

1 **Potential tsunami hazard of the southern Vanuatu Subduction Zone:
2 tectonics, case study of the Matthew Island tsunami of 10 February 2021
3 and implication in regional hazard assessment.**

4

5 Jean Roger^{1,*}, Bernard Pelletier², Aditya Gusman¹, William Power¹, Xiaoming Wang¹, David
6 Burbidge¹, Maxime Duphil^{3,4}

7 ¹GNS Sciences, 1 Fairway Drive, Lower Hutt 5010, New Zealand

8 ²GEOAZUR, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848
9 Nouméa CEDEX, New Caledonia

10 ³ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848
11 Nouméa CEDEX, New Caledonia

12 ⁴École Doctorale n°129 Sciences de l'Environnement, UPMC Sorbonne Université, 4, Place Jussieu, 75005,
13 Paris CEDEX, France.

14 *Correspondence to:* J. Roger (jean.roger@gns.cri.nz)

15

16 **Abstract**

17 The Vanuatu subduction zone (VSZ) is known to be seismically very active, due to the high
18 convergence rate between the Australian and Pacific tectonic plates for the majority of the margin.
19 However, this is not the case on its southernmost part south of latitude 22.5°S and east of longitude
20 170°E which is neither highly tectonically active nor has it produced large tsunamis over the past 150
21 years. It has also not been widely studied. On the 11th of February 2021 (10 February UTC), a magnitude
22 M_w 7.7 earthquake triggered a tsunami warning in New Caledonia and Vanuatu twenty minutes after
23 midnight (local time). With an epicentre located close to the volcanic islands of Matthew and Hunter,
24 this shallow reverse-faulting rupture (< 30 km depth) was able to deform the seabed and produce a
25 tsunami. This was confirmed 45 min later by the coastal gauges of the Loyalty and the south Vanuatu
26 islands which recorded the first tsunami waves. Showing a typical recorded amplitude of less than 1 m,
27 with a maximum of ~1.5 m in Lenakel (Tanna, Vanuatu), it was observed on most coastal gauges and
28 DART stations in the southwest Pacific Region as far as Tasmania to the South and Tuvalu to the North
29 at distances of ~3000 and ~1800 km from the epicentre. In this study, the tsunamigenic potential of the
30 southernmost part of the VSZ and the implications in terms of regional hazard assessment are discussed

31 through (1) the presentation of the complex tectonic settings of this “transition zone” between the
32 Solomon-Vanuatu and the Tonga-Kermadec Trenches; (2) the case study of the 10 February 2021
33 tsunami at a southwest Pacific regional scale using three different tsunami generation scenarios
34 computed with the COMCOT modelling code on a set of 48 nested bathymetric grids; and (3) the
35 simulation of a plausible M_w 8.2 scenario encompassing the active part of this “transition zone”. The
36 validation of the M_w 7.7 parameters for tsunami modelling provides the means to further assess the
37 hazard from potential tsunami triggered by higher magnitude earthquakes in this region. Tsunami
38 records highlight that > 28 cm wave amplitudes were recorded at 8 different coastal gauges,
39 including one with an amplitude of more than 1 m (Lenakel, Tanna, Vanuatu). The tsunami
40 threat at that location would be large enough to warrant an onshore evacuation. Finally, it helps
41 to highlight the significant role played by the numerous submarine features in the region, the Norfolk
42 Ridge being the most important, which acts like a waveguide from the north to the south.

43

44 **Keywords:** tsunami hazard, sea-level records, tsunami numerical modelling, Vanuatu-New Hebrides
45 subduction zone, earthquake, Matthew Island

46

47 **1. Introduction**

48 **1.1 Generalities**

49 On 10 February 2021 at 13:19:55 UTC (11 February at 00:19:55 LT) a M_w 7.7 earthquake occurred at
50 the southernmost part of the Vanuatu Subduction Zone (former New Hebrides Subduction Zone; called
51 VSZ in the rest of this article), 420 km from Maré, Loyalty Islands, New Caledonia and ~80 km from
52 the two small uninhabited volcanic islands of Matthew and Hunter, respectively located at 171.35°E
53 and 22.34°S and 172.07°E and 22.4°S (**Figure 1**). While this earthquake was only felt by a few people
54 in New Caledonia and Vanuatu because it occurred far away from the inhabited islands and during the
55 night, it was quickly followed by a regional tsunami warning provided by the Pacific Tsunami Warning
56 Centre (PTWC) and the New Zealand National Geohazards Monitoring Centre (NGMC). From 45

57 minutes after the shaking, a tsunami was recorded by the coastal gauges located along the coast of New
 58 Caledonia and Vanuatu, and later along the northern coast of New Zealand, Norfolk Island, the eastern
 59 coast of Australia and most of the coastal gauges located in the southwest Pacific Ocean.

60

61
 62 **Figure 1: Local seismotectonic context: location of the 10 February 2021 M_w 7.7 earthquake at the interface between**
 63 **the Australian Plate and the Matthew-Hunter micro-plate (part of the Vanuatu micro-plates complex, southernmost**
 64 **Vanuatu arc). Earthquakes ($M_w > 3.0$) from USGS from 1 January 1970 to 31 March 2021 are shown by coloured**
 65 **circles, those with a black outline being recorded from the 10th of February to 31st of March. Convergence rates (in**
 66 **cm/yr) are represented by the white arrows. Yellow stars locate strong historical earthquakes ($M_w \geq 7.4$) and the 25**
 67 **August 1926 $M_w \geq 7.0$ easternmost earthquake. Note that not all tsunamigenic events are represented on this figure.**
 68 **The black line represents the subduction trench. The two black stars locate Matthew (M) and Hunter (H) islands.**
 69 **Topographic data extracted from GEBCO2021 dataset (VLIZ/IOC, 2021).**

70 **1.2 Objectives of this study**

71 From a hazard assessment perspective, this study aims to understand what happened in this relatively
 72 inactive part of the VSZ by: (1) discussing the complex seismotectonic context; (2) using numerical

73 simulations of the 10 February 2021 tsunami generation and propagation in the southwest Pacific
74 Ocean: three tsunami generation scenarios were tested, going from a simple uniform slip model
75 prepared with seismic data and empirical relationships between fault parameters, the USGS finite fault
76 model provided for this earthquake, and a subsequent waveforms inversion of the signal recorded at
77 New Zealand DART and coastal gauges; (3) proposing a plausible M_w 8.2 earthquake rupture scenario
78 and simulating its propagation in the southwest Pacific region. Notice that all the dates and times are in
79 UTC in the rest of the article.

