancies and similarities between SDHIs (Sect. 3), which are of a general nature and 

apply to any month of the reference period, are translated into global-scale hazard indicators and how these indicators should 420 

be interpreted by end-users of a large-scale DEWS. The indicators are illustrated in global maps for two example months, July 

2003 and July 2015, with known drought events in Europe. Following the classification of Table 1, SDHIs indicate drought 

magnitude (Figs. 2 and S3) or drought severity, the latter either expressed as volume-based anomaly or deficit (Figs. 3 and 

S4) or as frequency of non-exceedance (denoted with the suffix “_f”) (Figs. 5 and S5). In addition, CQDI1(Q80) and 

CQDI1(Q80-HS) are compared at the global scale with respect to drought occurrence during the whole reference period (Fig. 425 

4). SDHIs are further illustrated for four selected gauging stations with different streamflow regimes and assumed vulnerabili-

ties of the risk system to streamflow anomalies (Figs. 6, S2 and S6). These include two stations with low interannual stream-

flow variability (Danube River at Hofkirchen, Germany (probably low vulnerability), and Angara River at Boguchany, Russia 

(possibly higher vulnerability)) and two stations with high interannual variability (White River near Oacoma, U.S. (probably 

low vulnerability), and Orange River at Vioolsdrif, South Africa (possibly higher vulnerability)). 430 

4.1 SDHIs based on empirical percentiles or standardized streamflow 

EP1 patterns (Fig. 2c (July 2003), and Fig. S3c (July 2015)) are very similar to SSI1 (Fig. 2a and S3a) since both indicators 

are based on the same conceptual drought definition (Sect. 3.1). Both indicators generally identify the same drought regions. 

However, drought classes differ in many regions of the world, with EP1 indicating both higher and lower drought magnitude. 

For instance, in eastern France, EP1 indicates a higher drought magnitude class in July 2003 (return period RP > 20 years) 435 

than SSI1 (RP > 10 years), while it is vice versa in southern Germany. In July 2015, SSI1 indicates a higher drought hazard 

than EP1 in the Alpine region, but a lower hazard in parts of the Oder basin in eastern Poland. These differences can be at-

tributed to the fitting of the gamma distribution in the case of SSI1 and the assignment of the maximum rank among tied val-

ues within a streamflow sample in the case of EP1 (Sect. 2.3.3). 

Comparing SSI1 with empirical percentiles, Tijdeman et al. (2020) identified several advantages and limitations for both 440 

indicators. SSI1 has the disadvantage that for different streamflow regimes, different parametric probability distributions 

would be required to achieve the best fit, which reduces consistency at the global scale. In this study, the gamma distribution 

showed the best fit among 23 parametric probability distributions for most grid cells and was applied in each month and grid 

cell. Of course, using only one distribution for the whole globe results in poorly fitting distributions for some cells and 

months (Tijdeman et al., 2020). Grid cells where gamma fitting was rejected in the calendar month July based on the KS test 445 

(Sect. 2.3.1) are shown in grey in Fig. 2a (18% of all grid cells excluding Greenland). EP1 does not require fitting of a distri-
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bution and can therefore be computed in more grid cells than SSI1. Only if a sample includes more zero flows than the select-

ed threshold, drought identification is not possible (blue grid cells in Figs. 2c). On the other hand if Q80 is zero and the cur-

rent streamflow exceeds zero, it is possible to define that the current month is not a drought month (shown in beige in Figs. 2a 

and 2c). EP1 has the disadvantage that it only allows the quantification of the historical non-exceedance frequency within the 450 

reference period, while probabilistic information, for example on extreme events such as a 100-year drought, cannot be de-

rived (Tijdeman et al., 2020). Nonetheless, EP1 seems to be more suitable for a global-scale DEWS, as the indicator does not 

entail the possibly large uncertainties due to the fitting of a probability distribution and can be computed in more grid cells 

than SSI1.  

