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Abstract 14 

Landslides and flash floods are geomorphic hazards (GH) that often co-occur and interact. They 15 

generally occur very quickly, leading to catastrophic socioeconomic impacts. Understanding the 16 

temporal patterns of occurrence of GH events is essential for hazard assessment, early warning and 17 

disaster risk reduction strategies. However, temporal information is often poorly constrained, especially 18 

in frequently cloud-covered tropical regions, where optical-based satellite data is insufficient. Here we 19 

present a new regionally applicable methodology to accurately estimate GH event timing which that 20 

requires no prior knowledge of the GH event timing, using Synthetic Aperture Radar (SAR) remote 21 

sensing. SAR can penetrate through clouds and therefore provides an ideal tool for constraining GH 22 

event timing. We use the open-access Copernicus Sentinel-1 (S1) SAR satellite that provides global 23 

coverage, high spatial resolution (~10-15 m) and a high repeat time (6-12 days) from 2016 to 2020. 24 

We investigate the amplitude, detrended amplitude, spatial amplitude correlation, coherence and 25 

detrended coherence time series in their suitability to constrain GH event timing. We apply the 26 

methodology on four recent large GH events located in Uganda, Rwanda, Burundi and DRC containing 27 

a total of about 2500 manually mapped landslides and flash flood features located in several contrasting 28 

landscape types. The amplitude and detrended amplitude time series in our methodology do not prove 29 

to be effective in accurate GH event timing estimation, with estimated timing accuracies ranging from 30 

a 13 day to a 1000 days difference. A clear increase in accuracy is obtained from SAC with estimated 31 

timing accuracies ranging from a 1 day to an 85 day difference. However, the most accurate results are 32 

achieved with coherence and detrended coherence with estimated timing accuracies ranging from a 1 33 

day to a 47 day difference. The GH event timing estimation accuracies vary among the GH events and 34 

the data products. Coherence and detrended coherence estimated timing accuracies range from a 1 day 35 

to a 47 day difference. The spatial amplitude correlation estimated timing accuracy ranges from a 1 day 36 

to an 85 day difference. The amplitude and detrended amplitude estimated timing accuracies range 37 

from a 13 to a 1000 day difference. The amplitude time series reflects the influence of seasonal 38 

dynamics, which causes the timing estimations to be further away from the actual GH event occurrence 39 

mailto:axel.deijns@africamuseum.be


2 
 

compared to the other data products. Timing estimations are generally closer to the actual GH event 40 

occurrence for GH events within homogenous densely vegetated landscape, and further for GH events 41 

within complex cultivated heterogenous landscapes. We believe that the complexity of the different 42 

contrasting landscapes we study is an added value for the transferability of the methodology and 43 

together with the open access and global coverage of S1 data it has the potential to be widely applicable.      44 
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1. Introduction  45 

Landslides and flash floods are geomorphic hazards (GH) that can occur very quickly, sometimes in a 46 

matter of a few hours. GH frequently co-occur and interact (e.g. Rengers et al., 2016), they have a 47 

significant impact on the landscape (Petersen, 2001, Korup et al., 2010) and are severe threats for 48 

infrastructure and human life (Bradshaw et al., 2007, Kjekstad et al., 2009, Froude and Petley, 2018).  49 

Landslides and flash floods are often studied in isolation. However, it is their combined occurrence that 50 

can lead to more extreme impacts. For example, in 2013, several people were killed and ~7000 lost 51 

their homes in the Rwenzori Mountains in Uganda by a single debris-rich flash flood fed by upstream 52 

landslides (Jacobs et al., 2016a). Also, in 2011, a combination of flash flooding and mudslides across 53 

the highlands of the state of Rio de Janeiro claimed the lives of 916 people and left 35.000 people 54 

homeless (Marengo & Alves, 2012).    55 

Understanding the temporal occurrence of GH events is essential for hazard assessment, early warning, 56 

and disaster risk reduction strategies (van Westen et al., 2008, Ali et al., 2017, Liu et al., 2018, Guzzetti 57 

et al. 2020). Temporal information with a few day accuracy is needed to understand the close 58 

association between precipitation and the occurrence of GH events (Guzetti et al., 2008; 2020, 59 

Turkington et al., 2014, Marc et al., 2018). For site-specific and local-scale investigation, this accurate 60 

information on the timing of GH events can be obtained with field-based approaches such as 61 

watershed/hillslope monitoring (Guzetti et al., 2012) or a network of observers (Jacobs et al., 2019, 62 

Sekajugo et al., 2022). However, when information on the timing of GH events is needed at a regional 63 

level, the acquisition of such data can only be achieved with satellite remote sensing (Joyce et al., 2009, 64 

Le Cozannet et al., 2020), especially in mountainous regions with difficult field accessibility and where 65 

monitoring and observation capacities are limited (Dewitte et al., 2021).    66 

Satellite remote sensing, and more specifically the use of optical imagery, is a well-developed field of 67 

research to accurately determine the location of GH (Stumpf et al., 2014, Behling et al., 2014; 2016, 68 

Mohan et al., 2021). Optical-based satellite approaches can also be used for extracting the information 69 

on the timing of the GH events (e.g. Kennedy et al., 2018, Deijns et al., 2020), however such approaches 70 

are of limited use in cloud-covered environments, especially if temporal information with a few day 71 

accuracy is needed.   72 

Synthetic Aperture Radar (SAR) satellite, being an active system with an ability to penetrate cloud cover, 73 

holds a great potential for characterizing the timing of GH. Additionally, the sensitivity of SAR satellite 74 

data to surface changes, including vegetation changes (Hagberg et al., 1995, Balzter, 2001, Barrett et 75 

al., 2012), soil moisture changes (Dobson & Ulaby, 1986, Dubois et al., 1995, Ulaby et al., 1996, Nolan 76 

& Fatland, 2003, Srivastava et al., 2006), and surface texture changes (Dzurisin, 2006) gives SAR the 77 

potential to display GH timing with an accuracy of days.  78 

SAR derived products typically used for GH (event) analysis are GH events are usually analyzed using 79 

SAR amplitude data (i.e. changes in surface backscattering intensity of SAR signal between two images) 80 
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(e.g. Mondini et al., 2017; 2019, Esposito et al., 2020, DeVries et al., 2020, Handwerger et al., 2022) 81 

for which amplitude correlation is a common method used in amplitude change detection (Mondini et 82 

al., 2017, Konishi & Suga, 2018, Jung and Yun et al., 2020) or and the interferometricthe coherence 83 

(i.e. the change in the ability of SAR wave fronts to stay spatially and/or temporally in phase between 84 

the two images of an interferometric pair) (Burrows et al., 2019; 2020, Tzouvaras et al., 2020). 85 

Additionally, there is a wide range of studies that use SAR-derived ground deformation to map landslides 86 

(Casagli et al., 2017, Solari et al., 2020) or analyze pre-cursor movements (Intrieri et al., 2018) and 87 

internal variability (Nobile et al., 2018). However, they are dependent on consistent high interferometric 88 

coherence values at the GH locations, which will make these methods of limited use in highly vegetated 89 

landscapes (e.g. the tropics) (Komac et al., 2015; Solari et al., 2020) and for fast moving GH (e.g. 90 

shallow landslides and flash floods) (Burrows et al., 2020; Tzouvaras et al., 2020). In recent GH 91 

detection studies, amplitude products are usually preferred over coherence productss for GH detection 92 

(Ge et al., 2019, Jung and Yun et a., 2020, Mondini et al., 2021), since coherence generally yields less 93 

accurate results due to lower resolution (Burrows et al., 2019; 2020) and the a higher number of false-94 

positives (Aimaiti, 2019, Jung and Yun et al., 2020).   95 

Despite the increasing use of SAR imagery for GH detection (Martinis et al., 2015, Twele et al., 2016, 96 

Mondini et al., 2019, Psomiadis et al., 2019, Burrows et al., 2020, Jacquemart and Tiampo, 2021, Jung 97 

and Yun, 2020, Tzouvaras et al., 2020, Jacquemart and Tiampo, 2021, Handwerger et al., 2022), to 98 

date, only the recent study of Burrows et al. (2022) used SAR to refine the timing of GH inventories. 99 

Although located in the tropics and showing accurate results, their study was only applied (1) within a 100 

relatively densely vegetated landscape, (2) only on landslides, (3) using pre-processed amplitude 101 

imagery with Google Earth Engine (GEE) (Gorelick et al., 2017), (4) with a-priori knowledge on the 102 

timing of the event (i.e. the year). and (5) without consideration of the effect of vegetation dynamics 103 

within the timespan. Since GH events often rarely occur in isolation when on a regional scale is 104 

consideredGH events occur within a variety of landscapes (Emberson et al., 2020, Dewitte et al., 2021). 105 

Therefore,  there is a clear need to calibrate and validate any GH timing method for a variety ofvarying 106 

landscapes, and land use/land cover characteristics. Additionally, the frequent co-occurrence of 107 

landslides and flash floods (Jacobs et al., 2016b, Rengers et al., 2016) warrants the need to analyze 108 

them using a combined methodology. However, so far, there has never been research dedicated to their 109 

combined temporal detection using radar satellite.           110 

The Copernicus Sentinel-1 (S1) constellation is frequently used in GH detection studies (Mondini et al., 111 

