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Abstract 14 

Landslides and flash floods are geomorphic hazards (GH) that often co-occur and interact. They 15 

generally occur very quickly, leading to catastrophic socioeconomic impacts. Understanding the 16 

temporal patterns of occurrence of GH events is essential for hazard assessment, early warning and 17 

disaster risk reduction strategies. However, temporal information is often poorly constrained, especially 18 

in frequently cloud-covered tropical regions, where optical-based satellite data is insufficient. Here we 19 

present a regionally applicable methodology to accurately estimate GH event timing that requires no 20 

prior knowledge of the GH event timing, using Synthetic Aperture Radar (SAR) remote sensing. SAR can 21 

penetrate through clouds and therefore provides an ideal tool for constraining GH event timing. We use 22 

the open-access Copernicus Sentinel-1 (S1) SAR satellite that provides global coverage, high spatial 23 

resolution (~10-15 m) and a high repeat time (6-12 days) from 2016 to 2020. We investigate the 24 

amplitude, detrended amplitude, spatial amplitude correlation, coherence and detrended coherence 25 

time series in their suitability to constrain GH event timing. We apply the methodology on four recent 26 

large GH events located in Uganda, Rwanda, Burundi and DRC containing a total of about 2500 manually 27 

mapped landslides and flash flood features located in several contrasting landscape types. The 28 

amplitude and detrended amplitude time series in our methodology do not prove to be effective in 29 

accurate GH event timing estimation, with estimated timing accuracies ranging from a 13 day to a 1000 30 

days difference. A clear increase in accuracy is obtained from SAC with estimated timing accuracies 31 

ranging from a 1 day to an 85 day difference. However, the most accurate results are achieved with 32 

coherence and detrended coherence with estimated timing accuracies ranging from a 1 day to a 47 day 33 

difference. The amplitude time series reflect the influence of seasonal dynamics, which cause the timing 34 

estimations to be further away from the actual GH event occurrence compared to the other data 35 

products. Timing estimations are generally closer to the actual GH event occurrence for GH events 36 

within homogenous densely vegetated landscape, and further for GH events within complex cultivated 37 

heterogenous landscapes. We believe that the complexity of the different contrasting landscapes we 38 
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study is an added value for the transferability of the methodology and together with the open access 39 

and global coverage of S1 data it has the potential to be widely applicable.      40 
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1. Introduction  41 

Landslides and flash floods are geomorphic hazards (GH) that can occur very quickly, sometimes in a 42 

matter of a few hours. GH frequently co-occur and interact (e.g. Rengers et al., 2016), they have a 43 

significant impact on the landscape (Petersen, 2001, Korup et al., 2010) and are severe threats for 44 

infrastructure and human life (Bradshaw et al., 2007, Kjekstad et al., 2009, Froude and Petley, 2018). 45 

Landslides and flash floods are often studied in isolation. However, it is their combined occurrence that 46 

can lead to more extreme impacts. For example, in 2013, several people were killed and ~7000 lost 47 

their homes in the Rwenzori Mountains in Uganda by a single debris-rich flash flood fed by upstream 48 

landslides (Jacobs et al., 2016a). Also, in 2011, a combination of flash flooding and mudslides across 49 

the highlands of the state of Rio de Janeiro claimed the lives of 916 people and left 35.000 people 50 

homeless (Marengo & Alves, 2012).  51 

Understanding the temporal occurrence of GH events is essential for hazard assessment, early warning, 52 

and disaster risk reduction strategies (van Westen et al., 2008, Ali et al., 2017, Liu et al., 2018, Guzzetti 53 

et al. 2020). Temporal information with a few day accuracy is needed to understand the close 54 

association between precipitation and the occurrence of GH events (Guzetti et al., 2008; 2020, 55 

Turkington et al., 2014, Marc et al., 2018). For site-specific and local-scale investigation, this accurate 56 

information on the timing of GH events can be obtained with field-based approaches such as 57 

watershed/hillslope monitoring (Guzetti et al., 2012) or a network of observers (Jacobs et al., 2019, 58 

Sekajugo et al., 2022). However, when information on the timing of GH events is needed at a regional 59 

level, the acquisition of such data can only be achieved with satellite remote sensing (Joyce et al., 2009, 60 

Le Cozannet et al., 2020), especially in mountainous regions with difficult field accessibility and where 61 

monitoring and observation capacities are limited (Dewitte et al., 2021). 62 

Satellite remote sensing, and more specifically the use of optical imagery, is a well-developed field of 63 

research to accurately determine the location of GH (Stumpf et al., 2014, Behling et al., 2014; 2016, 64 

Mohan et al., 2021). Optical-based satellite approaches can also be used for extracting the information 65 

on the timing of the GH events (e.g. Kennedy et al., 2018, Deijns et al., 2020), however such approaches 66 

are of limited use in cloud-covered environments, especially if temporal information with a few day 67 

accuracy is needed. 68 

Synthetic Aperture Radar (SAR) satellite, being an active system with an ability to penetrate cloud cover, 69 

holds a great potential for characterizing the timing of GH. Additionally, the sensitivity of SAR satellite 70 

data to surface changes, including vegetation changes (Hagberg et al., 1995, Balzter, 2001, Barrett et 71 

al., 2012), soil moisture changes (Dobson & Ulaby, 1986, Dubois et al., 1995, Ulaby et al., 1996, Nolan 72 

& Fatland, 2003, Srivastava et al., 2006), and surface texture changes (Dzurisin, 2006) gives SAR the 73 

potential to display GH timing with an accuracy of days.  74 

SAR derived products typically used for GH (event) analysis are amplitude data (i.e. changes in surface 75 

backscattering intensity of SAR signal between two images) (e.g. Mondini et al., 2017; 2019, Esposito 76 
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et al., 2020, DeVries et al., 2020, Handwerger et al., 2022) for which amplitude correlation is a common 77 

method used in amplitude change detection (Mondini et al., 2017, Konishi & Suga, 2018, Jung and Yun 78 

et al., 2020) and the coherence (i.e. the change in the ability of SAR wave fronts to stay spatially and/or 79 

temporally in phase between the two images of an interferometric pair) (Burrows et al., 2019; 2020, 80 

Tzouvaras et al., 2020). Additionally, there is a wide range of studies that use SAR-derived ground 81 

deformation to map landslides (Casagli et al., 2017, Solari et al., 2020) or analyze pre-cursor movements 82 

(Intrieri et al., 2018) and internal variability (Nobile et al., 2018). However, they are dependent on 83 

consistent high coherence values at the GH locations, which will make these methods of limited use in 84 

highly vegetated landscapes (e.g. the tropics) (Komac et al., 2015; Solari et al., 2020) and for fast 85 

moving GH (e.g. shallow landslides and flash floods) (Burrows et al., 2020; Tzouvaras et al., 2020). In 86 

recent GH detection studies, amplitude products are usually preferred over coherence products (Ge et 87 

al., 2019, Jung and Yun et a., 2020, Mondini et al., 2021), since coherence generally yields less accurate 88 

results due to lower resolution (Burrows et al., 2019; 2020) and a higher number of false-positives 89 

(Aimaiti, 2019, Jung and Yun et al., 2020). Despite the increasing use of SAR imagery for GH detection 90 

(Martinis et al., 2015, Twele et al., 2016, Mondini et al., 2019, Psomiadis et al., 2019, Burrows et al., 91 

2020,  Jung and Yun, 2020, Tzouvaras et al., 2020, Jacquemart and Tiampo, 2021, Handwerger et al., 92 

2022), to date, only the recent study of Burrows et al. (2022) used SAR to refine the timing of GH 93 

inventories. Although located in the tropics and showing accurate results, their study was only applied 94 

(1) within a relatively densely vegetated landscape, (2) only on landslides, (3) using pre-processed 95 

amplitude imagery with Google Earth Engine (GEE) (Gorelick et al., 2017), (4) with a-priori knowledge 96 

on the timing of the event (i.e. the year). GH events occur within a variety of landscapes (Emberson et 97 

al., 2020, Dewitte et al., 2021). Therefore, there is a clear need to calibrate and validate any GH timing 98 

method for varying landscape, and land use/land cover characteristics. Additionally, the frequent co-99 

occurrence of landslides and flash floods (Jacobs et al., 2016b, Rengers et al., 2016) warrants the need 100 

to analyze them using a combined methodology. However, so far, there has never been research 101 

dedicated to their combined temporal detection using radar satellite.    102 

The Copernicus Sentinel-1 (S1) constellation is frequently used in GH detection studies (Mondini et al., 103 