 455 

 

Figure 2: Magnitude of drought hazard (level 1 in Fig. 1): Non-cumulative anomaly in July 2003 as indicated by SSI1 (a), RQDI1 

(b), EP1 (c), and SSI12 (d) for the reference period 1986-2015. For the standardized indicators and EP1, the z scores and the corre-

sponding frequencies of non-exceedance and return periods are shown. In the blue grid cells in (c), drought identification is not 

possible with EP1, since Q80 and Q are zero. “nc”: not computable.  460 
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4.2 SDHIs assuming habituation to mean streamflow or interannual variability of streamflow 

With percentile-based indicators (e.g., EP1, SSI1), risk systems in different regions are assumed to be equally habituated to a 

certain interannual streamflow variability, which is most likely not the case as interannual variability varies strongly (Fig. 

A1b). Comparing two regions with high and low interannual variability, the same streamflow percentile or z-score corre-

sponds to a much higher relative deviation from mean calendar month streamflow (RQDI1) if interannual variability is high. 465 

For instance, at the Orange River and White River with high interannual variability (Fig. S2), SSI1 values below -0.84 (RP > 

5 years) always correspond to RQDI1 values below -70% and -60%, respectively. At the Danube River and Angara River 

(low interannual variability), RQDI1 of -50% is (almost) never reached, while maximum SSI1 values are higher than at the 

Orange River and White River. Hence, SSI1 might underestimate drought magnitude if interannual variability is high, espe-

cially for vulnerable systems.  470 

At the global scale, RQDI1 (Figs. 2b and S3b) identifies most of the drought hotspots as indicated by EP1 (Figs. 2c and 

S3c), although the relative levels of magnitude differ. These differences correspond well to the interannual streamflow varia-

bility depicted in Fig. A1b. Drought hotspots according to EP1 in regions with low interannual variability (parts of North 

America, northern Europe, northern Russia) only show moderate relative streamflow deviations by global comparison. This is 

because RQDI1 values of -50% or lower are never reached in these regions, as was illustrated at the Danube and Angara sta-475 

tions (see above). Here, RQDI1 might underestimate drought magnitude. On the other hand, in regions with high interannual 

variability (e.g., large parts of Africa, central Asia, western U.S.), both drought magnitude and the affected area are larger 

according to RQDI1. Here, RQDI1 can draw attention to potential drought impacts in regions with higher suspected vulnera-

bility (e.g., southern Africa) that would otherwise be overlooked using EP1 or SSI1. In regions where people are probably 

well accustomed to the interannual variability of streamflow (e.g., western U.S.), RQDI1 is less suited than EP1 to indicate 480 

drought magnitude. At the severity level, regions with low interannual variability are excluded using CRQDI1(-50%)_f (Figs. 

4d and S5d) due to the low threshold of -50% (grid cells in light grey). 

 

4.3 SDHIs taking into account human water use and EFR 

The water deficit indicators CQDI1(WUs) and CQDI1(WUs-EFR) (Figs. 3c,d and S4c,b) define drought as “less water than 485 

needed” as opposed to the anomaly indicator CQDI1(Q80) (Figs. 3a and S4a) indicating “less water than normal” (or rather 

less water in a certain month than in 80% of the years). Consequently, the spatial pattern of the former is very different from 

CQDI1(Q80) patterns. For instance, the drought events in 2003 and 2015 in central and eastern Europe identified by 

CQDI1(Q80) are not indicated by CQDI1(WUs). This is because surface water stress is generally low in these regions. The 

spatial patterns of  CQDI1(WUs) correlate well with Fig. A1c comparing human water demand for surface water as a fraction 490 

of mean streamflow. CQDI1(WUs-EFR) additionally considers the environmental flow requirement EFR computed as 80% of 

naturalized mean calendar month streamflow. Like RQDI1, the indicator thus depends on mean monthly streamflow and the 

spatial pattern corresponds well to the map of interannual variability (Fig. A1b). A comparison between CQDI1(WUs) and 
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CQDI1(WUs-EFR) shows that only in a few regions human water demand is the dominant component determining the water 