80

81 **2. Seismotectonic context**

82 The VSZ (10-23°S, 165-173°E), including from south to north the French Matthew and Hunter volcanic
83 islets, Vanuatu and Eastern Solomon Islands, is among the world's fastest moving plate boundaries with
84 a convergence rate of up to 16-17 cm/y in the northern part (around latitude -11°; not shown on **Figure**
85 **1**) between the Australian Plate on the west and several Vanuatu micro-plates on the border of the
86 Pacific Plate to the east (Louat et Pelletier, 1989; Pelletier et al., 1998; Calmant et al., 2003). It has a
87 history of producing numerous moderate to strong earthquakes (Louat and Baldassari, 1989; Cleveland
88 et al., 2014; Ioualalen et al., 2017). The largest events recorded during the instrumental period (since
89 1900) have moment magnitudes of between M_w 7.8 to 8.0 and are located in both the northern (M_w 7.8
90 on 7 October 2009 and M_w 8.0 on 6 February 2013 events) and the southern parts (M_w 7.9 on 9 August
91 1901, M_w 7.9 on 20 September 1920 and M_w 7.9 on 2 December 1950 events) of the subduction zone.
92 However, the maximum magnitude of earthquakes on the zone may be higher, the moment magnitude
93 of the 28 March 1875 earthquake in the southern part having been estimated to M_w 8.1-8.2 (Ioualalen
94 et al., 2017). Note that there are some questions raised about the 9 August 1901 earthquake location (-
95 22°, 170°) and magnitude: it goes from M_w 7.9 to 8.4 according to Gutenberg (1956), Richter (1958)
96 and Engdahl and Villaseñor (2002) but it has not been reported in the highly detailed earthquake
97 catalogue of New Caledonia from Louat and Baldassari (1989). By contrast, no large thrust events have
98 been recorded in the central part (between 14°S and 17°S), the maximum recorded magnitude being M_w
99 7.6 on 11 August 1965, and especially in the southernmost part of the subduction zone (south 22.5°S

100 and east of 170°E), with a maximum magnitude of M_w 7.0 on 25 August 1926 (see **Figure 1** for
101 earthquakes location).

102 Calmant et al. (2003) estimated the convergence rate on the subduction zone to the south of the
103 Matthew-Hunter Islands to be ~45 mm/yr. This value has been confirmed by Power et al (2012) who
104 obtained 46-48mm/yr in their best fitting elastic block model requiring minimal interseismic coupling
105 (less than about 0.2). However, the large uncertainties in GPS data meant that it was not possible to
106 constrain the degree of coupling in this area with any accuracy (Power et al, 2012). If the coupling was
107 indeed this low, it would suggest that the seismicity expected in this area would be much lower than
108 expected for a zone with this rate of convergence.

109 The area of the southern part of the VSZ between the latitudes 21.5° and 22.5°S and the longitudes 169°
110 and 170°E is very active seismically and has produced several seismic crises with earthquakes of
111 magnitude M_w 7.0+ during recent decades (1980, 1995, 2003-2004, 2017, 2018). These events are felt
112 by the population in New Caledonia and Vanuatu as discussed by Roger et al. (2021). From a geological
113 point of view, this region is characterized by the progressive subduction/collision of the NW-SE
114 trending Loyalty Ridge located on the Australian Plate under the southern Vanuatu micro-plates. This
115 leads to strain accumulation that is regularly partially released through moderate to strong earthquakes
116 during remarkable sequences (1980, 2003-2004, 2017, 2018) which include both interplate thrust
117 faulting earthquakes and outer rise normal faulting earthquakes west and southwest of the trench, in
118 which events of one mechanism appear to trigger events of the other (Roger et al., 2021).

119 The subduction/collision of the Loyalty Ridge is considered to have a large influence on the local
120 tectonics, on both the overthrusting and the subducting plates (Louat et Pelletier, 1989; Pelletier et al.,
121 1998; Calmant et al., 2003). Northwest of the Loyalty Ridge and trench junction (southern part of the
122 VSZ) the GPS-derived convergence is 12 cm/y and is trending ENE-WSW while southeast of the
123 junction (22°S) the convergence is reduced (5 cm/y) and is almost N-S in front of Matthew-Hunter
124 islands, implying a large (9 cm/y) left lateral motion and/or NW-SE extension in the upper plate along
125 or at the rear of the Matthew-Hunter islands (**Figure 2**) as also shown by numerous strike slip and NE-
126 SW trending normal faulting events. The region is thus potentially able to trigger tsunamis with a main