2021). Next to the fact that it is freely available and acquired regionally (from 2016 onwards), it offers 112 

a very good trade-off between frequency of acquisition (6/12 days) and spatial resolution (10-15 m 113 

depending on the pre-processing parameters). These advantages make S1 an attractive tool to integrate 114 

in a regional GH timing methodology.        115 

In this study, we aim to develop a regionally applicable methodology that automatically estimates GH 116 

event timing using S1 SAR imagery on GH events spatially located, but with unspecified timing. We 117 
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analyze landslides and flash floods together as being co-occurring and interacting events.  We create a 118 

methodology  that can be applied at the regional scale in complex and various topographic and land 119 

use/land cover environments.  The methodology is developed using Focusing on different four GH events 120 

either containing landslides, or a combination of landslides and flash floods located in contrasting 121 

landscape types observed observed withinin tropical Africa (see section 2.1). , weWe analyze an 122 

unprecedented amount of S1 SAR products, namely: S1 SAR amplitude, spatial amplitude correlation (a 123 

metric based on the common amplitude correlation) and interferometric coherence changes. Specifically, 124 

we: (1) create S1 SAR time series and analyze their patterns and behavior at the location of several GH 125 

events, (2) demonstrate and assess the ability to detect the timing of GH events using changes within 126 

the S1 SAR time series and, (3) investigate the influences of the landscape characteristics on the ability 127 

to derive the timing from S1 SAR timeseries through a sensitivity analysis.  128 

2. Data  129 

2.1. Selection of GH events in a tropical region with diverse landscapes 130 

We focus on the western branch of the East African Rift, a mountainous region with high population 131 

densities and diverse landscape and land use/land cover characteristics (Depicker et al., 2021a, Dewitte 132 

et al., 2021). The region has a bimodal precipitation distribution with two rainy peaks (October-133 

November & March-April) and a main dry season (June-August) associated with the North-South 134 

migration of the Inter Tropical Convergence Zone (ITCZ) (Thiery et al., 2015, Nicholson 2017, Monsieurs 135 

et al., 2018a) with annual precipitation ranging from ~0.8m along the shores of Llake Tanganyika to 136 

easily more than 2m in the highlands, with the maximum in the Rwenzori Mountains (Monsieurs et al., 137 

2020, Van de Walle et al., 2020). The seasonality of the precipitation strongly controls the occurrence 138 

of landslides and flash floods (Jacobs et al., 2016a; 2016b, Monsieurs et al., 2018a; 2018b, Kubwimana 139 

et al., 2021). Vegetation dynamics are high in the cultivated areas due to the variety of cropping 140 

practices (crop rotations and shifting cultivation, Heri-Kazi & Bielders, 2021). Moreover, the region is 141 

one of the most cloud-covered places in the world (Robinson et al., 2019) and a global hotspot of 142 

thunderstorm activity (Thiery et al., 2016; 2017, Peterson et al., 2021). 143 

We investigate four GH events with known days of occurrence, and located in contrasting landscapes 144 

(fig. 1): 145 

•  Event 1 (Uganda GH event) is located in the southern part of the Rwenzori Mountains 146 

(Uganda) and counts 1063 landslide features of which some contribute directly to the sediment 147 

load of the valley river (fig. 1, Uganda). The event occurred between the 21st and the 22nd of 148 

May 2020. The terrain consists of pristine forests and some cultivated landscape (fig. 2a).  149 

•  Event 2 (Rwanda GH event) is located in the Karongi district (western Province, 150 

Rwanda) and counts 494 features composed of both landslide and flash floods and occurred on 151 

the 6th of May 2018 (fig. 1, Rwanda). The terrain consists of an inhabited and highly cultivated 152 

landscape with the presence of agricultural terraces (fig. 2b). 153 
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•  Event 3 (Burundi GH event) occurred around the hills of Nyempundu in the Cibitoke 154 

region (north Burundi) and counts 318 features composed of landslides and flash floods and 155 

occurred between the 4th and 5th of December 2019. Here, many landslides contribute directly 156 

to the sediment load of the rivers (fig. 1, Burundi). The terrain consists of inhabited cultivated 157 

landscape and sporadic tree cover (fig. 2c).  158 

•  Event 4 (DRC GH event) occurred west of the city of Uvira (DRC), northwest of Lake 159 

Tanganyika and counts 609 landslides and flash flood features that occurred between the 16th 160 

and the 17th of April 2020. Many landslides are connected to the rivers where the flash floods 161 

occurred. The debris-rich flash floods inundated parts of the city (fig. 1, DRC). The terrain is 162 

characterized by an urban area, cultivated landscape, grassland, and sporadic tree cover (fig. 163 

2d). 164 
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 166 

Figure 1. The location of the four GH events with their topographic (left: 30m ALOS 3D DEM, GH event 167 

features in black) and optical (right: S2 post-event image, GH event features in yellow) context. Note 168 

that in the close vicinity of the GH events of Uganda and Burundi, large sediment-loaded riverbeds are 169 

visible. This is a consequence of the GH events that contributed directly to the transport of extra material 170 

to the rivers, increasing not only their sediment content, but also their lateral mobility. These river 171 

dynamics are not included in our analysis. The two panels at the lower left depict the location of the GH 172 

sites (S2 imagery). Image credit: Contains modified Copernicus Sentinel data (2022), processed with 173 

Google Earth Engine. ALOS 3D DEM data provided by Japan Aerospace Exploration Agency (JAXA). 174 

The locations of the GH events (fig. 1) are derived using the Copernicus Sentinel-2 (S2) Multispectral 175 

Instrument (MSI), high resolution (10m), high frequency (6 -12 days) satellite imagery. We manually 176 

digitized all individual featuresevents from the first available cloud-free S2 image after the event and a 177 

cloud-free S2 image with similar vegetation characteristics (compared to the post-event image) before 178 

the event.  We use PlanetScope Ortho Scenes (Planet Team, 2017) for validation of the GH event 179 
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inventory with a higher resolution satellite image. Planet operates with a constellation of multiple small 180 

satellites producing very-high resolution (3m), high frequency (up to 1 day) imagery (Table 1). 181 

Table 1: Images information of manual mapping and dating GH events. Planet images are of the type 182 

PlanetScope Ortho Scene (POS) 183 

GH Event 
Sentinel-2 Planet 

Date – pre Date - post Tile Type Date Type 

Uganda 2019-08-16 2020-06-01 35NRA L1C 2020-06-29 POS 

Rwanda 2018-03-09 2018-06-12 35MQT L1C 2019-12-07 POS 

Burundi 2019-08-06 2020-01-23 35MQT L1C 2018-06-12 POS 

DRC 2019-07-02 2020-06-06 35MQS L1C 2020-10-06 POS 

We prefer the use of Planet and S2 over the Maxar or the Spot/Pléiades images visible in Google Earth 184 

because of the consistency in temporal and spatial resolution. To note, the Burundi GH event has 185 

recently been mapped by Emberson et al. (2022) by means of a semi-automated method followed by a 186 

manual correction using S2 satellite data. We expect our manually mapped Burundi GH event inventory 187 

to be similar or more accurate since we use a combination of S2 and Planet satellite data and a 188 

completely manual detection workflow. The date of GH event occurrences is determined from local 189 

media and field observations, and if not available from these resources, determined by the first- and 190 

last available imagery from S2 and Planet imagery.  191 
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 193 

Figure 2. : Close up of the contrasting typical landscapes of the four GH events. Coordinates at image 194 

center (lat, lon): (a) 0.144°, 29,757°, (b) -2.171°, 29.410°, (c) -2.635°, 29.090°, (d) -3.339°, 29.119°. 195 

Maps Data: Google, ©2022 Maxar Technologies (a, c, d) Google, ©2022 CNES/Airbus (a,b). 196 

2.2. SAR time series 197 

SAR time series at the GH location are constructed using the Copernicus S1 Level-1 Single Look Complex 198 

(SLC) imagery acquired in Interferometric Wideswath (IW). The S1 satellite is side-looking (right) and 199 

operates both on the ascending (from South to North) and descending (from North to South) tracks 200 

within the C-band frequency. To study the four GH events (fig. 1) we use all available high resolution 201 

