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Abstract. The disaster-relevant authorities could make an uninformed decision due to the lack of a clear picture of the urban 

resilience to adverse natural events. Previous studies seldom examine the near-real-time human dynamics, which are critical 

to disaster emergency response and mitigation, in response to the development and evolution of mild and frequent rainfall 10 

events. In this study, we used the aggregated Tencent location request data (TLR) to examine the variations in collective human 

activities in response to rainfall in 346 cities in China. Then two resilience metrics, rainfall threshold and response sensitivity, 

were introduced to report a comprehensive study of the urban resilience to rainfall across the mainland China. Our results show 

that, on average, a 1-mm increase in rainfall intensity is associated with a 0.49% increase of the human activity anomalies. In 

the cities of northwestern and southeastern China, human activity anomalies are affected more by rainfall intensity and rainfall 15 

duration, respectively. Our results highlight the unequal urban resilience to rainfall across China, showing current heavy rain 

warning standards underestimate the impacts of heavy rains on the residents in the northwest arid region and the central 

underdeveloped areas, and overestimate the impacts on the residents in the southeastern coastal area. An overhaul of current 

heavy rain alert standards therefore is needed to better serve the residents in our study area. 

1 Introduction 20 

Heavy rains with intense precipitation have become more frequent in the context of global climate changes(Myhre et al., 2019; 

Ogie et al., 2018) and pose significant threats to urban residents, mainly due to the uncoordinated watershed management and 

undersized infrastructures(Chan et al., 2018; Dewan, 2015; Nahiduzzaman et al., 2015; Song et al., 2019). China is frequently 

perplexed by urban flooding, particularly in summer when the Asian monsoon brings heavy rains to inland China. It is 

estimated that 55.15 million people are affected by floods in China in 2017 alone and the direct economic loss is approximately 25 

214 billion Chinese Yuan, which significantly exceeds that of the 2017 typhoon disasters (5.879 million, 34.62 billion). In 

addition to threatening human daily activities and cities’ normal operation(Aerts et al., 2014; Grinberger and Felsenstein, 2016; 

Kasmalkar et al., 2020; Owrangi et al., 2014), the ever-increasing rainstorms endlessly challenge cities’ flood resistance 

capacity and relevant authorities’ real-time decisions in response to such adverse events. Urban decision makers have learned 
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that city management and planning would significantly benefit from a better understanding of urban resilience(O’Sullivan et 30 

al., 2012; Bertilsson et al., 2019; de Bruijn, 2004).  

Urban resilience refers to the ability of  an urban system to prepare for, respond to, and recover from adverse events(Ambelu 

et al., 2017; Hong et al., 2021; Liao, 2012; Meerow et al., 2016). Biologists, psychologists, engineers, and geographers have 

all made their own contributions to the urban resilience studies(Adger et al., 2005; Brusberg and Shively, 2015; Olsson et al., 

2015; Ouyang et al., 2012; Poulin and Kane, 2021; Shiferaw et al., 2014). Over the past 20 years, geographers have heavily 35 

relied satellite imagery to assess disaster-related resilience as satellites have been providing ever-increasing information about 

the Earth at a relatively low cost(Mpandeli et al., 2019; Stefan et al., 2016; Tellman et al., 2021). For example, satellite-based 

emergency mapping systems have been developed to monitor the inundation and recovery processes of the 2005 Switzerland 

flood(Buehler et al., 2006); assess the damage, restoration, and reconstruction induced by the 2010 Haiti earthquake(Honey et 

al., 2010); and evaluate the changes of power supply before and after Hurricane Maria in 2017(Román et al., 2019). Emergency 40 

rescuers can use high-resolution images to closely monitor ongoing natural disasters and coordinate disaster relief. However, 

it is almost impossible to extract near real-time human dynamics over the evolution of a disaster from satellite images and such 

information is very important in disaster mitigation and reduction(Liu et al., 2015; Ghaffarian et al., 2018).  

