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Abstract. This study was aimed to build a multi-station automatic classification system for volcanic seismic signatures such

as hybrid, long period, tremor, tectonic and volcano-tectonic events. This system was based on a probabilistic model made

using transfer learning, which has, as the main tool, a pre-trained convolutional network named AlexNet. We designed five

experiments using different datasets with data that was real, synthetic, and two different combinations of these (combined 1 and

combined 2), and balanced subset without synthetic data. The experiment presented the highest scores when a process of data5

augmentation was introduced into processing sequence. Thus, the lack of real data in some classes (imbalance) dramatically

affected the quality of the results, because the learning step (training) was over-fitted to the more numerous classes. To test

the model stability with variable inputs, we implemented a k-fold cross-validation procedure. Under this approach, the results

reached high predictive performance, considering that only the percentage of recognition of the tectonic events (TC) class was

partially affected. The results obtained showed the performance of the probabilistic model, reaching high scores over different10

test datasets. The most valuable benefit of using this technique was that the use of volcano seismic signals from multiple

stations provided a more generalisable model which, in near future, can be extended to multi-volcano database systems. The

impact of this work is significant in the evaluation of hazard and risk by monitoring the dynamic evolution of volcanic centres,

which is crucial for understanding the stages in a volcano’s eruptive cycle.

Copyright statement.15

1 Introduction

1.1 The problem of monitoring

The task of detecting the seismic activity of an active volcano and the subsequent characterisation (classification) of these

events are, in many cases, the most time-consuming in observatories worldwide. This is because of the massive amount of

data that is collected daily in a continuous record, by a single seismic network with a few stations. In this context, big data20
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analysis tools have become an attractive option for reaching levels of processing that have never been achieved using traditional

techniques.

This study proposed the use of machine learning and transfer learning techniques to automatically classify volcanic seismic

events. Determining the type of volcanic event in a continuous seismic record (time series) will facilitate the construction of a

model of evolution associated with the dynamics of a volcanic centre. This should create better understanding and evaluation25

of the hazards and risks associated with volcanic activity, improving efforts made in this matter (e.g., de Natale et al. , 2019;

Magrin et al. , 2017; Rapolla et al. , 2010). The novelty of this approach is in its use of previously trained deep convolutional

networks, such as AlexNet, in a scenario that considers the information recorded by a network of multiple stations. It permits

variability in the input of data and improves the generalisation of the system. The generalisation of the system directly impacts

the performance of the training models of pattern recognition for each class and creates the possibility of applying the generated30

models in a common multi-volcano database system in the near future.

1.2 A summary of methods used in Volcano Seismic Recognition

Among the classification techniques, methods based on a probabilistic approach and hidden Markov models (HMMs) are most

relevant. The advantages of HMMs include the possibility of managing data with different durations, computational efficiency,

and an elegant interpretation of results based on Bayes’ theorem (Carniel, 2014). Several studies have been performed on vol-35

canic systems using this technique with different approaches. Continuous HMMs were used for the simultaneous detection and

classification of continuous volcanic responses (Beyreuther and Wassermann , 2008), whereas discrete HMMs were applied to

analyse and classify events as described by Ohrnberger (2001). Other applications for HMMs were considered in the works of

Bebbington (2007), who used the method to analyse a catalogue of flank eruptions recorded at Mt. Etna. Hidden semi-Markov

models were applied by Beyreuther and Wasserman (2011) using time dependence to improve the performance of the method.40

Beyreuther et al. (2012) also introduced state clustering to improve the time discretisation in induced seismicity experiments.

Contrastingly, Bicego et al. (2013) used an HMM method, based on a hybrid generative-discriminative classification paradigm,

in pre-triggered signals recorded at the Galeras Volcano in Colombia.

Other classification techniques, such as artificial neural networks, provide an efficient approach for the classification of

not only seismic events, but also time slices of continuous signals, such as volcanic tremors (Carniel, 2014). The multi-layer45

perceptron (MLP) is often used for the analysis of seismic signals recorded at volcanoes. Esposito et al. (2013) applied the

MLP technique for landslide recognition, while Esposito et al. (2014) utilized MLP to estimate the possible trend of the

seismicity level in Campi Flegrei (Italy). Self-organising maps (SOM), another class of artificial neural networks, have been

used to analyse very long period events at the Stromboli volcano (Esposito et al. , 2008), as well as volcanic tremors at the

Etna volcano (Langer et al. , 2009, 2011), Raoul Island volcano (Carniel et al. , 2013a), and Ruapehu volcano (Carniel et al. ,50

2013b). Furthermore, self-organising maps with time-varying structures (SOM-TVS) have been applied to volcanic signals to

achieve improvements in relation to SOMs (Araujo and Rego , 2013).