deficit. In most regions, EFR leads to high cumulative deficits even if seasonal human water demand is small (< 10% of 495 

available streamflow, Fig. A1c). CQDI1(WUs-EFR) is the only indicator in this study that takes explicitly into account the 

health of the river ecosystem, an aspect that should be included in a global-scale DEWS. Alternatively, the cumulative 

anomaly-deficit indicator QDAI (Popat and Döll, 2021), considering EFR based on a similar approach, can inform decision-

makers and water users about the drought hazard for water supply. In strongly altered flow regimes, where simulated anthro-

pogenic monthly streamflow (Qant) is always below 80% of mean monthly naturalized streamflow (Qnat), time series of 500 

CQDI1(WUs-EFR) are continuously increasing, and it is not possible to distinguish drought events. In such cases, it is more 

meaningful to set EFR to 80% of mean monthly Qant, implying that the altered flow regime is the “new normal” (see also 

Table 1). 

 

 505 

 

Figure 3: Severity of drought hazard (level 2 in Fig. 1): Cumulative deficit in July 2003 since onset of drought event as indicated by 

CQDI1(Q80) (a), CQDI6(Q80) (b), CQDI1(WUs) (c), and CQDI1(WUs-EFR) (d) for the reference period 1986-2015. Grid cells with 

a deficit of zero are shown in beige. Values larger than zero and below 0.1 are shown in green. A value of 0.1, for example, denotes 

that the current cumulative deficit is equivalent to 10% of mean annual streamflow (MAQ). WUs: mean annual surface water 510 
withdrawals. 
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4.4 SDHIs for reservoir management or water users with access to reservoirs 

In large-scale hydrological modeling, it is very difficult to accurately simulate how man-made reservoirs affect water availa-

bility, i.e. how they impact downstream streamflow and how reservoir storage varies in time. For water users that depend on 

large reservoirs, streamflow deficits during the low-flow months are not relevant, since reservoirs can store water from the 515 

high-flow season. Hence, drought magnitude should be assessed using SDHIs with longer averaging periods that either as-

sume habituation to interannual variability (e.g., SSI12, EP12, Table 1) or mean annual conditions (RQDI12, Table 1), but not 

seasonality. At the four investigated gauging stations (Fig. S2), the relation between SSI12 and RQDI12 is the same as for 

SSI1 and RQDI1 (Sect. 4.2). If interannual variability is high (Orange River and White River), SSI12 values correspond to 

much higher RQDI12 values compared to the stations with low interannual variability (Danube River and Angara River). To 520 

obtain drought severity, these indicators can be cumulated using a suitable threshold. As described in Sect. 4.2, a threshold of 

-50% for RQDI12 would exclude regions with low interannual variability, where this value is rarely reached, and where 

RQDI12 might underestimate drought magnitude. 

In addition to CSSI12 (or CEP12) and CRQDI12, the volume-based indicators CQDI1(Q80-HS) and CQDI6(Q80) were 

assessed. With CQDI1(Q80-HS), an existing drought is allowed to continue in months where the calendar month Q80 is zero, 525 

even if streamflow Q exceeds zero. In contrast, CQDI1(Q80) only allows a drought to continue if Q80 and Q are zero. A 

comparison of the two indicators (Fig. 4) reveals that the impact of the HS method is rather small at the global scale but can 

be relevant at the regional scale. Figure 4a depicts the fraction of drought months as a percentage of all 360 months during the 

reference period as indicated by CQDI1(Q80). Using Q80 as threshold implies that the time series should be in drought 20% 

of the time. The fact that this percentage is often reduced and sometimes increased can be attributed to the two months criteri-530 

on (Sect. 2.3.2) (one month droughts are ignored and several droughts are pooled) and to drought prolongation if Q80 and Q 

are zero. The HS method leads to an increase in drought months by up to 3 percent points (corresponding to 11 out of 360 

months) in 6% of all grid cells, e.g., parts of India, Pakistan, Afghanistan, Iran, and the western U.S., all of which are regions 

with highly seasonal streamflow regimes (Fig. 4b). Larger increases of up to 12 percent points are only computed in 0.4% of 

all grid cells. Hence, the additional information value of CQDI1(Q80-HS) in a large-scale DEWS would be small. Instead, 535 