Location-aware big data such as the smartphone call records, signalling data, and social media posts, have been widely used 

to infer real-time human activities(Yi et al., 2019; Wang et al., 2020, 2019; Yue et al., 2017), estimate disaster-induced 45 

losses(Kryvasheyeu et al., 2016; Liu et al., 2019b), monitor resettlement and restoration(Martín et al., 2020a, b; Wang and 

Taylor, 2018; Yabe et al., 2020), and study disaster-related resilience(Hong et al., 2021; Huang and Ling, 2018; Kasmalkar et 

al., 2020; Zou et al., 2018). Urban residents would adjust their activities when their living environments are socially and 

physically impacted by an adverse event and such adjustment could be inferred from location-aware big data. In other words, 

the changes of human activities extracted from location-aware big data could be used to study the resilience capacity of an 50 

urban system in response to an adverse event. For example, Hong et al., (2021) quantified changes of mobility behaviour 

before, during, and after the Hurricane Harvey using smartphone geolocation data, and analysed the spatial variable of 

community resilience capacity which was defined as the function of the magnitude of impact and time-to-recovery.  

Human activities may also change in response to mild yet frequent adverse natural events, such as urban rainstorms. Unlike 

Hurricanes, dwellers are usually not mobilized by relevant authorities to prepare for and resettle after such events.  Instead, 55 

nearly 90% of flood-related tweets in a city are released during heavy rains(Wang et al., 2020). Consequently, human activities 

mainly show how an urban system respond to but not prepare for and recover from such adverse natural events (Qian et al., 

2022; Zhang et al., 2022). As a result, urban resilience to mild and frequent adverse events refers to the ability of an urban 

system to respond to adverse events. Furthermore, urban resilience could significantly differ from that of destructive disasters 

and may show significant spatiotemporal variations due to the areal difference in local natural settings, socioeconomic status, 60 

and infrastructure completeness(Adger et al., 2005; Guan and Chen, 2014; Östh et al., 2015; Zou et al., 2019, 2018). Study of 

such regional inequality is therefore of great value to disaster relief and mitigation. 
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However, previous resilience metric, which mainly forces on unique disaster event, was not suitable for the assessing in large 

scale. Two resilience metrics were introduced into this study from other fields. The sensitivity is a widely used tool for 

understanding resilience in different regions in many other weather events, such as heat wave and air pollution (Hong et al., 65 

2021; Wang et al., 2021). For example, Zheng et al. (2019) defined the links between the city-level happiness index calculated 

from the social media data and the daily local air quality metric as the perception sensitivity and explored its spatial variation. 

However, response sensitivity is not yet to be studied for rainstorm events through analysing the relation between the city-

scale human activity response metric and rainstorm event index. Another index, rainfall threshold, is commonly used to study 

rainfall events that have resulted in landslides (Marra et al., 2016; Naidu et al., 2018). In this study, rainfall threshold, which 70 

is defined as the minimum rainfall index that corresponds to significant urban human activity response anomaly, is introduced 

to the study of the urban resilience. Two metrics can effectively depict the urban resilience in different focuses.  

In this study, we proposed a method for measuring and evaluating how urban systems respond to heavy rains as reflected in 

location-aware big data. We extracted human activities from the Tencent location request (TLR) data in 346 cities across 

mainland China from May to August 2017 and used two indicators - rainfall threshold and response sensitivity – to quantify 75 

the urban resilience across our study area. We found significant regional inequality of urban resilience in mainland China and 

the inequality could be explained by the variations in the regional natural, socioeconomic, and infrastructure variables. The 

findings from this study provide a new perspective and method to quantify urban resilience to the frequent yet no so destructive 

adverse events across a large geographic scale. Practically, our findings suggest an urgent need to revise current unified 

rainstorm warning standards to better serve the residents. 80 

2 Data and methods 

2.1 Data 

We collected the Tencent location requested (TLR) data from May 1st to August 31st, 2017 from Tencent’s big data portal. 

Tencent, with over 700 million users, is the largest social media platform in China. A Tencent user may check in the platform 

for a variety of purposes such as location-based searching, navigation, location sharing and so on. The dataset we downloaded 85 

has an hourly temporal resolution and a 1 km x 1 km spatial resolution. The data has been proven as a reliable proxy for 

collective human activities in many studies from multiple dimensions of time and space(Liu et al., 2019b; Qian et al., 2021a; 

Ma, 2018). 