2021). Next to the fact that it is freely available and acquired regionally (from 2016 onwards), it offers 104 

a very good trade-off between frequency of acquisition (6/12 days) and spatial resolution (10-15 m 105 

depending on the pre-processing parameters). These advantages make S1 an attractive tool to integrate 106 

in a regional GH timing methodology.        107 

In this study, we aim to develop a regionally applicable methodology that automatically estimates GH 108 

event timing using S1 SAR imagery on GH events spatially located, but with unspecified timing. We 109 

analyze landslides and flash floods together as being co-occurring and interacting events. We create a 110 

methodology that can be applied at the regional scale in complex and various topographic and land 111 

use/land cover environments. The methodology is developed using four GH events either containing 112 

landslides, or a combination of landslides and flash floods located in contrasting landscape types 113 

observed within tropical Africa (see section 2.1). We analyze an unprecedented amount of S1 SAR 114 
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products, namely: amplitude, spatial amplitude correlation (a metric based on the common amplitude 115 

correlation) and coherence. Specifically, we: (1) create S1 SAR time series and analyze their patterns 116 

and behavior at the location of several GH events, (2) demonstrate and assess the ability to detect the 117 

timing of GH events using changes within the S1 SAR time series and, (3) investigate the influences of 118 

the landscape characteristics on the ability to derive the timing from S1 SAR timeseries through a 119 

sensitivity analysis.  120 

2. Data  121 

2.1. Selection of GH events in a tropical region with diverse landscapes 122 

We focus on the western branch of the East African Rift, a mountainous region with high population 123 

densities and diverse landscape and land use/land cover characteristics (Depicker et al., 2021, Dewitte 124 

et al., 2021). The region has a bimodal precipitation distribution with two rainy peaks (October-125 

November & March-April) and a main dry season (June-August) associated with the North-South 126 

migration of the Inter Tropical Convergence Zone (ITCZ) (Thiery et al., 2015, Nicholson 2017, Monsieurs 127 

et al., 2018a) with annual precipitation ranging from ~0.8m along the shores of Lake Tanganyika to 128 

easily more than 2m in the highlands, with the maximum in the Rwenzori Mountains (Monsieurs et al., 129 

2020, Van de Walle et al., 2020). The seasonality of the precipitation strongly controls the occurrence 130 

of landslides and flash floods (Jacobs et al., 2016a; 2016b, Monsieurs et al., 2018a; 2018b, Kubwimana 131 

et al., 2021). Vegetation dynamics are high in the cultivated areas due to the variety of cropping 132 

practices (crop rotations and shifting cultivation, Heri-Kazi & Bielders, 2021). Moreover, the region is 133 

one of the most cloud-covered places in the world (Robinson et al., 2019) and a global hotspot of 134 

thunderstorm activity (Thiery et al., 2016; 2017, Peterson et al., 2021). 135 

We investigate four GH events with known days of occurrence, and located in contrasting landscapes 136 

(fig. 1): 137 

•  Event 1 (Uganda GH event) is located in the southern part of the Rwenzori Mountains 138 

(Uganda) and counts 1063 landslide features of which some contribute directly to the sediment 139 

load of the valley river (fig. 1, Uganda). The event occurred between the 21st and the 22nd of 140 

May 2020. The terrain consists of pristine forests and some cultivated landscape (fig. 2a).  141 

•  Event 2 (Rwanda GH event) is located in the Karongi district (western Province, 142 

Rwanda) and counts 494 features composed of both landslide and flash floods and occurred on 143 

the 6th of May 2018 (fig. 1, Rwanda). The terrain consists of an inhabited and highly cultivated 144 

landscape with the presence of agricultural terraces (fig. 2b). 145 

•  Event 3 (Burundi GH event) occurred around the hills of Nyempundu in the Cibitoke 146 

region (north Burundi) and counts 318 features composed of landslides and flash floods and 147 

occurred between the 4th and 5th of December 2019. Here, many landslides contribute directly 148 

to the sediment load of the rivers (fig. 1, Burundi). The terrain consists of inhabited cultivated 149 

landscape and sporadic tree cover (fig. 2c).  150 
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•  Event 4 (DRC GH event) occurred west of the city of Uvira (DRC), northwest of Lake 151 

Tanganyika and counts 609 landslides and flash flood features that occurred between the 16th 152 

and the 17th of April 2020. Many landslides are connected to the rivers where the flash floods 153 

occurred. The debris-rich flash floods inundated parts of the city (fig. 1, DRC). The terrain is 154 

characterized by an urban area, cultivated landscape, grassland, and sporadic tree cover (fig. 155 

2d). 156 

 157 

Figure 1. The location of the four GH events with their topographic (left: 30m ALOS 3D DEM, GH event 158 

features in black) and optical (right: S2 post-event image, GH event features in yellow) context. Note 159 

that in the close vicinity of the GH events of Uganda and Burundi, large sediment-loaded riverbeds are 160 

visible. This is a consequence of the GH events that contributed directly to the transport of extra material 161 

to the rivers, increasing not only their sediment content, but also their lateral mobility. These river 162 

dynamics are not included in our analysis. The two panels at the lower left depict the location of the GH 163 
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sites (S2 imagery). Image credit: Contains modified Copernicus Sentinel data (2022), processed with 164 

Google Earth Engine. ALOS 3D DEM data provided by Japan Aerospace Exploration Agency (JAXA). 165 

The locations of the GH events (fig. 1) are derived using the Copernicus Sentinel-2 (S2) Multispectral 166 

Instrument (MSI), high resolution (10m), high frequency (6 -12 days) satellite imagery. We manually 167 

digitized all individual features from the first available cloud-free S2 image after the event and a cloud-168 

free S2 image with similar vegetation characteristics (compared to the post-event image) before the 169 

event. We use PlanetScope Ortho Scenes (Planet Team, 2017) for validation of the GH event inventory 170 

with a higher resolution satellite image. Planet operates with a constellation of multiple small satellites 171 

producing very-high resolution (3m), high frequency (up to 1 day) imagery (Table 1). 172 

Table 1: Images information of manual mapping and dating GH events. Planet images are of the type 173 

PlanetScope Ortho Scene (POS) 174 

GH Event 
Sentinel-2 Planet 

Date – pre Date - post Tile Type Date Type 

Uganda 2019-08-16 2020-06-01 35NRA L1C 2020-06-29 POS 

Rwanda 2018-03-09 2018-06-12 35MQT L1C 2019-12-07 POS 

Burundi 2019-08-06 2020-01-23 35MQT L1C 2018-06-12 POS 

DRC 2019-07-02 2020-06-06 35MQS L1C 2020-10-06 POS 

We prefer the use of Planet and S2 over the Maxar or the Spot/Pléiades images visible in Google Earth 175 

because of the consistency in temporal and spatial resolution. To note, the Burundi GH event has 176 

recently been mapped by Emberson et al. (2022) by means of a semi-automated method followed by a 177 

manual correction using S2 satellite data. We expect our manually mapped Burundi GH event inventory 178 

to be similar or more accurate since we use a combination of S2 and Planet satellite data and a 179 

completely manual detection workflow. The date of GH event occurrences is determined from local 180 

media and field observations, and if not available from these resources, determined by the first- and 181 

last available imagery from S2 and Planet imagery.  182 

 183 
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 184 

Figure 2.  Close up of the contrasting typical landscapes of the four GH events. Maps Data: Google, 185 

©2022 Maxar Technologies (c, d) Google, ©2022 CNES/Airbus (a,b). 186 

2.2. SAR time series 187 

SAR time series at the GH location are constructed using the Copernicus S1 Level-1 Single Look Complex 188 

(SLC) imagery acquired in Interferometric Wideswath (IW). The S1 satellite is side-looking (right) and 189 

operates both on the ascending (from South to North) and descending (from North to South) tracks 190 

within the C-band frequency. To study the four GH events (fig. 1) we use all available high resolution 191 