CQDI variants with longer averaging periods like CQDI6(Q80) (Figs. 3b and S4b) are more suitable for assessing risk sys-

tems with reservoirs. The time series of CQDI6(Q80) at the four gauging stations (Fig. S2) illustrate how the maximum 

drought severity is shifted by one month or more compared to CQDI1(Q80), reflecting that a reservoir storage requires sever-

al months of “normal” streamflow to be replenished. 

  540 
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Figure 4: Comparison of CQDI1(Q80) and CQDI1(Q80-HS) in the reference period 1986-2015: Percent of months in drought based 

on CQDI1(Q80) (a) and the increase due to the “HS method” in percent points (b). Both indicators allow an existing drought to 

continue in months where Q80 and the current streamflow Q are zero. The HS method additionally facilitates drought prolongation 

in months with Q80=0 if Q>0. Neither indicator allows a drought to begin in months with Q80=0. Drought prolongation in the case 545 

of Q80=0 is only possible if a streamflow deficit was computed in at least two antecedent months with Q80>0 (2mc, Sect. 2.3.2). In 

(a), the fraction of drought months is reduced to <20% if one-month droughts are ignored (2mc). In grid cells with 0% in (a), Q80 is 

either always zero, or the few calendar months with Q80>0 result in one-month droughts only. The fraction can be increased to 

>20% in case of drought pooling (2mc) or in the case of drought prolongation if Q80=0. MAQ: mean annual streamflow. 

 550 

4.5 Range of drought severity as quantified by the various SDHIs 

A direct comparison between different severity indicators is possible when the time series of drought severity are transformed 

into frequency of non-exceedance. Figures 5 and S5 depict the probability (frequency) of non-exceedance p of drought severi-

ty in July 2003 and July 2015, respectively, between four CQDI1 variants, the cumulative relative deviation CRQDI1 with a 

threshold of -50%, and the cumulative empirical percentile CEP1 with a threshold of 20%. The indicators are denoted with 555 

the suffix “f” for frequency. A p-value of 0.7, for example, indicates a high drought hazard, where the severity up to July 

2003 is higher than the severity of 70% of all completed drought events in the reference period. In both example months, the 

spatial extent of regions with p > 0.7, i.e. severe droughts, is larger according to the indicators that do not assume habituation 

to interannual variability (CQDI1(Q50)_f, CQDI1(WUs)_EFR_f, and CRQDI1(-50%)_f). CQDI1(Q50)_f and CQDI1(WUs-

EFR)_f are rather similar. Correspondence between these two indicators is higher than between CQDI1(Q50)_f and 560 

CQDI1(Q80)_f. CRQDI1(-50%)_f identifies fewer regions with severe drought status compared to CQDI1(Q50)_f, but more 

regions compared to CQDI1(Q80)_f. 

Spatial patterns of CQDI1(Q80)_f (Figs. 5a and S5a) and CEP1(20%)_f (Figs. 5b and S5b) are very similar, since they 

are based on the same drought concept. Nonetheless, small differences occur in all identified drought hotspots, which can be 

explained by the fact that the former quantifies absolute and the latter relative streamflow anomalies per calendar month lead-565 
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ing to a different ranking of low-flow and high-flow droughts during the reference period. This relation is illustrated for the 

Danube gauging station in Fig. 6 and for the other three investigated stations in Fig. S6. Although CEP1(20%) (in units of 

cumulative percent) and CQDI1(Q80) (in units of mean annual streamflow) capture the same drought signal at the four sta-

tions, the relative levels among the drought events differ. In Fig. 6, the three most severe droughts according to CQDI1(Q80) 

are the drought events in 1998, followed by 2014 and 2003. In contrast, the 2003 drought, which occurred mainly during the 570 

low-flow period (August to November) has the second highest severity according to CEP1(20%). The high-flow drought from 