We collected the Version06 Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals (IMERG) 30-min 

precipitation dataset(Levizzani et al., 2020, p.1). This dataset has a spatial resolution of 0.1°×0.1° and has been evaluated and 90 

widely used in related studies(Yi et al., 2019; Liu et al., 2019a). We used this dataset to extract the characteristics of rainfall 

events of interest.  
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We collected six natural, socioeconomic, or infrastructure indicators to help explain the variations in urban resilience, including 

the annual precipitation in China calculated by aggregating GPM data in 2017, population density, gross domestic product, 

green coverage rate, drainage network density, and per capita area of paved roads.  95 

2.2 Methods 

Fig. 1 shows the data process and analysis flow chart of this study. We first proposed a Multilevel Human Activity Anomaly 

Detection (MHAAD) methodological framework to detect and characterize the TLR anomalies in response to rainfall events. 

The framework has two major parts. In the first part, we identified the grids with a stable TLR number and then the anomalies 

from the time series TLR of each grid. We then used the two-sided Welch’s t-test and probability density function (PDF) 100 

method to detect whether human activity anomalies are triggered by a rainfall event or not. Rainfall indices were extracted for 

the grids with a stable TLR number and selected by their importance as shown in the random forest model. We then explored 

the multi-level relationship between rainfall characteristics and human activity anomalies. We proposed two indicators -rainfall 

threshold and response sensitivity- to describe urban resilience. Lastly, we assessed the association between the urban 

resilience with the natural, socio-economic, and infrastructure explanatory variables. 105 
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Fig. 1 A flow chart showing the data analysis process in this study. 

2.2.1 TLR anomaly detection 

We first identified all grids with a stable TLR number (hereafter are referred as to stable grids unless stated otherwise) using 

the method Qian et al. (2021a) proposed. The stable grids are the regions with stable human activity and rhythm in urban area. 110 

In total, 832,630 out of the 9,600,903 grids across our study area are identified as stable grids. The number of smartphone 

users and TLR vary significantly by grid. We therefore normalized the TLR using the median interquartile normalization 

method(Geller et al., 2003) to make the TLR in the stable grids comparable. We then employed the Seasonal Hybrid Extreme 

Studentized Deviate (S-H-ESD) method(Vallis et al., 2014) to detect anomalies from the gridded TLR time series. The S-H-

ESD method could be denoted by the following additive model: 115 

𝑇𝑠 = 𝑇 + 𝑆 + 𝑅 (1) 
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where 𝑇, 𝑆, and 𝑅 represent the trend, seasonality, and residual components, respectively.  

The S-H-ESD method has two major steps. First, the piecewise median method is used to fit and remove the long-term trend. 

Then the Seasonal-Trend decomposition using Loess (STL) method is employed to remove seasonality(Cleveland et al., 1990). 

We then used the Generalized Extreme Studentized Deviate (G-ESD) statistic(Rosner, 1975) to identify the significant 120 

anomalies in the residuals. In this study, we used a piecewise combination of the biweekly medians to model the underlying 

trend, which shows little changes in the TLR time series. The significance level 𝑎 is set to 0.05 and the number of anomalies 

is set to no more than 25% of the total observations. 

We then extracted the total numbers of the grids with positive (PTLR) and negative anomalies (NTLR) by city, respectively 

and then examined the variations in the PTLR/NTLR time series over the periods with rains and without rains to identify 125 

whether a rainfall event triggers collective human activity anomalies. The two-sided Welch’s t-test was used for the 

significance test. Human activity anomalies usually happen shortly before or after the peak rainfall intensity and last as a spell 

instead of the entire rainfall event. We therefore employed a moving time window method to find the period with the largest 

accumulative rainfall and used the period to detect the statistical significance of the change in related to the PTLR/NTLR time 

series in a raining and non-raining period. In this study, we used a 6-hour moving window, which is half of the average duration 130 

of all rainfall events of interest in this study (see Supplementary Fig. 3).  