127 propagation axis striking from WSW-ENE (potential main energy path towards New Caledonia and
128 south Vanuatu) to S-N (potential main energy path toward New Zealand and Vanuatu). Deformation of
129 the subducting plate is well illustrated by the seismicity and the focal mechanism solutions of normal
130 faulting earthquakes on the outer rise of the trench, which follow the bend of the trench (**Figure 2**).
131 From north to south these outer rise events are distributed along three lineations trending WNW-ESE,
132 NW-SE and almost W-E, and located further and further from the trench, suggesting a twist of the plate.
133 The largest normal faulting earthquake (M_w 7.7 on 16 May 1995) was located on this southern lineament
134 which in detail includes three segments and strikes almost E-W toward the Isle of Pines in southern
135 New Caledonia. Possibly the seismicity in the southern part of the Grande Terre and the south lagoon
136 of New Caledonia (showing M_w 5.6 normal faulting and M_w 5.1 strike slip faulting earthquakes
137 respectively on December 1990 and February 1991) may result from stress induced by the ongoing
138 subduction of the Loyalty Ridge at the southern end of the VSZ.
139 From a tsunami generation point of view, whether the VSZ has the potential to trigger catastrophic
140 tsunamis able to strongly impact coastal communities is not as well understood as it is for other
141 subduction zones. According to recent catalogues of tsunamis in New Caledonia (Sahal et al., 2010;
142 Roger et al., 2019a), only 16 of the 37 (17 of the 38 if including the 10 February 2021 tsunami) have
143 been generated at the VSZ since 1875 and amongst them, 5 show a maximum recorded/reported
144 amplitude > 50 cm. The ratio 5/17 is to be considered with caution: most of the small tsunamis have
145 been recorded by coastal gauges (but not reported by witnesses) during the last decade and thus, the
146 real number of tsunamis having reached New Caledonia, at least from the VSZ, is probably considerably
147 bigger than 17. The latest earthquake-generated tsunami triggered by the VSZ occurred on 5 December
148 2018, following an M_w 7.5 normal faulting earthquake (Roger et al., 2019a,b; Roger et al., 2021): its
149 amplitude reached more than 2 m in some locations in the south of New Caledonia and Vanuatu. (Note:
150 at the time of the article submission, there are at least 2 new tsunamigenic earthquakes of magnitude
151 M_w 6.9 and 7.0 having occurred on the VSZ on 30 and 31 March 2022).

152

153 **3. Case study: the 10 February 2021 earthquake and tsunami**

154 **3.1 The earthquake**

155 The 10 February 2021 M_w 7.7 earthquake, located around 23°S , 171.6°E , 170 km east of the 1995 M_w
156 7.7 earthquake, hitherto known to be the strongest recorded earthquake in southernmost VSZ, is
157 interesting in the sense that it occurred nearly at the southeasternmost part of the trench, with a
158 magnitude much stronger than the usual low seismicity previously recorded in this region (**Figure 1**
159 and **Figure 2**). Indeed, the prior and closest main event in this area was the 25 August 1926 M_w 7.0
160 earthquake, located at 23.14°S , 172.14°E , about 60 km further east. The epicentre being closer to
161 Matthew Island than Hunter Island, the name “Matthew Island earthquake” was retained in the
162 aftermath of the event.

163 The M_w 7.7 main shock was preceded by 13 foreshocks with notably six events (M_w 5.1 to 5.8) in one
164 hour on February 2-3 and three events (M_w 5.8 to 6.1) within the hour before the mainshock. All the
165 main foreshocks have similar focal mechanism solutions to the main shock, i.e. thrust faulting, as shown
166 with the moment tensor solutions (GCMT project: Dziewonski et al., 1981; Ekström et al., 2012) on
167 **Figure 3**. Almost 100 aftershocks of magnitude M_w 5+ have occurred after the main shock.

168

169 **Figure 2: Focal mechanisms from the GCMT project in the southern part of the Vanuatu Subduction Zone and**
170 **geodynamical interpretation.**

171 **Figure 3 : Map of the centroid moment tensors (GCMT project; last accessed on 10 May 2022) calculated for the main**
 172 **earthquakes ($M_w \geq 5$) occurring during the February 2021 seismic crisis (from 1 to 28 February) south of Matthew**
 173 **and Hunter islands (yellow stars). Red colour stands for the main shock, orange for the foreshocks and green for the**
 174 **aftershocks. The extent and the number of subfaults of the 3 scenarios used in this study is represented by the black,**
 175 **yellow and red rectangles standing respectively for the USGS finite fault model, the non-uniform model obtained from**
 176 **tsunami waveforms inversion and the uniform slip model.**

177 According to the focal mechanism solutions provided by USGS
 178 (<https://earthquake.usgs.gov/earthquakes/eventpage/us6000dg77/moment-tensor>), GCMT
 179 (<https://www.globalcmt.org>), GEOSCOPE-IPGP-Scardec (<http://geoscope.ipgp.fr>), French Polynesian
 180 Tsunami Warning Center (cppt@labogeo.pf) and GFZ Geofon (<http://geofon.gfz-potsdam.de/eqinfo>),
 181 this earthquake exhibits a nearly pure compression mechanism (reverse faulting event with a small
 182 strike-slip component) and likely occurred at the subduction interface on a shallow (depth ranges from
 183 12 to 29 km depending of the agencies: 25.5 km (USGS) and 21.8 km (GCMT)) fault striking parallel
 184 to the trench (strike ranges from 246° to 281° (USGS and GCMT strike of 246° and 279° respectively)
 185 as shown on **Figure 3**, and dipping to the north (dip ranges from 11 to 27° : 17° (USGS) and 23°
 186 (GCMT)).

188 **3.2 Fault slip models**

189 Within the framework of the present study, three different rupture scenarios have been used to simulate
190 the initial seafloor displacement: 1) a uniform slip model; 2) a non-uniform slip model obtained with
191 inversion of tsunami waveforms; 3) a non-uniform slip model obtained with inversion of seismic and
192 GPS data. An additional uniform slip scenario is proposed for further consideration of tsunami hazard
193 from this region of the VSZ. (Note that the authors are aware of the recent publication of Ye et al. in
194 December 2021 proposing another finite-fault slip model from inversion of teleseismic body waves)

195 **3.2.1 Uniform slip model (scenario #1)**

196 GCMT, Geoscope and the USGS calculated the seismic moment associated to the earthquake of
197 respectively $M_0 = 4.01 \times 10^{20}$ N.m, $M_0 = 4.25 \times 10^{20}$ N.m, and $M_0 = 4.364 \times 10^{20}$ N.m. This corresponds
198 to a magnitude $M_w = 7.67$ to 7.69 according to $M_w = \frac{2}{3} \log_{10}(M_0) - 10.73$ (Hanks and Kanamori,
199 1979) where M_0 is in dyne.cm. Geoscience Australia estimated the moment magnitude to be slightly
200 lower ($M_w = 7.61$).