S1 imagery (~15x15 meter resolution) from January 2016 to January 2021 at the location of the GH 192 

event at tracks 174 (ascending) and 21 (descending). This equals to between 196 and 208 ascending 193 

and 120 and 193 descending  images per GH event, where images occasionally overlap more than one 194 

GH event. with a repeat time of six to twelve days with more consistently six days towards recent times. 195 

We use both amplitude and coherence information. S1 images over the study area are provided in 196 

vertical-vertical (VV) and vertical-horizontal (VH) polarizations. Different polarizations result in different 197 

backscattering values (Shibayama et al., 2015, Psomiadis, 2016, Park & Lee, 2019, Burrows et al., 198 

2022). Mondini et al., 2019 noted a better definition of landslide-induced changes in vegetated areas 199 
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using the VH channel. In contrast, Burrows et al. (2022) found VV to perform better than VH for landslide 200 

event timing estimation. Psomiadis (2016) concluded that VV polarization performed better than VH 201 

polarization for flash flood mapping. Finally, VV polarization images are acquired more consistently at 202 

the locations of our GH events. We therefore decide to use VV polarization for our analysis. Due to the 203 

side-looking nature of the S1 satellite it is subjected to foreshortening, layover, and shadowing which 204 

are SAR inherent quality problems that are amplified within mountainous regions and affect image 205 

quality (Hanssen, 2001, Dzurisin, 2006). GH inventories are masked for foreshortening, layover, and 206 

shadow areas to remove the individual landslides and flash floods that fall within these inherently noisy 207 

areas. 208 

2.3. SAR controlling factors 209 

SAR amplitude and coherence are influenced by local slope angle (Hanssen 2001), soil moisture (Ulaby 210 

et al., 1996, Scott et al., 2017), vegetation (Balzter, 2001, Barrett et al., 2012), and terrain roughness 211 

(Dzurisin, 2006). Coherence is additionally influenced by atmospheric changes (Rocca et al., 2000) and 212 

due to the use of image pairs, also by the temporal baseline (time between acquisition of two images), 213 

the perpendicular baseline (distance between the location of acquisition of two images) and the 214 

difference in incident angle of the paired images (Hanssen, 2001). Coherence values are generally very 215 

low (high decorrelation) in densely forested areas due to constant movement of the leaves and stems 216 

(Weydahl, 2001, Tessari et al., 2017), whereas bare soils or urbanized terrains, due to their static 217 

nature, generally reveal relatively high coherence values (Colesanti & Wasowski, 2006). An increase in 218 

coherence values after GH event occurrence is therefore expected. Amplitude values, on the other hand, 219 

show to have a quite complex reaction to terrain change. Due to the influence of soil moisture and 220 

roughness change on the amplitude values, the occurrence of a GH event could both increase and 221 

decrease the amplitude values at the location of the GH event (Mondini et al., 2021, Burrows et al., 222 

2022). Both precipitation (in changing leaf- and soil wetness) and vegetation patterns, can dynamically 223 

influence SAR amplitude and coherence values, causing a cumulative effect on the time series 224 

(Srivastava et al., 2006, Brancato et al., 2017). This effect is more prominent over sparsely vegetated 225 

areas due to geometric (vegetation growth and farming practices) and dielectric (moisture) changes 226 

(Strozzi et al., 2000). Additionally, a change in atmosphere (precipitation events, ionospheric 227 

disturbances) can dynamically influence the coherence values (Rocca et al., 2000, Jacquemart & 228 

Tiampo, 2021). To better assess the ability to detect GH timing, it is essential to understand the dynamic 229 

factors controlling the behavior of the signal.  230 

We derive precipitation estimates from the GPM Level 3 IMERG Final Daily (10km spatial resolution) 231 

dataset that has been validated through rain gauge data within the area (Nakulopa et al. 2022). General 232 

vegetation patterns per GH event are visualized using the Normalized Difference Vegetation Index 233 

(NDVI; Tucker, 1979). NDVI time series are derived from the Landsat-8 (30m spatial resolution) archive 234 

and processed within the GEE environment We use the Landsat 8 atmospherically corrected surface 235 
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reflectance images provided within the GEE environment. We masked them for clouds using the quality 236 

assessment band resulting from the CFmask algorithm (Foga et al., 2017).  237 

We choose the lower resolution Landsat-8 over the higher resolution S2 imagery to reduce any 238 

unwanted local effects of NDVI change captured in the higher resolution S2 imagery, and since we are 239 

only interested in the general vegetation trends within the area this should be sufficient. From the cloud-240 

masked images, a spatial-average NDVI time series is created spanning from 2016-2020 over the 241 

undisturbed areas of the GH event area. The NDVI time series are further processed to monthly 242 

averages, since we are interested in general vegetation patterns visible in the NDVI time series rather 243 

than changes on smaller temporal timescales.  244 

We use the ESA Climate Change Initiative Land Cover product (ESA, 2016) to categorize GH based on 245 

their prior land cover to assess the influence of land cover on the timing detectability. This product has 246 

been validated within the region by Depicker et al. (2021), showing an accuracy of 86.1 ± 2.1% in land 247 

cover classification. All above mentioned factors are considered during the analysis of the SAR timeseries 248 

and the GH event timing estimations. 249 

3. Methods  250 

3.1. Sentinel-1 pre-processing 251 

The S1 images are pre-processed using the “InSAR automated Mass processing Toolbox for 252 

Multidimensional time series” (MasTer) (Derauw et al., 2020, d'Oreye et al., 2021) processing chain (fig. 253 

3, step 1). MasTer is a tool for automated SAR and SAR interferometry (InSAR) mass processing 254 

(Samsonov & d’Oreye, 2012, Derauw et al., 2019; 2020, d’Oreye et al., 2019; 2021), that is incremental 255 

(i.e. only computes the minimal required information when a new image is available) and optimized for 256 

mass processing. The MasTer workflow is applied on both the ascending and descending track and 257 

consists of: 258 

(1) the application of orbit correction using the precise orbit files provided with the S1 data. 259 

(2) The creation of time series of amplitude maps per track. Amplitude maps of each given track are 260 

co-registered on a reference image taken from that track. Every amplitude image in the radar geometry 261 

of that track is cropped and provided with the same grid and dimensions framing the area of interest.  262 

Amplitude values are calibrated to sigma nought values. The amplitude images are multi-looked by a 263 

factor 2 in azimuth and in range, to reduce speckle, leading to a roughly 28x5 m slant range resolution. 264 

Radiometric terrain correction is applied to account for the local incidence angle variating with slope 265 

angle resulting in amplitude values that are independent of slope angle (Small, 2011). 266 

(3) The creation of coherence maps using consecutive images throughout the time series with a 267 

maximum temporal baseline of 12 days and a maximum perpendicular baseline of 150 m. The coherence 268 

maps are provided with the same multi-looking factor, grid, and ground range resolution as the 269 

amplitude images.  270 
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(4) All the amplitude and coherence maps from all the tracks spanning a given GH area are geocoded 271 

from slant range to ground range on a common grid with a 15 by 15 m resolution using the 30 m ALOS 272 

Global Digital Surface Model. We decided to geocode the SAR imagery to make it compatible with all 273 

our other data products and to allow for an easier visual comparison with optical imagery. 274 

3.2. Spatial amplitude correlation   275 

We adapt the amplitude correlation approach, initially used for GH spatial detection (Mondini et al., 276 

2017, Konishi & Suga, 2018, Jung & Yun, 2020), to allow for GH timing detection at the location of the 277 

GH event using the amplitude image stacks (fig. 3, step 2). We reason that the spatial correlation is 278 

generally lost when the inter-pixel relationships between two images change at the location of a GH 279 

event. Therefore, a significant change within the landscape such as a landslide or a flash flood will cause 280 

a significant decorrelation. Due to the sensitivity of SAR amplitude to changes in vegetation (Balzter, 281 

2001, Barrett et al., 2012), seasonal greening and browning trends have a pronounced influence on the 282 

amplitude time series (Balzter, 2001, Barrett et al., 2012), which potentially limits the detectability of 283 

the GH event within the time series. Since spatial correlation is only changing when the inter-pixel 284 

relationships change, general trends that affect the entire area (lowering or increasing the SAR 285 

amplitude values) do not influence the inter-pixel relationships (i.e. no spatial correlation change). Only 286 

when significant inter-pixel change occurs, due to landslides or flash floods, the spatial correlation will 287 

change. The spatial amplitude correlation (SAC) can therefore highlight the GH event occurrence within 288 

the time series, while reducing the seasonal dynamics. To calculate the SAC, we use equation 1 that we 289 

adapted from Jung & Yun (2020).  290 

SACx,y,poly = 
∑{(𝐴𝑟,𝑝𝑜𝑙𝑦− 𝐴𝑟,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(𝐴𝑥,𝑝𝑜𝑙𝑦− 𝐴𝑥,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)}