2.2.2 Feature selection of rainfall indices 

The GPM data were first resampled to the same spatiotemporal resolutions as that of the TLR using the nearest-neighbor 

interpolation method. We then extracted the rainfall intensity for each city/hour, i.e., the average hourly GPM precipitation 

within the stable grids of the city.  135 

In this study, a rainfall event is defined as a precipitation process that lasts for at least 3 hours and with no rains preceding for 

at least one hour. The number of rainfall events in each city is normally distributed. We selected the 346 cities with at least 40 

(the top 5% quantile) rainfall events for this study (Supplementary Fig. 1 and 2).  

Every rainfall event is described with three rainfall indices (the 1-hour peak intensity, 6-hour peak intensity, and cumulative 

rainfall) and two temporal indices (the duration and peak hour) (Supplementary Table 1). From these indices, we used the 140 

random forest model (RF) to calculate the importance score (mean decrease accuracy) for each indicator. The importance score 

shows the global importance over all the out-of-bag cross validated predictions. The random forest model is robust and less 

susceptible to multicollinearity as it averages all predictions for a given feature variable and is more efficient in terms of feature 

selection than the multi-linear regression(Strobl et al., 2007; Pal, 2005). We then identified the most important indicator that 

triggers human activity anomalies(Liaw and Wiener, 2001).  145 

2.2.3 Quantifying the rainfall threshold and response sensitivity 

In this study, we used two indices, rainfall threshold and response sensitivity, to quantitatively characterize urban resilience. 

The rainfall threshold is the peak intensity of the rainfall event which triggers collective human activity anomalies. We first 
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used a linear binary classifier to examine the paired values of the peak intensity and duration to determine whether a rainfall 

event brings more or less rain than the threshold to trigger collective human activity anomalies (Fig. 2a). The Fisher 150 

Discriminant Analysis method was then applied to identify the discriminant function to minimize the classification errors(Mika 

et al., 1999). The rainfall thresholds associated with different rainfall durations are directly extracted from Fig. 2a.  

 

Fig. 2 The schematic diagram (a) and contingency table (b) of the binary classifier for Beijing. 

 155 

Three quantitative indices, the probability of detection (POD), false alarm rate (FAR), and critical success index (CSI) are used 

to evaluate the performance of the threshold identification method based on the contingency table (Fig. 2b): 

𝑃𝑂𝐷 =
𝐻

𝐻 + 𝑀
(2) 

𝐹𝐴𝑅 =
𝐹𝐴

𝐻 + 𝐹𝐴
(3) 

𝐶𝑆𝐼 =
𝐻

𝐻 + 𝑀 + 𝐹𝐴
=

1

𝑃𝑂𝐷−1 + (1 − 𝐹𝐴𝑅)−1 − 1
(4) 160 

where H, FA, M represent the percent of hits, false alarms, and misses, respectively. All three indices range from 0 to 1. A 

value of 1 for the POD and FAR indicates a perfect hit and a 100% false positive rate. A higher CSI is associated with a higher 

POD and a lower FAR value. 

The second index, the response sensitivity, is defined as the rate of abnormal change in collective human activities triggered 

by a rainfall event. We first selected the rainfall events with precipitation above the threshold and that trigger human activity 165 

anomalies, i.e., those represented with red crosses and are above the decision boundary in Fig. 2a. Then we defined two 

indicators cPTLR/cNTLR to describe the rate of abnormal change in collective human activities (Supplementary Fig. 4). The 

cPTLR/cNTLR were calculated as the difference between the mean of the two time series, i.e., the PTLR/NTLR in the 6-hour 

raining time window and non-raining time window. A multiple linear regression model was then constructed between the 

cPTLR and the rainfall intensity/duration for each city. In the end, we calculated the marginal city-specific partial derivatives 170 
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of cPTLR with respect to the peak intensity and the duration, respectively. The response sensitivity index is calculated as the 

average of the regression coefficients of the peak intensity and the duration. The adjusted R2 was also calculated to assess the 

model accuracy. 