S1 imagery (~15x15 meter resolution) from January 2016 to January 2021 at the location of the GH 202 

event at tracks 174 (ascending) and 21 (descending).  This equals to between 196 and 208 ascending 203 

and 120 and 193 descending high resolution S1 images images   per GH event, where images 204 

occasionally overlap more than one GH event. (~15x15 meter resolution) ranging from January 2016 205 

up to January 2021 with a repeat time of six to twelve days with more consistently six days towards 206 

recent times.  We use both amplitude and coherence information. S1 images over the study area are 207 

provided in vertical-vertical (VV) and vertical-horizontal (VH) polarizations. Different polarizations result 208 
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in different backscattering values (Shibayama et al., 2015, Psomiadis, 2016, Park & Lee, 2019, Burrows 209 

et al., 2022). Mondini et al., 2019 noted a better definition of landslide-induced changes in vegetated 210 

areas using the VH channel. In contrast, Burrows et al. (2022) found VV to perform better than VH for 211 

landslide event timing estimation. Psomiadis (2016) concluded that VV polarization performed better 212 

than VH polarization for flash flood mapping. Finally, VV polarization images are acquired more 213 

consistently at the locations of our GH events. We therefore decide to use VV polarization for our 214 

analysis. Due to the side-looking nature of the S1 satellite it is subjected to foreshortening, layover, and 215 

shadowing which are SAR inherent quality problems that are amplified within mountainous regions and 216 

affect image quality (Hanssen, 2001, Dzurisin, 2006). GH inventories are masked for foreshortening, 217 

layover, and shadow areas to remove the individual landslides and flash floods that fall within these 218 

inherently noisy areas.     219 

2.3. SAR controlling factors 220 

SAR amplitude and coherence are influenced by local slope angle (Hanssen 2001), soil moisture (Ulaby 221 

et al., 1996, Scott et al., 2017), vegetation (Balzter, 2001, Barrett et al., 2012), and terrain roughness 222 

(Dzurisin, 2006). Coherence is additionally influenced by atmospheric changes (Rocca et al., 2000) and 223 

due to the use of image pairs, also by the temporal baseline (time between acquisition of two images), 224 

the perpendicular baseline (distance between the location of acquisition of two images) and the 225 

difference in incident angle of the paired images (Hanssen, 2001). Coherence values are generally very 226 

low (high decorrelation) in densely forested areas due to constant movement of the leaves and stems 227 

(Weydahl, 2001, Tessari et al., 2017), whereas bare soils or urbanized terrains, due to their static 228 

nature, generally reveal relatively high coherence values (Colesanti & Wasowski, 2006). An increase in 229 

coherence values after GH event occurrence is therefore expected. Amplitude values, on the other hand, 230 

show to have a quite complex reaction to terrain change. Due to the influence of soil moisture and 231 

roughness change on the amplitude values, the occurrence of a GH event could both increase and 232 

decrease the amplitude values at the location of the GH event (Mondini et al., 2021, Burrows et al., 233 

2022). Both precipitation (in changing leaf- and soil wetness) and vegetation patterns, can dynamically 234 

influence SAR  amplitudeSAR amplitude and coherence values, causing a cumulative effect on the time 235 

series (Srivastava et al., 2006, Brancato et al., 2017). This effect is more prominent over sparsely 236 

vegetated areas due to geometric (vegetation growth and farming practices) and dielectric (moisture) 237 

changes (Strozzi et al., 2000). Additionally, a change in atmosphere (precipitation events, ionospheric 238 

disturbances) can dynamically influence the coherence values (Rocca et al., 2000, Jacquemart & 239 

Tiampo, 2021). To better assess the ability to detect GH timing, it is essential to understand the dynamic 240 

factors controlling the behavior of the signal.  241 

We derive precipitation estimates from the GPM Level 3 IMERG Final Daily (10km spatial resolution) 242 

dataset that has been validated through rain gauge data within the area (Nakulopa et al. 2022). General 243 

vegetation patterns per GH event are visualized using the Normalized Difference Vegetation Index 244 

(NDVI; Tucker, 1979). NDVI time series are derived from the Landsat-8 (30m spatial resolution) archive 245 
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and processed within the GEE environment We use the Landsat 8 atmospherically corrected surface 246 

reflectance images provided within the GEE environment. We masked them for clouds using the quality 247 

assessment band resulting from the CFmask algorithm (Foga et al., 2017).  248 

We choose the lower resolution Landsat-8 over the higher resolution S2 imagery to  reduceto reduce 249 

any unwanted local effects of NDVI change captured in the higher resolution S2 imagery, and since we 250 

are only interested in the general vegetation trends within the area this should be sufficient. From the 251 

cloud-masked images, a spatial-average NDVI time series is created spanning from 2016-2020 over the 252 

undisturbed areas of the GH event area. The NDVI time series are further processed to monthly 253 

averages, since we are interested in general vegetation patterns visible in the NDVI time series rather 254 

than changes on smaller temporal timescales.  255 

We use the ESA Climate Change Initiative Land Cover product (ESA, 2016) to categorize GH based on 256 

their prior land cover to assess the influence of land cover on the timing detectability. This product has 257 

been validated within the region by Depicker et al. (2021), showing an accuracy of 86.1 ± 2.1% in land 258 

cover classification. All above mentioned factors are considered during the analysis of the SAR timeseries 259 

and the GH event timing estimations. 260 

3. Methods  261 

3.1. Sentinel-1 pre-processing 262 

The S1 images are pre-processed using the “InSAR automated Mass processing Toolbox for 263 

Multidimensional time series” (MasTer) (Derauw et al., 2020, d'Oreye et al., 2021) processing chain (fig. 264 

3, step 1). MasTer is a tool for automated SAR and SAR interferometry (InSAR) mass processing 265 

(Samsonov & d’Oreye, 2012, Derauw et al., 2019; 2020, d’Oreye et al., 2019; 2021), that is incremental 266 

(i.e. only computes the minimal required information when a new image is available) and optimized for 267 

mass processing. The MasTer workflow is applied on both the ascending and descending track and 268 

consists of: 269 

(1) the application of orbit correction using the precise orbit files provided with the S1 data. 270 

(2) The creation of time series of amplitude maps per track. Amplitude maps of each given track are 271 

co-registered on a reference image taken from that track. Every amplitude image in the radar geometry 272 

of that track is cropped and provided with the same grid and dimensions framing the area of interest.  273 

Amplitude values are calibrated to sigma nought values. The amplitude images are multi-looked by a 274 

factor 2 in azimuth and in range, to reduce speckle, leading to a roughly 28x5 m slant range resolution. 275 

Radiometric terrain correction is applied to account for the local incidence angle variating with slope 276 

angle resulting in amplitude values that are independent of slope angle (Small, 2011). 277 

(3) The creation of coherence maps using consecutive images throughout the time series with a 278 

maximum temporal baseline of 12 days and a maximum perpendicular baseline of 150 m. The coherence 279 

maps are provided with the same multi-looking factor, grid, and ground range resolution as the 280 

amplitude images.  281 
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(4) All the amplitude and coherence maps from all the tracks spanning a given GH area are geocoded 282 

from slant range to ground range on a common grid with a 15 by 15 m resolution using the 30 m ALOS 283 

Global Digital Surface Model. We decided to geocode the SAR imagery to make it compatible with all 284 

our other data products and to allow for an easier visual comparison with optical imagery.  285 

3.2. Spatial amplitude correlation   286 

We adapt the amplitude correlation approach, initially used for GH spatial detection (Mondini et al., 287 

2017, Konishi & Suga, 2018, Jung & Yun, 2020), to allow for GH timing detection at the location of the 288 

GH event using the amplitude image stacks (fig. 3, steppart 2). We reason that the spatial correlation 289 

is generally lost when the inter-pixel relationships between two images change at the location of a GH 290 

event. Therefore, a significant change within the landscape such as a landslide or a flash flood will cause 291 

a significant decorrelation. Due to the sensitivity of SAR amplitude to changes in vegetation (Balzter, 292 

2001, Barrett et al., 2012), seasonal greening and browning trends have a pronounced influence on the 293 

amplitude time series (Balzter, 2001, Barrett et al., 2012), which potentially limits the detectability of 294 

the GH event within the time series. Since spatial correlation is only changing when the inter-pixel 295 

relationships change, general trends that affect the entire area (lowering or increasing the SAR 296 

amplitude values) do not influence the inter-pixel relationships (i.e. no spatial correlation change). Only 297 

when significant inter-pixel change occurs, due to landslides or flash floods, the spatial correlation will 298 

change. The spatial amplitude correlation (SAC) can therefore highlight the GH event occurrence within 299 

the time series, while reducing the seasonal dynamics. To calculate the SAC, we use equation 1 that we 300 

adapted from Jung & Yun (2020).  301 

SACx,y,poly = 
∑{(𝐴𝑟,𝑝𝑜𝑙𝑦− 𝐴𝑟,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(𝐴𝑥,𝑝𝑜𝑙𝑦− 𝐴𝑥,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)}

√∑{(𝐴𝑟,𝑝𝑜𝑙𝑦− 𝐴𝑟,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2

}∑{(𝐴𝑥,𝑝𝑜𝑙𝑦− 𝐴𝑥,𝑝𝑜𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

}

  𝑥 = 𝑑𝑎𝑡𝑒1 … 𝑑𝑎𝑡𝑒𝑁+1; 𝑥 ≠ 𝑟   (1) 302 

with SACx,r,poly the spatial amplitude correlation for the impacted area (timing workflow 1: The complete 303 