√∑{(𝐴𝑟,𝑝𝑜𝑙𝑦− 𝐴𝑟,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2

}∑{(𝐴𝑥,𝑝𝑜𝑙𝑦− 𝐴𝑥,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

}

  𝑥 = 𝑑𝑎𝑡𝑒1 … 𝑑𝑎𝑡𝑒𝑁+1; 𝑥 ≠ 𝑟   (1) 291 

with SACx,r,poly the spatial amplitude correlation for the impacted area of date x in reference to date r, 292 

Ax, poly the amplitude pixels of impacted area at date x, and Ar, poly the amplitude pixels of impacted area 293 

at reference date r. Instead of calculating correlation between two subsequent images over a given 294 

window, we calculate the correlation using one reference image (Ar) and all the other images within the 295 

time series (Ax) using only the pixels within a designated impacted area (e.g. single GH feature or 296 

complete GH event) (poly). Consequently, every image within the amplitude image stack can be used as 297 

a reference image and due to slight changes within every amplitude image this will inevitably result in 298 

different SAC time series, one better highlighting the GH event than the other. We apply the equation 299 

separately for ascending and descending images in a parallel workflow. Figure 4 shows schematically 300 

how the SAC time series should behave using different reference images. Taking a reference amplitude 301 

image before the GH event occurrence (fig 4a), results in high SAC before and low SAC after GH event 302 

occurrence. The opposite is expected when using a reference amplitude image after the GH event (fig 303 

4b). 304 
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We use every available image within the amplitude image stack as a reference image and calculated 305 

the respective SAC time series from it. From here, it is necessary to identify the most appropriate 306 

reference image.  307 

                       308 

 309 

Figure 3.  Flowchart of the four-step methodology. Rectangles represent initial input imagery, output 310 

image stacks or time series products. The rhombus represents the external software product. Hexagons 311 

represent methodological steps, which are described in the text. (1) Pre-processing of the S1 imagery 312 

using the MasTer processing chain to acquire amplitude and coherence image stacks. (2) Application of 313 

the spatial amplitude correlation (SAC) method using Empirical Cumulative Distribution Functions (ECDF) 314 

on the amplitude image stack resulting into SAC time series. (3) GH pixel(s) averaging for every image 315 

in the amplitude and coherence image stacks resulting into amplitude and coherence time series. (4) 316 

Application of binary segmentation change detection to acquire the date of the most significant change 317 

within the amplitude, SAC, and coherence time series.  318 
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Hence, we develop a new methodology that identifies the most suitable reference amplitude image by 319 

finding the SAC time series that most distinctively shows changes related to the GH event occurrence. 320 

We distribute every SAC time series as Empirical Cumulative Distribution Functions (ECDF) resulting in 321 

multiple ECDF curves equal to the amount of reference images. A SAC time series that contains a distinct 322 

change indicative of the GH event occurrence will show a similar distinct change in its ECDF. 323 

Contrastingly, SAC time series that fail to distinctively highlight the GH event, show an ECDF that is 324 

similar to a normally distributed ECDF. Therefore, we create a normally distributed ECDF, using the 325 

mean and standard deviation derived from the ensemble of ECDF curves, and identify the ECDF that 326 

deviates most from it. Per ECDF we calculate and cumulate the difference from the normally distributed 327 

ECDF. The ECDF with the highest cumulative difference is chosen as most representative and the related 328 

SAC time series was used. 329 

3.3. Geomorphic hazard event timing estimation 330 

GH event timing is determined on two scales within separate workflows:  331 

• Timing workflow 1: the complete GH event scale. In this workflow, the steps outlined in figure 332 

3 are carried out once using all pixels encompassing the full GH event. This results in one 333 

ascending and one descending track time series for amplitude, SAC, and coherence. 334 

• Timing workflow 2: the individual GH scale. In this workflow, the GH event is subdivided in 335 

multiple individual GH features and the steps outlined in figure 3 are carried out separately for 336 

each individual GH feature. This results in multiple ascending and multiple descending track 337 

time series, equal to the amount of individual GH features, for amplitude, SAC, and coherence.  338 

In both workflows we do not choose to remove fuzzy pixels (i.e., edge pixels that contain both impacted 339 

and non-impacted landscape), since we do not know the effect of these pixels on the SAR time series 340 

and GH event timing estimations. This allows us to establish baseline results. The ascending and 341 

descending track data are processed separately throughout the two workflows. Amplitude and 342 

coherence time series are generated by averaging the values within the identified impacted area per 343 

image (fig 3, step 3) and the SAC time series are generated by applying the SAC method (fig 3, step 2; 344 

section 3.2) within both workflows. The resulting time series are normalized using the time series 345 

average to improve comparability.  346 

Additionally, we make an effort to remove the seasonal influence and atmospheric effect on the 347 

amplitude and coherence time series by subtracting the regional amplitude and coherence trend (i.e., 348 

time series) from the GH event scale amplitude and coherence time series (timing workflow 1). Both 349 

precipitation events and seasonal vegetation dynamics are expected to cover the complete GH event 350 

and its surrounding area. This detrending will therefore emphasize the change induced by the GH event 351 

occurrence while removing any regional changes induced by either seasonal vegetation dynamics or 352 

atmospheric effects (e.g. Jacquemart & Tiampo, 2021). The regional amplitude and coherence time 353 

series are established by following step 1 and 3 in the methodology flowchart (fig. 3), using a larger 354 



14 
 

area surrounding the GH events as input (i.e. a square of approx. 1.5 times the GH event area, excluding 355 

the exact location of the GH event). This results in the detrended amplitude and detrended coherence 356 

data products. SAC is created to already consider seasonal vegetation dynamics so no additional 357 

detrending for this data product is performed.  358 

We decide not to detrend individual GH feature time series (timing workflow 2), which could include the 359 

use of a detrending buffer (e.g. Burrows et al., 2022). Since we deal with complex heterogenous land 360 

cover, proximate land cover does not necessarily represent the land cover at the GH feature, which 361 

prohibits from accurate detrending. Additional research is required before implementing such a method 362 

within a wide variety of environments. 363 

Timing is defined on every time series (for amplitude, SAC and coherence) using a binary segmentation 364 

change detection approach (Bai, 1997, Fryzlewicz, 2014) using the python package ‘Ruptures’ (Truong 365 

et al., 2020) (fig. 3, Step 4). The algorithm was set to predict only one breakpoint since we aim to 366 

detect the most significant change in the time series. The output of the applied binary segmentation 367 

change detection algorithm is a value that represents the location of an image within the image stack. 368 

The date of this image is extracted and assigned as the earliest date after the GH event occurrence. 369 

This applies for the amplitude and SAC time series. However, since coherence is based on image pairs, 370 

it would identify the image pair right after the GH event. We therefore assign the first date from this 371 

image pair as the earliest date after the GH event occurrence. On the complete GH event scale (timing 372 

workflow 1) this results in two dates (from ascending and descending track) per data product 373 

(amplitude, detrended amplitude, SAC, coherence, detrended coherence). On the individual GH scale 374 

(timing workflow 2), this results in several dates, equal to two times (one for ascending and one for 375 

descending track) the amount of individual GH features per data product (amplitude, SAC, coherence). 376 

Here we identify the date that occurred most frequently (majority) as representing the timing of the 377 

event. We define the minimal uncertainty in timing estimation by the difference between the estimated 378 

date of occurrence and the date of the image prior to that (i.e. a maximum of 12 days).  379 
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 380 