March to May 2011, on the other hand, has a lower severity rank according to CEP1(20%). The differences are more pro-

nounced with higher seasonal variability (Orange River and White River, Fig. S6), but almost negligible if seasonality is very 

low (Angara River, Fig. S6). Consequently, in a large-scale DEWS, CEP1(20%) appears to be more suitable in regions where 

the risk system is more vulnerable to low-flow droughts than to high-flow droughts. These differences would not occur if 575 

volume-based monthly streamflow deficits would be normalized using mean monthly streamflow but do occur if they are 

either not normalized (e.g., the low-flow index LFI, Cammalleri et al., 2016a) or normalized against mean annual streamflow 

volume (e.g., van Loon et al. (2014) and all CQDI1 variants in this paper). 
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 580 

Figure 5: Probability of non-exceedance of drought events (level 2 in Fig. 1) in July 2003 for the cumulative indicators 

CQDI1(Q80)_f (a), CEP1(20%)_f (b), CQDI1(Q50)_f (c), CRQDI1(-50%)_f (d), CQDI1(WUs-EFR)_f (e), and CQDI6(Q80)_f (f) for 

the reference period 1986-2015. A value of 0.8, for example, indicates that the cumulative anomaly or deficit, i.e., the severity up to 

this month, is higher than the severity of 80% of all drought events in the reference period. The probability of non-exceedance was 

not computed for grid cells shown in light grey, where less than six drought events were computed in the reference period (Sect. 585 

2.4). “nc”: not computable. 

 

 

 

 590 
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Figure 6: Drought severity per month during the reference period 1986-2015 at the Danube River, Hofkirchen, Germany, as indi-

cated by CQDI1(Q80) (blue) and CEP1(20%) (red). MAQ: mean annual streamflow.  595 

5 Recommendations for SDHIs in continental and global DEWS 

Continental and global DEWS, which encompass near-real-time monitoring as well as seasonal forecasts, are to inform about 

drought hazards for diverse risk systems, which are characterized by different risk bearers (e.g., human water supply, river 

ecosystems), habituation, streamflow regimes, and water storage capacities. Therefore, a large-scale DEWS should provide 

data for a rather large number of drought hazard indicators together with a clear description of suitability for different risk 600 

systems including the underlying assumptions about habituation (or adaptation) of the risk bearer to the streamflow regime 

(Sect. 3.1). Then, end-users can select and combine several drought hazard indicators that are most informative. Table 3 lists 

the SDHIs that should be provided by large-scale DEWS, differentiating three risk groups and three main types of habituation. 

In a DEWS, drought magnitude indicators should be clearly differentiated from drought severity indicators (Sect. 3.2), and the 

specific suitability of each SDHI for different risk systems should be explained comprehensively. 605 
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Table 2: SDHIs for human water supply and river ecosystems that should be provided by large-scale DEWS for different risk 
groups. Italic font: Indicator assumes habituation to a certain degree of interannual variability (see Fig. A1b). Bold font: Indi-
cator assumes the ability to fulfill seasonally varying demand for surface water abstractions and environmental flow. Normal 
font: Indicator assumes habituation to a certain reduction from mean monthly streamflow, and it is likely suitable for highly 610 
vulnerable systems with high interannual streamflow variability. All indicators assume habituation to the seasonality of 
streamflow. 

 

Risk group 
Indicators of 

Drought magnitude * Drought severity 

Water users without ac-
cess to large reservoirs 
and river ecosystems 

Return period based on EP11 

RQDI12 

CQDI1(Q80)3, CQDI1(Q80)_f 4 

 with streamflow deficitm,y = Q80m - Qm,y 

CEP1(20%)_f 5 

with percentile deficitm,y = P20 - EP1m,y 

CRQDI1(-50%)_f6 

with percent deficitm,y = -50% - RQDI1m,y 

CQDI1(WUs-EFR)7, CQDI1(WUs-EFR)_f8 

with water deficitm,y = WUsm + EFRm - Qm,y 

Water users with access 
to or downstream of large 
reservoirs 

Same as in first row but with averag-
ing periods of 6 and 12 months 

Same as in first row but with averaging periods 
of 6 and 12 months 

Reservoir managers ** Same as in first row but with averag-
ing periods of 1, 6 and 12 month(s) 