201 In this study, a uniform slip scenario has been built based on the GCMT solution
202 (<https://www.globalcmt.org>), which is generally more accurate than other solutions in terms of
203 epicentre location and fault azimuth correlated with existing features for earthquakes located at the VSZ
204 and nearby. For this purpose, it is assumed that the rigidity coefficient is $\mu = 3 * 10^{11} \text{ dyn. cm}^{-2}$
205 corresponding to a depth of 22 km (Bilek and Lay, 1999). According to the empirical relationships of
206 Blaser et al. (2010) and Strasser et al. (2010) the length L and width W of the fault plane have been
207 respectively calculated to 100 km and 60 km. To match with the GCMT seismic moment this
208 corresponds to an average coseismic displacement on the fault plane $S = \sim 2.2$ m. The parameters
209 determined for the uniform slip modelling are summarized in **Table 1**.

210 **Table 1: Parameters used for the initial deformation calculation associated to uniform slip ruptures corresponding to**
 211 **M_w 7.7 and M_w 8.2 earthquakes.**

	Lon (°)	Lat (°)	Depth (km)	Length (km)	Width (km)	Strike (°)	Dip (°)	Rake (°)	Slip (m)
Simple fault plane M_w 7.7	171.59	-22.96	21.8	100	60	279	23	101	2.2
Simple fault plane M_w 8.2	171	-22.8	25	220	80	287	20	90	5.0

212
 213 **3.2.2 Non-uniform slip model (scenario #2)**
 214 The observed tsunami waveforms recorded at 4 DART and 24 coastal stations were used in a tsunami
 215 waveforms inversion to estimate the fault slip distribution of the 2021 Loyalty Island earthquake
 216 (Gusman et al., 2022). The geometry for the fault model was based on the GCMT solution. The
 217 estimated slip distribution has a major slip region with maximum slip amount of 4.1 m located near the
 218 trench, this estimated large slip near the trench being consistent with the fault slip model estimated by
 219 the USGS (see section 3.2.3). The estimated maximum uplift near the trench is 2.1 m while the
 220 subsidence is 0.24 m. The previous study by Gusman et al. (2022) used an assumed rigidity of 4×10^{10}
 221 N.m⁻² to get a seismic moment of 3.39×10^{20} N.m (M_w 7.65) from the estimated slip distribution.
 222 However, if we assume the rigidity to be of 3×10^{10} N.m⁻², the calculated seismic moment of the fault
 223 slip model would be 2.54×10^{20} N.m (M_w 7.57), which is ~1.6 times smaller than those calculated by
 224 GCMT and USGS.

225 **3.2.3 USGS finite fault model (scenario #3)**
 226 In the aftermath of the main shock, the USGS released a kinematic finite fault model of the rupture
 227 (<https://earthquake.usgs.gov/earthquakes/eventpage/us6000dg77/finite-fault>) calculated from inversion
 228 of seismic and GPS data with an approach based on Ji et al. (2002)'s methodology.

229 The resulting model is composed of 620 5km-by-5km sub-segments. Each segment has its own depth,
 230 slip, rake and rupture time values. The file used in this study is available here:
 231 https://earthquake.usgs.gov/archive/product/finite-fault/us6000dg77_1/us/1613004810949/basic_inversion.param [Last accessed in February 2021].

233 **3.2.4 Plausible M_w 8.2 uniform slip model (scenario #4)**

234 This scenario is based on the fact that the southernmost part of the VSZ (east of 170°E) has not
235 experienced any strong earthquakes for at least 100 years, exhibiting a shortening of at least 5 m
236 corresponding to a convergence rate of 5 cm/yr, enabling it to easily produce a magnitude M_w 8.0-8.2
237 earthquake, according to the length of active plate boundary available here (~250-300 km). This
238 magnitude corresponds to the maximum magnitude (M_w 8.1-8.2) proposed by Ioualalen et al. (2017)
239 for the 1875 South Vanuatu earthquake and to the maximum value found in the USGS earthquake
240 catalogue for the VSZ (Mw 8.1 on 21 September 1920).

241 The empirical relationships (Blaser et al., 2010; Strasser et al., 2010) used for scenario #1 have been
242 applied to set up the corresponding parameters of a M_w 8.2 rupture: pure thrust mechanism (rake = 90°)
243 with 5 m displacement on the fault plane, length, width and depth of the fault plane of respectively 220
244 km, 80 km and 25 km, an azimuth of 287°, and a dip of 20°. The epicentre of the rupture is chosen at
245 171°E, 22.8°S. The parameters are summarized in **Table 1**. Note that this scenario does not consider a
246 possible rupture of the VSZ toward the north, between the Loyalty Islands and Vanuatu, which would
247 potentially lead to a larger magnitude earthquake. Also, due to the bending of the VSZ, this scenario
248 represents only one of many possibilities for rupture energy directivity by using a mean strike value on
249 a pure thrust rupture, with the intention being to provide a basis for discussion of what could happen
250 with a stronger magnitude than the one of the February 2021 earthquake: depending on the strike, the
251 rake and the epicentre location, the main energy paths could probably completely change the directivity
252 pattern of the tsunami. A more accurate study would consider incorporating the shape of the subduction
253 interface as proposed with the SLAB 2.0 model (Hayes, 2018) using for example a triangular mesh of
254 the source, with variations of the strike, rake, and eventually, different slip distributions and a rupture
255 time pattern.

256

257 **3.3 The tsunami**

258 The tsunami triggered by the 10 February 2021 earthquake can be classified as a region-wide event as
259 it was recorded at least on 31 coastal gauges and 4 DART stations in the southwest Pacific, firstly on
260 those of New Caledonia and Vanuatu, but also in Fiji, New Zealand (~1200 km), Australia (~1800 km)

