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Abstract 

Streamflow drought hazard indicators (SDHIs) are mostly lacking in large-scale drought early warning systems (DEWS). This 10 

paper presents a new systematic approach for selecting and computing SDHIs for monitoring drought risk for human water 

supply from surface water and for river ecosystems that is also relevant for meteorological or soil moisture drought. We rec-

ommend considering the habituation of people and ecosystems to the streamflow regime (e.g., a certain interannual variability 

or relative reduction of streamflow) when selecting indicators. Distinguishing four indicator types, we classify indicators of 

drought magnitude (e.g., water anomaly during a pre-defined period) and severity (cumulated magnitude since onset of the 15 

drought event). We quantify nine existing and three new SDHIs globally using the global hydrological model WaterGAP2.2d. 

For large-scale DEWS, we recommend selected SDHIs specific to risk systems that are differently adapted to low water avail-

ability, characterized by either perennial or intermittent streamflow regime, and with or without access to large reservoirs. 

Drought magnitude is best quantified by return period or relative deviation from mean, and severity by return period or water 

volume below a threshold relative to mean annual streamflow. Both anomaly and deficit indicators should be provided. 20 

1 Introduction 

Drought occurs when there is a prolonged time period with less water than normal in different components of the hydrological 

cycle (van Loon et al., 2016) but the term drought also has the connotation that during the drought period there is less water 

than required (Popat and Döll, 2021). No universal definition of “drought” exists (Lloyd-Hughes, 2014). While drought is a 

local to regional phenomenon, its impacts can have transnational to global dimensions, in particular related to crop production 25 

and trade (Wilhite and Glantz, 1985; van Loon, 2015; UNECE, 2015). Streamflow drought in transboundary basins implies 

direct international impacts. Hence, global-scale assessment, monitoring and forecasting of drought hazards or risks have the 

potential to support drought risk management (Pozzi et al., 2013). 
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Drought poses numerous risks to humans and ecosystems. A specific drought risk is a function of hazard, exposure, and 

vulnerability, while the term “drought impact” relates to the manifested risk (Field and Barros, 2014). In general, the term 30 

“hazard” refers to the physical event, “exposure” to the presence of people or ecosystems that could be negatively affected, and 

“vulnerability” to the susceptibility of a system to drought impacts and its (short-term) coping and (long-term) adaptation ca-

pacity (Field and Barros, 2014).  

Drought risk indicators, and thus drought hazard, exposure and vulnerability indicators, should be designed specifically 

for the targeted risk (Lloyd-Hughes, 2014; Spinoni et al., 2018; Hagenlocher et al., 2019). As an example, the risk of “not being 35 

able to provide enough water to fulfill the customers’ water demand during times of lower water availability than normal” 

constitutes a drought risk for water supply companies. If the water supply source is a river, a suitable drought hazard indicator 

should be based on streamflow data or on water storage in the upstream reservoir. However, a very large number of drought 

hazard indicators has been proposed and applied by experts without stringent consideration of the targeted risks (Wilhite and 

Glantz, 1985; Lloyd-Hughes, 2014). To identify a suitable risk-specific hazard indicator, the first step is to decide which water 40 

flow or storage should be taken into account, e.g. precipitation, soil moisture or streamflow, as the determined drought hazards 

depend on the considered physical variable (Satoh et al., 2021). Even after determining the appropriate risk-specific physical 

variable, e.g. streamflow, there is still a large choice of possible drought hazard indicators to quantify the occurrence or severity 

of streamflow droughts (WMO and GWP, 2016; Yihdego et al., 2019). A stakeholder survey encompassing 33 regional to global 

drought early warning systems (DEWS) revealed that streamflow drought hazard indicators (SDHIs) are rarely applied in 45 

DEWS, while drought hazard indicators based on meteorological variables, soil moisture, and remotely-sensed vegetation con-

ditions dominate. Among SDHIs, streamflow percentiles are mostly applied, e.g. in the US Drought Monitor. Other indicators 

include the Palmer Hydrological Drought Severity Index (Palmer, 1965), cumulative streamflow anomalies (Fleig et al., 2006; 

Lehner et al., 2006; van Loon et al., 2012; Heudorfer and Stahl, 2017), and the standardized streamflow (Modarres, 2007; 

Nalbantis and Tsakiris, 2009) or runoff index ( Shukla and Wood, 2008; Satoh et al., 2021). At the continental scale, only the 50 

European Drought Monitor provides a SDHI (Cammalleri et al., 2016a), which has also been tested for global implementation 

in the Global Drought Observatory (Cammalleri et al., 2020). There is currently no global-scale operational streamflow drought 

hazard monitoring system. 

Previous research has revealed that there is often no common understanding among stakeholders about drought hazard 

concepts (Steinemann et al., 2015). Also, in most descriptions of drought indicator calculations it is not made explicit what is 55 

assumed to be “normal”. For instance, defining the long-term mean value of the physical variable per calendar month as normal 

state implies that people and ecosystems are habituated to the seasonality of water availability. Applying percentiles per calendar 

month instead implies the habituation to interannual variability. Clearly, the conception or selection of hazard indicators needs 

to take into account the habituation and thus vulnerability of the system at risk. However, investigations and guidance on how 

to select the optimal SDHI, considering both the targeted risk and the habituation of the system at risk to the streamflow regime, 60 

are missing. 
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Streamflow drought hazard can be estimated using either observed or modeled streamflow data. If no such data are avail-

able, streamflow drought hazard is estimated by applying meteorological indicators such as the standardized precipitation index 

SPI (McKee et al., 1993) and the standardized precipitation-potential evaporation index SPEI (Vicente-Serrano et al., 2010), 

where the delayed response of streamflow to below-normal precipitation is considered through longer averaging periods, i.e., 65 

by comparing mean precipitation conditions of the preceding n months to the respective n months of the reference period (SPIn). 

Averaging periods can range between 1 and 24 months (Gevaert et al., 2018). However, studies have shown that meteorological 

indicators have limitations in describing hydrological drought processes and suggest including streamflow drought indicators 

in drought management (Haslinger et al., 2014; Blauhut et al., 2016; Laaha et al., 2017). Where streamflow observations are 

not available, hydrological models can compute the response of streamflow to precipitation and other climatic variables to 70 

determine spatially and temporally continuous drought hazard indicators that take into account the different characteristics of 

the river basins (Lehner et al., 2006). Still, the meteorological variables precipitation and potential evapotranspiration are known 

to be major drivers of streamflow and its variability, and hydrological models, in particular large-scale models, suffer from 

significant uncertainties such that the added value of simulated SDHIs should be assessed. 

SDHIs are commonly classified into threshold-based and standardized indicators (van Loon, 2015). The threshold level 75 

method (TLM) was first applied by Yevjevich (1967), who defined that a drought event begins when streamflow falls below a 

certain threshold (e.g. a percentile) and ends as soon as the threshold is exceeded. Then, drought magnitude is the streamflow 

deficit at the considered time period (computed as the difference between the threshold streamflow and the actual streamflow 

in that time period), while drought severity is equivalent to the cumulative magnitude since the beginning of the drought event. 

The standardized streamflow indicator (SSI) quantifies the anomaly of streamflow during a certain time period from long-term 80 

mean streamflow in units of standard deviation and is computed like the SPI. Negative values quantify the drought magnitude 

per time step. SSI has been applied using a 1-month averaging period (SSI1) (Zaidman et al., 2002; Modarres, 2007; Nalbantis 

and Tsakiris, 2009) as well as longer averaging periods (SSI3, SSI6, SSI12) (Svensson et al., 2017; Wan et al., 2021). However, 

classification in threshold-based and standardized indicators is somewhat misleading, since standardized indicators can also be 

cumulated to derive drought severity, which requires setting of a threshold as is the case for TLM indicators (McKee et al., 85 

1993; Barker et al., 2019, van Oel et al., 2018, Tijdeman et al., 2020). On the other hand, comparing SSI and threshold-based 

indicators directly implies that different drought characteristics (magnitude and severity) are analysed. Moreover, the term 

drought severity is sometimes used to describe drought magnitude and vice versa (Steinemann et al., 2015, Vidal et al., 2009; 

López-Moreno et al., 2009). Certainly, an improved classification of drought hazard indicators would facilitate a better under-

standing of drought characteristics and provide guidance in selecting appropriate drought hazard indicators. 90 

A further consideration in designing SDHIs is how to conceptualize drought in intermittent or highly seasonal streamflow 

regimes. If periods of zero flow are a normal part of the streamflow regime, as it is the case in arid regions, then it is meaningless 

to assess streamflow deficits during these periods. Hence, arid regions are often excluded from global drought analyses (Corzo 

Perez et al., 2011; Prudhomme et al., 2014; Spinoni et al., 2019). Some authors tested rather high percentiles as thresholds to 

characterize drought in intermittent streamflow regimes (e.g. the 80th percentile or Q20, the streamflow that is exceeded in two 95 
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out of ten months) (Woo and Tarhule, 1994; Tate and Freeman, 2000; Fleig et al., 2006). This approach, however, has been 

criticized as it is not consistent with the anomaly concept of drought (van Huijgevoort et al., 2012). To overcome these limita-

tions, van Huijgevoort et al. (2012) introduced a method to identify streamflow drought at the global scale that is also applicable 

for intermittent rivers. It combines the TLM with the consecutive dry period method (CDPM) for streamflow, in analogy to the 

consecutive dry days (CDD) indicator for precipitation (Vincent and Mekis, 2006; Griffiths and Bradley, 2007). Using this 100 

combined method, a drought in a period with streamflow identified with the TLM is allowed to continue in a subsequent zero-

flow period. Very short periods of zero flow are excluded from the assessment. Although more sophisticated compared to the 

TLM alone, the combined method as described in van Huijgevoort et al. (2012) may be too complex to be applied in DEWS. 

Moreover, the final scaling procedure of percentiles in months where both TLM and CDPM apply might result in thresholds 

that are not intuitive. 105 

This paper analyzes which SDHIs are suitable for assessing and monitoring drought risk for human water supply from 

surface water and for river ecosystems in large-scale DEWS. We propose a systematic approach to indicator selection, which 

encompasses the explicit consideration of habituation of people and river ecosystems to streamflow availability as well as a 

new classification system for drought hazard indicators. Applying the global water resources and use model WaterGAP2.2d for 

the reference period 1986-2015, we compare drought hazard globally as determined by nine existing and three newly developed 110 

hazard indicators.  

The following section describes how streamflow and other variables required for the computation of the SDHIs were 

computed and defines the twelve investigated SDHIs. In Sect. 3, we present the new systematic approach for selecting and 

computing SDHIs and illustrate the approach using observed streamflow at two gauging stations. In Sect. 4, we analyze spatial 

and temporal discrepancies and similarities of the indicators at the global scale. In Sect. 5, we give recommendations on the 115 

general suitability of the indicators as well as for large-scale applications. Finally, we draw conclusions in Sect. 6. 

2 Methods and data 

2.1 Global-scale simulation of streamflow, surface water use and PET 

Hydrological drought hazard indicators were computed using output from the global water availability and water use model 

WaterGAP2.2d (Müller Schmied et al., 2021). WaterGAP2.2d has a spatial resolution of 0.5 degrees latitude by 0.5 degrees 120 

longitude (55 km × 55 km at the equator) and covers the whole global land area except Antarctica. WaterGAP consists of the 

WaterGAP Global Hydrology Model (WGHM) and five water use models for the sectors households, manufacturing, and cool-

ing of thermal power plants (Flörke et al., 2013) as well as irrigation and livestock. WGHM computes daily time series of fast 

surface and subsurface runoff, groundwater recharge, and streamflow as well as water storage variations in canopy, snow, soil, 

groundwater, lakes, reservoirs, wetlands, and rivers. Model input includes time series of climate data between 1901 and 2016 125 

and physio-geographic information, such as land cover, soil type, relief, and hydrogeology. For this study, WaterGAP 2.2d was 

forced by the WFDEI-GPCC climate data set (Weedon et al., 2014), which was developed by applying the forcing data 
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methodology from the EU project WATCH on ERA-Interim reanalysis data. Potential evapotranspiration (PET), required for 

the calculation of SPEI12, was computed using the Priestley-Taylor equation. In addition to the standard model run (“ant”: 

anthropogenic), in which the impact of human water use and man-made reservoirs on streamflow is simulated, naturalized 130 

(“nat”) conditions were computed by turning off these two types of human activities. Daily model outputs of anthropogenic and 

naturalized streamflow (Qant and Qnat), PET, and surface water abstractions (WUs) were aggregated to monthly time series. 