Figure 4.  Idealized schematic of the SAC method using two different reference images: one before and 381 

one after the occurrence of the GH event (A, B). Squares represent images, the red dotted line indicates 382 

the occurrence of a GH event. Inside the images are the conditions of the impacted area (represented 383 

here as single GH feature but is similar for complete GH event). Pre-event conditions are displayed in 384 

green. Post-event conditions are displayed in brown. The black curved lines represent the combination 385 

of images on which equation 1 is applied to achieve the resulting SAC time series. The schematic SAC 386 

graphs (right) depict the expected results using a reference image before the event (A) with high 387 

correlation before and low correlation after the event, and using a reference image after the event (B) 388 

with low correlation before and high correlation after the event. 389 

3.4. Sensitivity analysis with respect to landscape characteristics 390 

In section 2.3 we discuss the controlling factors on the SAR signal. Here, we aim to understand the 391 

influence of these controlling factors plus the influence of individual GH properties on the detectability 392 

of the event timing. We carry out a sensitivity analysis on GH area (effect of a changing number of 393 

pixels/pixel mixing, Deijns et al., 2020), slope angle (change in image acquisition geometry, Zebker and 394 

Villasenor, 1992, Hanssen, 2001), land cover (changing vegetation and soil moisture patterns, Giertz et 395 

al., 2005), and slope aspect (different effect of layover, shadowing within ascending and descending 396 

track, Hanssen, 2001, Dzurisin, 2006). We carry out the analysis separately for the ascending and 397 

descending track images. Per individual GH feature we derive the average value of the above-mentioned 398 

parameters. We find more smaller-sized GH in the Rwanda GH event (fig 5a), a slight deviation (peak 399 

more to the left) in slope distribution for the Uganda GH event (fig. 5b) and a large variation in slope 400 

aspect distribution for different GH events (fig. 5d). Additionally, land cover distribution is different for 401 

every GH event (fig. 5c) which corroborates with what we see in figure 2.  402 

The sensitivity analysis is carried out iteratively over every parameter from a minimum value to a 403 

maximum value using predefined steps (Area: 1000 m2, Slope: 5°, Land Cover: per individual land cover 404 
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type, Slope aspect: 45°). Per iteration the GH inventory is reduced to contain only individual GH features 405 

that meet the iteration conditions. We exclude bins that contained less than 20 individual GH features 406 

to avoid non-sense (very high or very low) values that would negatively influence the quality of the 407 

trend. 408 

Per bin-size, we calculate the timing for every individual GH feature, and the percentage of timing 409 

estimates that fall within one month of the actual event occurrence over the total amount of individual 410 

GH features. Higher percentages indicate more timing estimates closer to the actual event occurrence. 411 

The variations within this percentage are subsequently analyzed to relate changing characteristic to 412 

performance. 413 

 414 

Figure 5. Parameter distributions per GH event (Uganda, Rwanda, Burundi, and DRC). (A) Percentage 415 

of individual GH over total amount of individual GH against area (m2), bins of 1000 m2. (B) Percentage 416 

of individual GH over total amount of individual GH against slope angle, bins of 5°. (C) Number of 417 

individual GH against land use/land cover. (D) Percentage of individual GH over total amount of 418 

individual GH against slope aspect, bins of 15°.  419 
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4. Results  420 

4.1. Geomorphic hazard event time series 421 

We created amplitude, detrended amplitude, SAC, coherence, detrended coherence time series for the 422 

four GH events in Uganda, Rwanda, Burundi, and DRC (location in fig. 1) and present it in figure 6 423 

together with the average monthly Landsat 8 NDVI and IMERG monthly cumulative precipitation. 424 

The distinctiveness of the GH event occurrence within the time series varies significantly per data 425 

product (fig. 6). SAC (fig. 6i-l) and coherence (fig. 6m-t) time series showcase the timing of the event 426 

with a significant change of value at the time of the event occurrence. A significant decrease in co-event 427 

(the coherence value from the pre- and post-event image) coherence is not visible.  428 

The amplitude time series do not show any distinct change at the time of the GH event occurrence (fig. 429 

6a-h), except for the Uganda GH event (fig 6a,e). Particularly in the amplitude time series, and to a 430 

minor extent in the coherence time series, clear cyclicity can be observed, that correspond with the two 431 

drier periods (December-February and June-August) that are prevalent in the region (Bonfils, 2012, 432 

Nicholson 2017, Monsieurs, 2018a). The NDVI shows seasonal correlation with the precipitation 433 

patterns, where NDVI patterns follow precipitation patterns with a short time lag (fig 6u-x). Stronger 434 

NDVI variations align with a stronger cyclicity within the amplitude, SAC, and coherence time series 435 

which is particularly visible when comparing the Uganda GH event (weak amplitude SAC and coherence 436 

cyclicity, limited NDVI fluctuations) and the DRC GH event (stronger amplitude, SAC, and coherence 437 

cyclicity, large NDVI fluctuations). The cyclicity clearly influences the distinctiveness of the GH event 438 

within the time series. When comparing the landscape of both GH events (fig. 2a,d) a sharp contrast is 439 

observed. The Uganda GH event region is mostly covered by forest, whereas the DRC GH event region 440 

is mostly covered by grass- and cropland. Consequently, we find that seasonal NDVI oscillations vary 441 

significantly from one study area to another given the difference in landscape.  442 

Time series detrending clearly reduces seasonal cyclicity within the time series, which is particularly 443 

visible for the coherence time series (fig. 6q-t) and to a much smaller degree for the amplitude time 444 

series (fig. 6e-h). For example, the DRC GH event coherence time series benefits from this detrending 445 

procedure such that seasonal cyclicity is almost completely removed, leaving a distinct increase in 446 

coherence values after the occurrence of the GH event (fig. 6t). Detrending the amplitude time series 447 

shows a minor reduction in cyclicity, but the distinctiveness of the GH event within the time series 448 

remains low.449 
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Figure 6.  GH event (detrended) amplitude (red), spatial amplitude correlation (SAC, green) and 450 

(detrended) coherence (black) time series. The dashed red line represents the timing of the GH event 451 

occurrence within the time series. All coherence, amplitude and SAC time series show two lines of a 452 

similar color representing the ascending and descending track time series. The time series are created 453 

according to the complete GH event scale workflow described in sections 3.3. The bottom row shows 454 

the monthly cumulative precipitation (light blue bars) from IMERG satellite data and the monthly 455 

averaged NDVI values (grey line) from Landsat 8 (method described in section 2.3). 456 

4.2. Geomorphic hazard event timing 457 

Figure 7 shows the timing estimation at the GH event scale (timing workflow 1) from the (detrended) 458 

amplitude, SAC and (detrended) coherence time series. The difference in days from the actual 459 

occurrence of the GH event is visualized by a range that incorporates the minimal uncertainty in timing 460 

estimation (fig. 7 and fig. 8; see section 3.3). Timing estimations from the amplitude time series 461 

generally have lower accuracies with estimated timing ranging from a 46 day difference (Uganda, 462 

descending) to a 1000 day difference (Uganda, ascending). Estimations from the SAC time series range 463 

between a 1 day (Uganda) and an 85 day (Rwanda) difference and estimations from the coherence 464 

time series range between a 1 day (Uganda) and a 47 day (Rwanda) difference. Highest accuracies are 465 
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achieved with time series showing less seasonal fluctuation and a steep change at the time of event 466 

occurrence (fig. 5). Timing estimations from the detrended amplitude time series show an increased 467 

accuracy compared to amplitude time series with the most significant change for the Uganda GH event 468 

from a 46-1000 to a 13-22 day difference, but performance is still poor and generally useless for accurate 469 

timing estimation. Detrending the coherence time series increases timing estimation accuracy compared 470 

to the non-detrended coherence timing estimation for the DRC event (25-32 to a 1-5 day difference), 471 

but in general the estimations remain the same.  472 

Figure 8 shows the timing estimation based on the individual GH features within the GH event (timing 473 

workflow 2). Here, the estimated timing represents the date that is estimated most frequently between 474 

all individual GH features (as explained in section 3.3). The percentage of individual GH features that 475 

estimate this (most frequently estimated) date over the total amount of GH features (%maj) are shown 476 

in figure 8. 477 

In general, timing estimation from the amplitude time series have low accuracies with estimated timing 478 

ranging from a 13 day difference to an 831 day difference. A distinct increase in accuracy is seen for 479 

the Uganda GH event compared to the GH event scale (fig. 7) However, the other GH events do not 480 

show any distinct increase in timing estimation accuracy. The %maj ranges between 13% and 32.4% 481 

and shows that for some GH events a large portion of the individual GH features estimate a date that 482 

is far from the actual date of the GH event occurrence. The percentage of individual GH features that 483 

estimate a date within one month of the actual GH event occurrence from amplitude time series is 484 