261 and as far as Tasmania (~3000 km) in the south and Western Samoa (~2000 km) in the east. For the
262 purpose of this study the records of those gauges have been downloaded from the LINZ website for the
263 New Zealand coastal gauges network (<https://www.linz.govt.nz/sea/tides/sea-level-data/sea-level-data-downloads> [Last accessed in February 2021]) and from the IOC website (VLIZ/IOC, 2021) for other
264 regional gauges. The New Zealand DART data are now publicly available on
265 <https://www.geonet.org.nz/tsunami/dart> [Last accessed on 31 May 2022]. They are shown on **Figure 4**
266 in a chronologic order and they represent the sea-level fluctuation with a sample rate of 1 min (coastal
267 gauges) and 15" (DART stations). **Figure 4** also shows the arrival of the tsunami at different stages of
268 the tide from one station to another one. **Figure 5** shows the locations of the coastal gauges and New
269 Zealand DART stations that recorded the tsunami. The tsunami arrival times and amplitudes at each
270 coastal gauge and DART station are summarized in **Table 2**. They have been obtained through de-
271 tiding and filtering of the data using the following methodology: on one hand a polynomial (up to 20th-
272 order) was fitted to and subtracted from the recorded data in order to remove the long-period tide
273 components of the signals, and on the other hand, a low-pass Butterworth filter was used to remove the
274 high frequencies related to parasitic waves generated for example by storms or large vessels; the
275 analysis of the pre-event background noise recorded at several stations helps to constrain the cut-off
276 frequency to 5 min. The amplitude of the waves was measured between 0 and the wave crest.

277 In good agreement with the tsunami travel times (TTT) computed with Mirone software (Luis, 2007)
278 on a 30" GEBCO grid also shown on **Figure 5**, it was first recorded on MARE (Tadine, Maré, Loyalty
279 Islands, New Caledonia)'s coastal gauge and LIFO (Wé, Lifou, Loyalty Islands, New Caledonia) at
280 14:06 UTC, 46 minutes after the earthquake, shortly followed by LENA (Lenakel, Tanna, Vanuatu) at
281 14:16 UTC. Meanwhile, the tsunami propagated towards the south/south-west and reached KJNI
282 (Norfolk Island, Australia)'s coastal gauge at 14:44 UTC, NCPT (Cape North, New Zealand)'s tsunami
283 gauge at 15:26 UTC and finally SPJY (Southport) and BAPJ (Battery Point) in Tasmania, Australia's
284 southernmost coastal gauges, at 19:31 and 20:35 UTC respectively, 6 hours and 12 minutes and 7 hours
285 and 16 minutes after the earthquake. Also, it was recorded to the east on VITI and LEVU (Suva and
286 Lautoka, Viti Levu, Fiji)'s coastal gauges at ~14:49 and ~15:17 UTC respectively, UPOL (Apia, Upolu

288 Island, Western Samoa) at ~16:51 UTC, NKFA (Nuku’alofa, Tonga) at ~16:29 UTC and in the north
289 at FONG (Fongafale, Tuvalu) at ~16:25 UTC. Its typical maximum amplitude of less than 1 m classifies
290 it in the small tsunami category but nevertheless, it exhibited two records of ~30 cm, five records
291 between 30 cm and 1 m, and a stronger maximum amplitude of ~1.3 m recorded on LENA (Lenakel,
292 Tanna, Vanuatu). In addition to LENA, LIFO and GBIT are particularly interesting: they present sea
293 level disturbances which are certainly linked to the interaction of the tsunami waves with the
294 semi-enclosed water body in which the coastal gauge is located. LIFO and LENA are located
295 within small harbors, and GBIT is located within a bay. The period of the incoming waves can
296 be equal or close to the harbor/bay eigenperiod and these could result in strong oscillations
297 which represent a resonance behavior. LENA is particularly inclined to such phenomena and a
298 dedicated study would provide keys to the understanding of Lenakel Bay’s reaction to long
299 waves. Higher amplitudes can be expected in nearby exposed areas showing particular geometries like
300 V-shape bays, harbours and river mouths or specific submarine features like submarine canyons and
301 seamounts able to trigger amplification and/or resonance effects of the incoming waves as was
302 highlighted in the 5 December 2018 tsunami (Roger et al., 2021). At the regional scale, the tsunami
303 amplitude is higher close to the source region (New Caledonia, Vanuatu) and in the southwestern
304 quadrant (New Zealand, Australia). It is worth noting that the delay between the first wave arrival and
305 maximum amplitude reached by the tsunami has a median value of 1 hour and 24 minutes, with a
306 minimum delay of 8 minutes (the maximum amplitude recorded on DART NZG corresponds to the first
307 wave recorded on this DART) and a maximum delay of 7 hours and 24 minutes (NAPT, Napier, New
308 Zealand).

309 Four of the six newly deployed New Zealand DART sensors were able to record the 10 February 2021
310 tsunami, arriving on DART NZE first, followed by NZG, NZC and NZI. Their records are shown on
311 **Figure 4** and the stations are located on **Figure 5**, the related tsunami arrival times and amplitudes are
312 summarized in **Table 2**. In each case, the record shows high frequency waves arriving a few minutes
313 after the earthquake which are directly linked to the bottom shaking from internal seismic waves. This
314 is particularly highlighted on the wavelet’s spectrograms computed for each record (**Figure 6**). This is

315 followed by lower frequency waves probably linked to the surface seismic waves (for more details
316 about seismic wave records on DART, see Kubota et al., 2020). Then, between 2 and 3 hours after the
317 main shock, the tsunami wave train is recorded showing a leading wave period of ~15 to 20 min
318 depending on the azimuthal location of the DART station relative to the strike of the fault: the closer
319 the DART station is to the azimuth direction of the fault, the larger the period is.

320 It is important to notice that at the time of the earthquake the southwest Pacific Ocean was subject to
321 one tropical storm (named 20P) south of Tonga and Fiji and a second storm located south of New
322 Zealand and affecting some coastal gauge records with a wide range of frequencies. As underlined by
323 Thomson et al. (2007) during the 2004 Sumatra tsunami or more recently by Roger (*Subm.*) for the
324 March 2021 Kermadec tsunami, the frequency content of the storm generated waves possibly overlaps
325 the tsunami signal, being able to show periods of several minutes. This is particularly the case for the
326 Puysegur gauge (PUYT) as shown on **Figure 7**.