GH event, timing workflow 2: per individual GH feature ) of date x in reference to date r, Ax, poly the 304 

amplitude pixels of impacted area  at date x, and Ar, poly the amplitude pixels of impacted area  at 305 

reference date r. Instead of calculating correlation between two subsequent images over a given 306 

window, we calculate the correlation using one reference image (Ar) and all the other images within the 307 

time series (Ax) using only the pixels within a designated impacted area (e.g. single GH feature or 308 

complete GH event) (poly). Consequently, every image within the amplitude image stack can be used as 309 

a reference image and due to slight changes within every amplitude image this will inevitably result in 310 

different SAC time series, one better highlighting the GH event than the other. We apply the equation 311 

separately for ascending and descending images in a parallel workflow. Figure 4 shows schematically 312 

how the SAC time series should behave using different reference images. Taking a reference amplitude 313 

image before the GH event occurrence (fig 4a), results in high SAC before and low SAC after GH event 314 

occurrence. The opposite is expected when using a reference amplitude image after the GH event (fig 315 

4b). 316 
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We use every available image within the amplitude image stack as a reference image and calculated 317 

the respective SAC time series from it. From here, it is necessary to identify the most appropriate 318 

reference image.  319 

                       320 
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 321 

Figure 3. : Workflow Flowchart of the four-step methodology. Rectangles represent initial input imagery, 322 

output image stacks or time series products. The rhombus represents the external software product. 323 

Hexagons represent methodological steps, which are described in the text. (1) Pre-processing of the S1 324 

imagery using the MasTer processing chain to acquire amplitude and coherence image stacks. (2) 325 

Application of the spatial amplitude correlation (SAC) method using Empirical Cumulative 326 

DistibutionDistribution Functions (ECDF) on the amplitude image stack resulting into SAC time series. 327 

(3) GH pixel(s) averaging for every image in the amplitude and coherence image stacks resulting into 328 

amplitude and coherence time series. (4) Application of binary segmentation change detection to acquire 329 

the date of the most significant change within the amplitude, SAC, and coherence time series.  330 

Hence, we develop a new methodology that identifies the most suitable reference amplitude image by 331 

finding the SAC time series that most distinctively shows changes related to the GH event occurrence. 332 

We distribute every SAC time series as Empirical Cumulative Distribution Functions (ECDF) resulting in 333 

multiple ECDF curves equal to the amount of reference images. A SAC time series that contains a distinct 334 

change indicative of the GH event occurrence will show a similar distinct change in its ECDF. 335 
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Contrastingly, SAC time series that fail to distinctively highlight the GH event, show  anshow an ECDF 336 

that is similar to a normally distributed ECDF. Therefore, we create a normally distributed ECDF, using 337 

the mean and standard deviation derived from the ensemble of ECDF curves, and identify the ECDF that 338 

deviates most from it. Per ECDF we calculate and cumulate the difference from the normally distributed 339 

ECDF. The ECDF with the highest cumulative difference is chosen as most representative and the related 340 

SAC time series was used. 341 

3.3. Geomorphic hazardH event  timing estimation 342 

GH event timing is determined on two scales within separate workflows:  343 

• Timing workflow 1: the complete GH event scale. This workflow contains all pixels 344 

encompassing the full GH eventIn this workflow, the steps outlined in figure 3 are carried out 345 

once using all pixels encompassing the full GH event., This results in ing in onean ascending 346 

and one descending track time series for amplitude, SAC, and coherence. 347 

• Timing workflow 2: the individual GH scale. In this workflow, the GH event is subdivided in 348 

multiple individual GH features and the steps outlined in figure 3 are carried out separately for 349 

each individual GH feature., This resulting results in multiple ascending and multiple descending 350 

track time series, equal to the amount of individual GH features, for amplitude, SAC, and 351 

coherence.  352 

In both workflows we do not choose to remove fuzzy pixels (i.e., edge pixels that contain both impacted 353 

and non-impacted landscape), s. Since we do not know the effect of these pixels on the SAR time series 354 

and GH event timing estimations. , we apply the analyses without additional processing of the GH event 355 

inventories. This allows us to establish baseline results. The ascending and descending track data are 356 

processed separately throughout the two workflows. Amplitude and coherence time series are generated 357 

by averaging the values within the identified impacted area per image (fig 3.3, step 3) and the SAC time 358 

series are generated by applying the SAC method (fig 3,.2 – step 2;, section 3.2) on the same areawithin 359 

both workflows (workflow 1: the complete GH event, timing workflow 2: per individual GH feature). The 360 

resulting time series are normalized using the time series average to improve comparability.  361 

Additionally, we make an effort to remove the seasonal influence and atmospheric effect on the 362 

amplitude and coherence time series by subtracting the regional amplitude and coherence trend (i.e., 363 

time series) from the GH event scale amplitude and coherence time series (timing workflow 1). Both 364 

precipitation events and seasonal vegetation dynamics are expected to cover the complete GH event 365 

and its surrounding area. This detrending will therefore emphasize the change induced by the GH event 366 

occurrence while removing any regional changes induced by either seasonal vegetation dynamics or 367 

atmospheric effects (e.g. Jacquemart & Tiampo, 2021). The regional amplitude and coherence time 368 

series are established by following sections step 1 and 3 from in the methodology flowchart (fig. 3), 369 

using a larger area surrounding the GH events as input (i.e. a square of approx. 1.5 times the GH event 370 

area, excluding the exact location of the GH event). This results in the detrended amplitude and 371 
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detrended coherence data products.  Given the fact that SAC is based on inter-pixel changes, subtracting 372 

a general value as a mean of detrending would make no difference. Moreover, SAC is created to already 373 

consider seasonal vegetation dynamics so no additional detrending for this data product was neededis 374 

performed.  375 

We decide not to detrend individual GH feature time series (timing workflow 2), which would could 376 

include the use of a detrending buffer such as in (e.g. Burrows et al.,  (2022).  SSince we deal with 377 

complex heterogenous land cover, proximate landscape land cover does not necessarily represent the 378 

landscape land cover at the individual GH feature, which prohibits from accurate detrending. Additional 379 

research would is therefore be required to accuratelybefore implementing such such a detrending 380 

method withinmethod that is expected to be applicable in a wide variety of environments. 381 

Timing is then defined on every time series (for amplitude, SAC and coherence) using a binary 382 

segmentation change detection approach (Bai, 1997, Fryzlewicz, 2014) using the python package 383 

‘Rruptures’ (Truong et al., 2020) (fig. 3, Step 4). The algorithm was set to predict only one breakpoint 384 

since we aim to detect the most significant change in the time series. The output of the applied binary 385 

segmentation change detection algorithm is a value that represents the location of an image within the 386 

image stack. The date of this image is extracted and assigned as the earliest date after the GH event 387 

occurrence. This applies for the amplitude and SAC time series. However, since coherence is based on 388 

image pairs, it would identify the image pair right after the GH event. We therefore assign the first date 389 

from this image pair as the earliest date after the GH event occurrence.  390 

This allows us to locate, in time, the largest change within every time series. On the complete GH event 391 

scale (timing workflow 1) this results in two dates (from ascending and descending track) per data 392 

product (amplitude, detrended amplitude, SAC, coherence, detrended coherence). On the individual GH 393 

scale (timing workflow 2), this results in several dates, equal to two times (one for ascending and one 394 

for descending track) the amount of individual GH features per data product (amplitude, SAC, 395 

coherence). Here we identify the date  thatdate that occurred most frequently (majority) as representing 396 

the timing of the event.  397 

We expect that the coherence image pair that demonstrates an increase in coherence compared to the 398 

former coherence image pair consists of less vegetated terrain (as caused by the GH event) and thus 399 

contains post-event conditions (Tzouvaras et al., 2020, Burrows et al., 2020; 2021). The first date from 400 

this post-event coherence image pair is therefore extracted and defined as representing the timing of 401 

the event. We define the minimal uncertainty in timing estimation by the difference between the 402 

estimated image datedate of occurrence and the date of the image before that one within the image 403 

stackprior to that (i.e. a maximum of 12 days).  404 
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 405 

Figure 4. : Iidealized schematice of the SAC method using two2 different reference images: one before 406 

and one after the occurrence of the GH event (A, B). Squares represent images, the red dotted line 407 

indicates the occurrence of a GH event. Inside the images are the conditions of the impacted area 408 

(represented here as single GH feature but is similar for complete GH event). Pre-event conditions are 409 

displayed in green. Post-event conditions are displayed in brown. The black curved lines represent the 410 

combination of images on which equation 1 is applied to achieve the resulting SAC time series. The 411 

schematic SAC graphs (right) depict the expected results using a reference image before the event (A) 412 

with high correlation before and low correlation after the event, and using a reference image after the 413 

event (B) with low correlation before and high correlation after the event. 414 

3.4. Time series Sensitivity analysis with respect to landscape characteristics 415 

In sSsection 2.3 we discuss the controlling factors on the SAR signal. Here, we aimtry to understand 416 

the influence of these controlling factors plus the influence of individual GH properties on the 417 

detectability of the event timing. We carry out a sensitivity analysis on GH area (effect of a changing 418 

number of pixels/pixel mixing, Deijns et al., 2020), slope angle (change in image acquisition geometry, 419 