24.2% (ascending) and 26.9% (descending) for the Uganda GH event, but much lower for the other 485 

GH events, corroborating the fact that the timing detection method performs poorly for the amplitude 486 

data product.  487 

Timing estimations from the SAC time series from individual GH features (fig. 8) differ compared to the 488 

timing estimations at the GH event scale (fig. 7). An increase in accuracy is seen for Rwanda (ascending) 489 

and DRC (ascending) and a decrease in accuracy for Burundi (ascending) and DRC (descending). The 490 

estimated timing ranges from a 1 day difference to an 85 day difference. Although estimated timing 491 

accuracy is higher for SAC compared to amplitude, %maj values are quite low, indicating weak 492 

estimations. The percentage of individual GH that estimate a date within one month of the actual GH 493 

event occurrence ranges from 0.2 (Rwanda, descending) to 38,1 (Uganda, descending). Exceptionally, 494 

for the Uganda GH event, %maj and estimated timing within one month of the GH event occurrence 495 

from the SAC time series is highest in comparison with amplitude and coherence (fig. 8). 496 

Timing estimations from the coherence time series from individual GH features (fig. 8) are similar to 497 

those achieved at the GH event scale (fig. 7), and have, generally, the highest accuracy for all data 498 

products. The %maj values ranged from 13.5 (Burundi, ascending) to 38.4 (DRC, descending). The 499 

percentage of individual GH features that estimates a date within one month of the actual GH event 500 

occurrence ranges from 0 (Rwanda, descending) to 38,4 (DRC, descending). The low percentages from 501 
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the Rwanda descending track can be attributed to the fact that the estimated date is 37 days from the 502 

GH event occurrence and therefore just falls outside the one-month threshold. 503 

 504 

Figure 7. Estimated GH event timing using the complete GH event scale (workflow 1) for amplitude, 505 

detrended amplitude (red), SAC (green), coherence and detrended coherence (black). The darker 506 

colored bar representing the ascending track results. The lighter colored bar representing the 507 

descending track results. The length of bars represent the uncertainty in timing (see section 3.3). 508 

Dashed lines on the bars represent the overlap between the ascending and descending track results. 509 
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510 

Figure 8: Estimated timing from the individual GH feature scale (workflow 2) for amplitude, detrended 511 

amplitude (red), SAC (green), coherence and detrended coherence (black). The darker colored bar 512 

representing the ascending track results. The length of bars represent the uncertainty in timing (see 513 

section 3.3). Dashed lines on the bars represent the overlap between the ascending and descending 514 

track results. In the %maj column we present the percentage of individual GH features over the total 515 

amount of individual GH features that were included in the majority vote separated for the ascending 516 

(asc) and descending (dsc) track. In the ‘within one month’ column we present the percentage of 517 

individual GH features over the total amount of individual GH features that estimated a date within one 518 

month of the actual event occurrence.  519 

4.3. Sensitivity analysis with respect to landscape characteristics 520 

GH size seems to have a clear influence on time estimation accuracy. Specifically, the SAC and coherence 521 

show a clear increase in percentages of estimated timing within one month of the GH event occurrence 522 

with increasing GH size (fig. 9 a-f). R2 values show a relatively reliable fit for both SAC and coherence. 523 

Amplitude shows a slight increasing trend, but associated R2 values are non-significant.  524 

Slope trend lines (fig. 9 g-l) show in general little to no inclination and R2 values are non-significant, 525 

except for the coherence ascending track. Here, a clear increase in slope angle becomes visible with a 526 

comparatively higher R2 (although clearly less significant than R2 from the GH size analysis). 527 

To assess the general influence of land cover on the ability to estimate GH event timing we combined 528 

both the ascending and descending track results for all four GH events in each boxplot (fig. 9 m-o). 529 

Each boxplot therefore contains a total of eight data points per land cover type. The major land cover 530 

classes within the GH events were tree covered area, grassland, and cropland (Fig 4d). Median 531 

percentage values range around 9-10 % for amplitude, 11-16 % for SAC, and 27-34 % for coherence. 532 

Although median values within the grassland land cover type seem to be systematically higher among 533 
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the three data products (amplitude, SAC, and coherence), differences with other land covers are quite 534 

small. No specific land cover shows a significant better performance. 535 

To assess the influence of the slope orientation, we derive the difference between ascending and 536 

descending track percentages per bin and determine which track shows better performance (fig. 9p-s). 537 

At the results for the Rwanda GH event (fig. 9q) we see for SAC and coherence an all-round favorability 538 

for the ascending track, that can be explained by the fact that, like the results in figure 8, the Rwanda 539 

GH event had almost no estimations within one month of the GH event occurrence for the descending 540 

track. The results presented for Uganda, Burundi and DRC GH events (fig. 9p,r,s) show a general 541 

favorability of the ascending track for individual GH features that have an aspect of approximately 45-542 

180°, whereas a general favorability of the descending track for individual GH features that have an 543 

aspect of approximately 225-360°. In contrast to this general trend, the opposite seems to be visible 544 

for the Uganda GH event coherence.  545 

Figure 9.  Timing estimation performance over changing individual GH feature area (a-f), slope angle 546 

(g-l), land cover (m-o) and slope aspect (p-s). The y-axis displays the percentage of individual GH 547 
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features that estimated a timing that falls within one month of the actual GH event occurrence over the 548 

total amount of individual GH features per GH event. Bin sizes: area=1000m, slope angle=5°, slope 549 

aspect=45°. Area (a-f) and slope angle (g-l) plots are separated per track, and the colors indicate the 550 

different GH events. The black dashed lines present the linear trend lines fitted to the data (a-l) for 551 

which the associated R2 values are included. Land cover (m-o): boxplots give lower and upper quartiles 552 

and median. The whiskers of each box represent 1.5 times the interquartile range. Outliers beyond 553 

whiskers are shown as dots. Slope aspect (p-s): the polar plots present the favorability of the ascending 554 

(ASC) or descending (DSC) track per slope aspect (see section 4.3). The color of the polar plot 555 

background indicates the SAR data product.  556 

5 Discussion 557 

In this study we present a regionally applicable methodology to automatically determine GH event timing 558 

using S1 SAR data. Our study improves on the recent advances in GH event timing estimation research 559 

as: (1) we are one of the firsts to use amplitude, SAC and coherence time series in a systematic manner 560 

to detect the timing of GH events (Mondini et al., 2021), (2) we defined a methodology where no prior 561 

knowledge of the GH event timing is required, (3) we applied our methodology on contrasting 562 

landscapes and (4) we combined, for the first time, landslides and flash floods in a single detection 563 

approach. Here we discuss our insights, results considering recent developments, and the potential 564 

improvements and future perspectives of our methodology. 565 

5.1. Insights in geomorphic hazard event timing estimation from SAR 566 

5.1.1 Geomorphic hazard event timing estimation 567 

The use of amplitude or detrended amplitude time series in our methodology does not prove to be an 568 

effective approach to accurately determine the timing of GH events since it gives an estimation accuracy 569 

of 13 to 1000 days with the actual time occurrence of the events. A clear increase in accuracy is obtained 570 

from SAC with an accuracy of 1 to 85 day. However, the most accurate results are achieved with 571 

coherence and detrended coherence with a 1 to a 47 day accuracy. 572 

GH event timing accuracies are higher for GH events that occurred in remote areas with low amounts 573 

of cultivation and human influence (highest accuracies for Uganda GH event, lowest for Rwanda GH 574 

event). The magnitude of the seasonal vegetation oscillations, which shows connectivity with the 575 

precipitation patterns (fig. 6), varies significantly with changing landscapes and results in profound 576 

seasonal cyclicity in both the amplitude and coherence timeseries. Although the coherence is additionally 577 

influenced by atmospheric effects (Rocca et al., 2000), the influence of both the vegetation and 578 

atmosphere on the coherence does not obscure the GH event induced change within the time series. 579 