Notably, the support vector machine (SVM) approach developed by Vapnik (1995), which is based on linear discrimination,

should be mentioned. For a two-class problem, SVM uses linear elements for discrimination, i.e., lines, planes, or hyperplanes.
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Masotti et al. (2006, 2008) used this technique in analysing volcanic tremor data recorded at Mt. Etna in 2001. Langer et al.55

(2009) applied this approach to compare several supervised and unsupervised pattern-classification techniques. Ceamanos et

al. (2010) built a multi-SVM classifier for remote-sensing hyperspectral data. The simultaneous application of SVM and MLP

was also performed by Giacco et al. (2009), who used the two methods to discriminate between explosion quakes, landslides,

and tremors recorded at the Stromboli volcano.

Thus, numerous studies have been conducted to develop an automated system for the detection and classification of volcanic60

signals. The early systems consisted of classifiers that used data from a single station to design different approaches (Masotti et

al. , 2006; Beyreuther and Wassermann , 2008; Rouland et al. , 2009; Langer et al. , 2011; Bicego et al. , 2015). However, after

some years, the systems evolved into more complex algorithms that facilitated the building of models using the information

from a few stations or channels (Z, E, N). Nevertheless, they did not use the data from all the possible stations in the network,

instead their results were based on one station or channel that was used as a pattern (Álvarez et al. , 2012; Esposito et al. ,65

2013; Carniel et al. , 2013b; Cortés et al. , 2014, 2015; Curilem et al. , 2014a, b; Bicego et al. , 2015). Interestingly, the work of

Curilem et al. (2016), based on station-dependent classifiers, shows the possibility to mix information from different stations

to create models that enable the classification of events at different stations, despite the fact that experiments were performed

with a reduced database.

1.3 Supervised machine learning as strategy for automatisation70

Volcano-seismic recognition is an automated system that allows us, at an early stage, to build probabilistic models for each

volcanic event or class from classified data determined previously by an expert geophysicist. The models obtained are later used

over continuous seismic records for automatic and unsupervised classification. The systems that allow us to build probabilistic

model for an automatic classification of volcanic event are called Volcano-Seismic Recognition (VRS). The probabilistic

models are built from data determined previously by an expert geophysicist. The models obtained are later used over continuous75

seismic records for automatic and unsupervised classification.

As previously mentioned, pattern recognition and automatic classification require the previous classification of seismic

signals into different classes, making this one of the most important, but also one of the most time-consuming, tasks when

accomplished daily by a human operator.

The study was aimed to present a novel approach that considered a supervised machine-learning strategy (transfer learning)80

using AlexNet, a previously trained deep convolutional neural network, to create a multi-station automatic classification system

for volcanic seismic signatures.

Transfer learning for deep neural networks is the process of first training a base network on a source dataset and then

transferring the learned features (network weights) to a second network to receive training on a target-related dataset. From a

practical point of view, the reuse or transfer of information from previously learned tasks for the learning of new tasks has the85

potential to significantly improve the efficiency of a reinforcement learning agent.

AlexNet was the first convolutional network which used GPU to boost performance. Its architecture consists of 5 convo-

lutional layers, 3 max-pooling layers, 2 normalization layers, 2 fully connected layers, and 1 softmax layer (Azrina et al. ,
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2019). Each convolutional layer consists of convolutional filters and a nonlinear activation function ReLU. The pooling layers

are used to perform max pooling. Input size is fixed due to the presence of fully connected layers, and is mentioned at most90

of the places as 224x224x3. However, due to some padding it works out to be 227x227x3. Overall, AlexNet has 60 million

parameters.

In 2012, AlexNet won the ImageNet visual object recognition challenge, i.e. the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) (Krizhevsky et al. , 2012). The numbers of classes to be classified by ImageNet dataset consist of 1,000

classes. Therefore the final fully connected layer also contains 1,000 neurons. The ReLU activation function is implements to95

the first seven layers respectively. A dropout ratio of 0.5 is applied to the sixth and seventh layer. The eighth layer output is

finally supplied to a softmax function. Dropout is a regularization technique, being used to overcome the overfitting problem

that remains a challenge in a deep neural network. Thus, it reduces the training time for each epoch.