Zebker and Villasenor, 1992,  Hanssen1992, Hanssen, 2001), land cover (changing vegetation and soil 420 

moisture patterns, Giertz et al., 2005), and slope aspect (different effect of layover, shadowing within 421 

ascending and descending track, Hanssen, 2001, Dzurisin, 2006). We carry out the analysis separately 422 

for the ascending and descending track images. Per individual GH feature we derive the average value 423 

of the above-mentioned parameters. We find more smaller-sized GH in the Rwanda GH event (fig 5a), 424 

a slight deviation (peak more to the left) in slope distribution for the Uganda GH event (fig. 5b) and a 425 

large variation in slope aspect distribution for different GH events (fig. 5d). Additionally, land cover 426 

distribution is different for every GH event (fig. 5c) which corroborates with what we see on the satellite 427 

images in (figure. 2).  428 
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The sensitivity analysis is carried out iteratively over every parameter from a minimum value to a 429 

maximum value using predefined steps (Area: 1000 m2, Slope: 5°, Land Cover: per individual land cover 430 

type, Slope aspect: 45°). Per iteration the GH inventory is reduced to contain only individual GH features 431 

that meet the iteration conditions. We exclude bins that contained less than 20 individual GH features 432 

to avoid non-sense (very high or very low) values that would negatively influence the quality of the 433 

trend. 434 

Per bin-size, we calculate the timing is calculated for every individual GH feature, and the percentage 435 

of timing estimates that fall within one month of the actual event occurrence over the total amount of 436 

individual GH features within that specific bin is calculated. Higher percentages indicate more timing 437 

estimates closer to the actual event occurrence. The variations within this percentage are subsequently 438 

analyzed to relate changing characteristic to performance. 439 

 440 

Figure 5. P: parameter distributions per GH event (Uganda, Rwanda, Burundi, and DRC). (A) Percentage 441 

of individual GH   over total amount of individual GH against area (m2), bins of 1000 m2. (B) Percentage 442 

of individual GH over total amount of individual GH against slope angle, bins of 5°. (C) Number of 443 

individual GH against land use/land cover. (D) Percentage of individual GH over total amount of 444 

individual GH against slope aspect, bins of 15°.  445 
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4. Results  446 

4.1. Geomorphic hazardGH event time series 447 

We created amplitude, detrended amplitude, SAC, coherence, detrended coherence time series for the 448 

four GH events in Uganda, Rwanda, Burundi, and DRC (location in fig. 1) and present it in figure 6 449 

together with the average monthly Landsat 8 NDVI and IMERG monthly cumulative precipitation. 450 

The distinctiveness of the GH event occurrence within the time series varies significantly per data 451 

product (fig. 6). SAC (fig. 6i-l) and coherence (fig. 6m-t) time series showcase the timing of the event 452 

with a significant change of value at the time of the event occurrence. Change in coherence due to the 453 

GH event is clearly indicated by the increase in value starting from the post-event coherence pair. A 454 

significant decrease for in the co-event (the coherence value from the pre- and post-event image) 455 

coherence pair is not visible.  456 

The amplitude time series do not show any distinct change at the time of the GH event occurrence (fig. 457 

6 a-h), except for the Uganda GH event (fig 6a,e). Particularly in the amplitude time series, and to a 458 

minor extent in the coherence time series, clear cyclicity can be observed, which that corresponds with 459 

the two drier periods (December-February and June-August) that are prevalent in the region (Bonfils, 460 

2012, Nicholson 2017, Monsieurs, 2018a). The NDVI shows seasonal correlation with the precipitation 461 

patterns, where NDVI patterns follow precipitation patterns with a short time lag (fig 6. u-x). Stronger 462 

NDVI variations align with a stronger cyclicity within the amplitude, SAC, and coherence time series 463 

which is particularly visible when comparing the Uganda GH event (weak amplitude SAC and coherence 464 

cyclicity, limited NDVI fluctuations) and the DRC GH event (stronger amplitude, SAC, and coherence 465 

cyclicity, large NDVI fluctuations). The cyclicity clearly influences.  the distinctiveness of the GH event 466 

within the time series. When comparing the landscape of both GH events (fig. 2a,d) a sharp contrast is 467 

observed. The Uganda GH event region is mostly covered by forest, whereas the DRC GH event region 468 

is mostly covered by grass- and cropland. Consequently, we find that seasonal NDVI oscillations vary 469 

significantly from one study area to another given the difference in landscape. The seasonal oscillations 470 

in vegetation are  visibleare visible within the amplitude and coherence timeseries and subsequently 471 

influence the distinctiveness of the GH event within these timeseries. 472 

Time series detrending clearly reduces seasonal cyclicity within the time series, which is particularly 473 

visible for the coherence time series (fig. 6q-t) and to a much smaller degree for the amplitude time 474 

series  (series (fig. 6e-h). For example, the DRC GH event coherence time series benefits from this 475 

detrending procedure such that seasonal cyclicity is almost completely removed, and in the resulting 476 

time series a suddenleaving a distinct increase in coherence values after can be observed after the 477 

occurrence of the GH event (fig. 6t). Detrending of the amplitude time series shows some 478 

improvementsa minor reduction in cyclicity,  but is remains difficult tobut the distinctiveness of the GH 479 

event within the time series remains poorlow. 480 
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 482 

Figure 6. : GH event (detrended) amplitude (red), spatial amplitude correlation (SAC, green) and 483 

(detrended) coherence (black) time series. The dashed red line represents the timing of the GH event 484 

occurrence within the time series. All coherence, amplitude and SAC time series show two lines of a 485 

similar color representing the ascending and descending track time series. The time series are created 486 

according to the complete GH event scale method workflow described in sections 3.2 (SAC) & 3.3 487 

(amplitude and coherence). The bottom row shows the monthly cumulative precipitation (light blue 488 

bars) from IMERG satellite data and the monthly averaged NDVI values (grey line) from Landsat 8 489 

(method described in section 2.3). 490 

4.2. Geomorphic hazardGH event timing 491 

Figure 7 shows the timing estimation at the GH event scale (timing workflow 1) from the (detrended) 492 

amplitude, SAC and (detrended) coherence time series. The difference in days from the actual 493 

occurrence of the GH event is visualized by a timing range (i.e.i.e., uncertainty in estimated timing, 494 

length of the bars in fig. 7) is defined by the minimum and maximum difference in days of the estimated 495 

timing from the actual GH event occurrence and takes into account the estimated pre-event image (or 496 

image pair for coherence), estimated post-event image (or image pair for coherence) and the actual GH 497 

event occurrence timing rangethat incorporates the minimal uncertainty in timing estimation (fig. 7 and 498 

fig. 8; see section 3.3). Timing eEstimations from the the amplitude time series time series perform 499 

poorlygenerally have lower accuracies with estimated timing ranging from a 46 day difference (Uganda, 500 

descending) to a 1000 day difference (Uganda, ascending). Estimations from the SAC time series range 501 

between a 1 day (Uganda) and ann 85 day (Rwanda) difference and estimations from the coherence 502 

time series range between a 1 day (Uganda) and a 47 day (Rwanda) difference. Highest accuracies are 503 

achieved with times series showing less seasonal fluctuation and a steep change at the time of event 504 

occurrence (fig. 5). Timing estimations from the detrended amplitude time series show an increased 505 

accuracy compared to amplitude time series with the most significant change for the Uganda GH event 506 

from a 46-1000 to a 13-22 day difference, but performance is still poor and generally useless for accurate 507 

timing estimation. Detrending the coherence time series increases timing estimation accuracy compared 508 

to the non-detrended coherence timing estimation for the DRC event (25-32 to a 1-5 day difference), 509 

but in general the estimations remain the same.  510 

Figure 8 shows the timing estimation based on the individual GH features within the GH event (timing 511 

workflow 2).  Similar to figure 7, timing range (i.e.i.e., uncertainty in estimated timing, length of the 512 

bars in fig. 8) is defined by the minimum and maximum difference in days of the estimated timing from 513 

the actual GH event occurrence. Here, the estimated timing represents the date that is estimated most 514 

frequently between all individual GH features (as explained in section 3.3). The percentage of individual 515 

GH features that estimate this (most frequently estimated) date over the total amount of GH features 516 

(%maj) are shown is includedin figure 8. in figure 8. 517 
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In general, timing estimation from the amplitude time series performs rather poorlyhave low accuracies 518 

with estimated timing ranging from a 13 day difference to an 831 day difference. A distinct increase in 519 

accuracy is seen for the Uganda GH event compared to the GH event scale (fig. 7)in estimated timing 520 

accuracy, compared to the results from the GH event scale (fig. 7, timing workflow 1), is seen for the 521 

Uganda GH event. But However, the other GH events do not show any distinct increase in timing 522 

estimation accuracy. The %maj ranges between 13% and 32.4% and shows that for some GH events 523 

a large portion of the individual GH features estimate a date that is far from the actual date of the GH 524 

event occurrence. The percentage of individual GH features that estimate a date within one month of 525 

the actual GH event occurrence from amplitude time series is 24.2% (ascending) and 26.9% 526 

(descending) for the Uganda GH event, but much lower for the other GH events, corroborating the fact 527 

that the timing detection method performs poorly with for the amplitude data product.  528 