Finally, we separately classified the rainfall threshold and response sensitivity indices of the 346 cities into three classes using 

the Jenks natural breaks classification method, which clusters data into different groups by seeking minimum variance within 175 

a class and maximum variance between classes(McDougall and Temple-Watts, 2012). In this study, we used the 6-hour rainfall 

threshold index in line with the time window in Supplementary Fig. 4. In total, there are nine different combinations between 

the threshold and response sensitivity indices. 

2.2.4 Quantifying the relationships between resilience and urban characteristics 

We then examined the relationships between the two urban resilience indices and the annual rainfall, population density, gross 180 

domestic product, green coverage rate, drainage network density, and per capita area of paved roads. The Kendall, Pearson, 

and Spearman correlation coefficients and multi-linear regression were used to measure the correlation between rainfall 

threshold, response sensitivity, and the city characteristics at the city level, respectively. 

3. Results 

3.1 Collective human activities in response to rainfall events 185 

 The gridded TLR could increase (positive anomaly) or decrease (negative anomaly) in response to rains (Supplementary Fig. 

5).  Counting the overall TLR changes by city would not show how rains impact collective human activities(Yi et al., 2019). 

In this study, instead, we calculated the changes of the total numbers of the grids showing positive (cPTLR) and negative 

anomalies (cNTLR) by city during a raining period in related to those over the non-raining period, respectively (Fig. 3a) to 

illustrate how collective human activities change in response to rains. 190 
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Fig. 3 (a) The schematic definitions of the human activity anomaly associated with a specific rainfall event used in this study. (b) The 

relative proportions and numbers of the rainfall events with various cPTLR and cNTLR values. (c) The probability density 

distribution curves of the events with significantly increased cPTLR/cNTLR. (d) Box plots by peak rainfall intensity groups per 195 

0.5mm. Trend lines are shown for the OLS regression (black dotted), 0.25 (purple), median (red), 0.75 quantile (blue) range. The 

numbers in Fig. 3(d) show the numbers of rainfall events with specific peak intensity as shown along the x axis.  

 

The city-level collective human activities jump to an excited state (Fig. 3b) with a significantly increased number of the grids 

exhibiting positive anomalies, in response to 55.11% of the daytime rains (Fig. 4) whereas nighttime rains show no significant 200 

impact on the collective human activities. About 93.2% (i.e., 10,710) of the rainfall events in this study are associated with a 

greater change of the number of the grids with positive anomalies than that of the grids with negative anomalies (i.e., 

|cPTLR|>|cNTLR|). Around 59.7% of the 10,710 (i.e., 6394) rains show an increased number of the grids with positive anomaly 

by city. Furthermore, 35.3% of the 6,394 (i.e., 2257) rainfall events associated with excited-state human activities show a 

significant increased number of the grids with positive anomalies, which we believed could be attributed to heavy rains. We 205 

noticed that a small number (103, 13.19% |cPTLR|<=|cNTLR|) of heavy rains brought by typhoons trigger the city-level 
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collective human activities to a dispirited state, with a significantly increased number of grids exhibiting NTLR (Fig. 3c) as 

compared to the non-typhoon rains. Accordingly, we excluded all typhoon-related rainfall events from this study. 

The higher rainfall intensity could trigger more excited-state collective human activities (Fig. 3d). The 1-hour peak intensity 

values of the rainfall events associated with excited-state human activities are positively correlated with the corresponding 210 

cPTLR values (fitting slope = 0.49%, p value <0.001). However, the cPTLR slope against rainfall is affected by the divergence 

of the peak intensity anomaly. Quantile regression results show that the cPTLR slope coefficient estimates gradually increase 

from 0.17% for the lower 25% quantile to 0.84% for the higher 75% quantile (p value <0.01). In other words, the cPTLR 

growth rate generally increases from the less-anomaly to the sensitive-anomaly rainfall events with respect to the increasing 

magnitude of the rainfall peak intensity. 215 

 

 

 

Fig. 4. (a) The importance of the five rainfall indicators obtained by the random forest model. The peak hour is the most important 

covariate that triggers human activity anomalies and has the highest decrease accuracy value of 114.5. (b) The peak hour thresholds 220 

identified from the differences of the peak hour PDF values between the rainfall events with and without significant collective human 

activity anomalies. When the peak hours are between 8:59 am and 6:50 pm, the PDF values of the events with human activity 

anomalies are higher than those without. In other words, daytime rains are more likely to trigger human activity anomalies. There 

are 11,491 daytime rains (i.e., from 8.59 am to 6.50 pm) out of the total 20,860 rainfall events (ratio: 55.11%).  