WaterGAP total runoff is calibrated against long-term mean annual streamflow at 1319 gauging stations worldwide covering 

approximately 54% of the Earth’s land area (except Greenland and Antarctica). A detailed model description and evaluation 

can be found in Müller Schmied et al. (2021). 135 

In several model intercomparison studies, WaterGAP was often among the best performing global hydrological models 

(GHMs). Kumar et al. (2022) assessed the ability of nine catchment-scale models and eight GHMs to simulate hydrological 

droughts in eight large catchments around the world. Comparing simulated and observed streamflow deficits and SSI1 (SRI) 

(their Tables 2 and 3), WaterGAP is among the two to three best performing GHMs with performance indicators (R² and Nash-

Sutcliffe efficiency) comparable to those of the catchment-scale models. In another assessment of streamflow drought based on 140 

observed or simulated streamflow at 293 locations in Europe (Tallaksen and Stahl, 2014), WaterGAP performed well as com-

pared to six other GHMs. In their Fig. 3, WaterGAP results are better than the multi-model median for all four performance 

measures. Moreover, WaterGAP performed best regarding the simulation of drought persistence (their Fig. 4). Prudhomme et 

al. (2011) analyzed the ability of three GHMs to reproduce historical streamflow drought events in European basins using the 

regional deficiency index (RDI). While all three models are found to broadly capture the spatiotemporal drought development, 145 

the authors conclude that WaterGAP “is arguably best suited to reproduce most regional characteristics of large-scale high and 

low flow events in Europe” (Prudhomme et al., 2011: 1181). However, WaterGAP tends to overestimate the variability in RDI, 

which is explained by insufficient soil storage capacity. In an intercomparison study among six GHMs (Zaherpour et al., 2018), 

WaterGAP showed the best results in simulating monthly streamflow in 27 out of 40 river basins worldwide and in each of the 

eight hydrobelts (their Fig. 2 and Table 3). In five out of eight hydrobelts, the mean weighted absolute error of Q95 was lowest 150 

for WaterGAP. Nevertheless, the study revealed that WaterGAP tends to overestimate low flows, and that discrepancies be-

tween simulated and observed seasonality and interannual variability can be significant. In a different multi-model validation 

study based on five global hydrological and land surface models (Veldkamp et al., 2018), WaterGAP was the only model that 

slightly underestimated variability in monthly streamflow while the others overestimated variability. Correlation with observed 

monthly streamflow though was highest for WaterGAP in both managed and near-natural basins across the globe (their Fig. 155 

3h). Döll et al. (2016) compared monthly low-flow Q90 as computed by the GHMs WaterGAP and PCRGLOB-WB to obser-

vations at 821 WaterGAP calibration stations across the globe. Overall, low flows could be simulated with reasonable accuracy 

by both GHMs and were overestimated at most stations. WaterGAP results showed a better fit to observations since it is cali-

brated against mean annual streamflow at the considered stations (their Fig. 3). Despite calibration, WaterGAP simulations 

show a lower fit to small observed Q90 values below 1 km³ month-1. 160 



6 
 

2.2 SDHIs 

Twelve SDHIs (Table 1) were computed for the whole land area except Greenland and Antarctica with a spatial resolution of 

0.5° using monthly time series of WaterGAP 2.2d model output for the reference period 1986-2015. For computing each indi-

cator, we used the 30 monthly values available for each of the 12 calendar months individually to determine distributions, 

thresholds, and deficits. Moreover, selected indicators were quantified for WaterGAP 2.2d calibration stations using monthly 165 

streamflow observations provided by the Global Runoff Data Centre (GRDC, 2019) for the period 1986-2015 (Figs. 2a and 2b 

and Sect. 4.2.5). 

2.2.1 Standardized meteorological indicators SPI and SPEI 

SPI time series were computed at the global scale following the method described in McKee et al. (1993). Monthly precipitation 

data are first fitted to a probability distribution (e.g. gamma or Pearson Type III) and then transformed to the standard normal 170 

random variable Z (Eq. 1) (also termed z score), which is the SPI, following an approximation method introduced by 

Abramowitz and Stegun (1965). The standard normal distribution is characterized by a mean of zero and standard deviation of 

1. A value of -1, for example, indicates that the precipitation value deviates from the long-term mean by one standard deviation. 

 

Z = (X - )/            (1) 175 

with X = variable (e.g. precipitation),  = mean, and  = standard deviation. 

 

The SPI can be quantified for different averaging periods of typically 1 to 36 months. In the present study, SPI time series 

were computed using a 12-month averaging period (SPI12), which is recommended for the assessment of hydrological drought 

impacts (WMO and GWP, 2016). For a limited sensitivity analysis, SPI time series with averaging periods of 3, 6, 9, and 12 180 

months were derived for 218 WaterGAP calibration stations (Sect. 4.2.5). The indicator was computed using the SCI package 

for R (Gudmundsson and Stagge, 2016), fitting a gamma distribution to the precipitation time series. 

SPEI12 time series were calculated at the global scale according to the method presented in Vicente-Serrano et al. (2010) 

using a 12-month averaging period. Similar to SPI, the SCI package for R was utilized, however, applying the Log-logistics 

distribution as recommended for the SPEI (Vicente-Serrano et al., 2010; Vicente-Serrano and Beguería, 2016). 185 

2.2.2 Standardized streamflow anomaly indicators SSI1 and SSI12 

SSI1 was computed for Qant analogously to SPI1 following the method provided in Kumar et al. (2009) using mean monthly 

streamflow for each of the 12 calendar months. We applied the R package fitdistrplus and the gamma distribution, which showed 

the best fit among 23 parametric probability distributions for most grid cells. The goodness-of-fit between simulated streamflow 

values and the probability distribution was assessed based on the one-sample Kolmogorov–Smirnov test (KS test) at the 0.05 190 
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significance level. The fits were rejected in 17% to 21% of all grid cells (excluding Greenland) depending on the calendar 

month.  

SSI12 is computed like SSI1, but with an averaging period of 12 months. For SSI12, the fits were rejected in around 6% 

of all grid cells (excluding Greenland) with only slight variations among the calendar months. 

2.2.3 Cumulative streamflow deficit indicators CQDI1-Q50, CQDI1-Q80 and CQDI1-Q80-HS 195 

CQDI1-Q50 is the cumulative, volume-based streamflow deficit computed following the threshold level method (TLM) (Sect. 

1). It should be noted that the term “deficit”, which is generally used for the TLM, refers to the negative anomaly below a 

selected threshold, and not to an unsatisfied water demand. With CQDI1-Q50, a deficit is defined to occur if modeled monthly 

streamflow is lower than the 50th percentile (median) of the long-term mean calendar month streamflow. The empirical percen-

tile Q50 was computed in R using the quantile function with the default quantile algorithm. In each month, the streamflow 200 

deficit volume is calculated as the difference between the median of all 30 calendar month streamflow values during the refer-

ence period and the water volume that was actually transported in the stream in this month. The last deficit month is the last 

month of the drought event. Monthly deficits (drought magnitude) are accumulated for all drought months to obtain severity. 

Any streamflow surplus over the median in a single month between two deficit months does not decrease the cumulative deficit 

value. The cumulative streamflow deficit (in units of m3) is normalized by mean annual streamflow (in units of m3). A value of 205 

2 [-], for example, indicates that the cumulative streamflow deficit in a certain month is twice the mean annual streamflow. 

Following Spinoni et al. (2019), a drought event is defined to start with at least two consecutive months with a deficit and it 

ends (deficit set to zero) if there are two consecutive months without a deficit (two months criterion, 2mc). This approach avoids 

that short-term streamflow deficits that hardly pose a drought hazard to humans and other biota are defined as drought events 

(Spinoni et al., 2019). Q50 as a rather high threshold can be viewed as a “conservative upper bound for low flows” (Smakhtin, 210 

2001: 153). 

Streamflow intermittency generally poses a problem, as in grid cells where the threshold (in this case Q50) is zero in a 

particular calendar month, droughts are never identified in this month. To overcome this problem, CQDI1-Q50 allows an ex-

isting drought to continue during months with Q50=0, but only if Q in the respective month is also zero. In months where Q50 

is zero, but Q exceeds zero, the drought event ends. This approach implies that a drought can be prolonged, but never begin in 215 

calendar months with Q50=0.  

CQDI1-Q80 was calculated in the same manner as CQDI1-Q50, however, using the empirical percentile Q80 per calendar 

month as threshold, which is the monthly streamflow value that is exceeded in 80% of all 30 calendar months. Daily or monthly 

Q80 is often used as a threshold for defining the onset and termination of a streamflow deficit period (van Huijgevoort et al., 

2014; van Loon et al., 2014; Heudorfer and Stahl, 2017; Laaha et al., 2017), but the selected threshold should represent local 220 

water requirements (including environmental flow) (Cammalleri et al., 2016a). 

CQDI1-Q80-HS is a variant of CQDI1-Q80 suitable in intermittent and highly seasonal (HS) streamflow regimes where 

people strongly rely on water storage in man-made reservoirs that needs to be replenished by streamflow. It allows an existing 
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drought to continue in any month where Q80 is zero also if the current streamflow Q exceeds zero. However, the cumulative 

deficit is reduced by any streamflow surplus over the calendar month Q80. The rationale behind this approach is that streamflow 225 

during low-flow months (calendar months where Q80 is zero) is not relevant for people relying on large reservoirs. Below-

normal water storages can only marginally be replenished during a low-flow period, and hence drought severity should remain 

at the level of the preceding high-flow period. Like CQDI1-Q80, a drought can be prolonged but never begin, in months with 

Q80=0.  

2.2.4 Empirical percentiles EP1 and cumulative empirical percentiles CEP1(20%) 230 

Empirical streamflow percentiles EP1 were computed per calendar month following Eq. (2) with an averaging period of one 

month. EP1 expresses the frequency of non-exceedance, while the inverse is the return period, in years. 

 

EP1 = rank(Q)/n            (2) 

 235 

where rank(Q) is the rank of a streamflow value of a certain calendar month and n is the sample size, i.e., the number of 

years in the reference period. Rank 1 was assigned to the smallest streamflow value. If a sample contained several months with 

the same streamflow value, the largest rank among these months was assigned to the tied streamflow values. For a calendar 

month comprising, for instance, 26 out of 30 months with zero streamflow, a value of EP1=26/30 would be assigned to the 

respective 26 months corresponding to a return period of 1.2 years. This method slightly adjusts the approach by Tijdeman et 240 

al. (2020), who used the average rank among the tied values. In the given example, this would result in EP1=0.45 and a return 

period of 2.2 years for the first 26 values. In this study, we chose the largest EP1 for tied values to reflect that frequent stream-

flow values have a high frequency of non-exceedance and a low return period assuming that people and the ecosystem are 

habituated to more frequent values including zero streamflow. 

The cumulative percentile-based anomaly CEP1(20%) was computed in a similar way to CQDI1-Q80 using the 20th 245 

percentile (the value that is exceeded in 8 out of 10 months) of the respective 30 EP1 values as threshold per calendar month. 

Moreover, CEP1 allows an existing drought event to continue during months where both Q80 and the current streamflow are 

zero. 

2.2.5 Relative deviation from mean conditions RQDI1, RQDI12 and cumulative CRQDI1(-50%) 

RQDI1 is the relative deviation of monthly streamflow from mean calendar month streamflow (MMQ) in percent. In each 250 

month, it is calculated as the difference between monthly streamflow and the respective MMQ, which is then divided by MMQ. 

RQDI12 is the relative deviation of mean streamflow during the preceding 12 months (in km³ month-1) from mean annual 

streamflow (in km³ month-1) during the reference period. In this study, RQDI12 is only assessed for two gauging stations (Fig. 

2 and Sect. 3.3), but not at the global scale. 
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The cumulative relative deviation CRQDI1(-50%) with a threshold of RQDI1=-50% was derived like CQDI-Q80. 255 

Months with MMQ=0 where the relative deviation is not computable were defined to end a drought event assuming that people 

are habituated to zero streamflow in this month. 