Notably, after detrending, the effects of both seem to be almost negligible. Denser and taller vegetation, 580 

result in lower seasonal cyclicity within the amplitude and coherence time series. S1 operates in C-band 581 

frequency, meaning that the emitted signal penetrates the canopy layer and subsequently bounces on 582 

the branches, and leaves underneath (Dzurisin, 2006). A reduction in vegetation after a seasonal dry 583 
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period within sparsely vegetated areas, i.e., the grass- and croplands in the DRC GH event, will likely 584 

expose the soil underneath and have a pronounced influence on the backscattering signal given the 585 

difference in backscattering properties of vegetation and soil (Strozzi et al., 2000, Weydahl, 2001, 586 

Colsesanti & Wasowski, 2006, Tessari et al., 2017). In contrast, a seasonal dry period in a dense forest, 587 

(i.e., Uganda GH event) would affect the density of the canopy cover. However due to the height and 588 

close vicinity of the vegetation to each other a dry period does not necessarily lead to more soil 589 

exposure.  This is corroborated by the fact that the NDVI does not change much for the Uganda GH 590 

event, despite the seasonal patterns in precipitation (fig. 6). The regions that are covered with the 591 

denser and most uniform vegetation are commonly environments with the lowest chance of getting 592 

timing information from other sources (media, citizen-observer networks) as compared to GH events in 593 

more inhabited landscapes (Jacobs et al., 2019, Monsieurs et al., 2019,).  594 

The complex reaction of the SAR signal to soil moisture and roughness change can causes both an in- 595 

and decrease of the amplitude at the same GH event location (Mondini et al., 2021, Burrows et al., 596 

2022). Next to the seasonal influence (fig. 6), this can also be a potential reason why no significant 597 

changes at the timing of the GH event are distinguished for all GH events. The inter-pixel variation 598 

captured in SAC proves to be a good tool to account for both this potential in- and decrease and any 599 

seasonal variation in amplitude values at the location of the GH event and increased timing estimation 600 

accuracy. 601 

The pre-event, co-event, and post-event coherence values of our four GH events correspond with the 602 

study of Tzouvaras et al. (2020), where a distinct difference in pre- (low) and post- (high) GH event 603 

coherence values is observed at the location of a landslide occurrence. We observe the same patterns 604 

with the GH events that contain flash floods, likely because a clear landscape change is observed after 605 

the occurrence of the (often sediment-rich) flash floods (fig. 1). The co-event coherence drop as 606 

observed by Tzouvaras et al. (2020) and Burrows et al. (2019) at the location of a landslide occurrence 607 

does not prove to be significant enough to be able to determine GH event timing. This is most likely 608 

attributed to the fact that the GH events occurred in low-coherence (vegetated) areas (Weydahl 2001, 609 

Tessari et al., 2017).  610 

5.1.2 Geomorphic hazard event distribution 611 

An increase in GH area improves the accuracy of timing detection, which can likely be related to the 612 

increased number of pixels fully covering the GH feature relative to the fuzzy edge pixels (e.g. Foody 613 

and Mathur, 2006, Deijns et al., 2020, Zhong et al., 2021). 614 

Generally, accuracy is not correlated with slope angle (fig. 9). However, an increase in accuracy with 615 

increasing slope with a relative low reliability is observed for coherence. Nevertheless, this trend must 616 

be considered with a certain caution: (1) the trend is dependent on the quality of terrain correction 617 

during the pre-processing step (section 3.1), which should make SAR values independent of slope angle 618 

(Small, 2011), (2) a changing slope angle could influence the GH size (Chen et al., 2016), (3) we take 619 
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the average slope angle per GH. Elongated GH features (mainly the flash flood features in the GH 620 

inventories) will have an average slope angle that is not representative for every part of the GH.  621 

Although a clear difference can be observed in time series response to GH events located in different 622 

landscapes (fig. 6), the comparison with the land cover does not allow to find a clear relationship with 623 

the type of vegetation (fig. 9). Since the land cover distribution is not equal amongst GH events (fig. 624 

5), the results are, for some GH events, based on a low amount of individual GH features. The general 625 

trends could therefore also be influenced by additional underlying trends such as GH size and GH slope 626 

angle. The observed large variation in values per box plot (fig. 9m-o) might be an indication of this.     627 

By using the right-looking S1 satellite data, foreshortening, and layover effects should be limited with 628 

descending track acquisitions for GH exposed towards the west (180-360°) and with ascending track 629 

acquisitions for GH exposed towards the east (0-180°). The shadow affects in the opposite direction 630 

and is dependent on the slope of the terrain (Bamler, 2000). We see that, generally, the individual GH-631 

features on the descending slope tend to have a higher timing estimation accuracy for the west facing 632 

slopes and the individual GH features on de ascending track for the east facing slopes, which is as 633 

expected. However, there remains variability in the result, for example, an opposite pattern is visible 634 

for Uganda GH event with the coherence and a partial favorability for the descending track acquisition 635 

on east facing slopes is visible for the DRC GH event. Future research on the detailed effect of changing 636 

GH feature aspects on the ascending and descending SAR time series can provide additional valuable 637 

information in this context. 638 

Our derived trends are established from GH events with each 318 to 1063 individual GH features and 639 

provide a good indication of the SAR response to changing landscape parameters. It remains interesting 640 

to see if these trends sustain with the addition of more GH events from different landscapes.  641 

5.2. Result considering recent developments in SAR timing detection 642 

Our results are somewhat in contrast with Burrows et al., (2022), who argue that coherence is less 643 

performant than amplitude for GH event timing. Using amplitude data, they were able to estimate the 644 

timing of ∼ 30% of landslides per inventory with an accuracy of ∼80% and an average precision of 12 645 

days. Whereas by using coherence (60x60m resolution) they acquired much less accurate results (24-646 

47% correctly estimated). Their study, however, differs in several aspects from our analysis: 647 

1. Burrows et al., (2022) applied their method with a pre-defined notion of GH event timing, i.e. known 648 

year and season. For our GH events, we see distinct seasonal dynamics mainly within the amplitude 649 

time series. Zooming in on a specific time frame (3 months before and 3 months after the GH event 650 

occurrence like Burrows et al., (2022)) reduces the overall seasonal dynamics, which could be the 651 

cause of a wrongly identified GH event change. Reducing this time window will potentially improve 652 

the detectability of the GH event within the time series. However, our methodology is intended to 653 

be applicable in areas such as the western branch of the East African Rift, an area characterized by 654 

data scarcity (Dewitte et al., 2021). In areas like these, information on the temporal distribution of 655 
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GH events may not always be available. We therefore defined a methodology that requires no 656 

knowledge on GH event timing before application, which is an advantage if no GH event timing is 657 

present, however, this increases the chance of any seasonal influence visible within the time series. 658 

2. They applied their method on landslides only. In our case, the addition of flash floods to the 659 

inventories introduces different types of contrasting GH shapes, slopes and land cover (flash floods 660 

tend to be elongated, occur in the valleys with shallower terrain, whereas landslides occurred mainly 661 

on the steeper hillslopes) that can influence the SAR time series, specifically if the flash flood enters 662 

urbanized area (such as in the DRC GH event) or run through a seasonally dynamic channel with 663 

seasonally changing soil moisture levels influencing the SAR signal (Ulaby et al., 1996, Scott et al., 664 

2017).  665 

3. Their used landslide inventories (from Roback et al., 2018 and Emberson et al., 2022) are located 666 

in densely vegetated areas (NDVI between 0.6 and 0.8). In agreement with Burrows et al. (2022) 667 

our results show that the Uganda GH event, where most of the landscape consists of dense 668 

vegetation (i.e., the highest NDVI values), estimated GH event timing accuracies are the highest 669 

among all GH events, obtaining a 1-2 images difference from the actual GH event occurrence for 670 

SAC (1-16 days) and (detrended) coherence (1-8 days). Although amplitude is overall less 671 

performant for the Uganda GH event, we still achieve an accuracy off 13-22 days for the detrended 672 

amplitude. 673 

4. We do not threshold on individual GH area. Specifically, the Rwanda GH event contains a GH event 674 

size distribution that includes many small individual GH features below the threshold used in Burrows 675 

et al. (2022) (fig. 5). Together with the complexity and large fraction of cultivation of the landscape 676 

this clearly results in reduced estimation accuracies.  677 

5. They removed landslide timing estimations using the magnitude of change caused by the landslide 678 

within the SAR time series, which allowed them to improve the estimation accuracy. 679 