Main characteristics of AlexNet implementation can be summarized in four aspects: (a) Data augmentation is carried out to

reduce over-fitting. This Data augmentation includes mirroring and cropping the images to increase the variation in the training100

data-set. The network uses an overlapped max-pooling layer after the first, second, and fifth CONV layers. Overlapped maxpool

layers are simply maxpool layers with strides less than the window size. The 3x3 maxpool layer is used with a stride of 2 hence

creating overlapped receptive fields. This overlapping improved the top-1 and top-5 errors by 0.4% and 0.3%, respectively. (b)

Before AlexNet, the most commonly used activation functions were sigmoid and tanh. Due to the saturated nature of these

functions, they suffer from the Vanishing Gradient (VG) problem and make it difficult for the network to train. AlexNet uses105

the ReLU activation function which doesn’t suffer from the VG problem. The original paper (Krizhevsky et al. , 2012) showed

that the network with ReLU achieved a 25% error rate about 6 times faster than the same network with tanh non-linearity.

(c) Although ReLU helps with the vanishing gradient problem, due to its unbounded nature, the learned variables can become

unnecessarily high. To prevent this, AlexNet introduced Local Response Normalization (LRN). The idea behind LRN is to

carry out a normalization in a neighborhood of pixels amplifying the excited neuron while dampening the surrounding neurons110

at the same time. (d) AlexNet also addresses the over-fitting problem by using drop-out layers where a connection is dropped

during training with a probability of p=0.5. Although this avoids the network from over-fitting by helping it escape from bad

local minima, the number of iterations required for convergence is doubled.

2 Methodological testing site

2.1 Seismic monitoring of Lascar volcano115

The Lascar volcano (23°22′ S, 67°44′ W; 5.592 m a.s.l.) is located in northern Chile, 270 km NE from Antofagasta and 70 km

SE from San Pedro de Atacama, on the western border of the Altiplano-Puna ‘plateau’ (Figure 1). Lascar is considered the most

active volcano in the Central Andean Volcanic Zone (de Silva and Francis , 1991). It is a compound elongated strato-volcano,

comprised of two truncated western and eastern cones (Gardeweg et al. , 1998) that host five nested craters aligned ENE-WSW.

The Lascar volcano has been seismically monitored by the CKELAR-VOLCANES group using a temporal network of 11 three-120

component stations (Shallow Posthole Seismometers, Model F72-2.0). These short-period 2 Hz seismometers were monitored
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continuously at 200 Hz from March to October 2018 in this first step of processing. Notably, only the Z channel was considered

in building our database, the reason for this is that the spectrograms obtained in the different channels of a particular station

are very similar, but in the case of the Z channel, the P phase is clearly identified for tectonic and volcano-tectonic events; the

use of the other channels is reserved for future studies.125

2.2 Lascar’s database

Lascar’s database corresponds to a catalogue of 6,145 seismic events, from which only 3,947 can be classified as volcanic

events. The others, based on the distance to the hypocentres, are mainly tectonic events (not directly related to volcanic activity)

recorded by Lascar’s network during the period of observation. To guarantee the reliability of the database regarding volcanic

activity, all observations were manually segmented, labelled, and checked from the continuous seismic record by CKELAR-130

VOLCANES experts. The processing routines consider the following 4 steps.

(a) signal detection: The analysts detect the signal from the continuous seismic record using Seisan software (Havskov and

Ottemöller , 2000) , once detected, they proceed to write down the start and end times of the signal in a list (based on the

duration times of the event for each station, Figure 2a).

(b) preliminary classification: The analysts give, as appropriate, a preliminary label hybrid (HY), long period (LP), tectonic135

(TC), tremor (TR), volcano-tectonic (VT) to the event. Both, detection and preliminary classification, are based solely on visual

observation of its raw waveforms (seismograms) from the different stations that recorded the event (Figure 2b).

(c) classification: The analysts, using the duration time of each event and the Obspy package (Beyreuther et al., 2010), trim

the signal, apply a linear detrend and a bandpass filter between 0.5-25 [Hz]. After that, they proceed to plot, one by one,

the seismograms of the different stations, their amplitude spectra, and their spectrograms. Therefore, they decide by visual140

inspection of the frequency content and the seismogram of all stations that recorded the event, the respective class (Figure 2c).

(d) signal segmentation: The analysts, using the list of absolute time of durations of each event, proceed to the segmentation

of the signal to prepare an isolate corpus of seismograms as database (Figure 2d). The selection of the station for each event is

decided by visual inspection of the frequency content and the seismogram of all stations that recorded the event, in relation to

the level of noise in both the seismograms and the spectrograms (Figure 3).145

Our analysts were able to recognise five classes of events (Figure 4): the hybrid events (HY) corresponded to 213 signals;

long-period catalogue (LP) corresponded to 577 events; the number of tremors (TR) was 471; volcano-tectonic (VT) activity

was recorded in 2,686 events; and, finally, tectonic events (TC), not related to volcanic activity, were in 2,198 events (Tables 1

and 2).