2.2.6 Water deficit indicators CQDI1-WUs and CQDI1-WUs-EFR 

The water deficit indicators CQDI1-WUs and CQDI1-WUs-EFR are computed like CQDI1-Q80 but using as thresholds mean 

monthly potential surface water abstraction WUs, and WUs plus environmental flow requirement (EFR), respectively. Follow-260 

ing Richter et al. (2012), EFR is assumed to be 80% of mean monthly naturalized streamflow Qnat per calendar month such 

that 12 EFR values are obtained per grid cell. WUs is the simulated water demand (potential water abstractions from surface 

water bodies) and not the actual water abstractions (Müller Schmied et al., 2021), but both values are similar in most grid cells. 

The satisfied (or actual) water use is not suitable to identify periods of water deficit because it decreases along with water 

availability during drought. Cumulative deficits are normalized by mean annual streamflow. The indicators were not computed 265 

in grid cells where mean annual surface water demand in the reference period is zero (approx. 9% of all grid cells excluding 

Greenland). 

2.3 Probability of drought events of a certain severity 

Following the approach of Cammalleri et al. (2016a) to compute the low-flow index LFI, the probability of drought events of a 

certain severity was computed for six cumulative indicators, CEP1(20%), four CQDI1 variants (thresholds Q50, Q80, WUs, 270 

and WUs+EFR) and CRQDI1(-50%). First, the partial duration series of drought events was derived based on the severities of 

all drought events of the reference period. Grid cells with less than six drought events were excluded. The exponential cumula-

tive distribution function proposed in Cammalleri et al. (2016a) was used to estimate the probability of non-exceedance p of a 

certain cumulative streamflow deficit: 

 275 

�(��; ) = 1 − ����  (with Si > 0)        (3) 

 

where the variable Si is the severity of drought event i, as quantified by a cumulative indicator, and the parameter  is the 

inverse of the mean of the severities of all completed drought events. For instance, a value of p=0.7 in March 2002 denotes that, 

if the drought event ended in March 2002, its severity would be larger than the severity of 70% of the drought events in the 280 

reference period. Different from LFI, which is based on daily streamflow data, time series of monthly streamflow were used 

for all indicators and the 2mc (see Sect. 2.2.3) was applied. Since p was computed for each month of the reference period, it 

describes the non-exceedance probability of both completed drought events and continuing droughts. 
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3 Proposed systematic approach for selecting and computing SDHIs 

Wilhite and Glantz (1985) suggested distinguishing between a conceptual and an operational drought definition, with the former 285 

referring to the general qualitative concept of drought and the latter allowing for a quantitative drought characterization includ-

ing onset, severity, termination, and spatial extent. In the following Sect. 3.1, aspects that relate to the conceptual drought 

definition are discussed comprising the description of the targeted drought risk and the system at risk. In particular, assumptions 

about the habituation of the system at risk to the streamflow regime are discussed, an aspect that is currently not taken into 

account or not made explicit in drought hazard studies. In order to translate these conceptual definitions into operational drought 290 

hazard indicators, a new classification system for hazard indicators is proposed in Sect. 3.2. The new systematic approach is 

illustrated in Sect. 3.3 for selected SDHIs using streamflow observations at two gauging stations with different streamflow 

regimes. 

3.1 Assumptions about habituation inherent in drought hazard indicators 

The choice of drought hazard indicators implies assumptions about the habituation of the system at risk. In the case of stream-295 

flow, people and ecosystems are assumed to have adapted to certain characteristics of the flow regime. For example, if drought 

indicators are computed based on the calendar month-specific distribution of streamflow values, it is implicitly assumed that 

people and ecosystems are adapted to the seasonality of streamflow. In case of SSI1, it is further assumed that people and 

ecosystems are adapted to a certain degree of interannual variability, e.g., to the low streamflow that is only exceeded in 1 out 

of 5 years. But also temporally constant thresholds, which have traditionally been used to define hydrological droughts (Stahl 300 

et al., 2020), are suitable for certain systems, e.g., for computing drought risk for electricity generation by thermal power plants, 

which require a certain minimum streamflow for operation.  

When conceptualizing or selecting a hazard indicator for a specific drought risk, these assumptions on habituation of 

the system at risk should be made explicit. At the global scale, it is unknown to which streamflow characteristics different risk 

systems such as drinking water supply, irrigation water supply, hydropower production, and the river ecosystem are accustomed. 305 

Therefore, the twelve global-scale drought hazard indicators analyzed in this study cover different types of habituation, includ-

ing the habituation to a certain degree of interannual variability of streamflow, to streamflow seasonality, to a certain reduction 

from mean calendar month or mean annual streamflow, and to being able to fulfill the demand for surface water abstractions 

and environmental flow. Table 1 lists the indicators according to this classification together with unique characteristics relevant 

for streamflow drought risk assessments. 310 
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Table 1: Characteristics of conventional SDHIs suitable for global-scale assessments, classified according to inherent assump-

tions about habituation of people or other biota 

Assumed habituation and indicator 

People or other biota accustomed to 

Characteristics 

a certain degree of interan-
nual variability 

SSI12/EP121 

CQDI-Q80-HS 

Suitable for quantifying 1) risk for human water supply in regions with large 
man-made reservoirs or lakes that buffer seasonal streamflow deficits as 
well as 2) risk for large lake and wetland ecosystems. 

seasonality and a certain 
degree of  interannual var-
iability 

SPI12 If used as proxy for streamflow drought hazard, assumptions about habitua-
tion are the same as for SSI1. 

Processes in altered flow regimes cannot be characterized. 

SPEI12 Same characteristics as SPI12; better proxy for streamflow drought hazard 
as it takes into account the impact of increased potential evapotranspiration 
on drought. 

SSI1/EP1/CQDI1-Q80 Suitable risk for human water supply and for risk for river ecosystems in re-
gions without access to reservoirs. Streamflow drought hazard might be un-
derestimated in regions with high vulnerability and interannual variability. 

seasonality 

and median calendar 
month streamflow 

CQDI1-Q50 

Using such a high threshold (median of calendar monthly streamflow) can 
be beneficial in highly vulnerable regions where people cannot even cope 
with small reductions in median monthly streamflow. 

being able to fulfill de-
mand for surface water 
abstractions 

CQDI1-WUs 

The system at risk is accustomed to the seasonality of human water demand 
(WUs). People are used to being able to fulfil human water demand. 

The health of river ecosystems is not taken into account. 

An indicator of water deficit rather than drought hazard. 

being able to fulfill de-
mand for surface water 
abstractions and environ-
mental flow 

CQDI1-WUs-EFR 

The system at risk is accustomed to the seasonality of human water demand 
(WUs) and to the seasonality of environmental flow requirements (EFR). 

Alternative 1: EFR based on Qant2: The river ecosystem has adjusted to the 
altered flow regime over the last decades, which is considered the “new nor-
mal status”. 

Alternative 2: EFR based on Qnat2: the natural flow regime is the aspired 
status. 

a certain reduction from 
mean calendar month 
streamflow RQDI1 

Suitable in study regions without large surface water storages. 

Drought hazard might be overestimated in regions with low vulnerability 
and interannual variability. 

a certain reduction from 
mean annual streamflow  

RQDI12 Suitable in study regions with large man-made reservoirs or lakes, which 
buffer seasonal streamflow deficits. 

Drought hazard might be overestimated in regions with low vulnerability 
and interannual variability. 

temporally constant mini-
mum streamflow             

Not included in this 
study               

Identifies drought hazard whenever water availability drops beneath a cer-
tain level (e.g., water intake for cooling of thermal power plants has to be re-
duced). Identifies no drought in wet season. 

1 EP12: Empirical streamflow percentile with an averaging period of 12 months (not analyzed in this study) 315 
1 Qant, Qnat: Modeled anthropogenic streamflow altered by human water use and man-made reservoirs (Qant) and naturalized 

modeled streamflow (Qnat) 



12 
 

 

In hydrology, flow duration curves showing the fraction of the time that a certain streamflow is exceeded (expressed as 

percentiles) are a widely used method to assess the low-flow regime (Smakhtin, 2001). Percentile-based indicators including 320 

empirical streamflow percentiles, standardized indicators, and TLM indicators with a low streamflow percentile as threshold 

are often applied in DEWS (Bachmair et al., 2016; Cammalleri et al., 2016a). They are perceived as statistically consistent 

across different temporal and spatial scales, indicating the rarity of the event (Steinemann et al., 2015; WMO and GWP, 2016). 

Indicators of less than normal water availability such as “percent of normal precipitation” appear to be less preferred as time 

periods with the same indicator value have different probabilities of occurrence in different regions and thus not the same rarity 325 

(Steinemann et al., 2015). However, according to Kumar et al. (2009), percent deviations from mean precipitation have been 

used to assess drought intensity in India, South Africa, and Poland. Kumar et al. (2009) compared percent precipitation devia-

tions and SPI in two districts in India, one in a humid region with high mean precipitation and low interannual variability and 

the other in a semi-arid region with low mean precipitation and higher interannual variability. Based on a 39-year record of 

observed monthly precipitation they showed that much higher percent deviations occurred, in the case of SPI = -1, in the low 330 

precipitation district than in the high precipitation district, e.g., -70% and -30%, respectively. Consequently, drought hazard 

may be underestimated with SPI in the low precipitation district. For example, yield loss is more closely related to percent of 

normal precipitation than to the rarity of the low precipitation event, as crop yield depends on actual evapotranspiration in 

percent of PET, which decreases with precipitation (Siebert and Döll, 2010).  

Application of percentile-based indicators (e.g., SSI12, SSI1, and CQDI1-Q80 in Table 1) implies that people in different 335 

climate regions and social systems are equally habituated to a certain interannual variability, which is most likely not the case. 

Similar to the example above from Kumar et al. (2009), the 20th streamflow percentile (or SSI1 = -0.84) would correspond to a 

low relative streamflow deviation (e.g. -20%) in a humid region (low interannual variability) compared to a higher deviation 

(e.g. -50%) in a semi-arid region (high interannual variability). Hence, although percentile-based indicators have the advantage 

of being spatially comparable in terms of drought frequency, they might underestimate streamflow drought hazard in semi-arid 340 

areas where people (and ecosystems, albeit possibly to a lower degree) are often more vulnerable to reductions in water avail-

ability. Regions with high interannual variability are depicted in Fig. A1b. Here, drought hazard indicators that quantify anom-

alies from the long-term mean or median might be better suited to define drought conditions. These include percent deviations 

from mean streamflow (RQDI1, RQDI12 in Table 1) or TLM indicators with higher percentiles as threshold (CQDI1-Q50 in 

Table 1). Contrastingly, river ecosystems are, in the ideal case, perfectly adjusted to interannual variability of streamflow such 345 

that percentile-based drought hazard indicators are often suitable for drought risk assessment for river ecosystems. In conclu-

sion, percentile-based hazard indicators and relative deviations from the long-term mean or median should be used complemen-

tarily in large-scale DEWS in combination with adequate vulnerability and exposure indicators to cover different drought risks. 

Another important characteristic of drought hazard indicators is the selected averaging period that defines whether people 

are habituated to the annual or seasonal flow regime. One can assume that river ecosystems are generally accustomed to sea-350 

sonality. Therefore, indicators with a short averaging period of, for example, one month (SSI1, RQDI1 and CQDI1 variants in 
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Table 1) are appropriate for quantifying drought hazard for river ecosystems. Furthermore, short averaging periods are suitable 

in regions where farmers and other water users do not have access to large water storages such as reservoirs, lakes, or ground-

water (either due to missing infrastructure or due to water use restrictions). As these users abstract water directly from the 

stream, they are very vulnerable to seasonal (monthly) streamflow deficits. Indicators with longer averaging periods (SSI12 and 355 

RQDI12), on the other hand, are suitable in regions with large man-made reservoirs, which are usually replenished during the 

wet season such that streamflow deficits during the low-flow months are irrelevant. People in these regions are therefore only 

vulnerable to either interannual variability (SSI12) or mean annual conditions (RQDI12), but not to seasonality. Certainly, other 

averaging periods may be suitable depending on the region-specific storage capacity. 

