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Abstract. Reservoirs play a key role in many human societies due to their capability to manage water resources. In addition 

to their role in water supply and hydropower production, their ability to retain water and control the flow makes them a valuable 

asset for flood mitigation. This is a key function since extreme events have increased in the last decades as a result of climate 

change, and therefore, the application of mechanisms capable of mitigating flood damage will be key in the coming decades. 

Having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. 15 

When historical data are available, data-driven models have been proven a useful tool for different hydrological applications. 

In this sense, this study analyses the efficiency of different machine learning techniques to predict reservoir outflow, namely 

multivariate linear regression (MLR) and three artificial neural networks: multilayer perceptron (MLP), nonlinear 

autoregressive exogenous (NARX) and long short-term memory (LSTM). These techniques were applied to forecast the 

outflow of eight water reservoirs of different characteristics located in the Miño River (northwest of Spain). In general, the 20 

results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the 

results obtained with classical approaches such as to consider reservoir outflow equal to that of the previous day. Among the 

different machine learning techniques analyzed, the NARX approach was the option that provided the best estimations on 

average. 

1 Introduction 25 

Humankind has been creating reservoirs since ancient times (Baba et al., 2018). The purpose of these bodies of water are varied 

and include irrigation, flood protection, power generation and control of the natural flow of rivers, among others (Lee et al., 

2009). Reservoirs are created through the construction of dams, which are complex structures that retain water and are capable 

of controlling the water flow. This ability to control the flow permits the management of water resources allowing the storage 

of water for consumption, electricity production and protection against floods. They are, therefore, important agents that affect 30 
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the economy, human population and fauna and flora in their area of influence (Castelletti et al., 2008). In a river basin, it is 

usual to find several of these structures along the course of the river, thus, the operation of the upstream reservoirs affects all 

the downstream activities. Therefore, communication and coordination among the different dams present in the river course 

are desirable for the optimal management of water resources (Marques and Tilmant, 2013; Jeuland et al., 2014; Quinn et al., 

2019; Rougé et al., 2021). However, this is not always possible as there may be different barriers and tradeoffs that hinder 35 

such coordination. Is not unusual for rivers to pass through different countries or administrative regions with different policies 

and regulations. It is also common for dams to be operated by private companies with different operating policies and interests. 

The operation of these structures depends not only on natural factors and well-defined operating rules but also on external 

demand. These aspects can also hinder the access or the utilization of the operation rules of the reservoir. This adds a significant 

amount of uncertainty in predicting the outflow of a reservoir at any given time, making it difficult to incorporate into physics-40 

based models, which is a disadvantage in water resource management and flood risk prevention. 

 

Different aspects of water reservoirs will be of increasing importance in the future. One of the most important is the key role 

that dams play in protection against floods, which are one of the most dangerous natural catastrophes, being the cause of 

tremendous loss of lives (Jonkman, 2005) and billions of euros in economic losses (Hallegatte, 2012; Wallemacq et al., 2018) 45 

worldwide. Unfortunately, several studies predict a worsening scenario for the future, increasing the frequency and severity of 

these phenomena (Berghuijs et al., 2017; Passerotti et al., 2020). Several factors affect this trend, being climate change (Arnell 

and Gosling, 2016; Liu et al., 2018) and modifications in land use (Booth and Bledsoe, 2009; Bradshaw et al., 2007; de la Paix 

et al., 2013; Rosburg et al., 2017) two of the most important ones. In response to these worrying reports, the scientific 

community established that flood mitigation is one of the most important challenges to be addressed in the coming decades 50 

(Field et al., 2012), and dams can play a key role in this sense. In addition, in the context of climate change, hydropower 

generation also plays an important role. Hydropower generation is expected to increase significantly in the future in a scenario 

of increasing demand for renewable energies (Adaramola, 2016), albeit the climate change may affect river flow and thus the 

availability of water for power generation (Berga, 2016). Issues related to water availability in future scenarios are also a major 

concern for such important sectors as agriculture, which negatively affect food production (Alcamo et al., 2007; Elliott et al., 55 

2014; Xiong et al., 2009). Optimizing the management of water resources and more specifically the reservoir operations will 

be essential to mitigate these effects. 

 

This research paper focuses on the development of models capable to forecast the outflow of a reservoir. These models could 

be an advantage when incorporated into current or newly developed water management systems, improving their operation. 60 

This includes flood early warning systems and reservoir management systems, among others. In order to forecast the outflow 

of a reservoir, the most simplistic approach involves assuming that the reservoir surpasses its storage capacity and therefore 

the outflow is equal to the inflow. Although this approach is an over-simplification of river dynamics, it can be a reasonable 
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approximation only in relatively small reservoirs during wet season when they are close to the spillway capacity after a period 

of high inflows, and therefore have little margin to alter the natural flow of the river. Under normal conditions, the simplest 65 

approximation is to assume that the outflow of the reservoir for a given day d will be the same as on day d-1. This can provide 

acceptable approximations under normal conditions when the flow does not vary significantly from day to day. This procedure 

can be improved by applying multivariate solutions that assume different weights to several known variables. In this case, the 

approach will be to establish a relation between the outflow on a given day d with the known outflow, inflow and reservoir 

level on day d-1. One approach to improve these simpler solutions is to develop data-driven models based on the analysis of 70 

the data of a specific system, being able to find relations between input and the output variables of the system. These models 

have been complementing or replacing physics-based models (e.g., hydrodynamic models) in the last years (Solomatine and 

Ostfeld, 2008). Data-driven modelling uses machine learning (ML) techniques to build models for a specific system from 

existing data. According to Rashidi et al. (2019), machine learning is an application of artificial intelligence (AI) that enable 

the automatic learn of computer systems, all based on experience without explicit programming. Machine learning techniques 75 

were successfully applied in many hydrological applications (Le et al., 2019; Xiang et al., 2020; Kratzert et al., 2018; Rjeily 

et al., 2017; Guzman et al., 2017; Lee and Tuan Resdi, 2016; Taghi Sattari et al., 2012; Ghorbani et al., 2019; Emami and 

Parsa, 2020; Sammen et al., 2017) in the last years. In this paper, several methodologies based on machine learning techniques 

are proposed for the time series forecasting of reservoir outflow. The ML techniques used for this task are included under the 

category of supervised learning, meaning that the ML algorithm will be fed with data that includes the desired solutions (Géron, 80 

2019), in this case, the future outflow of a reservoir. The task to be performed by the ML model is a regression in which a 

target outflow value will be predicted from a series of input variables or features. This research paper will cover several 

techniques ranging from multivariate linear regression (MLR) to several artificial neuron network (ANN) techniques (a feed-

forward neural network with back propagation algorithm (multi-layer perceptron, MLP), nonlinear autoregressive exogenous 

(NARX) and a long-short term memory network model (LSTM)) to forecast the outflow for different important dams located 85 

in the Miño-Sil basin (Galicia, Spain). However, it is worth noting that the results obtained in this study may not be completely 

extrapolated to other areas with larger reservoirs and/or dry climatic conditions. 

 

The research paper organizes as follows: in section 2 the characteristics of the area of study will be presented as well as the 

different ML models employed. Section 3 will analyse and discuss the results obtained. And last, in section 4 the main 90 

conclusions of the study will be exposed. 
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2 Material and methods 

2.1 Area of study 

Figure 1 shows the area of study and the location of the reservoirs employed in the present work. The eight reservoirs are 

located in the Miño-Sil River basin, situated in the northwestern of the Iberian Peninsula. The basin has a total area of around 95 

17,000 km2 (Confederación Hidrográfica del Miño-Sil, 2016) and constitutes an important region of hydroelectric generation. 