Finally, the database used for the automatic classification experiment corresponds to isolated corpus of seismograms of five150

classes of events (Figure 4 and Figure 5): 213 events cataloged as (HY), 577 events as (LP), 471 events correspond to (TR),

2,686 events were recorded as (VT) and 2,198 events, not related to volcanic activity, were classified as (TC) (Tables 1 and 2).
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3 Methods

We proposed a framework based on transfer learning, consisting of a previously trained deep convolutional neural network

called AlexNet (Krizhevsky et al. , 2012). The main reasons for adopting this approach were, on one hand, to avoid the steps155

of an extensive search and selection of features, and, on the other hand, to deal with the limited number of labelled data. The

data considered as input were spectrograms of the labelled dataset (waveform) from each class of seismic event. The line of

processing consists of five steps: the first step describes the process applied in the time series (seismogram); the second step

details obtaining spectrograms from the labelled seismograms; the third step consists of using the data augmentation technique

to increase the number of data in the training and test datasets; the fourth step indicates how the prediction model is built; and,160

finally, the fifth step is performed to estimate the model’s performance. In the following paragraphs, each step is explained in

detail.

Step 1 (pre-processing): The observations were recorded with the same type of sensors, but at times the sample ratio should

have been varied because of technical problems. Thus, many of the stations recorded at 200 Hz, but a few stations recorded at

500 Hz or 100 Hz. Considering this, we decided to apply 2 processing alternatives (a) resample the entire time series at 100165

Hz, thereafter, we removed the mean and normalised the signals. Following this process, we applied a 10th order Butterworth

bandpass filter between 1 and 10 Hz; (b) remove the mean and normalised, to apply the 10th order Butterworth bandpass filter

between 1 and 20 Hz and after then resample the time series to 100 [Hz]. The entire pre-processing was implemented using

ObsPy (Beyreuther et al. , 2010).

Step 2 (spectrogram): The spectrograms were calculated by applying a Short-Time Fourier Transform, using the formula:170

S[x(t)](n,k) =

∣∣∣∣N−1∑
m=0

x(m) ·w(m−n) · ei2πmk
∣∣∣∣
2

(1)

where x(t) and y(t) represent the seismic signal and short-time fourier transform sliding window, respectively. The sliding

window size was set to 1 s with a 95% overlap. The frequency interval used to calculate the spectrograms ranged from 1 to 10

Hz. All spectrograms were transformed to RGB images of 224 × 224 pixels.

Step 3 (data augmentation): Due to the imbalance produced on the labelled data, we decided to apply the data augmentation175

technique to generate a balanced number of different classes of seismic events (Table 2). Considering all the techniques for

data augmentation, a time stretch was chosen. This transformation was implemented by rotations around the frequency axis

that were as random as possible, between 5-25% of the length of the signal, which were applied at the beginning, middle,

or ending of the spectrogram as appropriate (Figure 6). The amount of data that was created for each class depended on the

number of events in the most populated class; in this particular case the VT class was used as reference. The new signals180

generated were processed using the same procedure applied to the original signals (see Steps 1 and 2). The amount of synthetic

data was created by considering all possible combinations of integers that represent a rotation angle between 5-25, that is, 21

possibilities. Subsequently, we apply these 21 rotation angles to the 3 possible rotation axes, corresponding to a total of 63

combinations of transformations to each event, without considering the repetition in the combination. Thus, each class has
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several synthetic data according to this relationship (63 times number of event per class). According with the transformations185

exposed above, the synthetic database was created using two criteria: (a) Considering the least populated class (HY) with

213 events, the number of events selected for each class must be equal to the maximum number of synthetic data that can be

generated in the (HY) class, it means 13,419 events, to obtain a balanced dataset. Thus, in the case of the (HY) class, all the

synthetic data will be used, and for the others class, a random selection procedure, without repetition, will be implemented.

Therefore, the number of events for this synthetic database comes to 67,095. (b) the amount of data that was created for each190

class depended on the number of events in the most populated class; in this case the (VT) class was used as reference (2,686

events). Thus, the number of events for each class must be equal to the 2,686 and the amount of synthetic data that must be

selected per each class depending on the number of events necessary to reach this quantity. Therefore, the total number of

events for this database will be 13,430.

Step 4 (AlexNet): AlexNet is a deep convolutional neural network proposed by Krizhevsky et al. (2012) to classify the 1.2195

million high-resolution images in the ImageNet LSVRC-2010 contest into 1,000 different classes. AlexNet was used in our

study as a pre-trained deep convolutional neural network for spectrogram recognition, mainly because the spectrogram can be

easily represented as an RGB image of 224 × 224 pixels.