Since volume-based indicators (TLM indicators) are also important components in water resources management (van 360 

Loon, 2015), we propose the volume-based indicator CQDI1-Q80-HS as an alternative for SSI12 and RQDI12 in regions with 

highly seasonal (HS) streamflow regimes and large reservoirs. If water users need streamflow to fill a reservoir, streamflow 

availability during the dry season would be of (almost) no interest to the risk takers/water users. For them, it would be worse to 

have less water than normal during two consecutive wet seasons even if there is slightly more water than normal in the dry 

season (as the amount of this water is very small compared to the water produced in the wet season). With CQDI1-Q80-HS, an 365 

existing drought is allowed to continue during a pre-defined low-flow period, namely months where the calendar month Q80 is 

zero, even if streamflow exceeds zero (Sect. 2.2.3). Consequently, in case of two consecutive wet-season droughts the stream-

flow deficit continues to accumulate resulting in a higher drought severity for the pooled drought event than for the two single 

wet-season droughts. This most likely reflects the perceived hazard of such a situation better. Regions with highly seasonal 

streamflow where the application of CQDI-Q80-HS is meaningful are depicted in Fig. A1a. 370 

Obviously, if SPI12 and SPEI12 are used to assess meteorological drought hazard, people and ecosystems are assumed to 

be habituated to the interannual variability, but not the seasonality, of P and P-PET. However, when they are used as proxies to 

identify streamflow drought hazard, they should ideally correspond to the temporal development of SSI1. Their performance 

would be assessed by comparing the goodness-of-fit between time series of SPI12 or SPEI12 with SSI1. In this case, assump-

tions about the habituation inherent in SPI12 and SPEI12 refer to the streamflow regime and not to time series of P and P-PET. 375 

Accordingly, SPI12 and SPEI12 fall into the same category as SSI1 in Table 1 (interannual variability and seasonality). The 

suitability of different averaging periods for SPI for describing streamflow drought hazard is discussed in Sect. 4.2.5. 

For water managers, the status of the actual water deficit in terms of unsatisfied water demand might be as informative as 

the status of streamflow anomaly. Drought hazard is generally defined as a climate-induced anomaly, i.e., a period of below-

normal water availability (McKee et al., 1993; van Lanen, 2006; van Loon, 2015). This concept can be broadened by assuming 380 

that a drought only occurs if the anomaly coincides with a water deficit for people or ecosystems (Cammalleri et al., 2016b; 

Popat and Döll, 2021). This concept is not new and several definitions were already summarized in Wilhite and Glantz (1985), 

e.g., drought is a “period during which streamflows are inadequate to supply established uses under a given water management 

system” (Linsley et al., 1975 in Wilhite and Glantz, 1985: 115). Nevertheless, only a few studies exist where the combination 

of anomaly and deficit was translated into drought hazard indicators for soil moisture (Palmer, 1965; Cammalleri et al., 2016b; 385 
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Popat and Döll, 2021) and streamflow (Popat and Döll, 2021). In the present study, the water deficit aspect of drought is repre-

sented by the indicators CQDI1-WUs and CQDI1-WUs-EFR where surface water demand is taken as the threshold (Table 1). 

Application of these indicators implies that the system at risk is habituated to the satisfaction of seasonal water demand. While 

CQDI1-WUs neglects water requirements of the ecosystem, CQDI1-WUs-EFR assumes that the river ecosystem is habituated 

to the seasonality and magnitude of natural streamflow. As EFR might never be fulfilled during the investigation period in case 390 

of streamflow regimes that are strongly altered by human water abstractions and man-made reservoirs, Qnat in the EFR com-

putation can be replaced by Qant. This implies the assumption that the river ecosystem has already adapted to the altered 

streamflow conditions (Table 1). Figure A1c shows regions where human water demand is high compared to available stream-

flow and where a drought hazard due to unsatisfied human surface water demand is likely. 

3.2 Levels of drought characterization 395 

Translating conceptual drought definitions into operational, quantitative drought hazard indicators is not straightforward due to 

the complexity of the underlying natural processes and the large number of methods and indicators that can be applied. In the 

existing literature, there is agreement about which drought characteristics are relevant for operational applications comprising 

the temporal component (onset, termination, duration) and the spatial extent as well as drought magnitude and severity, from 

which other metrics such as intensity, return period, and frequency or probability of occurrence can be derived (van Lanen et 400 

al., 2017). We understand drought magnitude as an anomaly or deficit occurring within one time step and severity as the accu-

mulated anomaly or deficit over all time steps during the duration of the drought event exceeding a selected threshold (van 

Lanen et al., 2017). However, the terms drought magnitude and severity, which represent different levels of drought character-

ization, are not applied consistently in the literature. The terms are not made explicit and sometimes interchanged (Steinemann 

et al., 2015, Vidal et al., 2009; López-Moreno et al., 2009). In particular, the commonly accepted classification of SDHIs into 405 

threshold-based and standardized indicators (van Loon, 2015) can be somewhat misleading, since the former represents time 

series of severity and the latter time series of magnitude. 

To facilitate a better understanding of the informative value of SDHIs, we suggest a new indicator classification that 

includes four types of indicators and distinguishes severity from magnitude indicators (Fig. 1). The indicator types (columns in 

Fig. 1) include the volume-based anomaly, the standardized or percentile-based anomaly, and the relative deviation, all of which 410 

are described in the previous section. Deficit-anomaly indicators (last column in Fig. 1) combine an anomaly indicator with an 

indicator of the deficit with respect to optimal water availability. For example, Popat and Döll (2021) combined the volume-

based anomaly indicator pQ (Fig. 1) with an indicator of the streamflow deficit with respect to water demand to obtain the 

streamflow deficit anomaly indicator QDAI. For each indicator type, two levels of drought characterization can be computed. 

Level 1 indicates the drought magnitude at each time step. Time steps in drought analysis are usually months, but daily time 415 

steps may be used in drought monitoring systems (Cammalleri et al., 2016a). Time series of drought magnitude can be expressed 

as absolute (volume-based) or relative anomaly or deviation or in terms of frequency or probability of occurrence. If magnitude 

indicators are cumulated since drought onset, severity indicators are obtained at level 2. The units of the four indicator types 
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differ both at level 1 and 2, but at level 2, indicators can be directly compared when expressed in units of probability of non-

exceedance (Fig. 1).  420 
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Figure 1: Classification system including four types of drought hazard indicators, indicating 1) magnitude of the drought at a certain 

time step as deficit and/or anomaly (level 1) or 2) severity of the drought event, i.e. the cumulative magnitude of drought since drought 

onset (level 2). Both magnitude and severity can be expressed in terms of frequency/probability to compare the drought of interest to 

other droughts. The dark grey boxes indicate decisions made when computing the indicators. Indicators in bold have already been 425 

applied in the literature. Assumptions about the habituation of people and ecosystems determine the selection of the type of indicator, 

the averaging period, and the threshold (see Table 1). 

 

The dark grey boxes in Fig. 1 represent decisions to be made regarding time step length and averaging period, drought 

threshold and definition of drought events (minimum length of drought event, pooling of drought events). These decisions 430 

depend on the assumed habituation of people and ecosystems to certain streamflow conditions (Sect. 3.1 and Table 1). Beige 

and orange boxes contain indicators that are expressed in absolute or relative values and in frequency/probability of occurrence, 

respectively. Indicators applied in drought monitoring (CQDI1, low-flow index LFI, percentiles, SSI, RDPI) or in the literature 

(pQ, cumulative SSI, streamflow deficit anomaly indicator QDAI) are written in bold. 

Figure 1 shows that the specific drought hazard indicators represent different levels of drought characterization (magnitude 435 

and severity) and that those pertaining to one of the four indicator types can be transformed between level 1 (magnitude) and 

level 2 (severity) while still sharing the type-specific conceptual drought definition. Furthermore, the classification system 

clarifies that each indicator type requires a threshold setting either at level 1 or 2. Hence, the term “threshold-based” applies to 

any indicator of drought severity and it is therefore not a suitable criterion for distinguishing types of indicators. 

The classification of indicator types can be ambiguous. For instance, standardized and percentile-based anomaly indicators 440 

are subsumed in Fig. 1 (column 2), although there is a minor conceptual difference between them as highlighted by Tijdeman 

et al. (2020). While standardized indicators show the non-exceedance probability enabling extrapolation, empirical percentiles 

represent the historical non-exceedance frequency within the boundaries of observations. We account for this aspect by includ-

ing the terms frequency and probability in Fig. 1. Volume-based and standardized or percentile-based anomaly indicators, on 

the other hand, are presented as different indicator types, although they can be based on the same conceptual drought definition 445 

if equivalent thresholds are applied. If Q80 is used as threshold for CQDI1 and -0.84 for cumulative SSI1 (corresponding to the 

20th percentile for cumulative EP1 and a return period of 5 years), both indicators capture the same drought signal. Differences 

between the drought signals are then attributable to the computational methods for the standardization of streamflow. Analyzing 

the sensitivity of SSI1 to different parametric and nonparametric standardization methods in European river basins, Tijdeman 

et al. (2020) revealed considerable differences in computed SSI1 among seven probability distributions (and two fitting meth-450 

ods) and five non-parametric methods. 

A major difference between CQDIvolume-based and standardized indicators is that drought severity can be expressed in 

volume of “missing” water and thus in absolute rather than relative values, which is often more informative in water resources 

management (van Loon, 2015). Although both indicator types capture the same drought signal (see above), the relative levels 

of drought severity among the drought events during the reference period differ. Volume-based indicators detect absolute 455 
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drought deficits and standardized or percentile-based indicators relative drought deficits. As an example, a monthly deficit 

volume of 1% of mean annual streamflow represents a larger deviation from median streamflow in a low-flow month compared 

to a high-flow month. Consequently, differences between the two indicator types can be large when severities of specific drought 

events during the reference period are compared. This difference is illustrated in Sect. 4.2.4 and Fig. 8. 

3.3 Illustration of habituation-based classification approach 460 

The relation among ten out of the twelve indicators in Table 1 was assessed for time series of monthly streamflow observed at 

two GRDC gauging stations with different streamflow regimes. The Little Colorado River near Cameron in the United States 

(Fig. 2, left) was selected because it is the only station among 220 GRDC gauging stations worldwide with continuous monthly 

streamflow observations between 1986 and 2015 that has a visible impact of the HS method (Sect. 2.2.3). It is characterized by 

comparably low mean annual streamflow (MAQ) (ca. 5 m³ s-1) and high interannual and seasonal variability. Q80 is zero in 465 

May, June, and November. The Danube River at Hofkirchen in Germany (Fig. 2, right) was selected due to the different stream-

flow regime (much higher MAQ of 640 m³ s-1, lower seasonal and interannual variability) and due to the fact that the 2003 

European drought can be used as a benchmark for the assessment. Since both stations are situated in river basins with an 

assumed low vulnerability to drought by global comparison, the indicator CQDI1-Q50, suitable in highly vulnerable regions, 

was not considered. We used observations instead of WaterGAP modelling result to exclude model uncertainties. Only mean 470 

monthly WUs used in CQDI1-WUs and CQDI1-WUs-EFR is based on WaterGAP model output. Different from the description 

in Sect. 2.2.6, EFR in CQDI1-WUs-EFR is computed as 80% of observed mean monthly Qant and not Qnat. 

In Fig. 2a, streamflow anomalies below Q80 are highlighted in orange. Fig. 2b depicts time series of drought severity 

according to different CQDI1-Q80 variants. First, the effect of the 2mc (Sect. 2.2.3) can be deducted by comparing CQDI1-

Q80 (without 2mc) and CQDI1-Q80. Applying the 2mc, several one month droughts are excluded at both stations and two 475 

drought events are pooled into one in 1996 (Little Colorado River) and 2003 (Danube River). Comparing CQDI1-Q80-HS and 

CQDI-Q80, the HS method (Sect. 2.2.3) can either lead to the mere prolongation of drought events (for example in 1990 and 

1991 at the Little Colorado River) or to the pooling of two or more wet-season droughts into one drought event (not identified 

at the two stations). When computing the frequency distribution of drought severity, there would be no difference between 

CQDI1-Q80 and CQDI1-Q80-HS in case of drought prolongation. In contrast, the pooling of two or more wet-season droughts 480 

into one drought event does change the frequency distribution of drought severity. Whether the assumptions about habituation 

inherent in the 2mc and the HS method adequately reflect the perceived drought hazard can only be answered with regional 

knowledge about the vulnerability of the system at risk. At the Danube station, the 2mc certainly leads to the realistic extension 

of the drought event in 2003 until the end of the year. 