The Miño-Sil river system is one of the most important in the Iberian Peninsula and the one with the highest runoff-to-surface 

ratio. It is characterized by a pluvial regime with the maximum water flow in the winter season and a minimum in summer 

(Fernández-Nóvoa et al., 2017), presenting average annual precipitation of 1,184 mm (Confederación Hidrográfica del Miño-

Sil, 2016). Eight reservoirs were selected from the Miño-Sil river system with capacities ranging from 10 to 655 hm3 (see 100 

Table 1 for a summary of their main characteristics). 

 

A total of 19 years of data in a daily scale were provided, after request, by the Minho-Sil River Basin Authority (Confederación 

Hidrográfica del Miño-Sil, https://www.chminosil.es) for the reservoirs under study. The period analyzed spans from October 

1, 2000, to September 30, 2019. The time series data include the percentage of filled volume, the inflow and the outflow of the 105 

reservoir. 

2.2 Machine learning models 

The available dataset was divided into three different subsets, using roughly the first 70% of the data range for the training 

subset (from October 1, 2000, to September 30, 2013), the following 15% for the validation subset (from October 1, 2013, to 

September 30, 2016) and the remaining 15% for the test subset (from October 1, 2016, to September 30, 2019). This criterion 110 

has been chosen for better interpretation and comparison of the output series produced by the models. Table 2 shows the 

statistics of the subsets for each reservoir and variable. Once the training phase is completed, the unbiased model performance 

is tested against the test subset. This approach can help to identify overfitting problems, where a model offers good performance 

with the dataset used during the training phase but is not able to generalize with new input data. For all the models, the inflow, 

outflow and volume percent values are used as input data to predict the outflow of the next day. Figure 2 shows the correlation 115 

between the variables involved for each of the analyzed reservoirs. It can be observed that there is a strong correlation between 

the inflow and the outflow variables. However, the two largest reservoirs analyzed (Barcena and Belesar) show a lower 

correlation between inflow and outflow, which is in concordance with their higher capacity and lower average occupation. The 

correlation between volume percent and the outflow is low in all the cases but slightly higher on Barcena and Belesar. 
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2.2.1 Multivariate linear regression 120 

The first ML technique based on multivariate linear regression was chosen to test complex neural network-based techniques 

against more conventional techniques. MLR can perform better than ANN in certain applications where the sample data 

available is small (Markham and Rakes, 1998), in this sense, this model can help to assess if the dataset available is big enough 

to use ANN based models. A relation was established between the outflow and inflow measured at day d, respect to the outflow 

of the next day d+1, which corresponds to the day under prediction. In addition, this adjustment was carried out not only for 125 

each dam but also for different filling levels, in order to take also into account this variable, which plays a key role in the dam 

capacity to retain water. In this case, percentage sections of 10% filling of the dam were considered, which means an adjustment 

when the occupied volume of the dam is less than 10%, another when the occupied volume is between 10-20%, and so on.  

Thus, for each dam, 10 adjustments define the outflow prediction attending to the different level of occupation, as indicates 

the next equation: 130 

 

�̂�𝑑+1 = 𝑐0 + 𝑐1𝑟𝑑 + 𝑐2𝑦𝑑                      (1) 
 

where �̂�𝑑+1 is the predicted outflow for day d+1, being 𝑦𝑑 and  𝑟𝑑 the measured outflow and inflow for day d. The three 

coefficients (c0, c1 and c2) were obtained from the linear fitting depending on the measured filling level of the corresponding 135 

dam.  

 

The equation and procedure described above were applied to each dam, using in all cases the first 70 % of the data to obtain 

the adjustments, and the last 30 % to test their efficiency. Although a validation phase is not considered in this methodology, 

the same dataset partitioning as in the neural network models has been used to facilitate the comparison. The first 70 % of the 140 

data (training subset) will be used to develop the model, and the last 30 % to test (validation and test subsets) their efficiency. 

Therefore, both the validation and test subsets are both test subsets in this methodology. 

2.2.2 MLP Model 

The second type of model developed in this research was ANNs, which are a type of computational approach that can be 

encompassed within machine learning. These types of models have been inspired in the biological human brain (Farizawani 145 

et al., 2020). An ANN model, like a biological neural network, is formed by several simple processing units joined to each 

other using weighted connections (Taghi Sattari et al., 2012). The simple processing unit is called node or neuron. Artificial 

neural networks present different advantages over traditional approaches to model data (Livingstone et al., 1997). Perhaps, and 

according to Livingstone et al. (1997), the most outstanding advantage is that this type of model is capable to fit complex 

nonlinear models. However, according to the same authors, this type of approach also has an important disadvantage, which 150 
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is that neural networks can suffer from overfitting and overtraining but can be solved by taking a good architecture selection 

and using training/control groups to see the evolution of the model (Livingstone et al., 1997). 

 

The first type of ANN model developed in this research is an MLP-ANN (multi-layer perceptron, artificial neural network), 

that is, a feed-forward neural network with a back propagation algorithm. In this type of ANNs, the information moves only 155 

in forward direction, that is, from the input neurons (in the input layer), crossing the hidden neurons (in the hidden layer) to 

the output neurons (RapidMiner Inc., 2022) (see Figure 3). The back propagation algorithm is used to fit the model. This kind 

of supervised algorithm compares the predicted values with the real values to calculate the prediction error, then this error is 

fed back through the network to adjust each connection weight and reduce the prediction error in the next cycle (RapidMiner 

Inc., 2022), that is, this ANNs learn by adjusting the connection weights. This process continues to run until the error goes 160 

down or reaches a satisfactory level, or until a previously established number of cycles has been reached (Taghi Sattari et al., 

2012).  

 

This type of artificial neural network is widely used in different predictions related to the study of water movement and dam 

or reservoirs management. In this sense, an MLP model, with back propagation learning algorithm, has been used to model 165 

the daily inflow into the Eleviyan reservoir (Iran) (Taghi Sattari et al., 2012).  This model has been compared with a time lag 

recurrent neural network (TLRN) for a period between 1 September 2004 and 30 June 2007. The MLP models were developed 

with only one hidden layer. According to Taghi Sattari et al. (2012), both models work acceptably with low inflow values. 

Another interesting study where MLP was used is in the research carried out by Ghorbani et al. (2019) who designed and 

evaluated a hybrid forecasting model combining a gravitational search algorithm (GSA) with an MLP to predict the water level 170 

in two lakes (Winnipesaukee and Cypress, USA). This hybrid model is compared with an MLP model that used the Levenberg-

Marquadt back propagation learning algorithm and other models; hybrid models (MLP-Particle Swarm Optimization and 

MLP-FireFly Algorithm) and ARMA and ARIMA models (Ghorbani et al., 2019). The hybrid MLP-GSA model showed a 

high efficacy over the other developed models and suggests that can be used in water resources management among other 

tasks. On the other hand, reservoir storage capacity determination is an important element in water resources management and 175 

planning, among others (Emami and Parsa, 2020). Due to this, Emami and Parsa (2020) try to predict the optimal reservoir 

storage capacity, using an evolutionary algorithm (inspired by imperialistic competition) along with an MLP model with a 

back propagation training technique, applied to Shaharchay dam (Urmia Lake basin, Iran). According to the results, both 

models are satisfactory (with RMSE of 0.041 and 0.045 for the imperialist competitive algorithm and the ANN model, 

respectively) (Emami and Parsa, 2020). Finally, another interesting research is the one carried out by Sammen et al. (2017) 180 

which used a generalized regression neural network (GRNN) to predict the peak outflow in the event of a possible dam failure. 