Step 5 (model performance): This step was considered to evaluate the performance of the model and, thus, to validate the

classification. This step was executed through a set of tests composed of signals that were not considered in the training step.200

We considered the following measures from the TorchMetrics in PyTorch:

i) Accuracy:

Accuracy =
1

N

N∑
1

1(yi− ŷi) (2)

where yi and ŷi are the tensor of the target values and the tensor of the predictions, respectively.

ii) F1-score:205

F1− score= 2× Recall×Precision

Recall+Precision
(3)

iii) Recall:

Recall =
TP

TP +FN
(4)

where TP and FN represent the number of true positives and false negatives, respectively.

iv) Precision:210

Precision=
TP

TP +FP
(5)
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where TP and FP represent the number of true positives and false positives, respectively.

v) Cohen’s kappa:

κ=
p0 − pe
1− pe

(6)

where p0 is the empirical probability of agreement and pe is the expected agreement when both annotators assign labels215

randomly. Note that is estimated using a per-annotator empirical prior over the class labels.

4 Results

Due to the fact that our database is clearly imbalanced, with 3% (HY), 9% (LP), 36% (TC), 8% (TR), and 44% (VT) events (Ta-

ble 2), we suspect that this natural behaviour most likely affect the automatic classification performance. Therefore, designed

four experiments to test the model’s ability to classify the data: (a) real data was used to build the models and test them using a220

real database without the application of augmentation processes; (b) artificial data was used to build the models and test them

using artificial data created by augmentation processes (see Step 3); (c) combined 1 used exclusively artificial data to build

models and real data to test them; and (d) combined 2 used real and artificial data to build the models, and exclusively real data

was used to test them. we designed five experiments based on different dataset, to test the ability of the model to classify the

data. The build of the dataset is explained in the following paragraphs.225

(i) corpus of real data (6,145 events): imbalanced database of the Lascar volcano was used, without the application of

augmentation processes. Thus, the 80% of real data (4,916 events) were used to build the probabilistic model of classification

and the other 20% (1,229 events) were used to test and validate this model (Table 3). This experiment permits us to evaluate

the influence of imbalanced database in the performance of probabilistic model based on transfer learning (Alexnet).

(ii) synthetic data corpus (67,095 events): where the synthetic data was created by data augmentation processes (for more230

details, see Step 3 in section 3). Once the synthetic database was created, 80% of it (53,676 events) was used to build the

probabilistic classification model and the other 20% (13,419 events) was used to test and validate it (Table 3). This experiment

allows us to assess the usefulness of our implementation of the data augmentation technique and whether, with synthetic data,

transfer learning (Alexnet) was able to build a probabilistic model with good performance for automatic event classification.

(iii) combined 1 (59,821 events): the experiment consisted of using the previous probabilistic model (ii) training with 53,676235

events and testing it with all events of the real database of 6,145 events (Table 3). In this case, the performance of the proba-

bilistic model built with synthetic data is evaluated on real data and, therefore, it will allow validating the efficiency of the data

augmentation technique.

(iv) combined 2 (13,430 events): this experiment used real and synthetic data to build and test the model. Thus, in the case

of training we use 10,744 events, and for testing we use 2,686 events (Table 3). This approach will allow evaluating whether or240

not the amount of synthetic data created by data augmentation plays a key role in the performance of the probabilistic model

to automatically classify events.
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(v) real database subset (1,213 events): the experiment consists of selecting a subset of real data, where the amount of data in

each class depends on the number of events in the least populated class (HY) with 213 events. Thus, considering the class (HY)

as a reference, we estimate that the number of events for the other classes will be 250 events; where 970 events correspond to245

the training set of the model and the other 243 events correspond to the testing set (Table 3). This experiment allows to evaluate

the performance of the probabilistic model built with a minimum amount of data that provides an almost balanced database,

without considering the generation of synthetics data by a data augmentation process.

Tables 3 and 4 present the statistics and metrics of the different experiments. It is evident that in the case of the unbalanced

database, in experiment (i), the performance of the experiment was inferior (56.2% accuracy); however, when the data augmen-250

tation process was applied, in experiments (ii–iv), the results reached a particularly good percentage of the metric parameters

(98.9%, 98.7%, 90.6% accuracy, respectively). In the case of the balanced real data subset experiment (v), the performance

of the experiments was higher than experiment (i) 65.2% in accuracy, but notably lower than the experiments executed using

the database with balanced classes (ii-iv). We want to highlight the results of the experiment, where the real data were used

exclusively in the test (without being included in the model building). In this case, the metrics showed the second highest255

ranking, preceding only the experiment that exclusively included artificial data.