For better comparison with the CQDI1-Q80 variants, only z-scores below -0.84, equivalent to Q80, are shown for the 485 

standardized indicators (Fig. 2c). Since fitting of the gamma distribution was rejected for the Little Colorado River station based 

on the KS test (Sect. 2.2.2), the indicator EP1 was computed instead of SSI1 and transformed into z scores. EP1 and SSI1, 

respectively, capture the same drought signal as CQDI1-Q80 (without 2mc) at both stations. Nevertheless, the former indicate 
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the drought magnitude during the month of interest only, while CQDI1-Q80 indicates the severity since the beginning of the 

drought event. For instance, drought severity of the drought event in 2014 (Danube station) exceeds the value in 2011 by a 490 

factor of almost 2. The maximum drought magnitude for both events, however, is very similar according to SSI1. Cammalleri 

et al. (2016a: 356) aptly write that standardized indicators such as SPI and SSI cannot reproduce the “conceptual mechanism 

behind the evolution of a drought event as a phenomenon that is derived from a continuous hydrological quantity with daily 

values that are strongly dependent on the antecedent status”. We argue though that this is just due to the fact that SSI1, as well 

as EP1, indicate drought magnitude and could be converted into the severity indicators CSSI1 and CEP1, respectively (see Fig. 495 

1), which take into account the antecedent status of streamflow (Fig. 7f). 

With SSI12 (Fig. 2c), deviations from normal conditions are smoothed over the preceding 12 months making the indicator 

suitable for identifying reservoir drought hazard. Streamflow drought events at both stations are indicated by SSI12 with a delay 

of several months with regard to drought onset and termination (2003 and 2014, Danube River) or drought termination only 

(1996, Little Colorado River). The correspondence between the meteorological indicators SPI12 and SPEI12 (Fig. 2c) and the 500 

hydrological indicators (SSI1 or EP1 and CQDI1-Q80 variants) is low at both stations. For most streamflow drought events, 

the averaging period of 12 months for the meteorological variables leads to excessive delays in the signal. Many short drought 

signals are not detected at all. Performance of SPI12 and SPEI12 is equally low at both stations. Hence, drought propagation 

through the hydrological cycle is faster than estimated by SPI12 and SPEI12. This is also supported by the sensitivity analysis 

of SPI averaging periods in Sect. 4.2.5. At both stations in Fig. 2, an averaging period of 3 months resulted in the highest 505 

correlation between SPI and observed SSI1. 

RQDI (Fig. 2d) indicates the magnitude of streamflow drought hazard under the assumption that the system at risk is 

habituated to mean monthly streamflow but not to interannual variability. Due to the high interannual variability at the Little 

Colorado River with a few high-flow years that considerably increase mean monthly streamflow, RQDI1 and RQDI12 are often 

below -50%. The strong RQDI1 signal is very different from the EP1 with minimum RQDI1 values below -90% corresponding 510 

to EP1 (z score) between -1.8 and +0.6. At the Danube station, the threshold -50% is only reached twice during the drought 

years 2003 and 2014 with SSI1 below -1.65. As discussed in Sect. 3.1, it is unknown at the global scale to which streamflow 

characteristics people and other biota are accustomed to, but Fig. 2 visualizes that SSI may underestimate the drought hazard 

in semi-arid regions. At the same time, RQDI probably overestimates drought hazard in regions where people are well accus-

tomed to the interannual variability of streamflow. 515 

The water demand deficit indicators CQDI1-WUs and CQDI1-WUs-EFR (Fig. 2e) result in very different temporal pat-

terns of drought severity as compared to the CQDI1 variants. While streamflow at the Little Colorado River is below Q80 

mainly outside the low-flow period (May-June and November-December), mean monthly WUs are highest in May and June, 

and consequently CQDI1-WU droughts often occur in these months. Drought severity according to CQDI1-WUs-EFR is sig-

nificantly higher and drought duration is much longer. EFR in Fig. 2e is computed as 80% of mean monthly observed Q. Hence, 520 

it is assumed that the river ecosystem is adapted to the seasonality of streamflow, but it is negatively affected in years with very 

dry conditions. At the Little Colorado River, water deficits occur in 65% of all months during the depicted period and mainly 
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stem from unsatisfied EFR. Application of CQDI1-WUs alone is not suitable to assess the current status of water deficit, as it 

does not consider the environmental component of water demand, but the indicator can be used complementarily to show the 

impact of human water demand on the total water deficit. At the Danube station, CQDI1-WUs is always zero, since WUs is 525 

only a small fraction of streamflow. Regions where human water demand is high as compared to supply include, e.g., the 

Mediterranean region, large parts of Turkey, India, and the western United States (Fig. A1c). Here, drought defined as water 

deficit due to high water demand is likely to occur. In these regions, CQDI-WUs and CQDI-WUs-EFR can indicate those 

months where human water use would have to decrease to alleviate drought burden on the river ecosystem. 

 530 

  

Figure 2: Streamflow drought hazard based on observed streamflow during 1986-2015 at two WaterGAP calibration stations in the 

USA (Little Colorado River near Cameron, 1986-2000) (left) and Germany (Danube River, Hofkirchen, 2001-2015) (right): Monthly 

observed streamflow Qobs, mean monthly streamflow MMQ and Q80 (a); CQDI1-Q80 variants (b); SPI12, SPEI12, SSI1 or EP1 and 

SSI12 (c); RQDI1, RQDI12 (d); CQDI1-WUs and CQDI1-WUs-EFR (e). The cumulative indicators in (b) and (e) indicate drought 535 
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severity; the non-accumulated indicators (c) and (d) indicate drought magnitude (see Fig. 1). In (a), periods where Qobs < Q80 are 

highlighted in orange. In (c, left), the z score of EP1 is shown instead of SSI1, since gamma fitting was not possible. In (c), only the 

value range below -0.84 is shown. In (d), only negative relative deviations are depicted. 2mc: 2 months criterion. MAQ: mean annual 

streamflow. SD: standard deviation. 

4 Quantification of global streamflow drought hazard by a global hydrological model 540 

The objective of this chapter is to identify which of the SDHIs presented in Table 1 can be meaningfully quantified at the global 

scale using WaterGAP 2.2d and which SDHIs are appropriate for monitoring different drought risks in large-scale DEWS. After 

a limited validation of modeled streamflow (Sect. 4.1), SDHIs of drought magnitude and severity are compared separately (Sect. 

4.2.1-4.2.3) following the classification system presented in Fig. 1. The SDHIs are shown in global maps for a selected month 

(March 2002), as it is important to understand the relation between indicators at a certain point in time, especially for the 545 

application in DEWS, which are focused on the current situation or the near future. As patterns of indicators depend on charac-

teristic of the streamflow regime and water use that are temporally constant over the reference period, the reasons for similarities 

and differences between indicators can be deducted in any month of the reference period. March 2002 was selected as it was 

among the months with the highest difference between CQDI-Q80 and CQDI-Q80-HS. In addition to the analysis for the se-

lected time step, the latter two indicators are compared at the global scale with respect to drought occurrence during the whole 550 

reference period. Discrepancies and similarities of the indicators are discussed in more detail for two illustrative grid cells with 

the same CQDI-Q80 value in March 2002 (Sect. 4.2.4). Finally, the suitability of SPI with different averaging periods to esti-

mate streamflow drought hazard is assessed using streamflow observations from 218 GRDC gauging stations (Sect. 4.2.5). 

Based on this global-scale analysis and the proposed habituation-based classification approach, selected SDHIs are recom-

mended for implementation in large-scale DEWS (Sect. 5). 555 

4.1 Model validation 

As a limited validation exercise in the present study, percent deviations of simulated Q80 from observed Q80 values were 

computed per calendar month (Fig. 3). The latter were based on monthly streamflow observations from the GRDC database 

(GRDC, 2019). Out of 1319 WaterGAP calibration stations, 220 stations with continuous monthly observations between 1986 

and 2015 were assessed, which are mainly distributed over the Northern Hemisphere (U.S., Canada, Europe, Russia). Figure 9 560 

depicts most of these stations. Two additional stations are located in the U.S. The analysis reveals that Q80 is overestimated by 

WaterGAP in 63% of all months and stations and in 53% if only relevant deviations > 10% are considered. The median percent 

deviation ranges between 35% in February and -7% in July. Figure 3 indicates a tendency of WaterGAP 2.2d to overestimate 

observed Q80 between October and April, while Q80 during the low-flow period in the Northern Hemisphere (May to Septem-

ber) is better captured. 565 
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Figure 3: Percent deviations of simulated Q80 per calendar month from Q80 based on GRDC observations using the reference period 

1986-2015. 

 570 

In a recent study, WaterGAP 2.2d model output was validated against GRDC data by comparing SSI3 based on simulated 

and observed monthly streamflow (SSI3(sim) and SSI3(obs)) during 1971-2000 at 183 globally distributed GRDC stations 

(Wan et al., 2021). Applying drought hazard classes for SSI according to Agnew (2000), the agreement between simulated and 

observed hazard classes in each month was analyzed. Among all stations, the agreement ranged between 29 to 88% of all 360 

months (their Fig. S4 and Table S3). At 68% of all stations (covering 83% of the assessed basin area), SSI3(sim) and SSI3(obs) 575 

resulted in the same drought hazard class in 70 to 88% of the time. Moreover, the goodness-of-fit was evaluated based on the 

Nash-Sutcliffe efficiency (NSE) for monthly streamflow and SSI3 (their Fig. S3). With a median NSE of 0.5 and an interquartile 

range of 0.2-0.7 for SSI3 and 0.14-0.7 for streamflow, WaterGAP 2.2d model output showed a moderate agreement with the 

observations. Both NSEs exceeded 0.7 at 25 out of the 183 stations, which are located in Central and Eastern Europe (twelve 

stations), the United States (ten stations), and South Africa (one station). 580 

4.2 Discrepancies in drought hazard as quantified by different SDHIs 

4.2.1 Drought magnitude (level 1) 

Figure 4 compares indicators of drought magnitude for March 2002 with averaging periods of one month and twelve months. 

Comparing SSI1 and RQDI1 (Figs. 4a and b), the patterns are different in many parts of the globe. While RQDI1 identifies 

most of the drought regions according to SSI1 (e.g., western U.S. and Canada, parts of Brazil, Siberia, India, and China), relative 585 

levels of drought magnitude are very different. For instance, streamflow drought hazard in northern Siberia is extreme according 

to SSI1 (return period of 20 years or higher), but the deviation from mean monthly streamflow according to RQDI1 is compa-

rably moderate (-20-40%). This is due to the low interannual variability of streamflow (Fig. A1b). Moreover, RQDI1 identifies 

severe drought hazards below -80% in many regions with high interannual streamflow variability that are not in drought 



22 
 

according to SSI1 (e.g., southern Africa, Australia, and northeastern China). The strong correlation between RQDI1 and the 590 

interannual variability can be clearly seen by comparing Fig. 4b and Fig. A1b. Overall, RQDI1 values below -40% are computed 

for a rather high fraction of grid cells (33% excluding Greenland). Analyzing all March results during the reference period, this 

fraction varies between 29% and 40%. Figures 4a and 4b underline that RQDI1 can add value to global-scale assessments by 

drawing the attention to highly vulnerable regions. 

EP1 patterns (Fig. 4c) are very similar to SSI1, since both indicators are based on the same conceptual drought definition. 595 

Both indicators generally identify the same drought regions. However, drought classes differ for many grid cells with EP1 

indicating both more and less severe droughts within each region. These differences are due to the fitting of the gamma distri-

bution in case of SSI1 and due to the assignment of the maximum rank among tied values within a streamflow sample in case 

of EP1 (Sect. 2.2.4). Comparing SSI1 with empirical percentiles, Tijdeman et al. (2020) identify several advantages and limi-

tations for both indicators. SSI1 has the disadvantage that for different streamflow regimes, different parametric probability 600 

distributions would be required to achieve the best fit, which reduces consistency at the global scale. In this study, the gamma 

distribution showed the best fit among 23 parametric probability distributions for most grid cells and was applied in each month 

and grid cell. Of course, using only one distribution for the whole globe results in poorly fitting distributions for some cells and 

months (Tijdeman et al., 2020) especially at the lower bound. Grid cells where gamma fitting was rejected in March based on 

the KS test (Sect. 2.2.2) are shown in grey in Fig. 4a (18% of all grid cells excluding Greenland). EP1 does not require fitting 605 

of a distribution and can therefore be computed in more grid cells than SSI1. Only if a sample includes more zero flows than 

the selected threshold, drought identification is not possible (blue grid cells in Figs. 4c). In Fig. 4a, these cells all coincide with 

grid cells where gamma fitting was rejected. On the other hand, if Q80 is zero and current streamflow exceeds zero, it is possible 

to define that the current month is not a drought month (shown in beige in Figs. 4a and 4c). EP1 has the disadvantage that it 

only allows the quantification of the historical non-exceedance frequency within the reference period, while probabilistic infor-610 

mation, for example on extreme events such as a 100-year drought, cannot be derived (Tijdeman et al., 2020). 