Sammen et al. (2017) built six models using different dam and reservoir attributes and concluded that the GRNN model show 

potential to predict peak outflow. 
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As previously said, the first ANN models developed were feed-forward neural networks with a back propagation algorithm. 185 

In this kind of ANNs, the information passes through different layers. In the input layer, the information is received from the 

database, and it is sent to the hidden layer where the information is treated. Finally, this new information is sent to the output 

layer where a result is generated. The number of neurons in the input layer is determined by the number of input variables 

(inflow, outflow and volume (%) at day d) that will be used to try to predict the desired variable (outflow for day d+1). In this 

research, only one hidden layer was used, and the number of neurons was determined by the trial-and-error method (being 190 

studied between one and seven). Finally, in the output layer, there will be as many neurons as variables to be predicted (in this 

case, one). The number of cycles was studied between 1 and 131,072 in 17 steps with a logarithmic or lineal scale, and the 

decay parameter was used to decrease the learning rate during the learning process (true or false). The best MLP model 

developed (lineal or logarithmic scale) was selected based on the lowest RMSE value for the validation subset. 

 195 

The different MLP models were implemented in a server (AMD Ryzen 7 1800X, Eight-Core Processor 3.60 GHz with 16GB 

of RAM) located at the Department of Physical Chemistry of the University of Vigo, Campus of Ourense. The operative 

system used was Windows 10 Pro 20H2 with 64-bit. The MLP models were developed using RapidMiner Studio 9.8.001 

software. 

2.2.3 NARX model 200 

The last two ANN techniques analysed fall under the umbrella of the so-called recurrent neural networks (RNN). This kind of 

ANN is especially suitable to forecast time series. Nonlinear autoregressive with exogenous inputs (NARX) neural networks 

are a type of RNN designed for tasks with long-term dependencies on the input data. They can converge and generalize faster 

than other ANNs (Lin et al., 1996). NARX can use previous input and output data including a feedback delay for both input 

and output. There are two typical NARX model architectures: parallel (P) and series-parallel (SP) (Xie et al., 2009) see Figure 205 

4. In the first one, the output of the model is fed back into the neural network, whereas in the SP architecture the real output 

value is used during the training phase. This second approach has proven to be more stable and robust (Amirkhani et al., 2022; 

Narendra and Parthasarathy, 1990). NARX models were used in multiple hydrological applications, a NARX model was used 

to forecast flood risks in urban drainage systems in Rjeilhay et al. (2017), showing a good performance and better calculation 

speed compared with physically based models. Guzman et al. (2017) developed a NARX model to simulate groundwater levels 210 

in the Mississippi River Valley Alluvial aquifer (USA). Lee and Tuan Resdi (2016) developed a NARX model capable to 

make hydrological prediction at multiple gauging stations in the Kemaman catchment (Malaysia) using thirteen meteorological 

input parameters. Yang et al. (2019) compared several RNN models including LSTM, NARX and a genetic algorithm based 

NARX for reservoir operation using input data from a distributed hydrological model. 

 215 
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A general NARX model following the SP architecture can be expressed as 

 

�̂�𝑑+1 = 𝑓 (𝑦𝑑 , 𝑦𝑑−1, … 𝑦𝑑−𝑛𝑦
, 𝑥𝑑 , 𝑥𝑑−1, … , 𝑥𝑑−𝑛𝑥

)                (2) 

 

Where �̂�𝑑+1  is the predicted outflow for day d+1, 𝑦𝑑  is the measured outflow for the day d, 𝑥𝑑  are the exogenous input 220 

variables for day d and f is a nonlinear function that is approximated by a MLP. The parameters nx and ny refer to input and 

output delays. In this work, the values of nx and ny were obtained using cross-correlation functions and the value for both 

parameters was set equal to 5 days. The value of the number of hidden neurons was set equal to 8 by the trial-and-error method. 

The activations functions for the hidden layer of the neural network and the output layer are tan-sigmoid and linear, 

respectively. The Levenberg-Marquardt algorithm was defined to train the model using the mean square error (MSE) as the 225 

loss function. The NARX models were developed using MATLAB software (MathWorks Inc., 2022). 

2.2.4 LSTM model 

The Long Short-Term Memory (LSTM) first proposed by Hochreiter and Schmidhuber (1997), employs the so-called LSTM 

cell that it is a type of RNN memory cell that stores a short-term state hd and a long-term state cd. It is capable of identifying 

meaningful input data and storing it in a long-term state, keeping this data as long as necessary and using it when needed. Due 230 

to this fact, this approach is very suitable to capture long-term patterns present in time series. As shown in Figure 5, for each 

time-step, as the cd-1 state enters the cell, some data is dropped in the forget gate, to add some extra data coming from the input 

gate, resulting in cd. At the same time, a tanh function is applied to cd and passes through the output gate to produce hd that is 

equivalent to �̂�𝑑+1. The input data xd and the short-term state hd-1 are fully connected to four layers. The main one, which 

outputs gd, analyses the input and the previous short-term state as in a regular RNN but only the most important parts are stored 235 

into the long-term state (Géron, 2019): 

 

𝑔𝑑 = 𝑡𝑎𝑛ℎ(𝑊𝑔[ℎ𝑑−1, 𝑥𝑑] + 𝑏𝑔)                                        (3) 

 

where tanh is the activation function, Wg is a weight matrix and bg is a bias matrix corresponding to the main layer. The 240 

remaining three layers are the gate controllers that use a sigmoidal activation function. Their outputs range from 0 to 1 and, 

since these outputs are used in an element-wise product, they have the ability to open or close the gate. The forget gate that 

outputs fd controls which part of the long-term state will be erased: 

 

f𝑑 = 𝜎(𝑊𝑓[ℎ𝑑−1, 𝑥𝑑] + 𝑏𝑓)                   (4) 245 
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where 𝜎 is the sigmoid activation function. The input gate, that outputs id, controls which parts of the main layer will be added 

to the long-term state: 

 

i𝑑 = σ(𝑊𝑖[ℎ𝑑−1, 𝑥𝑑] + 𝑏𝑖)                   (5) 250 

 

The last gate is the output gate, that outputs 𝑜𝑑 and controls which parts of the long-term state should be included in this time 

step ℎ𝑑 and �̂�𝑑+1: 

 

𝑜𝑑 = σ(𝑊𝑜[ℎ𝑑−1, 𝑥𝑑] + 𝑏𝑜)                   (6) 255 

 

Therefore, the cell output and the new short- and long-term states are defined as follows: 

 

𝑐𝑑 = 𝑓𝑑𝑐𝑑−1 + 𝑖𝑑𝑔𝑑                               (7) 

�̂�𝑑+1 = ℎ𝑑 = 𝑜𝑑𝑡𝑎𝑛ℎ(𝑐𝑑)                            (8) 260 

 

LSTM models were used in multiple hydrological applications. Le et al. (2019) used a LSTM neural network for flood 

forecasting in the Da River (Vietnam) using precipitation and flowrate at daily scale as input data, achieving predictions for 

one, two and three days ahead showing very good NSE values of 99%, 95% and 87% respectively. Xiang et al. (2020) used a 

LSTM and seq2seq (Sutskever et al., 2014) modelling approach to estimate 24h rainfall-runoff on an hourly scale in Clear 265 

Creek and Upper Wapsipinicon River watersheds (Iowa, USA), using observed and forecasted rainfall, observed runoff and 

evapotranspiration data obtained from stations. Results showed that the methodology could provide effective predictions for 

hydrology applications. Kratzert et al. (2018) used data from 241 catchments from the CAMELS data set to compare LSTM 

as a hydrological model versus a more traditional approach using the Sacramento Soil Moisture Accounting Model (SAC-

SMA) coupled with Snow-17, obtaining similar results with both approaches. Zhang et al. (2018) use a LSTM model to 270 

simulate the reservoir operation using 30 years of data from the Gezhouba dam located on the Yangtze River (China), 

outperforming other machine-learning approaches such as a back-propagating neural network and a support vector regression. 

 

The software used for the implementation of the LSTM models was TensorFlow (TensorFlow Developers, 2022). After an 

exploration of different hyper-parameters, the number of hidden layers was set to one as no significant benefit was observed 275 

when using a higher number. The input width window chosen was 10 days. The input data was scaled using a standard scaler. 