Same as in first row but with averaging periods 
of 1, 6 and 12 month(s) 

* In regions with (suspected) poor quality of hydrological model output, analysis of SPEI6 and SPEI12 is suggested in addi-615 
tion to SDHIs. 
** Reservoir managers should be informed to consider SDHIs of the grid cell that represent inflow into the reservoir. 
1 EP1: Empirical streamflow percentile per calendar month with an averaging period of one month, with 0<EP1≤100%. EP1 
expresses the frequency of non-exceedance of the current streamflow. The return period, in years, is computed as 100/EP1. 
The lower the EP1 and the higher the return period, the higher the drought hazard. 620 
2 RQDI1: Relative deviation of monthly streamflow from mean calendar month streamflow (MMQ), in percent. It is calculat-
ed as the difference between monthly streamflow and the respective MMQ, which is then divided by MMQ. The indicator is 
not computable in months with MMQ=0. 
3 CQDI1(Q80): Cumulative volume-based streamflow deficit with an averaging period of one month divided by mean annual 
streamflow. A deficit occurs if monthly streamflow Qm,y falls below Q80m (the 20th percentile) of the long-term calendar 625 
month streamflow. Monthly deficits are accumulated for all drought months to obtain severity. A drought event starts with at 
least two consecutive months with a deficit, and it ends (deficit set to zero) if there are two consecutive months without a 
deficit (2mc: two months criterion). Any streamflow surplus over Q80 in a single month between two deficit months does not 
decrease the cumulative deficit. To address flow intermittency, an existing drought continues during months where both Q80 
and the current streamflow are zero. If Q80=0 and the current streamflow exceeds zero, the drought event ends. Hence, a 630 
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drought can be prolonged, but never begin in calendar months with Q80=0. The indicator is expressed in units of mean annual 
streamflow. 
4 CQDI1(Q80)_f: The frequency of non-exceedance of drought events of a certain severity as quantified by CQDI1(Q80), 
with values between 0 and 1. A high frequency value indicates a high drought hazard. First, the partial duration series of 
drought events is derived based on the severities of all drought events of the reference period. Grid cells with less than six 635 
drought events are excluded. Second, the frequency of non-exceedance is quantified using the exponential cumulative distri-
bution function. Preferably, the indicator should be expressed as return period Tr = 1/((1-CQDI1(Q80)_f)), with as the 
average number of drought events per year during the reference period. 
5 CEP1(20%)_f: The frequency of non-exceedance of drought events of a certain severity (see above) as quantified by the 
cumulative percentile-based anomaly CEP1(20%). The monthly percentile deficit is computed by subtracting the current 640 
streamflow percentile EP1m,y from the percentile threshold P20. Like CQDI1(Q80), CEP1(20%) allows an existing drought 
event to continue during months where both Q80 and the current streamflow are zero. The 2mc is also applied. As the unit of 
CEP1(20%) (cumulative percent) is not informative, the indicator should be provided in frequency of non-exceedance or 
preferably as return period Tr = 1/((1-CEP1(20%)_f)), with as the average number of drought events per year during the 
reference period. 645 
6 CRQDI1(-50%)_f: The frequency of non-exceedance of drought events of a certain severity (see above) as quantified by the 
cumulative relative streamflow deviation CRQDI1(-50%). The monthly percentile deficit is computed by subtracting the 
relative deviation of the current month RQDI1m,y from the threshold -50%. Months with MMQ=0, where the relative devia-
tion is not computable, are defined to end a drought event assuming that people are habituated to zero streamflow in this 
month. The 2mc is also applied. As the unit of CRQDI1(-50%) (cumulative percent) is not informative, the indicator should 650 
be provided in frequency of non-exceedance or preferably return period Tr = 1/((1-CRQDI1(-50%)_f)), with as the average 
number of drought events per year during the reference period. 
7 CQDI1(WUs-EFR): Cumulative, volume-based water deficit with an averaging period of one month divided by mean an-
nual streamflow. It is computed like CQDI1(Q80) but using the threshold mean monthly potential surface water abstraction 
WUsm plus environmental flow requirement (EFRm) per calendar month. EFR is assumed to be 80% of mean monthly natural-655 
ized streamflow Qnat per calendar month. As EFR might never be fulfilled in case of strongly altered streamflow regimes, 
Qnat can be replaced by Qant implying that the river ecosystem has adapted to the altered streamflow conditions. WUs is the 
water demand from surface water bodies. The indicator is not computed in grid cells where mean annual WUs in the reference 
period is zero (approx. 9% of all grid cells excluding Greenland). The indicator is expressed in units of mean annual stream-
flow. 660 
8 CQDI1(WUs-EFR)_f: The frequency of non-exceedance of drought events of a certain severity (see above) as quantified 
by CQDI1(WUs-EFR). The indicator should be expressed as return period Tr = 1/((1-CQDI1(WUs-EFR)_f)), with as the 
average number of drought events per year during the reference period. 