SPI12 and SPEI12 (Figs. 4e and f) can be used as proxies for identifying streamflow drought hazard if streamflow data is 

not available. Of course, the correlation with SSI1 strongly depends on the selected averaging period, which varies with different 

basin characteristics (Sect. 4.2.5). Here, the selected indicators correlate fairly well with SSI1 by visual inspection. However, 

the areal extent of extreme drought magnitude below -1.65 is higher according to the proxy indicators (e.g., U.S. east coast, 615 

southern Africa, and eastern China). Hence, in a global assessment, different averaging periods for SPI and SPEI should be 

provided either at the global scale or specific to basins based on a correlation analysis. SSI12 (Fig. 4d) indicates where average 

streamflow between April 2001 and March 2002 is very low compared to April-to-March periods during 1986-2015. Compared 

to SSI1, the areal extent of extreme drought magnitude (< -1.65) as identified by SSI12 is larger in, e.g., central Brazil, Morocco, 

north-eastern China, Siberia, and Greece. If people in these regions need streamflow to fill reservoirs, SSI12 is more suitable 620 

than SSI1 to detect the drought hazard. In other parts of the globe, the areal extent of extreme drought magnitude is smaller 

according to SSI12 (e.g., North America, northern Italy, and southern Africa). Here, SSI1 might detect the onset of a streamflow 

drought that cannot be captured by SSI12. At the global-scale, it is unknown if people depend directly on streamflow or if they 
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have access to reservoirs. Therefore, a global-scale DEWS should provide hazard indicators for both risk systems. For moni-

toring drought risk for river ecosystems, short averaging periods are more suitable assuming that the ecosystem is habituated to 625 

seasonality. 

 

Figure 4: Magnitude of drought hazard (level 1 in Fig. 1): Non-cumulative anomaly in March 2002 as indicated by SSI1 (a), RQDI1 

(b), EP1 (c), SSI12 (d), SPI12 (e) and SPEI12 (f) for the reference period 1986-2015. For the standardized indicators and EP1, the z 

scores and the corresponding frequencies of non-exceedance and return periods are shown. In the blue grid cells in (c), drought 630 

identification is not possible with EP1, since Q80 and Q are zero. “nc”: not computable. The two grid cells from Table 2 are marked 

in (a) (northern Italy and central Paraguay).  



24 
 

4.2.2 Drought severity (level 2) 

Figure 5 shows volume-based indicators of drought severity in March 2002. Since CQDI1-Q80 (Fig. 5a) is a percentile-based 

indicator such as SSI1 and EP1 (Figs. 4a and 4c), the spatial patterns are similar. Nevertheless, as the severity indicator includes 635 

information on drought development before March 2002, while the magnitude indicators only quantify the drought condition 

in this month, the severity shows a more differentiated picture of drought conditions in areas with similarly strong drought 

according to SSI1 and EP1, e.g., Western North America and Northern Siberia. Therefore, drought anomaly indicators and 

drought severity indicators, either the volume-based version such a CQDI-Q80 or one based on EP1 (CEP1 in Fig. 1), provide 

different drought hazard information, and can therefore be used complementarily in a DEWS. 640 

A comparison of CQDI1-Q80 and CQDI1-Q80-HS (Fig. 6) reveals that the impact of the HS method (Sect. 2.2.3) is rather 

small at the global scale but can be relevant at the regional scale. Figure 6a depicts the fraction of drought months as a percentage 

of all 360 months during the reference period as indicated by CQDI1-Q80. Using Q80 as threshold implies that the time series 

should be in drought 20% of the time. This is only the case in 6% of all grid cells (excluding Greenland), while in 86% the 

fraction is reduced to the range of >0% to <20%. This is either due to the fact that one month droughts are ignored (see 2mc, 645 

Sect. 2.2.3) or that several calendar months with Q80=0 exist where a streamflow deficit can never be identified. The fraction 

is increased to up to 22% in 5% of all grid cells either due to the pooling of drought events (2mc) or due to drought prolongation 

in case of Q=0 and Q80=0 (Sect. 2.2.3). Furthermore, CQDI1-Q80 is always zero in 3% of all grid cells, where Q80 is zero in 

many calendar months and one month droughts are ignored in the remaining months. In conclusion, due to the assumed habit-

uation of people and the ecosystem to periods of zero streamflow and to very short streamflow deficits, streamflow drought 650 

hazard as quantified by CQDI1-Q80 is less frequent in the grey, green, and beige grid cells (Fig. 6a). Regions where drought 

occurrence is reduced to less than 14% of the time include Japan, large parts of China, Pakistan, Afghanistan, Iran, North Africa, 

the western parts of South and North America, and eastern Australia. The HS method leads to an increase in drought months 

by up to 3 percent points (corresponding to 11 out of 360 months) in 6% of all grid cells (Fig. 6b). Larger increases of up to 12 

percent points are only computed in 0.4% of all grid cells. Higher values for the CQDI1-Q80-HS indicator are computed in 655 

parts of India, Pakistan, Afghanistan, Iran, and the western U.S., all of which are regions with highly seasonal streamflow 

regimes (Fig. A1a). Hence, although the HS method has a small effect at the global scale, differences between CQDI1-Q80 and 

CQDI1-Q80-HS can be significant in regions with high seasonal streamflow variability.  
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 660 

Figure 5: Severity of drought hazard (level 2 in Fig. 1): Cumulative deficit in March 2002 since onset of drought event as indicated 

by CQDI1-Q80 (a), CQDI1-WUs (b), CQDI1-Q50 (c), and CQDI1-WUs-EFR (d) for the reference period 1986-2015. Grid cells with 

a deficit of zero are shown in beige. Values larger than zero and below 0.1 are shown in green. A value of 0.1, for example, denotes 

that the current cumulative deficit is equivalent to 10% of mean annual streamflow (MAQ). WUs: mean annual surface water with-

drawals. 665 

 

Application of CQDI1-Q50 (Fig. 5c) implies that the system at risk is only habituated to the seasonality of streamflow and 

that the study region is in drought half of the time. Like RQDI1 (Fig. 4b), the indicator can identify drought in highly vulnerable 

regions that would otherwise be overseen using lower thresholds such as Q80. The water deficit indicator CQDI1-WUs (Fig. 

5b) shows a completely different spatial pattern from the above presented indicators, since it is driven by both the spatial pattern 670 

of water stress (human water demand for surface water as a fraction of mean streamflow, Fig. A1c) and low water availability. 

For instance, while low water availability leads to high CQDI1-WUs values in northern South Africa and southeast Spain in 

March 2002, the cumulative streamflow anomaly according to CQDI-Q80 is low in both regions. 

A comparison between CQDI1-WUs and CQDI1-WUs-EFR (Fig. 5d) shows that only in a few regions human water 

demand is the dominant component determining the water deficit in March 2002 (e.g., parts of North America, India, north-675 

eastern China, and Australia). In most regions, EFR leads to high cumulative deficits even if seasonal human water demand is 

small (< 10% of available streamflow, Fig. A1c). Since EFR depends on mean streamflow per calendar month, CQDI1-WUs-

EFR shows very similar patterns to RQDI1 (Fig. 4b). CQDI1-WUs-EFR is the only indicator in this study that takes into account 
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ecosystem health, an aspect that should be included in a global-scale DEWS. Alternatively, the cumulative anomaly-deficit 

indicator QDAI (Popat and Döll, 2021), considering EFR based on a similar approach, can inform decision-makers and water 680 

users about the drought hazard for water supply. In strongly altered flow regimes, where simulated anthropogenic monthly 

streamflow (Qant) is always below 80% of mean monthly naturalized streamflow (Qnat), time series of CQDI1-WUs-EFR are 

continuously increasing and it is not possible to distinguish drought events. In such cases, it is more meaningful to set EFR to 

80% of mean monthly Qant implying that the altered flow regime is the “new normal status” (see also Table 1). 

 685 

Figure 6: Comparison of CQDI1-Q80 and CQDI1-Q80-HS in the reference period 1986-2015: Percent of months in drought based on 

CQDI1-Q80 (a) and the increase due to the “HS method” in percent points (b). Both indicators allow an existing drought to continue 

in months where Q80 and the current streamflow Q are zero. The HS method additionally facilitates drought prolongation in months 

with Q80=0 if Q>0. Neither indicator allows a drought to begin in months with Q80=0. Drought prolongation in case of Q80=0 is only 

possible if a streamflow deficit was computed in at least two antecedent months with Q80>0 (2mc, Sect. 2.2.3). In (a), the fraction of 690 

drought months is reduced to <20% if one month droughts are ignored (2mc). In grid cells with 0% in (a), Q80 is either always zero 

or the few calendar months with Q80>0 result in one month droughts only. The fraction can be increased to >20% in case of drought 

pooling (2mc) or in case of drought prolongation if Q80=0. MAQ: mean annual streamflow. 

4.2.3 Drought severity expressed as frequency of non-exceedance (level 2) 

Figure 7 depicts the probability (frequency) of non-exceedance p of drought severity in March 2002 between four CQDI1 695 

variants, the cumulative relative deviation CRQDI1 with a threshold of -50%, and the cumulative empirical percentile CEP1 

with a threshold of 20%. The indicators are denoted with the suffix “f” for frequency. A p value of 0.8, for example, indicates 

a high drought hazard, where the severity up to March 2002 is higher than the severity of 80% of all completed drought events 

in the reference period. Expressing severity in probability of non-exceedance, as also done in Cammalleri et al. (2016a), facili-

tates comparison between different indicator types that are quantified with different units. Spatial patterns based on CQDI1-700 

Q80_f (Fig. 7a) and CEP1(20%)_f (Fig. 7f) are similar, but differences are visible in several regions. In southeastern Russia, 

northeastern China, Siberia, and parts of Canada and Alaska, CEP1(20%)_f indicates a more severe drought event than CQDI1-

Q80_f, while in the Mediterranean regions and the eastern and southwestern U.S. the severity of the drought events is lower 



27 
 

according to CEP1(20%)_f. These differences occur since CQDI1-Q80 quantifies absolute and CEP1 relative drought deficits 

resulting in different relative levels of drought severity among the drought events (Sect. 4.2.4 and Fig. 8). For CQDI1-WUs_f 705 

(Fig. 7b), p values could not be computed in almost half of the grid cells, where less than six drought events were identified 

such that the map focuses the viewer to grid cells with potential water deficits for human water supply (in particular irrigation). 

CQDI1-Q50_f (Fig. 7c) and CQDI1-WUs-EFR_f (Fig. 7d) show high correspondence, as both imply similar assumptions about 

the habituation of the system at risk to the streamflow regime (see Table 1). Correspondence between these two indicators is 

higher than between CQDI1-Q50_f and CQDI1-Q80_f. At the global scale, CRQDI1(-50%)_f (Fig. 7e) identifies fewer regions 710 

with severe drought status compared to CQDI1-Q50_f, but more regions compared to CQDI1-Q80_f. 
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Figure 7: Probability of non-exceedance of drought events (level 2 in Fig. 1) in March 2002 for the cumulative indicators CQDI1-

Q80_f (a), CQDI1-WUs_f (b), CQDI1-Q50_f (c), CQDI1-WUs-EFR_f (d), CRQDI1(-50%)_f (e), and CEP1(20%)_f (f) for the refer-

ence period 1986-2015. A value of 0.8, for example, indicates that the cumulative anomaly or deficit, i.e., the severity up to this month, 715 

is higher than the severity of 80% of all drought events in the reference period. The probability of non-exceedance was not computed 

for grid cells shown in light grey, where less than six drought events were computed in the reference period (Sect. 2.3). “nc”: not 

computable. 

4.2.4 Relation between the various SDHIs 

The relation between selected SDHIs from Figs. 4, 5 and 7 is compared for two illustrative grid cells that share the same CQDI-720 

Q80 value of 0.04 in March 2002 (Table 2). The grid cells are located in northern Italy (43.75° N, 11.25° E) and eastern Paraguay 

(-24.25° N, -56.25° E) and are both characterized by low seasonal and high interannual streamflow variability. 

Although SSI1 and EP1 are based on the same conceptual drought concept, they indicate different drought anomalies. The 

streamflow volume in March 2002 is the fourth smallest value in the Italian cell (rank 4, EP1=4/30=0.13) and the second 

smallest value in the Paraguayan cell (rank 2, EP1=2/30=0.07). However, since the slope at the lower bound of the ranked 725 

streamflow values in the Italian cell (not shown) is very small compared to the latter cell, the non-exceedance probability p of 

the fitted gamma distribution increases equally slowly, and the resulting p (and z score) is smaller than in the Paraguayan cell. 