The optimizer chosen was Adam with Nesterov momentum (Kingma and Ba, 2014; Dozat, 2016). The batch size was set to 

32, obtaining similar results with values between 16 and 32 and achieving significantly worse results with higher values, these 

observations are in concordance with existing literature (Masters and Luschi, 2018). The activation function used is tanh, since 
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it was the only option that was optimized for GPU (Graphics Processing Unit) accelerators giving much faster training times 280 

but also gives the more consistent results. The number of training iterations was defined by an early stopper function that stops 

the process when no further improvements are obtained. The cost function used during the training was the mean square error 

(MSE). On the other hand, the number of neurons and the learning rate parameters were optimized for each specific reservoir 

using the KerasTuner software (O’Malley et al., 2019). 

2.3 Metrics 285 

In order to compare the different models and measure their accuracy several statistical metrics, widely used in hydrological 

applications, were employed. More precisely, the Pearson’s coefficient of correlation (r), the ratio of root mean square error 

and the standard deviation of the observed values (RSR), the Nash-Sutcliffe Efficiency coefficient (NSE) (Nash and Sutcliffe, 

1970) and the percent bias (PBIAS) that are defined by the following equations: 

 290 

𝑟 =
∑ [(𝑄𝑖

𝑓𝑜𝑟
−𝑄𝑓𝑜𝑟̅̅ ̅̅ ̅̅ ̅)(𝑄𝑖

𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)]𝑁
𝑖=1

√∑ (𝑄
𝑖
𝑓𝑜𝑟

−𝑄𝑓𝑜𝑟̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

√∑ (𝑄𝑖
𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑖=1

         (8) 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑖

𝑜𝑏𝑠−𝑄𝑖
𝑓𝑜𝑟

)𝑁
𝑖=1

2

∑ (𝑄𝑖
𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)𝑁

𝑖=1

2          (9) 

𝑅𝑆𝑅 =
√∑ (𝑄𝑖

𝑜𝑏𝑠−𝑄𝑖
𝑓𝑜𝑟

)2𝑁
𝑖=1

√∑ (𝑄𝑖
𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑖=1

            (10) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑖

𝑜𝑏𝑠−𝑄𝑖
𝑓𝑜𝑟

)𝑁
𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠)𝑁

𝑖=1

×  100          (11) 
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where Qfor is the forecasted value, Qobs is the observed value and N is the total number of samples. Following the criterion of 

Moriasi et al. (2007), the statistics for model evaluation can be divided into three categories. First, the standard regression 

statistics that measure the linear relationship between the predictions made by a model and the observed data, in this category 

we considered the Pearson’s coefficient of correlation (r), which ranges between -1 and 1, with values close to 1 being 

considered as a high degree of positive linear relationship. The second category is the dimensionless statistics, for this case we 300 

have chosen the NSE, which ranges from -∞ and 1.0, it is a normalized statistic that computes the relative magnitude of the 

residual variance with respect to the variance of the observed data, with 1.0 being the optimal value. The last category is error 

index statistics that quantify the deviation of the predicted values compared with the observed values in the data units used. In 

this last category, two statistics were chosen; on the one hand, the RSR is the ratio of the RMSE (root mean square error) to 

the standard deviation of the observed data, with 0 being the optimal value. The other error index statistic used is the PBIAS, 305 
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which calculates the average tendency of the predicted values to underestimate (positive PBIAS) or overestimate (negative 

PBIAS) the observed series. 

3 Results and discussion 

Statistical parameters used to evaluate the performance of the models to predict dam outflow are shown in Table 3. MLP 

models with linear scale are showed in this table due to present slightly better average adjustments in the validation phase than 310 

the models with logarithmic scale. Results corroborate that the proposed models offer a “very good” performance for all the 

subsets considered according to the criteria defined by Moriasi et al. (2007), who established different ranges of these statistical 

parameters to define the level of functioning of these procedures (the only exception is the PBIAS value obtained by the linear 

regression model in the training subset of the San Martinho reservoir). All the statistical parameters under consideration reach 

the maximum level of good functioning defined, and therefore it can be concluded that all the proposed models are able to 315 

provide an accurate prediction of dam outflow attending to known parameters. 

 

The first approximation to the prediction of dam outflow was made by the simple method of considering as the prediction 

outflow the same outflow measured in the previous day. This is considered as the baseline model, on which the rest of the 

models will be compared. Figure 6 shows the reservoirs averaged metrics for each model and subset. As we can see in RSR, 320 

NSE and r, all the models improve the accuracy of the baseline model in every dataset. The ML model’s performance shows 

no evidence of overfitting problems, where a trained model learns very specific features of the training dataset and fails to 

generalize using new datasets. The MLR approach was able to outperform the baseline model on the whole dataset but lags 

behind the ANN based models. All the ANN models showed similar accuracy based on RSR, NSE and r metrics and provide 

a good generalization across the test subset. The LSTM models were slightly better than MLP whilst NARX has shown the 325 

best performance.  

 

As can be observed in PBIAS (Figure 6), the baseline does not offer any significant bias since it is the same data series as the 

one observed but with a delay. All the ML models have a tendency to overestimate the series, especially in the test subset. The 

LSTM models have the lowest tendency to overestimate and the MLR models have the highest. This fact can be very significant 330 

depending on the application of the model where a more conservative estimation towards the worst-case would be preferable.  

 

In order to analyse the differences in the performance on the different datasets and reservoirs of each model, Figure 7 shows 

the NSE values for each case. Taking into account that the NSE metric is very popular among hydrology studies, and no 

significant differences were found with RSR and r, only the NSE is shown for sake of clarity. The MLR models provide a 335 

good generalization in Castrelo, Velle, Santo Estevo, San Martinho and Frieira reservoirs where the performance for the test 

dataset is very similar or even better than on the training dataset, these are low-capacity reservoirs (excepting the Santo Estevo 
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reservoir) where the regulation capacity is also lower. This tendency is also present in the ANN models, where in the lower 

capacity reservoirs (Castrelo, Velle, San Martinho and Frieira) show a better generalization ability, whilst in the higher capacity 

reservoirs (Belesar, Barcena, Santo Estevo and Peares) the performance of the models in the test subset is lower than on train 340 

and validation subsets. Looking more closely at the data in Table 3 a tendency is detected in reservoirs with a higher capacity 

to have worse statistics than those of lower capacity. This evidences that higher capacity reservoirs have a greater ability to 

regulate the flow of the river according to the desired interest. In similar events, higher capacity reservoirs have more 

possibilities of actuation, meanwhile lower capacity ones have a much more limited range of options. This particularity is more 

difficult to be modelled by the ML models. 345 

 

The NSE values for the test dataset for each reservoir and model are shown in Figure 8, aiming to spot differences in the 

models performance depending on the reservoir. Belesar, Castrelo and Santo Estevo reservoirs show the highest advantage for 

the ML models. On the opposite, in the Barcena reservoir, only NARX and LSTM were able to improve the baseline approach. 

The MLR models were able to outperform the baseline except in the Barcena and San Martinho cases, also in the Castrelo case 350 

improved the MLP model. The MLR was never the best option but usually provides results close to ANN models. The MLP 

models performed always better than the baseline model except in the Barcena case, they provide similar results to the other 

ANN models and very close to LSTM. The NARX models were able to improve the baseline model, they offered the best 

results in all the reservoirs except the Barcena reservoir, standing as the best performer. The LSTM models also were able to 

consistently outperform the baseline model, being the best model in the Barcena reservoir and the second best model in the 355 

rest of the reservoirs, except in Santo Estevo where it was outperformed by the MLP and NARX models. From these 

observations, it can be concluded that a per-reservoir analysis is advisable when developing a data-driven model, since none 

of the methodologies proposed can be chosen as the best for all the cases. 