Timing estimations from the SAC time series from individual GH features (fig. 8, timing workflow 2) 529 

differ compared to the timing estimations at the GH event scale (fig. 7, timing workflow 1). An increase 530 

in accuracy is seen for Rwanda (ascending) and DRC (ascending) and a decrease in accuracy for Burundi 531 

(ascending) and DRC (descending). The estimated timing ranges from a 1 day difference to an 85 day 532 

difference. Although estimated timing accuracy is higher for SAC compared to amplitude, %maj values 533 

are quite low, indicating weak estimations. The percentage of individual GH that estimate a date within 534 

one month of the actual GH event occurrence ranges from 0.2 (Rwanda, descending) to 38,1 (Uganda, 535 

descending). Exceptionally, for the Uganda GH event, %maj and estimated timing within one month of 536 

the GH event occurrence from the SAC time series is highest in comparison with amplitude and 537 

coherence (fig. 8). 538 

Timing estimations from the coherence time series from individual GH features (fig. 8) are similar to 539 

those achieved at the GH event scale (fig. 7), and have, generally, the highest accuracy for all data 540 

products. The %maj values ranged from 13.5 (Burundi, ascending) to 38.4 (DRC, descending). The 541 

percentage of individual GH features that estimates a date within one month of the actual GH event 542 

occurrence ranges from 0 (Rwanda, descending) to 38,4 (DRC, descending). The low percentages from 543 

the Rwanda descending track can be attributed to the fact that the estimated date is 37 days from the 544 

GH event occurrence and therefore just falls outside the one-month threshold. 545 
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546 

 547 

Figure 7.: Estimated GH event timing using the complete GH event scale (workflow 1) for amplitude, 548 

detrended amplitude (red), SAC (green), coherence and detrended coherence (black). The darker 549 

colored bar representing the ascending track results. The lighter colored bar representing the 550 
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descending track results. . The length of bars represent the uncertainty in timing (see section 3.3). Per 551 

GH event two bars indicate the estimated timing. The darker color bar visualizes the timing range 552 

estimated from ascending track imagery and the lighter color bar visualizes the timing range estimated 553 

from descending track imagery. The color dashedDashed lines on the bars ( ) represents the overlap 554 

between the ascending and descending track timing estimationsresults.   555 
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556 

557 

Figure 8: Estimated timing from the individual GH feature scale (workflow 2) for amplitude, detrended 558 

amplitude (red), SAC (green), coherence and detrended coherence (black). The darker colored bar 559 

representing the ascending track results. . The length of bars represent the uncertainty in timing (see 560 

section 3.3).  Per GH event two bars indicate the estimated timing. The darker color bar visualizes the 561 

timing range estimated from ascending track imagery and the lighter color bar visualizes the timing 562 

range estimated from descending track imagery. Dashed lines on the bars represent the overlap 563 

between the ascending and descending track results. The color dashed bar ( ) represents the overlap 564 

between ascending and descending track timing estimations. In the %maj column we present the 565 

percentage of individual GH features over the total amount of individual GH features that were included 566 

in the majority vote separated for the ascending (asc) and descending (dsc) track. In the ‘within one 567 

month’ column we present the percentage of individual GH features over the total amount of individual 568 

GH features that estimated a date within one month of the actual event occurrence.  569 

4.3. Time seriesSensitivity analysis with respect to landscape characteristics 570 

v 



28 
 

GH size seems to have a clear influence on time estimation accuracy. Specifically, the SAC and coherence 571 

show a clear increase in percentages of estimated timing within one month of the GH event occurrence 572 

with increasing GH size (fig. 9 a-f). R2 values show a relatively reliable fit for both SAC and coherence. 573 

Amplitude shows a slight increasing trend, but associated R2 values are non-reliablenon non-significanti 574 

.  575 

Slope trend lines (fig. 9 g-l) show in general little to no inclination and R2 -values are non non-576 

significantinsignificant, except for the coherence ascending track. Here, a clear increase in slope angle 577 

becomes visible with a comparatively higher R2 (although clearly less reliable significant than R2 from 578 

the area GH size analysis). 579 

To assess the general influence of land cover on the ability to estimate GH event timing we combined 580 

both the ascending and descending track results for all four GH events in each boxplot (fig. 9 m-o). 581 

Each boxplot therefore contains a total of eight data sources points per land cover type. The major land 582 

cover classes within the GH events were tree covered area, grassland, and cropland (Fig 4d). Median 583 

percentage values range around 9-10 % for amplitude, 11-16 % for SAC, and 27-34 % for coherence. 584 

Although median values within the grassland land cover type seem to be systematically higher among 585 

the three3 data products (amplitude, SAC, and coherence), differences with other land covers are quite 586 

small. No specific land cover shows a significant advantagebetter performance. 587 

To assess the influence of the slope orientation, we derive the difference between ascending and 588 

descending track percentages per bin and determine which track shows better performance (fig. 9p-s). 589 

At the results for the Rwanda GH event (fig. 9q) we see for SAC and coherence an all-round favorability 590 

for the ascending track, that can be explained by the fact that, like the results in figure 8, the Rwanda 591 

GH event had almost no estimations within one month of the GH event occurrence for the descending 592 

track. The results presented for Uganda, Burundi and DRC GH events (fig. 9p,r,s) show a general 593 

favorability of the ascending track for individual GH features that have an aspect of approximately 45-594 

180°, whereas a general favorability of the descending track for individual GH features that have an 595 

aspect of approximately 225-360°. In contrast to this general trend, the opposite seems to be visible 596 

for the Uganda GH event coherence.  597 
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 598 

Figure 9. : Timing estimation performance over changing individual GH feature area (a-f), slope angle 599 

(g-l), land cover (m-o) and slope aspect (p-s). The y-axis displays the percentage of individual GH 600 

features that estimated a timing that falls within one month of the actual GH event occurrence over the 601 

total amount of individual GH features per GH event. Bin sizes: area=1000m, slope angle=5°, slope 602 

aspect=45°. Area (a-f) and slope angle (g-l) plots are separated per track, and the colors indicate the 603 

different GH events. The black dashed lines present the linear trend lines fitted to the data (a-l) for 604 

which the associated R2 values are included. Land cover (m-o): boxplots give lower and upper quartiles 605 

and median. The whiskers of each box represent 1.5 times the interquartile range. Outliers beyond 606 

whiskers are shown as dots. Slope aspect (p-s): the polar plots present the favorability of the ascending 607 

(ASC) or descending (DSC) track per slope aspect (see section 4.3). The color of the polar plot 608 

background indicates the SAR data product.  609 

5 Discussion 610 
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In this study we present a regionally applicable methodology to automatically determine GH event timing 611 

using S1 SAR data. Our study improves on the recent advances in GH event timing estimation research 612 

as: (1) we are one of the firsts to use amplitude, SAC and coherence time series in a systematic manner 613 

to detect the timing of GH events (Mondini et al., 2021), (2) we defined a methodology where no prior 614 

knowledge of the GH event timing is required, (3) we applied our methodology on contrasting 615 

landscapes and (4) we combined, for the first time, landslides and flash floods in a single detection 616 

approach. Here we discuss our insights, results considering recent developments, and the potential 617 

improvements and future perspectives of our new methodmethodology. 618 

5.1. Insights in geomorphic hazardGH event timing estimation from SAR 619 

5.1.1 Geomorphic hazardGH event timing estimation 620 

The use of amplitude or detrended amplitude time series in our methodology does not prove to be an 621 

effective approach to accurately determine the timing of GH events since it gives an estimation accuracy 622 

of 13 to 1000 days with the actual time occurrence of the events. A clear increase in accuracy is obtained 623 

from SAC with an accuracy of 1 to 85 day. However, the most accurate results are achieved with 624 

coherence and detrended coherence with a 1 to a 47 day accuracy. 625 

GH event timing accuracies are higher for GH events that occurred in remote areas with low amounts 626 

of cultivation and human influence (highest accuracies for Uganda GH event, lowest for Rwanda GH 627 

event). The magnitude of the seasonal vegetation oscillations, which shows connectivity with the 628 

precipitation patterns (fig. 6), varies significantly with changing landscapes and results in profound 629 

seasonal cyclicity in both the amplitude and coherence timeseries. Although the coherence is additionally 630 

influenced by atmospheric effects (Rocca et al., 2000), the influence of both the vegetation and 631 

atmosphere on the coherence does not obscure the GH event induced change within the time series. 632 

Notably, after detrending, the effects of both seem to be almost negligible. Denser and taller vegetation, 633 

result in lower seasonal cyclicity within the amplitude and coherence time series. S1 operates in C-band 634 

frequency, meaning that the emitted signal penetrates the canopy layer and subsequently bounces on 635 

the branches, and leaves underneath (Dzurisin, 2006). A reduction in vegetation after a seasonal dry 636 

period within sparsely vegetated areas, i.e., the grass- and croplands in the DRC GH event, will likely 637 

expose the soil underneath and have a pronounced influence on the backscattering signal given the 638 

difference in backscattering properties of vegetation and soil (Strozzi et al., 2000, Weydahl, 2001, 639 

Colsesanti & Wasowski, 2006, Tessari et al., 2017). In contrast, a seasonal dry period in a dense forest, 640 