In analysing the complete training and validation phase, through the loss and accuracy epoch, the process was less effective

when the (i) database was used (Figures 7a-7b), whereas the best performance was achieved by the process using the (ii)

database (Figures 7c-7d). In the case of the database balanced with data augmentation and real data (iv) database, this showed

a good performance (Figures 8a-8b). Conversely, the performance for the experiment with the database balanced only using260

real data (v), the results showed that despite having a balanced database, these are below the results obtained using data

augmentation (Figures 8c-8d).

To evaluate the accuracy of the classification process for each experiment, we computed the confusion matrix. In the case

of experiment (i), we noticed that classes with less data were negatively affected. In this case, a high percentage of HY events

were confused by TC events and, thus, the TR events were also mistaken for TC events (Figures 9a-9b). Conversely, the265

classification process of experiment (ii) performed well, and no confusion in the class recognition was found (Figure 9c-9d).

For experiment (ii), the performance was high, considering that the confusion of classes was practically minimal (Figures 10a-

10b). Experiment (iv) also presented a high score, and the confusion matrix indicated a small problem in the recognition of TC

and VT classes, in which some are confused by TR and TC, respectively (Figures 10c-10d). In the case of experiment (v) the

main recognition problems are in the HY and TC class, in which some are confused with TR and LP (Figures 11a-11b).270

To test whether the probabilistic model, built with both real and augmented data, is stable under the variability of the input

data, a k-fold cross-validation procedure was implemented (Table 5). The results showed that the metrics for the different

classes, as in the previous experiments, were high. There was only one class (TC) affected (with more variability), but good

scores were always maintained, which in the worst case was over 67%.

In the case of the experiments that used a frequency band of 1-20 [Hz] (see Step 1, “case b” in section 3), the results showed275

a relative improvement compared to “case a” (frequency band 1- 10 [Hz]), but this is not comparable to the improvement
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achieved by applying the data augmentation process. The best improvement was achieved in experiment (i), where there is 6%

difference in accuracy (Table 6).

5 Discussion

The analyses of this study clearly showed the impact of imbalance in the database and how the process of machine learning was280

conditioned to build probabilistic models of classifications for the different classes. The model building process was notably

influenced by classes with more events, which in this case were TC and VT. Under these conditions, an over-fitted model

was built in the training phase, which largely coincided with the recognition of these two classes, to the detriment of the less

numerous ones.

Conversely, the process of data augmentation facilitated a balance in the data of the different classes, which directly impacted285

the performance of the probabilistic model, reaching optimal scores over different test datasets. This can be explained by the

fact that data augmentation provides an efficient process for searching the features of each class during the training process.

We want to highlight the results of the experiment, where the real data were used exclusively in the test (without being

included in the model building). In this case, the metrics showed the second highest ranking, preceding only the experiment

that exclusively included synthetic data.290

Although the frequency content was the main classification characteristic to differentiate the different volcanic event types,

the choice of stretch as a data augmentation method along the time axis was a successful strategy that did not reduce effective-

ness. The artificial production of data using stretches in frequency should provoke overlap (on the dimensional map) between

the different classes of volcanic events when these are analysed using the spectrogram image.

The experiment (v), where we use a balanced real data subset, shows us that if we train with a balanced database, but295

the events per class are not enough, the results do not reach the values obtained with the experiments carried out with data

augmentation as a mechanism to balance the classes. Thus, the probabilistic model built is not fully realiable, and there are

more quantities of events confused with other classes.

Another important topic is the technique used to build the probabilistic model. Transfer learning with a pre-trained large

neural network, such as AlexNet, facilitated model building in less time. Instead of manually selecting the best features, this300

task was performed by learning features from the pre-trained models of AlexNet, thereby dramatically saving time in the

process. This point was verified when the model built using AlexNet was validated using only real data in experiment (iii),

where high scores in the metrics of the experiment were achieved.

Thus, the use of transfer learning approach allowed the transference of the information about the features characteristics

collected from the training dataset to the testing dataset, improving the efficiency of the process.305

The limitations found in our implementation of Alexnet on spectrograms correspond mainly to the fact that although Alexnet

has its own data augmentation process, it was not efficient enough to counteract the imbalance in the different classes studied.

This shortcoming was solved by implementing our own data augmentation process.
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Other limitation was that spectrogram must be scaled to a fixed input size of 224x224x3 pixels, due to the presence of fully

connected layers in the convutional neural network. While this is not a big problem, it limits the graphical resolution of the310

image, although this can be advantageous since our main objective is to obtain a generalized probabilistic model.