327

328

329 **Figure 4: 35 coastal gauge and New Zealand DART station records of the 10 February 2021 tsunami in the southwest**
 330 **Pacific Ocean. Each record begins at the time of the earthquake and goes on for 9 hours. The vertical red line represents**
 331 **the tsunami arrival time (reported in table 2). For the 4 DART records, only the high-resolution signal (15" sampling**
 332 **rate) transmitted in real-time by the BPR to the monitoring centre is plotted.**

333

334

335 **Figure 5: Location of the coastal gauges having recorded the 10 February 2021 tsunami and computed tsunami travel**
 336 **times (TTT) at a regional scale (in hours). Coloured circles show the location of the stations (Blue: New Zealand – blue**
 337 **contour: coastal stations; full blue: DART stations; Green: Australia; Red: New Caledonia; Purple: Vanuatu; Orange:**
 338 **other countries) which recorded the tsunami; red lines represent the TTT isolines with a time step of 15 min; the yellow**
 339 **star locates the earthquake's epicentre; light grey lines represent the tectonic plate boundaries (GMT software dataset).**
 340 **The black rectangle locates the extent of figure 1.**

341 **Table 2. Arrival times and amplitudes of the 10 February 2021 tsunami on DART stations and coastal gauges. They**
 342 **are classified from the first station (top row) recording the tsunami to the last one (bottom row). Coloured cells locate**
 343 **the stations which recorded wave amplitude of nearly 30 cm (yellow), more than 30 cm (green) and more than 1 m**
 344 **(red).**

Station	Tsunami arrival time at station (UTC)	Tsunami travel time (hh:mm)	First wave amplitude (cm)	Maximum amplitude (cm)	Maximum amplitude time (hh:mm)	Delay between maximum and tsunami arrival time (hh:mm)
LIFO	14:06	00:47	8	37.7	15:30	01:24
MARE	14:06	00:47	6.5	17.7	16:53	02:47
LENA	14:15	00:56	4.6	133.5	14:43	00:28
OUIN	14:26	01:07	17.6	27.9	15:05	00:39
THIO	14:34	01:15	7.1	9.8	18:02	03:28
VANU	14:38	01:19	0.2	4.9	15:22	00:44
KJNI	14:44	01:25	11.8	42.8	16:11	01:27
HIEN	14:47	01:28	2.5	9.6	16:52	02:05
VITI	14:49	01:30	4.6	4.7	15:35	00:46
NUMBO	14:55	01:36	0.8	2.4	16:38	01:43
LEVU	15:17	01:58	3.1	4.7	17:14	01:57
NCPT	15:26	02:07	2.5	28.8	16:51	01:25
LUGA	15:28	02:09	4.3	8.8	16:10	00:42
NKFA	15:29	02:10	3.3	3.6	18:49	03:20
OUVE	15:35	02:16	4.7	12.8	16:09	00:34
NZG	15:38	02:19	0.7	0.7	15:46	00:08
NZE	15:40	02:21	0.8	0.9	16:33	00:53
LOTT	15:58	02:39	6.2	24	17:09	01:11
NZC	16:00	02:41	1	1.4	16:22	00:22
GBIT	16:01	02:42	8.6	63.1	16:41	00:40
NZI	16:22	03:03	0.6	0.6	16:32	00:10
TAUT	16:24	03:05	0.7	4.2	21:10	04:46
FONG	16:25	03:06	2.4	3.8	17:16	00:51
UPOL	16:51	03:32	1.2	4.3	18:58	02:07
GCSB	17:15	03:56	15.6	30.2	17:30	00:15
AUCT	17:16	03:57	2.2	2.6	18:43	01:27
TBWC	17:35	04:16	3	9.5	19:05	01:30
PKEM	17:41	04:22	2.6	19.5	18:10	00:29
CHIT	18:04	04:45	2.2	7.7	21:39	03:35
GIST	18:05	04:46	0.7	6.6	20:39	02:34
JACK	18:26	05:07	1.4	36.2	21:45	03:19
NAPT	18:40	05:21	2.7	11.4	02:04	07:24
SPRG	19:02	05:43	1.4	7.3	20:02	01:00
SPJY	19:31	06:12	3.3	6.7	23:31	04:00
BAPJ	20:35	07:16	2	3	21:00	00:25
CHST				unidentifiable		

SUMT
MNKT
PUYT

unidentifiable
unidentifiable
unidentifiable

345

346

347 **Figure 6: Wavelet spectrograms for the 10 February 2021 Loyalty Island tsunami recorded on New Zealand DART**
348 **stations. The red dashed lines symbolize the earthquake time.**

349

350

351 **Figure 7: Two storms on 10 February 2021 in the southwest Pacific Ocean. The south one is recorded by the Puysegur**
 352 **gauge (PUYT) at the predicted arrival time of the tsunami (red ellipse and dashed line) (Satellite image credits: Zoom**
 353 **Earth, NASA/NOAA/GSFC/EOSDIS, Suomi-NPP VIIRS).**

354

355 **4. Tsunami numerical simulation**

356 **4.1 Methodology**

357 The numerical simulations of tsunami generation and propagation for the four scenarios were done
 358 using COMCOT (Cornell Multi-grid Coupled Tsunami model), a model progressively developed
 359 during the mid-90s at Cornell University and then continuously developed at GNS Science, New
 360 Zealand, carefully tested and widely applied to numerous tsunami studies (e.g. Liu et al., 1995; Wang
 361 & Power, 2011; Wang et al., 2020). It computes tsunami generation, propagation and coastal interaction
 362 by solving both linear and non-linear shallow water equations using a modified explicit leap-frog finite
 363 difference scheme and considering the weak dispersion effect (Wang, 2008). The initial sea surface
 364 deformation is calculated using the Okada (1985)'s formulae with the fault plane geometry and either
 365 a uniform or non-uniform slip distribution. Water surface elevation and horizontal velocities are
 366 calculated respectively at the cell centre and at the edge centres of each grid cell of the computational
 367 domain. Absorbing boundary schemes are used at the boundaries of the computational domain to
 368 dampen the incoming waves, avoiding reflection from the grid boundaries.