  225 

3.2 Regional inequality of urban resilience 

We derived two indicators - rainfall threshold and response sensitivity - from the perspective of public’s social response to 

rains to evaluate the urban resilience. The threshold is defined as the intensity of an event that triggers a city into an undesirable 

state(Liao, 2012). In this study, we defined the threshold of a rainfall event with a specific duration as the minimum rainfall 

intensity that corresponds to significant urban TLR anomalies. As shown in Fig. 4a, the peak rain intensity and rain duration 230 
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are the second and third important characteristics that trigger human activity anomalies, respectively. We extracted the rainfall 

thresholds for each city using binary classification models (supplementary Fig. 6) and the results show that the rainfall 

thresholds drop with increased rainfall duration across all 346 cities in China (Fig. 5 a-c). The 3-, 6-, and 12-hour rainfall 

thresholds all show significant spatial autocorrelation and a pattern of gradual decrease from the southeast coast to the 

northwest inland. However, with increased rainfall durations, the average rainfall thresholds of all 346 cities decrease from 235 

4.24 to 2.75, whereas their standard deviations decrease from 3.55 to 2.45. Such results indicate the public’s response to the 

short rainfall events varies greatly in different cities and tends to be more consistent with increased rainfall durations.  

The impacts of the peak rain intensity and duration on human activity vary across our study area as shown by the slopes of the 

decision boundary of different cities (Fig. 5d). In the arid and semi-arid northwestern China, the slope is close to zero, showing 

the public response is mainly affected by peak intensity. Residents in the northwestern China may adjust their activities in 240 

response to the rain peak intensity as rains in this area seldom last long. By contrast, the slope is high for the southeastern 

region, indicating the public’s response is more affected by rainfall duration. The wet southeastern China usually receives 

frequent and heavy rains and residents already have adopted to it. Consequently, residents in this area may change their 

activities in response to rainfall duration more than the peak intensity.  

Results of the binary classification are solid as shown by the anomaly detection POD, FAR, and CSI values for different 245 

rainfall durations based on rainfall thresholds (Supplementary Fig. 7). More specifically, the POD values for different rainfall 

durations in the 346 cities range from 0.71 to 1.00, the FAR values from 0 to 0.46, and the CSI values from 0.48 to 1.  

 



12 

 

 

Fig. 5 Spatial distribution of the rainfall threshold that triggers human activity anomalies for rainfall events lasting three (a), six (b), 250 

and 12 (c) hours, respectively and slope (d) of the decision boundary. The isohyets show the 2017 annual rainfall. 

 

The other urban resilience indicator, the response sensitivity, is defined as the rate of the collective human activity anomalies 

triggered by a rainfall event and was extracted from the multiple regression analysis. The response sensitivity is low in the 

southeast coast and high in the northwest inland, showing an opposite trend as that of the rainfall threshold (Fig. 6a). The 255 

higher response sensitivity in the northwest suggests that the residents in this area tend to change their activities more 

significantly in response to rains. By contrast, activities of the residents in the southeast are not significantly impacted by rains. 

Such findings are consistent with those derived from the rain threshold indicator. The accuracy of the regression model (the 

adjusted R2) also shows a similar trend as that of the response sensitivity (Fig. 6b), which indicate that the response mode of 

collective human activities to rainfall in the southeast coastal area is more complex.  260 
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Fig. 6 Spatial distribution of the response sensitivity (a) and adjusted R2 (b) in multiple linear regression. The isohyets show the 2017 

annual rainfall. 