A key issue for the propossed methodology was to generate a multi-station probabilistic model, developing a system trained

with a multi-station subset and confronted with another independent multi-station subset. This approach permits us to reach a

generalized set of characteristics that defined an optimal space for each class. Thus, we can avoid biases related to site effects

(e.g., instruments installed in rocks, soil, etc.).315

6 Conclusions

From the experiments implemented in this study, the following conclusions were drawn.

First, the usefulness of a multi-station framework to build a probabilistic model of the Lascar database allowed us to obtain

a more generalisable model, thereby avoiding the bias associated with the choice of a particular station to retrieve the features.

This fact led us to believe that we are very close to obtaining high-score results, with the AlexNet tool playing a key role in320

reaching the challenge of building a multi-volcano probabilistic model to classify the seismic events.

Second, data augmentation plays a key role as the main factor to improve the metrics of the experiments, thereby providing

a built model validated by real data.

Last, and perhaps the most relevant, the proposal based on transfer learning provided an efficient feature retrieval process

using learning features. The performance of this approach was clearly superior when compared with an exhaustive process of325

evaluation for a list of an hundred statistical features sent to the system, as it is a process of designed features. Our approach

has a high impact when the time process matters, as is the case in early warning systems for volcanic activity, and provides a

more generalisable model of prediction.

Following the same methodology used in the case of multi-station, we can expand, in a near future, our probabilistic models

considering a network with different type of instruments, different setup of the instruments in a network, different temporality330

of the data analysed and, finally, reach a probabilistic model muti-volcano. The portability generated to apply this methodology

will permit to work to different scales of operation of a network (from small temporal networks to world-wide volcano obser-

vatories). The acquisition of more generalisable models creates a good opportunity to develop a multi-volcano probabilistic

model for volcanoes worldwide. This will improve the understanding and evaluation of the hazards and risks associated with

the activity of volcanoes.335

Data availability. The data are registered by DOI: 10.5281/zenodo.6001869. These can be founded in the link:
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Figure 1. Location map of the Lascar volcano experiment. The red dots indicate the position of the short-period seismic stations and the

black bold text represents the corresponding names. The LC10 and LC11 (B2DA) are located eastward, near the crater of the Lascar volcano.

The DEM data is a product of ASTER Global Digital Elevation Model version 3 (ASTGTM v003), these can be downloaded directly by

OPeNDAP link (https://lpdaac.usgs.gov/tools/opendap/).
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Figure 2. Building the Lascars database: a) signal detection; (b) preliminary classification; (c) classification; (d) signal segmentation.
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Figure 3. Station selection for each event: Example of station selection for the VT event that occurred on 2018-03-04T22:58:44, the event

was recorded by the stations (a) LC01, (b) LC03, (c) LC04, (d) LC07. The spectrogram of the station LC07 was selected for its frequency

content.
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Figure 4. Examples of time series (left) and spectrograms (right) for the different classes in the Lascar database: a) hybrid events (HY), b)

long period (LP), c) tectonic events (TC), d) tremors (TR), and e) volcano-tectonic (VT).
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Figure 5. Temporal evolution in the production of evnts of the different classes for the Lascar volcano in the period since March to October,

2018.
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Figure 6. Transformation by rotations: the time stretching (a) is produced when we change the angle of rotation α around the frequency axis

(b); examples of the hree possibilities of rotations, around a left (c), central (d), and right axis (e), respectively; examples of how the time

stretching is produced by rotations, (f) original spectrogram, (g) rotation of 19% around the central axis, (h) rotation of 23% around a right

axis, (i) rotation of 24% around a left axis.
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Figure 7. Training and validation performance scores of the transfer learning AlexNet for experiment: (a) Training and test loss for the

experiment (i); (b) Training and test accuracy for the experiment (i); (c) Training and test loss for the experiment (ii), (d) Training and test

accuracy for the experiment (ii).
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Figure 8. Training and validation performance scores of the transfer learning AlexNet for experiment: (a) Training and test loss for the

experiment (iv), (b) Training and test accuracy for the experiment (iv); (c) Training and test loss for the experiment (v), (d) Training and test

accuracy for the experiment (v)
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Figure 9. Confusion matrices: Without normalisation (a) and normalised (b), for experiment (i); Without normalisation (c) and normalised

(d), for experiment (ii).
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Figure 10. Confusion matrices: Without normalisation (a) and normalised (b), for experiment (iii); Without normalisation (c) and normalised

(d), for experiment (iv).
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Figure 11. Confusion matrices: Without normalisation (a) and normalised (b), for experiment (v).
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Table 1. Contribution of each station to Lascar’s database.