  

To illustrate the behaviour of the developed models, the Belesar reservoir was chosen for two main reasons: it has the higher 360 

capacity from the analysed reservoirs, so it has a higher regulation capacity, and it doesn’t have any other reservoir upstream 

that condition its behaviour. A comparison of the predicted and observed flow time series for the test period in the Belesar 

reservoir is shown in  Figure 9. It can be seen that all the methodologies show similar performance, but some differences can 

be highlighted. Both MLR and MLP models have underestimated the main peak of the series whilst NARX and LSTM models 

have overestimated it. This fact should be considered when designing systems like flood EWS where the worst-case estimation 365 

should be accounted for safety reasons. On the opposite, in the lower flows on the dry season, the NARX model was the best 

performer providing accurate predictions, however, the LSTM model had some difficulties at very low flow rates, especially 

in the summers of 2017 and 2019. This makes the LSTM model less suitable for water management systems where the accuracy 

on the dry season is essential for a better exploitation of the water resources. In any case, these results may not be generalized 

and they can differ in other scenarios. 370 
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4 Conclusions 

This research paper presents an assessment of different ML techniques applied to reservoir outflow one day ahead prediction 

using the previous reservoir volume percent, inflow, and outflow data. For this purpose, different models were developed and 

applied to several reservoirs in the Miño-Sil catchment. The analysis of the obtained results revealed that the proposed ML 

techniques obtained accurate predictions. The ML models provide significant improvements over the baseline model showing 375 

a good generalization without significant signs of overfitting. On average, the MLR models were able to consistently improve 

the baseline model, while the ANN models provided the best results. The RNNs (NARX and LSTM) improved the MLP 

results, showing the advantages of the RNNs when working with time series, especially in the case of NARX. When analysing 

the individual results for each reservoir, the NARX models obtained the best statistics except in the case of the Barcena 

reservoir which was outperformed by the LSTM model, this evidences the need to perform a per-reservoir analysis to check 380 

the validity of each solution given the particularities of each reservoir.  

ANN is a more suitable method than MLR, given the non-linear nature of the phenomenon. Since the ANN-based models were 

able to outperform the more traditional MLR models, it can be concluded that the number of samples in the dataset are within 

the limit for training an ANN, albeit larger datasets would possibly lead to better models especially when dealing with extreme 

events.  385 

The overall observations confirm that the analysed ML models are capable to predict the outflow of reservoirs and, therefore, 

can be incorporated into different systems such as water resource management systems or early warning systems. However, 

the results obtained in this research are limited to relatively small reservoirs located in wet areas and may not be extrapolated 

to larger reservoirs or dry areas, requiring additional research. 

Although the validity of these models was assessed using only a limited range of input variables, there are many other variables 390 

that influence the functioning of the reservoirs, such as the weather forecast or the electric power demand. Also, it is possible 

that the addition of certain input variables like the gradient of the pool level could close the gap of MLR or MLP methodologies 

with recurrent neural networks. It is being studied how to incorporate these variables into these models and if they can add any 

improvement to the predictions. 

 395 

Code and data availability: The data are available upon request to the Confederación Hidrográfica del Miño-Sil. 

 

Author contribution: OGF: Conceptualization, Methodology, Software, Investigation, Formal Analysis, Visualization and 

Writing – Original Draft Preparation. JGC: Conceptualization, Methodology, Software, Investigation, Formal Analysis and 

Writing – Review & Editing. DFN: Conceptualization, Methodology, Software, Investigation, Formal Analysis and Writing – 400 

Review & Editing. GAD: Conceptualization, Methodology, Software, Investigation, Formal Analysis and Writing – Review 

& Editing. MGG: Conceptualization, Formal Analysis, Supervision and Writing – Review & Editing. 

 



   

 

14 

 

Competing interests: The authors declare that they have no conflict of interest. 

ACKNOWLEDGEMENTS 405 

We especially thank to the hydrological planning office “Confederación Hidrográfica Miño-Sil” for providing access to 

historical data without which it would be impossible to conduct this study. 

The aerial pictures used in this work are courtesy of the Spanish Instituto Geográfico Nacional (IGN) and part of the “Plan 

Nacional de Ortofotografía Aérea (PNOA)” program. 

This work was partially funded by the European Regional Development Fund under the INTERREG-POCTEP project 410 

RISC_ML (Code: 0034_RISC_ML_6_E). This work was also partially financed by Xunta de Galicia, Consellería de Cultura, 

Educación e Universidade, under Project ED431C 2021/44 “Programa de Consolidación e Estructuración de Unidades de 

Investigación Competitivas”. 

OGF was funded by Spanish “Ministerio de Universidades” and European Union – NextGenerationEU through the “Margarita 

Salas” post-doctoral grant. 415 

DFN was supported by Xunta de Galicia through a post-doctoral grant (ED481B-2021-108). 

GAD thanks to the University of Vigo for his last contract supported by “Programa de retención de talento investigador da 

Universidade de Vigo para o 2018” budget application 0000 131H TAL 641.  GAD also thanks to RapidMiner Inc. for the 

different licenses of RapidMiner Studio software.  

 420 

  

References   

Adaramola, M.: Climate Change And The Future Of Sustainability: The Impact on Renewable Resources, CRC Press, 1–336 

pp., 2016. 

Alcamo, J., Dronin, N., Endejan, M., Golubev, G., and Kirilenko, A.: A new assessment of climate change impacts on food 425 

production shortfalls and water availability in Russia, Global Environmental Change, 17, 429–444, 

https://doi.org/10.1016/j.gloenvcha.2006.12.006, 2007. 

Amirkhani, S., Tootchi, A., and Chaibakhsh, A.: Fault detection and isolation of gas turbine using series–parallel NARX 

model, ISA Transactions, 120, 205–221, https://doi.org/10.1016/j.isatra.2021.03.019, 2022. 

Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 430 

387–401, https://doi.org/10.1007/s10584-014-1084-5, 2016. 



   

 

15 

 

Baba, A., Tsatsanifos, C., el Gohary, F., Palerm, J., Khan, S., Mahmoudian, S. A., Ahmed, A. T., Tayfur, G., Dialynas, Y. G., 

and Angelakis, A. N.: Developments in water dams and water harvesting systems throughout history in different civilizations, 

International Journal of Hydrology, 2, 155–171, https://doi.org/10.15406/ijh.2018.02.00064, 2018. 

Berga, L.: The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review, Engineering, 2, 313–318, 435 

https://doi.org/10.1016/J.ENG.2016.03.004, 2016. 

Berghuijs, W. R., Aalbers, E. E., Larsen, J. R., Trancoso, R., and Woods, R. A.: Recent changes in extreme floods across 

multiple continents, Environmental Research Letters, 12, 114035, https://doi.org/10.1088/1748-9326/aa8847, 2017. 

Booth, D. B. and Bledsoe, B. P.: Streams and urbanization, in: The Water Environment of Cities, edited by: Baker, L. A., 

Springer US, Boston, MA, 93–123, https://doi.org/10.1007/978-0-387-84891-4_6, 2009. 440 

Bradshaw, C. J. A., Sodhi, N. S., Peh, K. S. H., and Brook, B. W.: Global evidence that deforestation amplifies flood risk and 

severity in the developing world, Global Change Biology, 13, 2379–2395, https://doi.org/10.1111/j.1365-2486.2007.01446.x, 

2007. 

Castelletti, A., Pianosi, F., and Soncini-Sessa, R.: Water reservoir control under economic, social and environmental 

constraints, Automatica, 44, 1595–1607, https://doi.org/10.1016/j.automatica.2008.03.003, 2008. 445 

Confederación Hidrográfica del Miño-Sil: Plan hidrológico de la parte española de la Demarcación Hidrográfica del Miño-Sil, 

2015-2021, https://www.chminosil.es/images/planificacion/proyecto-ph-2015-2021-

vca/DOCUMENTO_DE_SINTESIS.pdf, 2016. 

Dozat, T.: Incorporating Nesterov Momentum into Adam, in: ICLR Workshop, 2013–2016, 2016. 

Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, 450 

S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., 

Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials of future 

irrigation water availability on agricultural production under climate change, Proceedings of the National Academy of Sciences 

of the United States of America, 111, 3239–3244, https://doi.org/10.1073/pnas.1222474110, 2014. 

Emami, S. and Parsa, J.: Comparative evaluation of imperialist competitive algorithm and artificial neural networks for 455 

estimation of reservoirs storage capacity, Applied Water Science, 10, 177, https://doi.org/10.1007/s13201-020-01259-3, 2020. 



   

 

16 

 

Farizawani, A., Puteh, M., Marina, Y., and Rivaie, A.: A review of artificial neural network learning rule based on multiple 

variant of conjugate gradient approaches, Journal of Physics: Conference Series, 1529, 022–040, https://doi.org/10.1088/1742-

6596/1529/2/022040, 2020. 

Fernández-Nóvoa, D., deCastro, M., Des, M., Costoya, X., Mendes, R., and Gómez-Gesteira, M.: Characterization of Iberian 460 

turbid plumes by means of synoptic patterns obtained through MODIS imagery, Journal of Sea Research, 126, 12–25, 

https://doi.org/10.1016/j.seares.2017.06.013, 2017. 

Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Jon Dokken, D., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G. K., 

Allen, S. K., Tignor, M., and Midgley, P. M.: Managing the risks of extreme events and disasters to advance climate change 

adaptation: Special report of the intergovernmental panel on climate change, Cambridge University Press, 1–582 pp., 465 

https://doi.org/10.1017/CBO9781139177245, 2012. 

Géron, A.: Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build 

intelligent systems, 851 pp., 2019. 

Ghorbani, M. A., Deo, R. C., Karimi, V., Kashani, M. H., and Ghorbani, S.: Design and implementation of a hybrid MLP-

GSA model with multi-layer perceptron-gravitational search algorithm for monthly lake water level forecasting, Stochastic 470 

Environmental Research and Risk Assessment, 33, 125–147, https://doi.org/10.1007/s00477-018-1630-1, 2019. 

Guzman, S. M., Paz, J. O., and Tagert, M. L. M.: The Use of NARX Neural Networks to Forecast Daily Groundwater Levels, 

Water Resources Management, 31, 1591–1603, https://doi.org/10.1007/s11269-017-1598-5, 2017. 

Hallegatte, S.: A Cost Effective Solution to Reduce Disaster Losses in Developing Countries: HydroMeteorological Services, 

Early Warning and Evacuation. World Bank policy research paper No. 6058. Washington, D.C., World Bank., The World 475 

Bank, 2012. 

Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Computation, 9, 1735–1780, 

https://doi.org/10.1162/neco.1997.9.8.1735, 1997. 

Jeuland, M., Baker, J., Bartlett, R., and Lacombe, G.: The costs of uncoordinated infrastructure management in multi-reservoir 

river basins, Environmental Research Letters, 9, 105006, https://doi.org/10.1088/1748-9326/9/10/105006, 2014. 480 

Jonkman, S. N.: Global perspectives on loss of human life caused by floods, Natural Hazards, 34, 151–175, 

https://doi.org/10.1007/s11069-004-8891-3, 2005. 



   

 

17 

 

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, https://doi.org/10.48550/ARXIV.1412.6980, 2014. 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall-runoff modelling using Long Short-Term 

Memory (LSTM) networks, Hydrology and Earth System Sciences, 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-485 

2018, 2018. 

de la Paix, M. J., Lanhai, L., Xi, C., Ahmed, S., and Varenyam, A.: Soil degradation and altered flood risk as a consequence 

of deforestation, Land Degradation and Development, 24, 478–485, https://doi.org/10.1002/ldr.1147, 2013. 

Le, X. H., Ho, H. V., Lee, G., and Jung, S.: Application of Long Short-Term Memory (LSTM) neural network for flood 

forecasting, Water (Switzerland), 11, 1387, https://doi.org/10.3390/w11071387, 2019. 490 

Lee, S.-Y., Hamlet, A. F., Fitzgerald, C. J., and Burges, S. J.: Optimized Flood Control in the Columbia River Basin for a 

Global Warming Scenario, Journal of Water Resources Planning and Management, 135, 440–450, 

https://doi.org/10.1061/(asce)0733-9496(2009)135:6(440), 2009. 

Lee, W. K. and Tuan Resdi, T. A.: Simultaneous hydrological prediction at multiple gauging stations using the NARX network 

for Kemaman catchment, Terengganu, Malaysia, Hydrological Sciences Journal, 61, 2930–2945, 495 

https://doi.org/10.1080/02626667.2016.1174333, 2016. 

Lin, T., Horne, B. G., Tiňo, P., and Giles, C. L.: Learning long-term dependencies in NARX recurrent neural networks, IEEE 

Transactions on Neural Networks, 7, 1329–1338, https://doi.org/10.1109/72.548162, 1996. 

Liu, C., Guo, L., Ye, L., Zhang, S., Zhao, Y., and Song, T.: A review of advances in China’s flash flood early-warning system, 

Natural Hazards, 92, 619–634, https://doi.org/10.1007/s11069-018-3173-7, 2018. 500 

Livingstone, D. J., Manallack, D. T., and Tetko, I. v.: Data modelling with neural networks: Advantages and limitations, 

Journal of Computer-Aided Molecular Design, 11, 135–142, https://doi.org/10.1023/A:1008074223811, 1997. 

Markham, I. S. and Rakes, T. R.: The effect of sample size and variability of data on the comparative performance of artificial 

neural networks and regression, Computers & Operations Research, 25, 251–263, https://doi.org/10.1016/S0305-

0548(97)00074-9, 1998. 505 

Marques, G. F. and Tilmant, A.: The economic value of coordination in large-scale multireservoir systems: The Parana River 

case, Water Resources Research, 49, 7546–7557, https://doi.org/10.1002/2013WR013679, 2013. 



   

 

18 

 

Masters, D. and Luschi, C.: Revisiting Small Batch Training for Deep Neural Networks, 

https://doi.org/10.48550/ARXIV.1804.07612, 2018. 

MathWorks Inc.: Design Time Series NARX Feedback Neural Networks - MATLAB & Simulink, 510 

https://es.mathworks.com/help/deeplearning/ug/design-time-series-narx-feedback-neural-networks.html, 2022. 

Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model Evaluation Guidelines 

for Systematic Quantification of Accuracy in Watershed Simulations, Transactions of the ASABE, 50, 885–900, 

https://doi.org/10.13031/2013.23153, 2007. 

Narendra, K. S. and Parthasarathy, K.: Identification and Control of Dynamical Systems Using Neural Networks, IEEE 515 

Transactions on Neural Networks, 1, 4–27, https://doi.org/10.1109/72.80202, 1990. 

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, Journal 

of Hydrology, 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. 

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., and others: KerasTuner, https://github.com/keras-

team/keras-tuner, 2019. 520 

Passerotti, G., Massazza, G., Pezzoli, A., Bigi, V., Zsótér, E., and Rosso, M.: Hydrological model application in the Sirba 

river: Early warning system and GloFAS improvements, Water (Switzerland), 12, 620, https://doi.org/10.3390/w12030620, 

2020. 

Quinn, J. D., Reed, P. M., Giuliani, M., and Castelletti, A.: What Is Controlling Our Control Rules? Opening the Black Box 

of Multireservoir Operating Policies Using Time-Varying Sensitivity Analysis, Water Resources Research, 55, 5962–5984, 525 

https://doi.org/10.1029/2018WR024177, 2019. 

RapidMiner Inc.: Neural Net - RapidMiner Documentation, 

https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/neural_nets/neural_net.html, 2022. 

Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., and Green, R.: Artificial Intelligence and Machine Learning in 

Pathology: The Present Landscape of Supervised Methods, Academic Pathology, 6, 2374289519873088, 530 

https://doi.org/10.1177/2374289519873088, 2019. 