 

The associations between the two urban resilience indices also exhibit a significant pattern across our study area (Fig. 7). Cities 265 

located in the area with over 1600mm annual precipitation are mainly categorized into type HL (threshold > 10.29mm and 

response sensitivity < 0.003), and surrounded by the types ML and HM cities. The cities located in the areas with less than 

400mm annual precipitation are mainly classified into LH, MH, and LL types, indicating the annual precipitation has a 

significant impact on the human activities in different cities. 

 The LH type cities have a low rainfall threshold (<3.25mm) and high response sensitivity (>0.025). These cities are mainly 270 

found in the northwest fragile region (mainly including the Yili prefecture in Xinjiang province) and the central 

underdeveloped China (including Shaanxi, Shanxi, and Hebei provinces). Such cities may have underdeveloped infrastructure 

and weaker rains could trigger human activity anomalies.  
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Fig. 7 Spatial distribution of urban resilience. The basemap colors indicate the 2017 annual rainfall. 275 

3.3 Associations between the urban resilience with the urban indicators  

Results of multiple regression analysis show that variations in urban resilience by city could be explained by the variations in 

a variety of natural, socioeconomic, and urban infrastructure indicators. Fig. 8a shows the relationship between rainfall 

thresholds and the explanatory indicators. The 3-hour, 6-hour, and 12-hour rainfall thresholds all show similar correlations 

with the indictors (Supplementary Table 2, 3, 4), and we only show the correlations between the 6-hour rainfall and the 280 

indicators in this section.  

All six explanatory variables are significantly correlated with the rainfall threshold (p < 0.05). About 42% of the variations in 

the rainfall threshold could be explained by the variations in the explanatory variables as shown by the R2 (Supplementary 

Table 3). Among all explanatory variables, the annual rainfall has the highest coefficient value of 0.43, indicating the variations 

in the threshold are most affected by the annual rainfall. In other words, residents living in regions with different annual 285 

precipitation amount are more likely to accordingly adjust their daily activities once the rainfall is over a specific threshold.  

Other explanatory variables are also positively correlated with the threshold variable as shown by the positive regression 

coefficients ranging from 0.21 to 0.10, except the per capita area of paved road, which is negatively correlated with the 

threshold. In fact, the per capita area of paved roads is the only indicator showing a negative correlation. Increased per capita 
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area of paved road weakens rainwater infiltration capacity and increases surface runoffs, which is more likely to cause traffic 290 

congestion and trigger human activity anomalies even the rainfall amount is below a lower threshold. 

 

Fig. 8 Regression coefficients between the six explanatory variables and the 6-hour rainfall threshold (a), response sensitivity (b). 

The horizontal lines mean 95% confidence interval. 

 295 

Multi-regression analysis shows that the response sensitivity is negatively correlated with all explanatory variables, except for 

the per capita area of paved roads, which show a positive regression coefficient (Fig. 8b). All correlations are statistically 

significant (p<0.05) (Supplementary Table 5). About 31% of the variations in the response sensitivity could be explained by 

the variations of the explanatory variables as shown by an R2 value of 0.31. 

4. Conclusions and discussions 300 

Residents in different cities may adjust and change their activities in different ways in response to rainfall. Such activity 

changes and adjustment, also known as urban resilience, could be characterized and studied from location-aware big data. In 

this study, we used the Tencent aggregated location request data to examine the changes of collective human activities in major 

cities in China in response to rainfall over 2017 summer. Our results show that rainfall time, peak intensity, and duration are 

the three most important indicators that determine whether a rain would trigger human activity anomalies or not. We also 305 

proposed two indices, the rainfall threshold, and response sensitivity, to describe the urban resilience, which show significant 

spatial variations across our study area. Furthermore, the unequal urban resilience could be explained by a series of explanatory 

variables.  
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We believe this paper provides a new perspective to studying urban resilience and that the results bridge the knowledge gap 

between heavy rains, collective human activities, and urban resilience. Such knowledge is of great significance to urban 310 

planning, traffic management, and emergency response. 