5.3 Improvements and perspectives 680 

The current methodology successfully allows to analyze GH event timing from SAR, but several 681 

improvements can be considered in future research.  682 

5.3.1 Improvements  683 

1. In the current methodology we do not detrend individual GH feature time series (see section 3.3). 684 

Because detrending does increase timing accuracy within our study, further research on accurate 685 

detrending of individual GH time series can potentially greatly benefit timing estimation accuracy.   686 

2. We use one change detection algorithm (ruptures: Truong et al., 2020) to estimate GH event timing. 687 

Comparing multiple change detection algorithms (e.g. Deijns et al., 2020, Burrows et al., 2022), 688 

could potentially benefit GH event timing estimation accuracy.  689 

3. The quality of the amplitude and coherence imagery is dependent on the quality of the pre-690 

processing applied with the MasTer tool (Derauw et al., 2020, d’Oreye et al., 2021) and how it deals 691 

with the different steps such as co-registration, radiometric terrain correction and geocoding. Quality 692 
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of the imagery in its turn is also dependent on, among others, the multi-look factor (amplitude), 693 

the interferometric multi-look factor and the maximum temporal and perpendicular baselines 694 

(coherence). In addition, different polarizations may yield different results (Shibayama et al., 2015, 695 

Psomiadis, 2016, Park & Lee, 2019) and the use of a different polarization can potentially improve 696 

event detectability within the time series. Improvements within the SAR imagery might be achieved 697 

by tweaking and closely investigating different pre-processing steps to achieve better image quality. 698 

4. The SAC result depends on the ability to find the best reference image (section 3.2). Additional 699 

efforts can be made to better find the SAC time series that shows the most significant change 700 

related to the GH event occurrence. For example, a preliminary filtering of very noisy SAC time 701 

series (before applying our developed method using the ECDF’s) can potentially benefit the ability 702 

to acquire the best reference image.  703 

 704 

5.3.2 Perspectives   705 

1. We have studied, for the first time in a GH event timing detection approach, both landslides and 706 

flash floods in a combined methodology. Since these GH often co-occur and interact (Marengo & 707 

Alves, 2012, Jacobs et al., 2016a, Rengers et al., 2016) they should be analyzed in a multi-hazard 708 

approach. Our methodology can be well applied within such an approach. For example, multi-hazard 709 

inventories can serve as input for our methodology if there is a need to improve their timing 710 

accuracy. Results can subsequently be used in hazard assessment, early warning, and disaster risk 711 

reduction strategies.   712 

2. Our study shows that there is a clear advantage to analyzing different S1 SAR data products when 713 

estimating GH event timing. The fact that Burrows et al. (2022) shows better results for amplitude 714 

compared to coherence data is in contrast with our results but reinforces the idea of investigating 715 

both data products when applying the methodology to new regions.  716 

3. Given the clear influence of landscape and climate as controlling factors for SAR time series behavior 717 

(section 2.3), we aimed to develop our methodology within a variety of contrasting landscapes and 718 

contrasting vegetation dynamics. This offers perspectives for transferability. We show that slope 719 

angle does not seem to influence accuracy (fig. 9). Based on landscape characteristics, 720 

transferability to other regions seems therefore likely to acquire good results, specifically for the 721 

SAC, coherence and detrended coherence time series as they do seem less influenced by seasonal 722 

dynamics than the amplitude and detrended amplitude time series (fig 6.). However, climate drivers 723 

could also potentially play a role. For example, Since soil moisture and wetness have an influence 724 

on amplitude and coherence time series (Ulaby et al., 1996, Srivastava et al., 2006, Brancato et al., 725 

2017, Scott et al., 2017), contrasting precipitation regimes within other regions could potentially 726 

influence the response of the SAR time series and the estimated GH event timing accuracy. 727 

Examples of contrasting precipitation regimes are: (1) a lower amount of precipitation in more arid 728 

regions, or lower/higher amounts in other tropical regions (Fick and Hijmans, 2017); (2) a change 729 

in precipitation seasonal variability due to spatially different oscillation of the ITCZ (Nicholson et al., 730 

2017, Dewitte et al., 2022);  (3) the effect of local topography and the presence of lakes on the 731 
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local precipitation patterns (e.g. Thiery et al., 2015; 2016; 2017, Monsieurs et al., 2018b). The 732 

influences of these contrasting precipitation regimes on SAR-based GH timing detection, however, 733 

remains to be investigated. Additionally, in its current form, the methodology does not account for 734 

the GH events that occur within a time span that is longer than the acquisition time (> 6-12 days) 735 

of S1 images (i.e. multi-temporal GH events). In that case one would require a time window of 736 

occurrence, rather than a specific date. The methodology can be adapted to allow it to derive a 737 

time window of GH occurrence. This could mainly be done following  the GH event scale, where the 738 

start and the end date of the GH event inducing change within the SAR time series (applicable for 739 

all data products) should be indicative of the time window of GH event occurrence. However, this 740 

remains to be investigated. 741 

4. The open-access S1 satellite with its high resolution, high repeat time and global coverage proves 742 

to be an excellent data product for estimating GH event timing and allows for our developed 743 

methodology to be applied on every region of the world. The use of our methodology with different 744 

satellite products (e.g. COSMO-SkyMed, upcoming NISAR satellite) is not straightforward. Different 745 

available SAR satellite products operate in different bands with their own characteristics (e.g. X-746 

band for COSMO-SkyMed (Covello et al., 2010) and L-band for NISAR (NISAR, 2018)), that will likely 747 

have implications on the ability for accurate GH event timing estimation. For example, the varying 748 

vegetation penetration depths associated with different SAR bands (Dzurisin, 2006) will likely have 749 

an influence on the impact of seasonal vegetation dynamics on the SAR time series as observed for 750 

our GH events (fig. 6).  751 

5. The methodology can benefit (in terms of data availability, scalability, and processing time) from 752 

implementation on a cloud computing service.  Cloud computing platforms such as GEE only provide 753 

pre-processed amplitude imagery (i.e. amplitude ground range detected imagery). As such, they 754 

allow for the applicability of our methodology using the amplitude, detrended amplitude and SAC 755 

data products. To our knowledge, so far no cloud computing platform offer the possibility for 756 

processing and using coherence data. Additionally, the use of pre-processed amplitude imagery 757 

restrains us from manual input during the pre-processing step (as the MasTer Toolbox allows).   758 

6. The methodology can potentially be combined with optical data (e.g. Deijns et al., 2020) that could 759 

serve as additional data to help narrow down the time window and filter out any non-sense timing 760 

estimations.  761 

6. Conclusion 762 

We established a regionally applicable methodology to automatically determine GH event timing from 763 

SAR images, that can be applied without prior knowledge of the GH event. We successfully assessed 764 

the use of multiple SAR derived data products in their ability to accurately detect GH event timing in 765 

contrasting landscapes. We show that landslides and flash floods can be detected and studied together, 766 

hence we open new perspectives in the study of multi-hazards, that can subsequently aid in hazard 767 

assessment, early warning, and disaster risk reduction strategies. Our methodology has the potential to 768 
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be combined with existing spatial detection methods to support inventory creation and boost GH event 769 

research in remote inaccessible areas such as the African cloud-covered tropics. 770 

From a data processing point of view, the methodology is established around an unprecedented analysis 771 

of various SAR products coming from Sentinel-1 (S1) images. We show that there is a need to investigate 772 

different SAR data products when estimating GH event timing (amplitude, spatial amplitude correlation, 773 

and coherence) since the signal response can be different and sometimes contradictory when looking 774 

at one single event. The implementation of our methodology on a cloud computing platform can be 775 

beneficial in terms of scalability, data availability and processing time. However, the main limitations in 776 

this context are: (1) no control in pre-processing of S1 imagery and, (2) S1 coherence data is so far not 777 

available within these platforms.   778 

With a focus on four events containing a total of about 2500 landslides and flash flood features in 779 

contrasting landscapes, we propose a methodology that is adapted to be applied to other regions. Here, 780 

we focused on tropical environments where climate conditions and land use dynamics are rather specific. 781 

However, we believe that the complexity of these landscapes is an added value for the transferability 782 

of the methodology. Additionally, the use of the globally available open access S1 satellite data allows 783 

our methodology to be applied on every region of the World.  784 
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