 
To assess drought magnitude, we recommend using empirical percentiles and relative deviations to cover risk systems 665 

that are either habituated to a certain degree of interannual variability or to a certain reduction to mean calendar month 

streamflow. An averaging period of 1 month is suitable for river ecosystems and water users without access to large reser-

voirs, who depend on the currently available streamflow. Longer averaging periods of 6 or 12 months are suitable for people 

with access to or downstream of reservoirs that are replenished during high-flow periods and that can alleviate short periods 

of below-normal streamflow. For reservoir managers, EP and RQDI with short and longer averaging periods (1, 6, and 12 670 

months) are recommended for monitoring current reservoir inflow anomalies as well as reservoir storage anomalies (with 

different averaging periods depending on the storage capacity of the reservoir). Due to model uncertainties, time series of 

reservoir storage as simulated by WaterGAP should not be used for drought assessment. Importantly, reservoir managers 
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should only consider SDHIs of the grid cell that represent inflow into the reservoir. This also applies if drought hazard for 

large lakes is analyzed by SHDIs. 675 

We favor empirical percentiles EP over SSI as the former are more transparent to end-users of a DEWS and do not entail 

uncertainties due to the fitting of a probability distribution. Moreover, application of one selected probability distribution 

function at large scales will always exclude many grid cells where the fitting is not possible. Here, other methods such as 

empirical percentiles would be required in any case. Expressing percentiles as return period (in years) may further increase 

the transparency of EP as end-users are accustomed to quantifying flood hazards by return periods. If the current streamflow 680 

is lower than the 30 values of the reference period, EP would only indicate a return period > 30 years (or a z score below -

1.83), while SSI would indicate an extrapolated value, albeit with high uncertainty (Tijdeman et al., 2020). Hence, 40 refer-

ence years should be used, if possible, to differentiate severe and extreme droughts with return periods of up to 40 years 

(equivalent to z = -1.96). In addition to the streamflow-based indicators, the standardized precipitation-potential evapotranspi-

ration index SPEI (Vicente-Serrano et al., 2010) is suggested in regions with (suspected) poor quality of hydrological model 685 

output. Longer averaging periods of 6 and 12 months are recommended to consider the delayed response of streamflow to 

below-normal precipitation and potential evapotranspiration. However, it should be noted that meteorological indicators have 

limitations in describing hydrological drought processes (Haslinger et al., 2014; Blauhut et al., 2016; Laaha et al., 2017). 