369 For the purpose of this study, a set of nested numerical grids at different resolution levels was prepared,
370 covering the whole southwest Pacific region from 140 to 200°E and 0 to 50°S (first level grid 01) and
371 specific areas (second level and its sub-level grids) focusing on each coastal gauge and DART station
372 that recorded the 10 February 2021 tsunami were used in this study. Digital Elevation Models (DEM)
373 used for these grids were built from different datasets within the framework of previous projects. The
374 Norfolk Island high-resolution DEM was specifically built for this study (Roger, 2022). The first level
375 (grid 01) is at the lowest resolution (2 arc-min) and covers the whole southwest Pacific region; its data
376 comes from the ETOPO 1 global dataset (Amante and Eakins, 2009) with some refinements around
377 New Zealand. The second level of grids, with higher resolutions of 30 to 24 arc-sec (~930 and 740 m
378 respectively), cover several sub-regions focusing on New Zealand (grid 02), New-Caledonia/south
379 Vanuatu (03), Norfolk Island (04), Australia east coast (Gold Coast – 05 and New South Wales - 06),
380 Tasmania (07), Fiji (08), Raoul Island (09), Tonga (10), Samoa (11) and Tuvalu (12). Then, depending
381 on the availability of higher resolution data, there is either one or two additional sub-level grids with
382 increasing resolution toward the area where a coastal gauge is located. The extent of most of the grids
383 is presented on **Figure 8**. The resolution of each sub-level grid is calculated by COMCOT based on an
384 input grid size ratio to the resolution of the previous level grid. The highest resolution used in this study
385 is ~10 m in places where the bathymetry and the coastal shape is very complicated like Lenakel (Tanna
386 Island, Vanuatu), as even minor inaccuracies in how these areas are represented could lead to very
387 inaccurate results. For places like Tonga, Fiji, Tuvalu and Samoa where high-resolution dataset was not
388 available for this study, virtual gauges have been positioned as closely as possible to the corresponding
389 real gauge locations on the 30" resolution grids used for these places.

390 Tsunami wave propagation is subjected to linear, non-linear, and dispersion phenomena. As shown by
391 Watada et al. (2014), the compressibility of the seawater, the elasticity of the solid Earth and ocean, and
392 the gravitational potential variation associated with the mass motion during the tsunami propagation
393 also play important roles on the tsunami travel times. These authors developed a method to
394 automatically correct the phase of the simulated waveforms to incorporate those effects. The phase
395 correction generally causes a slowdown of the tsunami, reducing the delay between the simulated

396 waveforms and the observations, and, incidentally, also reduces its amplitude (Gusman et al., 2015,
397 2016; Ho et al., 2017). A computer code has been developed to apply this correction to the synthetic
398 time series obtained in the present study before comparing them to the recorded signals.

399 ***Note about the tides***

400 The southwest Pacific region tide dynamic is complicated, showing tide currents exceeding 5 cm/s in
401 some places (Poulain and Centurioni, 2015) and New Zealand being at one of the amphidromic points,
402 while showing large coastal tide amplitudes (Bye and Heath, 1975). It results in the tide pattern being
403 drastically different from one side of Cook Strait (the waterway separating New Zealand two main
404 islands) to the other. Also, as some of the coastal gauges used in this study are located within a coastal
405 lagoon (e.g. New Caledonia, Tonga, Fiji), it is worth noting that such semi-enclosed water bodies are
406 also subject to specific tide behaviours, including amplification, delays, asymmetry of the tide
407 fluctuations, and additional response to tidal oscillations (e.g. Albrecht and Vennell, 2007; Lowe et al.,
408 2015; Green et al., 2018). These reasons lead to very different tide patterns and amplitude recorded on
409 the gauges considered in this study as shown on **Figure 4**. To simplify the problem, it has been decided
410 to simulate the tsunami propagation at mean sea-level (MSL) for each region without considering the
411 tide variations, although it has been shown that the tide-tsunami interactions can result also into
412 important modification of the tsunami characteristics (amplitude and velocity mainly) in coastal zone
413 (e.g. Kowalik et al., 2006; Kowalik and Proshutinsky, 2010; Zhang et al., 2011; Tolkova et al., 2015).

414

415 **Figure 8:** Extent of the grids used for modelling within the framework of the study. Grid 01 (1st level) covers the
 416 southwest Pacific region, from 140°E to 200°E and from 50°S to 0°, with spatial resolution of 2 arc-min. Numbers are
 417 associated to the grids of the second level with spatial resolution of 30 or 24 arc-sec. Higher resolution grids
 418 corresponding to additional levels are only indicated with red rectangles.

419 **4.2 Results**

420 The simulation results obtained with a uniform and two non-uniform slip models generally show good
 421 agreement with the data recorded either by coastal gauges or DART stations in the southwest Pacific
 422 region. A close look at the results is necessary to highlight the differences and similarities between the
 423 three models. The results obtained with a maximum plausible M_w 8.2 scenario are presented afterward.

424 **4.2.1 Coastal gauge records**

425 As shown on **Figure 5**, the 10 February 2021 tsunami was recorded by at least 31 coastal gauges in the
 426 southwest Pacific Ocean. For the purpose of this study, and according to the quality of available
 427 bathymetric data, synthetic tsunami time series have been calculated at 24 of these 31 coastal gauges at
 428 the same locations or very close and compared to the real sea level data (**Figure 9**). The seven remaining

429 gauges have not been considered because of the lack of quality bathymetric data at these locations.
430 Generally, the simulated results are in good agreement with the real signals, in terms of travel time,
431 amplitude, and polarity. Also, the wave patterns are very close from one scenario to another one in
432 terms of first wave arrival time, general amplitude and polarity.

433 When looking into detail, it appears that the travel times difference between simulated and real records
434 show a complicated pattern for each scenario, the simulations matching with the real tsunami arrival at
435 gauges or being either too early or too late with a delay of up to 8 min. At LIFO, HIEN, NCPT, LUGA,
436 OUVE, LOTT and GSB, the three scenarios first wave arrival matches with the real records. The three
437 scenarios first wave arrival is too early at VANU (~ 3 min), VITI (~ 1 min), FONG (~ 8 min), TBWC
438 (~ 3 min) and PKEM (~ 2 min). It is too late at LEVU (~ 2 min), NKFA (~ 7 min), UPOL (~ 6 min),
439 AUCT (~ 8 min), JACK (~ 3 min). In the other locations, it is a mix between the three scenarios: at
440 LENA and OUIN, scenario #2 matches the real records although it is too early for scenario #1 (~ 1 min)
441 and too late for scenario #3 (~ 2 min); at THIO and KJNI, scenario #2 and scenario #3 match the real
442 records although scenario #1 is too early (~ 3 min). The delays at CHIT and SPRG are undetermined
443 due to the level of noise.