Rjeily, Y. A., Abbas, O., Sadek, M., Shahrour, I., and Chehade, F. H.: Flood forecasting within urban drainage systems using 

NARX neural network, Water Science and Technology, 76, 2401–2412, https://doi.org/10.2166/wst.2017.409, 2017. 



   

 

19 

 

Rosburg, T. T., Nelson, P. A., and Bledsoe, B. P.: Effects of Urbanization on Flow Duration and Stream Flashiness: A Case 

Study of Puget Sound Streams, Western Washington, USA, Journal of the American Water Resources Association, 53, 493–535 

507, https://doi.org/10.1111/1752-1688.12511, 2017. 

Rougé, C., Reed, P. M., Grogan, D. S., Zuidema, S., Prusevich, A., Glidden, S., Lamontagne, J. R., and Lammers, R. B.: 

Coordination and control-limits in standard representations of multi-reservoir operations in hydrological modeling, Hydrology 

and Earth System Sciences, 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, 2021. 

Sammen, S. S., Mohamed, T. A., Ghazali, A. H., El-Shafie, A. H., and Sidek, L. M.: Generalized Regression Neural Network 540 

for Prediction of Peak Outflow from Dam Breach, Water Resources Management, 31, 549–562, 

https://doi.org/10.1007/s11269-016-1547-8, 2017. 

Solomatine, D. P. and Ostfeld, A.: Data-driven modelling: Some past experiences and new approaches, Journal of 

Hydroinformatics, 10, 3–22, https://doi.org/10.2166/hydro.2008.015, 2008. 

Sutskever, I., Vinyals, O., and Le, Q. v: Sequence to Sequence Learning with Neural Networks, in: Advances in Neural 545 

Information Processing Systems, 2014. 

Taghi Sattari, M., Yurekli, K., and Pal, M.: Performance evaluation of artificial neural network approaches in forecasting 

reservoir inflow, Applied Mathematical Modelling, 36, 2649–2657, https://doi.org/10.1016/j.apm.2011.09.048, 2012. 

TensorFlow Developers: TensorFlow, https://doi.org/10.5281/ZENODO.4724125, 2022. 

Wallemacq, P., House, R., Below, R., and McLean, D.: Economic losses, poverty & disasters: 1998-2017, Brussels, Belgium, 550 

2018. 

Xiang, Z., Yan, J., and Demir, I.: A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning, Water 

Resources Research, 56, https://doi.org/10.1029/2019WR025326, 2020. 

Xie, H., Tang, H., and Liao, Y. H.: Time series prediction based on narx neural networks: An advanced approach, in: 

Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 1275–1279, 555 

https://doi.org/10.1109/ICMLC.2009.5212326, 2009. 

Xiong, W., Conway, D., Lin, E., Xu, Y., Ju, H., Jiang, J., Holman, I., and Li, Y.: Future cereal production in China: The 

interaction of climate change, water availability and socio-economic scenarios, Global Environmental Change, 19, 34–44, 

https://doi.org/10.1016/j.gloenvcha.2008.10.006, 2009. 



   

 

20 

 

Yang, S., Yang, D., Chen, J., and Zhao, B.: Real-time reservoir operation using recurrent neural networks and inflow forecast 560 

from a distributed hydrological model, Journal of Hydrology, 579, 124229, https://doi.org/10.1016/j.jhydrol.2019.124229, 

2019. 

Zhang, D., Lin, J., Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., and Zhuang, J.: Modeling and simulating of reservoir 

operation using the artificial neural network, support vector regression, deep learning algorithm, Journal of Hydrology, 565, 

720–736, https://doi.org/10.1016/j.jhydrol.2018.08.050, 2018. 565 

  

 

 

Figure 1. Location of the reservoirs analysed in this study. 
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Figure 2. Correlation heatmaps for each of the analyzed reservoirs. 
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 575 

Figure 3. Architecture of a multilayer perceptron with three inputs, a hidden layer with four neurons and a single output. The input 

variables 𝒚𝒅, 𝒓𝒅 and 𝒗𝒅are the measured outflow, inflow, and volume percent for day d, meanwhile the output variable �̂�𝒅+𝟏 is the 

forecasted outflow for day d+1. 

 

 580 

Figure 4. Different architectures of a NARX model: (a) Parallel Architecture (b) Series-Parallel Architecture. 

 



   

 

23 

 

 

Figure 5. Schematic view of a LSTM cell.  
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 585 

Figure 6. Statistics of each subset for the different models developed. The average values from all the reservoirs are shown. 
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Figure 7. NSE values for each dam obtained with five methodologies for train (blue line), validation (orange line) and test (green 

line). 

 590 

 

Figure 8. Bar chart comparing the NSE values for the test dataset for each reservoir and model. 
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Figure 9. Time series (left) and scatter plots (right) for Belesar dam using the test dataset obtained with the proposed models. 595 

 

 

 

Table 1. List of dams analysed in the study (data provided by Confederación Hidrográfica del Miño-Sil). 

Reservoir Name Capacity (hm3) Built on Catchment area (km2) 

Belesar 655 1963 4290 

Peares 182 1955 4533 

Velle 17 1966 12530 

Castrelo 60 1969 13180 

Frieira 44 1970 15160 
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Santo Estevo 213 1955 7216 

San Martinho 10 1956 4740 

Bárcena 341 1960 832 

 600 

 

Table 2. Statistics of the variables used for the train, validation and test subsets. 

Reservoir Variable 
Train (2000-2013) Validation (2013-2016) Test (2016-2019) 

Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. 

Barcena 

Inflow (m³) 24.1 28.0 -17.0 314.0 33.2 30.6 -2.8 265.2 20.2 21.2 -8.9 122.7 

Outflow (m³) 24.1 22.6 0.0 190.2 33.2 23.9 0.0 92.8 20.5 20.2 0.0 90.4 

Volume (%) 60.6 19.4 21.7 93.4 61.0 22.2 24.2 95.5 55.7 24.0 22.5 96.8 

Belesar 

Inflow (m³) 83.3 125.5 -10.4 1646.6 87.9 131.6 -17.9 973.2 59.8 86.9 -12.4 578.9 

Outflow (m³) 83.3 104.1 0.0 1819.2 86.9 101.6 0.0 920.1 58.8 65.2 4.2 578.3 

Volume (%) 57.1 26.0 4.6 96.6 64.6 23.0 20.7 93.9 54.7 22.3 21.4 94.4 

Castrelo 

Inflow (m³) 254.6 290.1 -1.9 4054.5 317.5 295.5 28.6 2714.1 183.3 152.3 25.6 967.9 

Outflow (m³) 254.6 292.2 0.0 4243.5 317.6 299.2 0.0 2678.5 183.3 154.2 0.0 973.1 

Volume (%) 85.3 4.8 48.9 98.7 83.4 5.3 64.7 96.7 85.1 4.2 67.4 95.8 

Frieira 

Inflow (m³) 281.7 335.6 3.6 4621.4 347.3 353.5 8.0 2894.2 197.6 184.9 8.1 1163.9 

Outflow (m³) 281.7 335.9 29.2 4603.7 347.3 354.3 33.7 2927.2 197.5 185.3 31.7 1170.9 