Drought severity should be assessed with indicators that imply habituation to a certain degree of interannual variability 

(CEP(20%) and CQDI(Q80)), to a certain reduction from mean monthly streamflow (CRQDI(-50%)), and to the ability to 690 

fulfill seasonally varying human water demand from surface water and environmental flow (CQDI(WUs-EFR)). Recom-

mended averaging periods are the same as for magnitude indicators. With exceptions, we recommend that drought severity at 

a certain point in time is expressed in terms of the probability/frequency of non-exceedance (return period) of a drought event 

with such severity. These recommendations also relate to variable types other than streamflow (precipitation, soil moisture, 

etc.) and other spatial scales. In addition, the CQDI indicators should be provided in units of mean annual streamflow. 695 

CRQDI1(-50%) is preferred over CQDI1(Q50), which is based on a similar assumption about habituation since percent devia-

tions are often applied in climate change impact studies and may thus be easier to grasp. Moreover, CQDI1(WUs-EFR) is 

preferred over CQDI1(WUs) since the environmental component of water demand should be considered in a DEWS. Regard-

ing the percentile-based indicators CEP1(20%) and CQDI1(Q80%), the problem of flow intermittency is overcome by allow-

ing an existing drought to continue during months where Q80 and the current streamflow are zero. CEP1 was found to be 700 

more sensitive to low-flow droughts than CQDI1, and it is therefore preferred over the latter if the risk system is more vulner-

able to low-flow droughts than to high-flow droughts. CQDI1(Q80-HS), conceptualized for risk systems with reservoirs, is 

not recommended due to the small impact of the HS criterion (Sect. 2.3.2) at the global scale. 

According to Stahl et al. (2020), practitioners often use particular streamflow values rather than anomalies as the trigger 

for management actions. These practitioners could use forecasted RQDI1 as provided by the global-scale DEWS to determine 705 

whether this trigger will be reached by computing streamflow from RQDI1 and observed mean monthly streamflow. 
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6 Conclusions 

This paper presents a new systematic approach for selecting global-scale streamflow drought hazard indicators (SDHIs) for 

monitoring drought risk for human water supply and river ecosystems in large-scale drought early warning systems (DEWS). 

The methodology replaces the conventional and imprecise classification into threshold-based and standardized indicators by a 710 

new classification scheme that distinguishes indicators pertaining to four indicator types by a) their inherent assumptions 

about the habituation of people and the ecosystem to the streamflow regime and b) their level of drought characterization, 

namely drought magnitude and drought severity. The new scheme facilitates a better understanding of the information value 

of drought hazard indicators. It can support the development of a (large-scale) DEWS as well as water managers who rely on 

drought hazard indicators for their decision-making.  715 

When providing drought hazard information in a global- or continental-scale DEWS, it is unknown which streamflow 

characteristics people and river ecosystems are locally accustomed to, and it is uncertain to what degree people have access to 

water stored in reservoirs. The suitability of hazard indicators is region- and risk system-specific (Blauhut et al., 2021) and 

can only be evaluated with local knowledge about the vulnerability of the system at risk. Therefore, a large-scale DEWS 

should provide data for a rather large number of drought hazard indicators that characterize the condition of various water 720 

flows (streamflow, actual evapotranspiration as a fraction of potential evapotranspiration) and water storage compartments 

(snow, soil, groundwater, lakes). Clear explanations for the end-users about the suitability of drought hazard indicators for 

specific risk systems need to be provided in DEWS. When selecting hazard indicators, we recommend that end-user make 

their assumptions about the habituation of the risk bearer explicit before selecting a drought hazard indicator that fits these 

assumptions. We suggest that future studies analyze how well these hazard indicators, in combination with suitable vulnera-725 

bility and exposure indicators, can estimate drought impacts in the targeted risk systems at regional or national scales. 
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Appendix 

 

Figure A1: Seasonal streamflow variability indicated by the seasonal amplitude (Q in calendar month with highest mean monthly Q 

minus Q in calendar month with lowest mean monthly Q divided by MMQ (mean monthly Q over all calendar months)) (a), inter-730 

annual streamflow variability indicated by the average of the 12 calendar month values of (Q20-Q80)/Qmean (b), and average of 

the 12 calendar month values of WUsmean/Qmean (c). All values in percent. 
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