We also believed this study has three other contributions regarding urban resilience research. First, this study expanded the 

research framework of urban resilience in response to high-frequency yet mild adverse events and such a framework could be 

used to study the variations in urban resilience across a large area. Previous studies mainly focused on urban resilience to a 

specific adverse event such as a typhoon or a hurricane. For example, Zou et al.(2018) used a normalized ratio index to assess 315 

the regional variations in urban resilience to Hurricane Sandy. In this study, we examined urban resilience to rains over a 

relatively long period and across a large area. Such a study would better show how residents in different regions change their 

activities in different ways in response to rains with different duration, peak intensity, and accumulative rainfall. 

Secondly, our research analyzed the impacts of different features of the rainfall events on human activities. Previous studies 

often simply characterized a disaster using its threat levels. For example, Zou et al.(2018) used the average hurricane track 320 

kernel density and its wind speed to define the threat levels. In this study, instead, we extracted five major elements of a rainfall 

event and employed the random forest model to study the impacts of different elements on collective human activities.  

Thirdly, we used the rainfall threshold to quantify urban resilience and the thresholds is valuable for the authorities to revise 

heavy rain alerts. Conventionally, heavy rain alerts are usually based on rainfall intensity and precipitation only and seldom 

consider the areal difference of infrastructures. According to current Chinese Standard, Chinese authorities would issue a blue, 325 

yellow, and orange alert when precipitation is or will be over 50 mm in 12, 6, and 3 hours and if the rain might not 

stop(Mendiondo, 2005). A red alert would be issued when precipitation is or will be over 100 mm in 3 hours and if the rain 

might not stop. Results from this study show that it is not appropriate to apply such a unified alert standard to different groups 

of cities across China. In the resilience fragile areas (Fig. 7), for instance, a rainfall event with 3.25mm precipitation per hour 

(i.e., 19.5mm in six hours) already triggers significant human activity anomalies. As a result, the national heavy rain alert 330 

standard significantly underestimates the impacts of rainfall on the residents in the northwestern and central China.  

Tab. 1 shows the precipitation thresholds of different city groups that trigger human activity anomalies and the 6-hour 

accumulative precipitation based on which a heavy rain warning should be issued. For example, for the LH cities, a rainfall 

intensity of 1.8 mm and 10.8mm 6-hour accumulative precipitation should trigger a yellow heavy rain warning. Such a value 

of the 6-hour accumulative precipitation is much lower than current Chinese heavy rain yellow warning standard (50 mm in 6 335 

hour). By contrast, for the HH cities, the rainfall threshold and 6-hour accumulative precipitation that trigger human activity 

anomalies is 22.34 mm and 134.05 mm, respectively. The accumulative precipitation is much higher than the heavy rain yellow 

warning standard. In other words, it is amateurish to issue a heavy rain warning when the 6-hour accumulative precipitation is 

50 mm for the HH cities. Results from this study therefore are of great value for the authorities who revise heavy rain alerts 

across China to help local residents be better prepared for such adverse events.  340 

The study could by further studied. Rather than all the residents of a city, the Tencent location request dataset is generated by 

over one billion monthly active users. The Tencent dataset's aggregate geotagged human activities may underestimate the 
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effects of rainstorms on infrequent users, particularly the elderly and children. To address this limitation and further investigate 

human responses to various weather events, our future studies would aim to integrate multisource geospatial datasets. 

Furthermore, identifying disaster types such as rainstorm, waterlogging, and flood from social media data and then analysing 345 

regional response variation of large-scale human activity in different disasters can improve deep understanding of urban 

resilience. 

 

Tab. 1 Urban resilience indecies from this study for different city groups and the difference from current Chinese yellow heavy rain 

alter standard.  350 

Type Threshold(mm) Response sensitivity Alarm standard(mm) Yellow warning(mm) Difference from yellow warming 

LH 1.8 0.71 10.8 50 -39.2 

LM 2.08 0.51 12.46 50 -37.54 

LL 2.23 0.39 13.35 50 -36.65 

MH 3.61 0.63 21.68 50 -28.32 

ML 4.99 0.41 29.94 50 -20.06 

MM 5.03 0.49 30.19 50 -19.81 

HL 17.5 0.42 104.97 50 54.97 

HM 18.94 0.48 113.64 50 63.64 

HH 22.34 0.64 134.05 50 84.05 
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