Volume (%) 90.7 3.1 62.1 98.1 88.7 3.5 75.7 97.9 87.0 3.3 77.6 96.2 

Peares 

Inflow (m³) 88.6 117.1 -0.4 1908.1 94.5 109.0 -8.2 957.8 63.7 71.1 3.6 613.6 

Outflow (m³) 88.6 117.2 0.0 1918.9 94.5 108.8 0.0 962.7 63.7 71.0 6.3 622.7 

Volume (%) 93.0 12.4 26.1 99.5 97.4 1.3 88.2 98.8 95.1 5.0 73.6 98.9 

San Martinho 

Inflow (m³) 81.8 103.2 0.3 1213.4 112.9 129.0 8.0 1234.5 60.6 55.5 6.8 457.3 

Outflow (m³) 81.8 103.2 3.0 1213.2 112.9 129.1 8.3 1238.7 60.6 55.4 7.7 457.7 

Volume (%) 97.2 4.6 54.5 105.1 95.8 3.3 71.3 100.0 95.0 3.7 71.3 99.9 

Santo Estevo 

Inflow (m³) 145.4 185.3 1.6 1949.5 192.3 199.5 6.9 2000.5 103.0 86.4 14.2 724.7 

Outflow (m³) 145.6 186.3 0.0 1953.1 192.2 202.0 0.4 1999.6 103.0 87.9 11.6 573.0 

Volume (%) 85.7 13.1 30.4 99.9 84.2 8.7 57.8 98.0 82.2 9.7 58.1 96.7 

Velle 
Inflow (m³) 249.9 289.3 -0.2 4624.7 311.0 281.4 18.5 2713.5 177.3 142.7 19.5 906.8 

Outflow (m³) 249.9 289.5 0.0 4637.2 311.0 281.7 27.0 2714.1 177.3 143.1 25.1 916.5 
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Volume (%) 81.3 4.0 60.4 96.0 79.1 4.9 65.0 92.4 77.5 4.6 57.7 90.1 

 

 

Table 3. Statistical performance of the different models developed to predict the outflow. 605 

Model Reservoir 
Train Validation Test 

r NSE RSR Pbias r NSE RSR Pbias r NSE RSR Pbias 

Baseline 

Barcena 0.933 0.866 0.366 0.019 0.921 0.844 0.394 0.025 0.925 0.852 0.385 0.044 

Belesar 0.921 0.842 0.398 0.015 0.928 0.857 0.378 -0.030 0.908 0.817 0.428 -0.022 

Castrelo 0.930 0.861 0.372 0.006 0.924 0.849 0.388 0.012 0.924 0.849 0.388 -0.016 

Frieira 0.932 0.865 0.367 0.003 0.930 0.862 0.371 0.011 0.938 0.879 0.348 0.000 

Peares 0.934 0.869 0.362 0.011 0.939 0.880 0.347 -0.017 0.922 0.845 0.394 -0.033 

San Martinho 0.928 0.857 0.379 0.008 0.933 0.868 0.363 0.000 0.943 0.887 0.336 0.017 

Santo Estevo 0.941 0.883 0.342 -0.004 0.925 0.852 0.385 0.039 0.916 0.834 0.407 -0.049 

Velle 0.931 0.862 0.371 0.006 0.939 0.879 0.347 0.017 0.936 0.874 0.356 -0.037 

Average 0.931 0.863 0.370 0.006 0.930 0.861 0.372 0.003 0.925 0.852 0.384 -0.017 

Linear 

reg. 

Barcena 0.938 0.880 0.346 0.000 0.926 0.859 0.376 1.673 0.919 0.844 0.395 2.730 

Belesar 0.940 0.884 0.341 -0.053 0.950 0.903 0.311 -1.007 0.926 0.857 0.378 -4.328 

Castrelo 0.944 0.891 0.329 -0.018 0.942 0.887 0.335 3.822 0.944 0.892 0.328 -1.362 

Frieira 0.938 0.881 0.345 -0.009 0.934 0.873 0.356 1.962 0.939 0.882 0.344 -2.200 

Peares 0.932 0.869 0.361 -0.085 0.940 0.885 0.339 -0.148 0.923 0.853 0.383 -3.545 

San Martinho 0.895 0.781 0.468 -11.19 0.935 0.876 0.352 1.866 0.934 0.870 0.361 -4.813 

Santo Estevo 0.941 0.885 0.339 -2.584 0.935 0.876 0.353 2.253 0.932 0.869 0.361 0.569 

Velle 0.937 0.878 0.350 0.000 0.942 0.889 0.334 1.568 0.941 0.886 0.338 -1.807 

Average 0.932 0.867 0.362 -1.992 0.940 0.884 0.340 1.474 0.934 0.873 0.356 -2.498 

MLP 

Barcena 0.941 0.884 0.341 -2.520 0.931 0.867 0.365 0.023 0.923 0.851 0.386 0.012 

Belesar 0.948 0.899 0.318 0.337 0.955 0.911 0.298 -0.685 0.930 0.863 0.370 -3.206 

Castrelo 0.947 0.895 0.324 -3.566 0.949 0.899 0.318 -0.099 0.946 0.887 0.336 -7.250 

Frieira 0.950 0.902 0.314 3.137 0.942 0.886 0.338 4.028 0.944 0.889 0.334 4.847 

Peares 0.947 0.896 0.322 -3.399 0.943 0.887 0.337 -4.896 0.928 0.855 0.381 -6.530 

San Martinho 0.941 0.886 0.338 0.586 0.939 0.881 0.345 0.774 0.947 0.897 0.321 -1.267 

Santo Estevo 0.950 0.902 0.313 -1.930 0.941 0.886 0.337 -0.744 0.937 0.875 0.354 -2.314 

Velle 0.937 0.878 0.350 2.378 0.946 0.893 0.327 3.347 0.944 0.889 0.333 3.257 

Average 0.945 0.893 0.327 -0.622 0.943 0.889 0.333 0.219 0.937 0.876 0.352 -1.556 

NARX 

Barcena 0.947 0.897 0.320 -0.006 0.937 0.877 0.351 0.642 0.925 0.855 0.381 -0.624 

Belesar 0.954 0.911 0.298 -0.214 0.953 0.908 0.303 -0.201 0.934 0.870 0.360 -2.687 

Castrelo 0.954 0.910 0.301 -2.019 0.953 0.908 0.303 -0.379 0.949 0.899 0.318 -3.216 
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Frieira 0.946 0.894 0.325 -1.803 0.945 0.892 0.329 -0.413 0.945 0.894 0.326 0.572 

Peares 0.951 0.904 0.309 0.410 0.946 0.893 0.326 -1.743 0.932 0.868 0.363 -0.824 

San Martinho 0.946 0.896 0.323 -0.761 0.942 0.886 0.337 0.723 0.953 0.908 0.304 -3.209 

Santo Estevo 0.957 0.916 0.290 -0.348 0.942 0.888 0.335 0.522 0.941 0.885 0.340 0.252 

Velle 0.944 0.891 0.330 -0.083 0.951 0.904 0.311 -0.224 0.945 0.892 0.328 -2.880 

Average 0.950 0.902 0.312 -0.603 0.946 0.894 0.324 -0.134 0.941 0.884 0.340 -1.577 

LSTM 

Barcena 0.952 0.905 0.308 1.083 0.941 0.886 0.338 1.275 0.927 0.858 0.376 1.446 

Belesar 0.943 0.889 0.334 0.008 0.940 0.882 0.344 -3.292 0.931 0.865 0.368 -3.621 

Castrelo 0.949 0.899 0.318 1.222 0.950 0.901 0.315 2.717 0.947 0.896 0.323 -0.581 

Frieira 0.946 0.896 0.323 0.286 0.946 0.894 0.325 -0.190 0.945 0.893 0.326 1.183 

Peares 0.937 0.876 0.353 0.846 0.943 0.888 0.334 -2.935 0.928 0.857 0.378 -1.683 

San Martinho 0.947 0.897 0.321 0.868 0.932 0.869 0.362 0.153 0.950 0.898 0.320 -2.251 

Santo Estevo 0.955 0.912 0.297 0.692 0.945 0.892 0.328 -0.107 0.933 0.866 0.367 0.979 

Velle 0.940 0.882 0.343 1.239 0.947 0.897 0.322 0.006 0.944 0.889 0.333 -1.992 

Average 0.946 0.894 0.325 0.781 0.943 0.889 0.334 -0.297 0.938 0.878 0.349 -0.815 

 