(i.e., Uganda GH event) would affect the density of the canopy cover. However due to the height and 641 

close vicinity of the vegetation to each other a dry period does not necessarily lead to more soil 642 

exposure.  This is  corroboratedis corroborated by  theby the fact that the NDVI does not change much 643 

for the Uganda GH event, despite the seasonal patterns in precipitation (fig. 6). The regions that are 644 

covered with the denser and most uniform vegetation are commonly environments with the lowest 645 

chance of getting timing information from other sources (media, citizen-observer networks) as 646 

compared to GH events in more inhabited landscapes (Jacobs et al., 2019, Monsieurs et al., 2019,).  647 
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The complex reaction of the SAR signal to soil moisture and roughness change can causes both an in- 648 

and decrease of the amplitude at the same GH event location (Mondini et al., 2021, Burrows et al., 649 

2022). Next to the seasonal influence (fig. 6), this can also be a potential reason why no significant 650 

changes at the timing of the GH event are distinguished for all GH events. The inter-pixel variation 651 

captured in SAC proves to be a good tool to account for both this potential in- and decrease and any 652 

seasonal variation in amplitude values at the location of the GH event and increased timing estimation 653 

accuracy. 654 

The pre-event, co-event, and post-event coherence values of our four GH events correspond with the 655 

study of Tzouvaras et al. (2020), where a distinct difference in pre- (low) and post- (high) GH event 656 

coherence values is observed at the location of a landslide occurrence. We observe the same patterns 657 

with the GH events that contain flash floods, likely because a clear landscape change is observed after 658 

the occurrence of the (often sediment-rich) flash floods (fig. 1). The co-event coherence drop as 659 

observed by Tzouvaras et al. (2020) and Burrows et al. (2019) at the location of a landslide occurrence 660 

does not prove to be significant enough to be able to determine GH event timing. This is most likely 661 

attributed to the fact that the GH events occurred in low-coherence (vegetated) areas (Weydahl 2001, 662 

Tessari et al., 2017).  663 

5.1.2 Geomorphic hazardGH event distribution 664 

An increase in GH area improves the accuracy of timing detection, which can likely be related to the 665 

increased number of pixels fully covering the GH feature relative to the fuzzy edge pixels (e.g. Foody 666 

and Mathur, 2006, Deijns et al., 2020, Zhong et al., 2021). 667 

Generally, accuracy is not correlated with slope angle (fig. 9). However, an increase in accuracy with 668 

increasing slope with a relative low reliability is observed for coherence. Nevertheless, this trend must 669 

be considered with a certain caution: (1) the trend is dependent on the quality of terrain correction 670 

during the pre-processing step (section 3.1), which should make SAR values independent of slope angle 671 

(Small, 2011), (2) a changing slope angle could influence the GH size (Chen et al., 2016), (3) we take 672 

the average slope angle per GH. Elongated GH features (mainly the flash flood features in the GH 673 

inventories) will have an average slope angle that is not representative for every part of the GH.  674 

Although a clear difference can be observed in time series response to GH events located in different 675 

landscapes (fig. 6), the comparison with the land cover does not allow to find a clear relationship with 676 

the type of vegetation (fig. 9). Since the land cover distribution is not equal amongst GH events (fig. 677 

5), the results are, for some GH events, based on a low amount of individual GH features. The, which 678 

might not be representative enough for a general trends could therefore also be influenced by additional 679 

underlying trends such as GH size and GH slope angle. The observed large variation in values per box 680 

plot (fig. 9m-o) might be an indication of this.     681 

By using the right-looking S1 satellite data, foreshortening, and layover effects should be limited with 682 

descending track acquisitions for GH exposed towards the west (180-360°) and with ascending track 683 
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acquisitions for GH exposed towards the east (0-180°). The shadow affects in the opposite direction 684 

and is dependent on the slope of the terrain (Bamler, 2000). We see that, generally, the individual GH-685 

features on the descending slope tend to have a higher timing estimation accuracy for the west facing 686 

slopes and the individual GH features on de ascending track for the east facing slopes, which is as 687 

expected. However, there remains variability in the result, for example, an opposite pattern is visible 688 

for Uganda GH event with the coherence and a partial favorability for the descending track acquisition 689 

on east facing slopes is visible for the DRC GH event. Future research on the detailed effect of changing 690 

GH feature aspects on the ascending and descending SAR time series can provide additional valuable 691 

information in this context. 692 

Our derived trends are established from GH events with each 318 to 1063 individual GH features and 693 

provide a good indication of the SAR response to changing landscape parameters. It remains interesting 694 

to see if these trends sustain with the addition of more GH events from different landscapes.  695 

5.2. Result considering recent developments in SAR timing detection 696 

Our results are somewhat in contrast with Burrows et al., (2022), who argue that coherence is less 697 

performant than amplitude for GH event timing. Burrows et al. (2022) used a method similar to our 698 

timing workflow 2, where they estimated timing from individual landslides and chose the majority to 699 

represent the timing. Using amplitude data, they were able to estimate the timing of ∼ 320% of 700 

landslides per inventory with an accuracy of 6-12 days withan accuracy of ∼80% confidenceand an 701 

average precision of 12 days. Whereas by using coherence (60x60m resolution) they acquired much 702 

lower less confidence accurate results values (24-47% correctly estimated). Their study, however, 703 

differs in several aspects from our analysis: 704 

1. Burrows et al., (2022) applied their method with a pre-defined notion of GH event timing, i.e. known 705 

year and season. For our GH events, we see distinct seasonal dynamics mainly within the amplitude 706 

time series. Zooming in on a specific time frame (3 months before and 3 months after the GH event 707 

occurrence like Burrows et al., (2022)) reduces the overall seasonal dynamics, which could be the 708 

cause of a wrongly identified GH event change. Reducing this time window will potentially This 709 

improves the detectability of the GH event within the time series and thus the resulting accuracies. 710 

However, our methodology is also intended to be applicable in areas such as the western branch of 711 

the East African Rift, an area  that are characterized by data scarcity (Dewitte et al., 2021). In areas 712 

like these, information on the temporal distribution of GH events may not always be available. We 713 

therefore defined a methodology that requires no knowledge on GH event timing before application, 714 

which is an advantage if no GH event timing is present, however, this increases the chance of any 715 

seasonal influence visible within the time series. 716 

2. They applied their method on landslides only. In our case, the addition of flash floods to the 717 

inventories introduces different types of contrasting GH shapes, slopes and land cover (flash floods 718 

tend to be elongated, occur in the valleys with shallower terrain, whereas landslides occurred mainly 719 

on the steeper hillslopes) that can influence the SAR time series, specifically if the flash flood enters 720 
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urbanized area (such as in the DRC GH event) or run through a seasonally dynamic channel with 721 

seasonally changing soil moisture levels influencing the SAR signal (Ulaby et al., 1996, Scott et al., 722 

2017).  723 

3. Their used landslide inventories (from Roback et al., 2018 and , Emberson et al., 2022) suggest 724 

that they developed their method on landslides in comparatively more ideal homogenous landscape 725 

conditions, where the landslides generally occurred in denser vegetated areas with less cultivated 726 

area. This is corroborated by their high pre-event NDVI values (peak of distribution between 0.7-727 

0.8).are located in densely vegetated areas (NDVI between 0.6 and 0.8). In the three areas they 728 

studied, Zimbabwe, located in a semi-arid climate region (Roback et al., 2018) is the region where 729 

the landscape is the least homogenous and the closest to what we study. In Zimbabwe however, 730 

landslides generally still occur in vegetated areas (including grassland, forests) without significant 731 

agricultural practices, which is in contrast with the Rwanda and DRC GH events in our study that 732 

have a large portion of the GH within crop- and grassland (fig. 5). In agreement with Burrows et al. 733 

(2022) our results show that the Uganda GH event, where most of the landscape consists of dense 734 

vegetation (i.e., the highest NDVI values), show estimated GH event timing accuracies that are the 735 

highest among all GH events, obtaining a 1-2 images difference from the actual GH event occurrence 736 

for SAC (1-16 days) and (detrended) coherence (1-8 days). Although amplitude is overall less 737 

performant for the Uganda GH event, we still achieve an accuracy off 13-22 days for the detrended 738 

amplitude. 739 

4. We do not threshold on individual GH area. Specifically, the Rwanda GH event contains a GH event 740 

size distribution that includes many small individual GH features below theis threshold used in 741 

Burrows et al. (2022)  (fig. 5). Together with the complexity and large fraction of cultivation of the 742 

landscape this clearly results in reduced estimation accuracies.  743 

5. To improve timing accuracy, tThey removed landslide timing estimations  that did not pass a 744 

threshold based on the relativeusing the magnitude of of the change caused by the landslide within 745 

the SAR time series, induced by the landslides which allowed them to improve the estimation 746 

accuracy. 747 

5.  748 

5.3 Improvements and perspectives 749 

The current methodology successfully allows to analyze GH event timing from SAR, but several 750 

improvements can be considered in future research.  751 

5.3.1 Improvements  752 

1. In the current methodology we do not detrend individual GH feature time series (see section 3.3). 753 

Because detrending does increase timing accuracy within our study, further research on accurate 754 

detrending of individual GH time series can potentially greatly benefit timing estimation accuracy.   755 