In fact, the smallest SSI1 in March in the Italian grid cell is -1.76 and in the Paraguayan cell -1.56. Hence, a severe drought, 

usually defined below SSI1=-1.65, is never identified in March in the latter grid cells. Considering that the interannual varia-

bility is slightly higher in the Paraguayan cell, the results are in line with the hypothesis that standardized anomaly indicators 730 

may underestimate drought magnitude in such areas. RQDI1 on the other hand is lower in the latter cell reflecting a stronger 

streamflow deficit in March 2002. Moreover, drought magnitude in March 2002 for water users depending on reservoir storage 

(SSI12) is higher in the Paraguayan cell, indicating that the previous 12 months were relatively drier in the Paraguayan cell than 

in the Italian cell.  

CEP1(20%)_f reveals that the rather strong streamflow anomaly in the Italian according to EP1 is only a peak within a 735 

moderate drought event as compared to the whole reference period. The value of 0.31 indicates that the drought severity up to 

March 2002 was exceeded by 69% of all drought events between 1986 and 2015. The low EP1 value of the Paraguayan cell is 

part of a more severe drought event that was exceeded by only 37% of all (completed) drought events. The higher drought 

magnitude in Paraguay according to RQDI1 corresponds, by chance, to a higher probability of non-exceedance of this drought 

event (CRQDI1(-50%)_f). This comparison underlines that indicators of drought magnitude are only suitable for assessing the 740 

current status of a drought event, but that they do not allow inferences about the status of the whole drought event compared to 

all other drought events of the reference period.  

All severity indicators except CQDI1-Q80 indicate a stronger drought severity for the Paraguayan cell than for the Italian 

cell. Selection of Q50 instead of Q80 as threshold increases the cumulative water deficits from 4% to 36% (Paraguayan cell) 

and 25% (Italian cell) of mean annual streamflow volume. Selection of the sum of human surface water demand and 745 
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environmental water demand as threshold indicates, with 56% and 51% of mean annual streamflow volume, respectively, even 

higher deficits since the onset of the drought event. Considering five indicators that express drought severity in terms of fre-

quency, the non-exceedance frequency of drought severity in March 2002 ranges between 0.3 and 0.7 in the Italian cell and 

between 0.6 and 0.8 in the Paraguayan cell (Table 2). In both grid cells, the indicators that do not assume habituation to inter-

annual variability (CQDI1-Q50_f, CQDI1-WUs_EFR_f and CRQDI1(-50%)_f) show the highest severity. 750 

  

Table 2: Comparison of SDHIs in March 2002 included in Figs. 4, 5 and 7 for a grid cell in northern Italy (43.75° N, 11.25° 

E) and eastern Paraguay (-24.25° N, -56.25° E).  
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Italy -1.47 4 -0.71 0.13 4 -0.83 0.04 0.25 0.51 0.46 0.73 0.69 0.44 0.31 

Paraguay -1.08 5 -0.78 0.07 5 -1.32 0.04 0.36 0.56 0.57 0.83 0.80 0.83 0.63 

1: Magnitude expressed as streamflow anomaly in March 2002 in units of standard deviation (SSI1) or empirical percentiles 
(EP1) with respect to mean March streamflow values during 1986-2015, relative deviation from mean March streamflow values 755 
(RQDI1), and streamflow anomaly averaged over April 2001 to March 2002 in units of standard deviation (SSI12) with respect 
to all April-to-March periods during 1986-2015. 
2: Severity expressed as water volume deficit with respect to a threshold as a fraction of mean annual streamflow since drought 
onset until March 2002. 
3: Severity expressed as probability (frequency) of non-exceedance in March 2002. 760 
4: SSI1=-1.47 is equivalent to Q93 and a return period of 14 years; EP1=0.13 is equivalent to a return period of 8 years. 
5: SSI1=-1.08 is equivalent to Q86 and a return period of 7 years; EP1=0.07 is equivalent to a return period of 15 years. 

 

Although CEP1(20%) and CQDI1-Q80 capture exactly the same drought signal for the grid cell in Northern Italy during 

the reference period (Fig. 8), the relative levels among the drought events differ. The two drought events in 1989 and 1990 have 765 

the highest severity levels according to both indicators. However, CQDI1 identifies the 1989 drought as the maximum event, 

while CEP1 detects the 1990 drought as the maximum event. This can be explained by the fact that the mean calendar month 

streamflow is lowest between June and October. Consequently, higher absolute streamflow deficit volumes (CQDI1) can build 

up during the 1989 drought ending in June 1989 than in the following drought event spanning over June to October 1990. 

Relative streamflow deficits on the other hand are larger for the latter. This is in line with the higher CQDI1-Q80_f value in 770 
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March 2002 (0.46) compared to 0.31 for CEP1(20%)_f (Table 2), since the March 2002 event occurs outside the low-flow 

period. The short drought from June to August 2012 illustrates the difference between both indicators even better. Among the 

twelve drought events, this drought event has only the second lowest drought severity according to CQDI1-Q80_f, but the 5th 

highest severity based on CEP1(20%)_f. Consequently, when monitoring drought hazard, the severity of drought events during 

low-flow periods with high negative impacts is underestimated relative to other drought events based on frequency values of 775 

volume-based severity indicators. Of course, this is only true if monthly deficits are either not normalized (e.g. the low-flow 

index LFI, Cammalleri et al., 2016a) or normalized against mean annual streamflow volume (e.g. van Loon et al. (2014) and 

all CQDI1 variants in this paper) instead of mean monthly values. 

 

Figure 8: Drought severity per month (level 2) during the reference period 1986-2015 for a grid cell in Northern Italy (43.75° N, 11.25° 780 

E) as indicated by CQDI1-Q80 (blue) and CEP1(20%) (red). MAQ: mean annual streamflow.  

 

4.2.5 Suitability of SPIn to quantifiy streamflow drought hazard 

To analyze if either simulated SSI1 (SSI1 (sim)) or SPIn is a better estimator of observed streamflow drought hazard, monthly 

time series of observed SSI1 (SSI (obs)) were correlated with five indicators applying the Pearson correlation: SSI1 (sim), SPI3, 785 

SPI6, SPI9, and SPI12. The analysis was limited to the 218 WaterGAP calibration stations with continuous time series of 

observed monthly streamflow during the reference period 1986-2015 for which all SPI variants were computable. Although 

longer averaging periods for SPI from 12 to 24 months are recommended for hydrological drought assessments (WMO and 

GWP, 2016), different studies at the global (Gevaert et al., 2018; Vicente-Serrano et al., 2012) and the regional scale (Yu et al., 

2020; Huang et al., 2017; Barker et al., 2016) have demonstrated that shorter averaging periods often perform better in estimat-790 

ing streamflow drought hazard. Using an ensemble of seven global land surface and hydrological models, Gevaert et al. (2018) 

found that the optimal SPI averaging period strongly varied among the models and with the season and climate regime. Different 

SPI variants from SPI1 to SPI24 were identified to correlate best with modeled SSI1 time series. In regional studies covering 

arid to humid climate and basin areas ≤ 10,000 km², SPI1 to SPI4 had the highest agreement with observed SSI1 values. Only 

in some humid basins underlain by productive aquifers, longer averaging periods from 6 to 19 months showed the best results. 795 

Basin size was found to be positively correlated with higher averaging periods (Yu et al., 2020). Moreover, shorter averaging 
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periods performed better during spring and summer and longer averaging periods in autumn and winter (Huang et al., 2017). 

The strong influence of basin properties such as area and storage capacity as well as the climate regime was also discussed in 

van Loon (2015). 

 800 

Figure 9: Ranking of the Pearson correlation coefficient r at 218 WaterGAP calibration stations between SSI1 (obs: observed stream-

flow) and each of the five indicators SSI1 (sim: simulated streamflow), SPI3, SPI6, SPI9 and SPI12 for the reference period 1986-

2015. 

 

Figure 9 depicts the 218 WaterGAP calibration stations and their basins located in North America, Northern and Western 805 

Europe, Russia, and South Africa. At each station, the drought hazard indicator that achieved the highest Pearson correlation 

coefficient is indicated. Overall, SSI1 (sim) performed best at 165 stations with a median correlation coefficient of 0.7, followed 

by SPI12 at 23 stations. Among the 165 stations, the next highest correlation was achieved by SPI3 and SPI12 at 50 and 47 

stations with median correlation coefficients of 0.65 and 0.46. The performance of WaterGAP is often lower in semi-arid basins, 

in particular where streamflow is highly altered by irrigation and man-made reservoirs, and in regions dominated by lakes. The 810 

SPI indicators outperform SSI1 (sim) only in smaller basins. Nonetheless, the total number of smaller basins (below 80,000 

km²) where SSI1 (sim) is a better estimator of observed drought hazard still exceeds the number of basins where SPI variants 

perform better. Comparing the SPI variants, it would be expected that longer averaging periods should better capture the drought 
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hazard in larger basins where drought propagation through the hydrological compartments is more delayed. Our analysis indi-

cates a slight tendency that the 9- and 12-month averaging periods show better results in the larger basins, but this cannot be 815 

clearly deducted due to the limited sample size. In conclusion, drought hazard indicators based on modeled streamflow can 

often better quantify observed streamflow drought hazard than meteorological indicators, but this strongly depends on the good-

ness-of-fit after streamflow calibration. 

5 Recommendations 

5.1 General recommendations regarding the selection of drought hazard indicators 820 

Drought hazard indicators serve to assess drought risk and to support drought management. Therefore, when deciding on which 

drought hazard indicator to use, it is first necessary to clearly define “the risk of what for whom” that is to be addressed by the 

indicator. Drought hazard indicators are risk system specific, and there is not one that fits all. As drought is conceptualized as 

both “less water than normal” and “less water than needed”, the choice of indicator as well as the interpretation of the quanti-

tative indicator values implicitly includes assumptions about what is normal and what is needed, i.e., to what amount of available 825 

water people or ecosystems are habituated to without suffering from drought. For example, is the risk bearer well adapted to 

the seasonal variability as well as the water availability that is exceeded in 8 out of 10 months per calendar month, even though 

the latter is only a small fraction of the mean or median water availability as is the case in dry regions of the globe? Then, an 

anomaly-based indicator with the Q80 values of each calendar month as thresholds may be suitable. However, the spatial dis-

tribution of the values of such an anomaly indicator is only consistent and informative if it can be assumed that risk bearers 830 

everywhere on the map are habituated in the same way. Or is the risk bearer not well adapted to a high interannual variability 

and would suffer from even small reductions from mean/median streamflow? Then median values could be used as threshold. 

Alternatively, it could be assumed in such a case that the drought hazard increases with the percent reduction of water availa-

bility from average availability in a calendar month. Then, an indicator based on the relative deviation of the current water 

condition of the mean calendar month condition is informative. When selecting a drought hazard indicator, we recommend that 835 

the assumptions about the habituation of the risk bearer are made explicit first, based on knowledge about the risk system, which 

is then followed by the selection of a drought hazard indicator that fits to these assumptions. 

When translating these conceptual drought definitions into operation drought hazard indicators, we recommend differen-

tiating clearly drought magnitude indicators from drought severity indicators. Magnitude indicators with short averaging periods 

such as 1 month provide information on current, potentially extreme condition of the water flow or water storage under consid-840 

eration. They should be used if the well-being of the risk bearer, e.g., river biota, strongly depends on the water condition at the 

specific time step of the analysis, e.g., the current month. As negative drought impacts are mostly assumed to increase with the 

length of the drought, however, severity indicators are often more informative than magnitude indicators as they quantify the 

cumulative magnitude since start of the drought. All drought magnitude indicators can be used to derive drought severity 
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indicators. With exceptions, we recommend that drought severity at a certain point in time is expressed in terms of the proba-845 

bility/frequency of occurrence (return period) of a drought event with such a severity. These recommendations relate to any 

type of drought variable (precipitation, soil moisture, etc.) and spatial scale. 

5.2 Recommendations for SDHIs in continental and global DEWS 

Continental and global DEWS, which encompass near-real time monitoring as well as seasonal forecasts, are to inform about 

drought hazards for diverse risk systems, which are characterized by different risk bearers (e.g., human water supply, river 850 

ecosystems), habituation, streamflow regimes and water storage capacities. Therefore, a large-scale DEWS should provide data 

for a rather large number of drought hazard indicators together with a clear description of suitability for different risk systems. 