Classes/Stations LC01 LC02 LC03 LC04 LC05 LC06 LC07 LC08 LC09 LC10 B2DA

HY 0 0 0 7 45 4 0 3 12 136 6

LP 11 0 4 2 142 28 5 60 23 195 107

TC 9 0 11 97 284 36 157 127 144 1171 162

TR 1 0 5 29 21 4 61 13 35 292 10

VT 2 0 18 52 84 6 206 14 41 2249 14

This experiment considered only the Z channels (vertical).

27



Table 2. Statistics of the seismic records, based on the majority of the records.

Classes/Events Quantity Quantity Maximum Minimum Mean Median Mode Standard deviation

% N° [s] [s] [s] [s] [s] [s]

HY 3 213 265 10 57.2 59 40 35.3

LP 9 577 600 9 82.3 67 25 63.5

TC 36 2198 670 9 78.5 65 20 56.2

TR 8 471 216 9 46.2 31 20 33.8

VT 44 2686 189 5 19.6 17 10 12.3

Total 100 6145 670 5 49.9 28 20 50
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Table 3. Statistics related to the transfer learning experiments using AlexNet for hybrid events (HY), long period (LP), tectonic events (TC),

tremors (TR), and volcano-tectonic (VT) classes.

Corpus Data Balanced Epoch Total data 100% Train data 80% Test data 20% Time to build the

Experiments Augmentation data N° N° N° N° model [minutes]

(i) No No 10 6145 4916 1229 4.6

(ii) Rotation 5–25% Yes 20 67095 53676 13419 164.9

(iii) Rotation 5–25% Yes – – – 6145 0.3

(iv) Rotation 5–25% Yes 20 13430 10744 2686 10.6

(v) No Yes 25 1213 970 243 2.2
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Table 4. Performance of the transfer learning experiments to 1-10 [Hz].

Experiments/Metrics Accuracy F1 Recall Precision Cohen’s kappa Class Accuracy

HY LP TC TR VT

(i) 56.2 57.8 56.2 62.9 65.2 27.8 59.8 89.4 18.9 85

(ii) 98.9 98.9 98.9 98.9 98.6 100 99.8 96.1 99.9 98.6

(iii) 98.7 97.2 98.7 95.8 96.4 100 100 95.2 99.8 98.4

(iv) 90.6 90.2 90.6 90.3 87.9 99.6 96.7 73.2 93.2 90.0

(v) 65.2 65.1 65.2 65.5 56.3 66.7 66.0 58.2 67.4 68.0
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Table 5. Performance of the transfer learning experiments applying k-fold validation.

k-fold/Metrics Accuracy F1 Recall Precision Cohen’s kappa Class Accuracy

HY LP TC TR VT

1 89.2 89.0 89.2 89.2 86.7 99.3 95.2 75.3 84.8 91.3

2 90.1 90.1 90.1 90.4 87.5 90.1 99.6 89.9 84.7 86.6

3 89.3 89.0 89.3 89.1 86.6 89.3 98.3 97.3 71.8 90.7

4 89.8 89.5 89.8 90.1 87.2 89.8 97.3 98.8 67.8 90.6

5 87.9 87.7 87.9 87.8 84.6 87.9 93.1 87.8 77.7 89.1

6 88.6 88.4 88.6 88.7 85.6 88.6 99.6 91.3 81.5 77.9

7 87.6 87.7 87.6 88.1 84.8 87.6 96.6 87.5 82.7 80.6

8 89.8 89.6 89.8 89.7 87.1 89.8 98.6 91.8 75.2 89.9

9 88.7 88.7 88.7 89.0 85.9 88.7 98.9 89.6 78.5 83.5

10 90.4 90.2 90.4 90.2 87.4 90.4 96.0 91.2 79.9 94.9
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Table 6. Performance of the transfer learning experiments for the experiment to 1-20 [Hz].

Experiments/Metrics Accuracy F1 Recall Precision Cohen’s kappa Class Accuracy

HY LP TC TR VT

(i) 62.8 63.9 62.8 66.7 67.6 38.9 74.8 73.5 33.3 93.4

(ii) 99.4 99.4 99.4 99.4 99.3 100 99.8 98.2 100 99.2

(iii) 99.5 98.9 99.5 98.3 98.5 100 100 98 100 99.3

(iv) 91.5 91.4 91.5 91.4 89.2 98.4 92.4 83.5 93.3 89.6

(v) 64.2 64.1 64.2 66.2 55.2 50 68 49.1 73.9 80
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