2. We use one pointone change detection algorithm (ruptures: Truong et al., 2020) to find changes 756 

related to the GH event occurrence within the time seriesto estimate GH event timing. Comparing 757 
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multiple change detection algorithms (e.g., the ones used byDeijns et al., 2020, Burrows et al., 758 

(2022)), could potentially benefit GH event timing estimation accuracy.   Additionally, within our 759 

timing workflow 2, we do not incorporate any methodology to filter out any low accuracy timing 760 

estimations, such as in Burrows et al., 2022. However, since we do not apply the methodology with 761 

a pre-defined notion of time, our time series are prone to seasonal dynamics (fig. 6) and the 762 

applicability of such an implementation remains to be investigated.  763 

2.  764 

3. The quality of the amplitude and coherence imagery is dependent on the quality of the pre-765 

processing applied with the MasTer tool (Derauw et al., 2020, d’Oreye et al., 2021) and how it deals 766 

with the different steps such as co-registration, radiometric terrain correction and geocoding. Quality 767 

of the imagery in its turn is also dependent on, among others, the multi-look factor (amplitude), 768 

the interferometric multi-look factor and the maximum temporal and perpendicular baselines 769 

(coherence). In addition, different polarizations may yield different results (Shibayama et al., 2015, 770 

Psomiadis, 2016, Park & Lee, 2019) and the use of a different polarization can potentially improve 771 

event detectability within the time series. Improvements within the SAR imagery might be achieved 772 

by tweaking and closely investigating different pre-processing steps to achieve better image quality. 773 

4. The SAC result depends on the ability to find the best reference image (sSection 3.2).  Additional 774 

efforts can be made to better find the SAC time series that shows the most significant change 775 

related to the GH event occurrence. For example, a preliminary filtering of very noisy SAC time 776 

series (before applying our developed method using the ECDF’s) can potentially benefit the ability 777 

to acquire the best reference image.  778 

 779 

5.3.2 Perspectives   780 

1. We have studied, for the first time in a GH event timing detection approach, both landslides and 781 

flash floods in a combined methodology. Since these GH often co-occur and interact (Marengo & 782 

Alves, 2012, Jacobs et al., 2016a, Rengers et al., 2016) they should be analyzed in a multi-hazard 783 

approach. Our methodology can be well applied within a multi-hazard methodologysuch an 784 

approach. For example, multi-hazard inventories can serve as an input for our methodology if there 785 

is a need to improve event their timing accuracy. Regional resultsResults can subsequently be used 786 

in hazard assessment, early warning, and disaster risk reduction strategies.   787 

2. Our study shows that there is a clear advantage to analyzing different S1 SAR data products when 788 

estimating GH event timing. The fact that Burrows et al. (2022) shows better results for amplitude 789 

compared to coherence data is in contrast with our results but reinforces the idea of investigating 790 

both data products when applying the methodology to new regions.  791 

3. Regarding transferability of our developed method. Given the clear influence of landscape and 792 

climate as controlling factors for SAR time series behavior (elaborated in section 2.3), we aimed to 793 

develop our methodology within a variety of contrasting landscapes and contrasting vegetation 794 

dynamics. This offers perspectives for transferability. We show that  sSlope angle does not seem to 795 

influence accuracy (fig. 9). Based on landscape characteristics, tTransferability to other regions 796 
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seems therefore likely to acquire good results, specifically for the SAC, coherence and detrended 797 

coherence time series as they do seem less influenced by seasonal dynamics than the amplitude 798 

and detrended amplitude time series (fig 6.). However, climate drivers could also potentially play a 799 

role. The precipitation regime within our study area is quite similar for the four studied GH events 800 

(Nicholson 2017, Monsieurs et al., 2018a). For example, Since soil moisture and wetness have an 801 

influence on amplitude and coherence time series (Ulaby et al., 1996, Srivastava et al., 2006, 802 

Brancato et al., 2017, Scott et al., 2017), contrasting precipitation regimes within other regions 803 

could potentially influence the response of the SAR time series and the estimated GH event timing 804 

accuracy. Examples of contrasting precipitation regimes are: (1) a lower amount of precipitation in 805 

more arid regions, or lower/higher amounts in other tropical regions (Fick and Hijmans, 2017); . (2) 806 

a change in precipitation seasonal variability due to spatially different oscillation of the ITCZ 807 

(Nicholson et al., 2017, Dewitte et al., 2022); . (3) the effect of local topography and the presence 808 

of lakes on the local precipitation patterns (e.g.e.g. Thiery et al., 2015; 2016; 2017, Monsieurs et 809 

al., 2018b). The influences of these contrasting precipitation regimes on SAR-based GH timing 810 

detectiondetection, however, remains to be investigated. Additionally, in its current form, the 811 

methodology does not account for the GH events that occur within a time span that is longer than 812 

the acquisition time (> 6-12 days) of S1 images (i.e. multi-temporal GH events). In that case one 813 

would require a time window of occurrence, rather than a specific date. The methodology can be 814 

adapted to allow it to derive a time window of GH occurrence. This could mainly be done following 815 

timing workflow the 1 (the GH event scale), where. tThe start and the end date of the GH event 816 

inducing change within the SAR time series (applicable for all data products) should be indicative of 817 

the time window of GH event occurrence. However, this remains to be investigated. 818 

4. The open-access S1 satellite with its high resolution, high repeat time and global coverage proves 819 

to be an excellent data product for estimating GH event timing and allows for our developed 820 

methodology to be applied on every region of the world. The use of our methodology with different 821 

satellite products (e.g. COSMO-SkyMed, upcoming NISAR satellite) is not straightforward. Different 822 

available SAR satellite products operate in different bands with their own characteristics  (e.g., X-823 

band for COSMO-SkyMmed (Covello et al., 2010) and , L-band for NISAR (NISAR, 2018)), that will 824 

likely have. implications on the ability for accurate GH event timing estimation. For example, the 825 

varying vegetation penetration depths associated with different SAR bands (Dzurisin, 2006) will 826 

likely have an influence on the impact of seasonal vegetation dynamics on the SAR time series as 827 

observed for our GH events (fig. 6).   , which have varying vegetation penetration depths (Dzurisin, 828 

2006). The effect related to varying vegetation penetration depthsSAR products remains to be 829 

investigated  830 

5. The methodology can benefit (in terms of data availability, scalability, and processing time) from 831 

implementation on a cloud computing service. However, these  cCloud computing platforms such 832 

as GEE only provide pre-processed amplitude imagery (i.e. amplitude ground range detected 833 

imagery). As such, they This will allow for the applicability of our methodology using the amplitude, 834 

detrended amplitude and SAC data products. However,T to our knowledge, so far no cloud 835 
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computing platform offer , but there is so far nothe possibility for processing and using coherence 836 

data. Additionally, the use of pre-processed amplitude imagery restrains us from manual input 837 

during the pre-processing step (as the MasTer Toolbox allows).   838 

6. The methodology can potentially be combined with optical data (e.g. Deijns et al., 2020) that could 839 

serve as additional data to help narrow down the time window and filter out any non-sense timing 840 

estimations.  841 

6. Conclusion 842 

We established a  new regionally applicable methodology to automatically determine GH event timing 843 

from SAR images, that can be applied without prior knowledge of the GH event. AndW we successfully 844 

assessed the use of multiple SAR derived data products in their ability to accurately detect GH event 845 

timing forin contrasting types of landscapelandscapes. Our methodology method is original as it is the 846 

first time that landslides and flash floods are studied together. By We showing that these two 847 

processeslandslides and flash floods can be detected and therefore studied together, , hence we open 848 

new perspectives in the study of multi-hazards, that can subsequently  which can aid in hazard 849 

assessment, early warning, and disaster risk reduction strategies. Our methodology has the potential to 850 

be combined with existing spatial detection methods to support inventory creation and boost GH event 851 

research in remote inaccessible areas such as the African cloud-covered tropics. 852 

From a data processing point of view, the methodology is established around an unprecedented analysis 853 

of various SAR products coming from Sentinel-1 (S1) images. We show that there is a need to investigate 854 

different SAR data products when estimating GH event timing (amplitude, spatial amplitude correlation, 855 

and coherence) since the signal response can be different and sometimes contradictory when looking 856 

at one single event. The implementation of our methodology method on a cloud computing platform 857 

can be beneficial in terms of scalability, data availability and processing time. However, the main 858 

limitations in this context are: (1) no control in pre-processing of S1 imagery and, (2) S1 coherence 859 

data is so far not available within these platforms.   860 

With a focus on four events containing a total of about 2500 landslides and flash flood features in 861 

contrasting landscapes, we propose a methodology method that is adapted to be applied to other 862 

regions. Here, we focused on tropical environments where climate conditions and land use dynamics 863 

are rather specific. However, we believe that the complexity of these landscapes is an added value for 864 

the transferability of the methodology. Additionally, the use of the globally available open access S1 865 

satellite data allows our methodology method to be applied on every region of the World.  866 
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