Then, end-users can select and combine a number of drought hazard indicators that are most informative (as is done e.g., for 

generating information shown by the US Drought Monitor). Table 3 lists SDHIs that should be provided by large-scale DEWS, 

together with their suitability for drought risk assessment for 1) human water supply from surface water and 2) river ecosystems, 855 

distinguishing intermittent and perennial streamflow regimes as well as low and large water storage capacities. 

(Meza et al., 2021; Meza et al., 2020)x 
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Table 3: SDHIs that should be provided by large-scale DEWS, together with their suitability for drought risk assessment for 1) 

human water supply from surface water and 2) river ecosystems, distinguishing intermittent and perennial streamflow regimes 
as well as low and large water storage capacities. 860 

Indicators 
of 

Intermittent streamflow Perennial streamflow 

1) Water users  
without access to 
large reservoirs              
2) river ecosystems  

1) Water users with  
access to large reservoirs 

1) Water users with-
out access to large 
reservoirs  
2) river ecosystems  

1) Water users with 
access to large reser-
voirs 

Magnitude 

Return period based 
on EP1 

RQDI1 

Return period based on 
EPn1 

RQDIn1 

Return period based 
on EP1 

RQDI1 

Return period based 
on EPn1 

RQDIn1 

In regions with (suspected) poor quality of hydrological model output, analyze SPEIn, in addition to 
streamflow indicators. 

Severity 

CQDI1-Q80 

CQDI1-Q80_f 

CQDIn-Q801 

CQDIn- Q80_f  

CQDI1-Q80-HS 

CQDI1-Q80-HS_f 

CQDI1-Q802 

CQDI1-Q80_f2 

CQDIn-Q801 

CQDIn-Q80_f 

 CEPn(20%)_f1 

CEP1(20%)-HS_f 

CEP1(20%)_f2   

CRQDI1(-50%)_f  CRQDIn(-50%)_f1 

CRQDI1(-50%)-HS_f 

CRQDI1(-50%)_f  CRQDIn(-50%)_f1 

CQDI1-WUs-EFR 

CQDI1-WUs-EFR_f 

CQDIn-WUs-EFR1 

CQDIn-WUs-EFR_f 

CQDI1-WUs-EFR 

CQDI1-WUs-EFR_f 

CQDIn-WUs-EFR1 

CQDIn-WUs-EFR_f 

1 n: For global-scale DEWS, an averaging period n of 6 or 12 months is suggested. 
2 CEP1(20%)_f preferred over CQDI-Q80 indicators. 

italics: Indicator assumes habituation to a certain degree of interannual variability (see Fig. A1b). 

bold: Indicator assumes the ability to fulfill seasonally varying demand for surface water abstractions and environmental flow. 

normal font: Indicator assumes habituation to a certain reduction from mean monthly streamflow. 865 

 

To assess drought magnitude, we recommend using empirical percentiles and relative deviations to cover risk systems that 

are either habituated to a certain degree of interannual variability or to a certain reduction to mean calendar month streamflow. 

An averaging period of 1 month is suitable for river ecosystems and water users without access to large reservoirs, who depend 

on the water as it flows down the river. Longer averaging periods of 6 or 12 months are suitable in regions where people have 870 

access to reservoir storage that is replenished during high-flow periods and that can alleviate short periods of below-normal 

streamflow. We favor empirical percentiles EP over SSI as the former are more transparent to end-users of a DEWS and do not 

entail uncertainties due to the fitting of a probability distribution. Moreover, application of one selected probability distribution 
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function at large scales will always exclude many grid cells where the fitting is not possible. Here, other methods such as 

empirical percentiles would be required in any case. Expressing percentiles as return period (in years) may further increase the 875 

transparency of EP as end-users are accustomed to quantifying flood hazards by return periods.  

For all four risk systems in Table 3 (intermittent or perennial streamflow, both with and without access to large reservoirs), 

drought severity should be assessed with indicators that imply habituation to a certain degree of interannual variability (CEP 

variants and/or CQDI-Q80 variants), to a certain reduction from mean monthly streamflow (CRQDI variants), and to the ability 

to fulfill seasonally varying water demand from surface water abstractions and environmental flow (CQDI-WUs-EFR variants). 880 

The severity indicators expressed in cumulative percent (CEP and RQDI variants) should be provided as frequency of non-

exceedance (denoted with suffix “f”) as the informative value of a cumulative percentage is low. Application of longer averaging 

periods of 6 or 12 months is recommended for all severity indicators in regions with large reservoirs where the impact of short-

term droughts below 6 months is probably low. In addition, the HS method (Sect. 2.2.3) is recommended in intermittent flow 

regimes with reservoirs for CQDI1, CRQDI1 and CEP1. The method allows existing high-flow droughts to continue during 885 

low-flow periods (defined as calendar months with Q80=0). The HS method follows the assumption that risk bearers in these 

regions cannot recover from high-flow droughts during low-flow periods such that drought severity should be kept at the initial 

level. CEP1(20%)-HS_f (not assessed in this study) is computed like CQDI1-Q80-HS_f (Sect. 2.2.3) with potential drought 

prolongation in calendar months with Q80=0. CRQDI1(-50%)-HS_f (not assessed in this study) allows an existing high-flow 

drought to continue in calendar months where mean monthly streamflow MMQ is zero (and thus all 30 streamflow values in 890 

this calendar month). The CQDI variants are suitable for all risk systems as they inform end-users of a DEWS about drought 

severity in units of absolute streamflow volume. CEP1 was found to be more sensitive to low-flow droughts than CQDI1 (Fig. 

8 and Sect. 4.2.4). In intermittent streamflow regimes without reservoirs, however, droughts are mostly detected during the 

high-flow periods, and CEP1(20%)_f would not add value to a drought hazard assessment. In intermittent streams with reser-

voirs on the other hand, application of CEPn(20%)_f or CEP1(20%)-HS_f is valuable, since these indicators quantify relative 895 

streamflow deficits, and the ranking of drought events by their severity is different from the ranking according to CQDI variants 

(Fig. 8). Regarding the risk for ecosystems or water supply in perennial rivers without large reservoirs, CEP1 is preferred over 

CQDI1-Q80 due to the sensitivity of the former to low-flow droughts. In perennial rivers with large reservoirs upstream, 

CQDIn-Q80 is preferable. 

According to Stahl et al. (2020), practitioners often use particular streamflow values rather than anomalies as trigger for 900 

management actions. These practitioners could use forecasted RQDI1 as provided by the global-scale DEWS to determine 

whether this trigger will be reached by computing streamflow from RQDI1 and observed mean monthly streamflow.○ 
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6 Conclusions 905 

This paper presents a new systematic approach for selecting global-scale streamflow drought hazard indicators (SDHIs) for 

monitoring drought risk for human water supply and river ecosystems in large-scale drought early warning systems (DEWS). 

The methodology replaces the conventional and imprecise classification into threshold-based and standardized indicators by a 

new taxonomy that distinguishes indicators pertaining to four indicator types by a) their inherent assumptions about the habit-

uation of people and the ecosystem to the streamflow regime and b) their level of drought characterization, namely drought 910 

magnitude and drought severity, with the latter either in units of cumulative drought magnitude or in terms of frequency of 

occurrence. The new classification scheme facilitates a better understanding of the information value of drought hazard indica-

tors. It can support the development of a (large-scale) DEWS as well as water managers who rely on the output of drought 

hazard indicators. 

 We applied the new classification scheme to a set of nine existing and three newly developed SDHIs for the reference 915 

period 1986-2015 using the global water resources and water use model WaterGAP 2.2d. Indicators of drought magnitude 

included SPI12, SPEI12, SSI1, SSI12, empirical percentiles EP1, and relative streamflow deviations from mean conditions, 

RQDI1 and RQDI12. Indicators of drought severity comprised the cumulative volume-based drought severity indicators 

CQDI1-Q50 and CQDI1-Q80 (with Q50 and Q80 as threshold), cumulative empirical percentiles CEP1(20%) (20th percentile 

as threshold), and cumulative relative deviations from mean conditions CRQDI1(-50%) (-50% as threshold). We developed a 920 

severity indicator for highly seasonal (HS) streamflow regimes with access to large reservoirs, CQDI1-Q80-HS and two water 

deficit indicators, CQDI1-WUs and CQDI1-WUs-EFR, both considering mean monthly surface water use, and in case of the 

latter also mean monthly environmental flow requirements. These indicators cover several types of habituation to the streamflow 

regime comprising the habituation to a certain degree of interannual variability of streamflow, seasonality, a certain reduction 

from mean calendar month or mean annual streamflow, and being able to fulfill the demand for surface water abstractions and 925 

environmental flow. The comparison of indicators shows, for the first time explicitly for drought magnitude and severity, how 

conceptualization and selection of indicators can lead to very different spatial and temporal patterns of drought hazard. Using 

two example grid cells, the set of indicators resulted in a high range of non-exceedance frequencies (0.3-0.7 and 0.6-0.8) of 

drought severity of the same drought event. Indicators of drought magnitude are only suitable for assessing the current status 

of a drought event, but they do not allow inferences about the status of the whole drought event compared to all other drought 930 

events of the reference period. 

A limited validation exercise revealed a tendency of WaterGAP 2.2d to overestimate observed Q80 between October and 

April, while Q80 during the low-flow period in the Northern Hemisphere (May to September) is better captured. In a recent 

study comparing simulated and observed monthly streamflow and SSI3 at 183 stations worldwide, WaterGAP 2.2d model 

output showed a moderate agreement with observations. However, high agreement was identified at 25 stations in Central and 935 
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Eastern Europe, the United States, and South Africa. Moreover, the current study showed that SSI1 based on modeled stream-

flow often outperformed SPI with different averaging periods. However, this strongly depends on the goodness-of-fit after 

streamflow calibration. In uncalibrated basins, meteorological drought indicators should be used complementarily as proxies 

for hydrological drought hazard due to the uncertainty of modeled streamflow. 

When providing drought hazard information in a global- or continental-scale DEWS, it is unknown which streamflow 940 

characteristics people and river ecosystems are locally accustomed to, and it is uncertain to what degree people have access to 

water stored in reservoirs. The suitability of hazard indicators is region- and risk-specific (Blauhut et al., 2021) and can only be 

evaluated with regional knowledge about the vulnerability of the system at risk. Therefore, a large-scale DEWS should provide 

data for a rather large number of drought hazard indicators that characterize the condition of various water flows (streamflow, 

actual evapotranspiration as a fraction of potential evapotranspiration) and water storage compartments (snow, soil, groundwa-945 

ter, lakes). A major component of the DEWS are clear explanations for the end-users about the suitability of drought hazard 

indicators for specific risk systems. When selecting hazard indicators, we recommend that the end-user makes the assumptions 

about the habituation of the risk bearer explicit before selecting a drought hazard indicator that fits to these assumptions. Out 

of the twelve analyzed SDHIs, we recommend a set of magnitude and severity indicators for large-scale DEWS specific to the 

risk systems 1) human water supply from surface water and 2) river ecosystems, distinguishing intermittent and perennial 950 

streamflow regimes as well as low and large water storage capacities. Since an impact assessment was beyond the scope of this 

study, future studies could analyze how well these hazard indicators, in combination with suitable vulnerability and exposure 

indicators, can estimate drought impacts in the targeted risk systems at regional or national scales. 
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Appendix 

 955 

Figure A1: Seasonal streamflow variability indicated by the seasonal amplitude (Q in calendar month with highest mean monthly Q 

minus Q in calendar month with lowest mean monthly Q divided by MMQ (mean monthly Q over all calendar months)) (a), interan-

nual streamflow variability indicated by the average of the 12 calendar month values of (Q20-Q80)/Qmean (b), and average of the 12 

calendar month values of WUsmean/Qmean (c). All values in percent. 

 960 

 
Data availability. WaterGAP 2.2d model output data used in this study are available at https://doi.org/10.1594/PAN-

GAEA.918447 (Müller Schmied et al., 2021). The WaterGAP 2.2d source code is published at https://doi.org/10.5281/ze-

nodo.6902111. The outputs from this study are available at https://zenodo.org/record/6647609 (Herbert and Döll, 2022). GRDC 

monthly streamflow data are available at: http://grdc.bafg.de (GRDC, 2019). 965 
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