444 Concerning the tsunami waves' polarity, the overall observation is that it generally shows a good fit to
445 the first wave(s) considering the potential delay of the first arrival time. However, even if the following
446 wavetrain is well correlated with the records, it sometimes shows a phase shift, associated with higher
447 frequencies after the first hour of tsunami arrival.

448 Concerning the wave amplitudes, scenario #1 overestimates by a factor of 0.5 to 2 the amplitudes of the
449 first waves in near-field (LENA, OUIN, THIO, HIEN, VITI, LEVU) and northern New Zealand (LOTT,
450 GBIT), although it fits it in further locations (KJNI, NCPT, LUGA, NKFA, OUVE). Scenario #2 fits
451 correctly in some near-field locations (OUIN, THIO, VITI, LEVU, OUVE), overestimates in other near-
452 field locations (VANU, HIEN) and in northern New Zealand (LOTT, GBIT), and lightly underestimates
453 the wave amplitudes in most of the far-field locations (KJNI, LUGA, NKFA, FONG, GCSB, AUCT,
454 PKEM, CHIT, JACK, SPRG). Scenario #3 also fits near-field locations (VITI, LEVU, OUVE) and in

455 one far-field location (GBIT), overestimates in other near-field locations (VANU, HIEN) and
456 underestimates the amplitudes in nearly all other locations.

457 The non-uniform slip models (scenario #2 and scenario #3) show generally quite similar waveforms,
458 scenario #3 being most of the time smaller than scenario #2 in terms of amplitude.

459 It is noticeable that the models are not able at all to reproduce the real signal at one location: VANU
460 (Port Vila, Vanuatu) although numerous tests have been done to try to fit it correctly: changing the
461 location of the virtual gauge, smoothing the bathymetric data or increasing its resolution. The other
462 differences are related to the de-tiding method of the real signals using a polynomial fitting that is not
463 always able to remove the whole components of the tide or to meteorological conditions like storm
464 surges producing low frequency waves (e.g. SPRG and CHIT).

465 These comparisons need to be considered cautiously with regards to the overall small amplitude of the
466 tsunami. But globally, scenario #2 presents a good compromise between the two other scenarios, being
467 able to satisfy both near and far-field expectations. Thus, scenario #2 has been retained for further
468 analysis presented hereafter.

469

470

471 **Figure 9: Simulation results obtained with 3 different seismic source model compared to 24 coastal gauge records:**
 472 **uniform slip model (red); non-uniform slip model from waveform inversion (green); USGS finite fault model**
 473 **(magenta); real filtered records (blue).**

474 **4.2.2 DART records**

475 Simulated sea level fluctuations due to tsunami waves at DART C, E, G and I location for each slip
476 model are compared to real DART records in **Figure 10**. The reader must consider that the available 15
477 s sampling rate record transmitted in real-time by the BPR to the monitoring centre stops at 17:00 for
478 DART E and stops at 18:30 for DART C, G and I.

479 In terms of arrival time, the three scenarios show good visual agreement with the records for the four
480 stations. In terms of periodicity on each station, scenario #1 produces a leading wave period longer of
481 3-4 minutes than the records, leading to a phase shift of the wave train.

482 On DART C and E, scenario #2 provides the best match with recorded data in terms of arrival time and
483 first wave amplitude and periodicity. A time shift of ~2 min occurs in the first trough (after the leading
484 wave arrival) and is reflected on the following waves, which is not the case with the scenario #3, fitting
485 better the oscillations coming after the first wave.

486 On DART G, both non-uniform slip models provide a good match with the leading wave and then with
487 the following with a small time shift of ~2 min.

488 On DART I, the three models seem to match the tsunami waves correctly, even if the interpretation of
489 the results of such small amplitude signals of less than 5 mm must be done carefully.

490 To summarize, in terms of amplitude, the uniform slip model and the two non-uniform slip models are
491 respectively slightly above or under the leading wave records within the range $\pm 2\text{mm}$ but generally
492 show a good visual correlation between simulation results and records. Scenario #2 provides the best
493 match for the leading wave without any surprises. The next few waves are better correlated with both
494 non-uniform slip models in terms of amplitude and periodicity, the USGS model (scenario #3) showing
495 a better fit with the oscillation and the other one (scenario #2) with the amplitude.

496

497 **Figure 10 : Sea level fluctuations associated to the 10 February 2021 earthquake and tsunami recorded by the New**
 498 **Zealand DART NZC, NZE, NZG and NZI: blue lines represent the de-tided real recorded data, red lines represent the**
 499 **simulated signal for a M_w 7.7 uniform slip model, yellow lines represent the simulated signal for a M_w 7.7 non-uniform**
 500 **slip model obtained from inversion of tsunami waveforms (Gusman et al., 2022) and purple lines represent the**
 501 **simulated signal obtained with the USGS M_w 7.7 non-uniform slip model. The blue vertical line symbolizes the**
 502 **earthquake time.**

503

504 **4.2.3 Maximum amplitudes**

505 The maximum amplitude maps presented in **Figure 11** and discussed hereafter are those obtained with
 506 the scenario #2.

507 At a regional scale, the maximum wave amplitude maps obtained after 12 hours of tsunami propagation
 508 over the southwest Pacific region show maximum amplitude not exceeding 1.5 m in the whole studied
 509 region, a main energy path oriented N-S (toward the north and west coasts of New Zealand and toward
 510 Tuvalu in the north) and strong bathymetric effect on the propagation (**Figure 11**). In fact, the presence
 511 of major bathymetric features of the mostly submerged Zealandia Continent (Mortimer et al., 2017) like
 512 the Lord Howe Rise and the Norfolk and West Norfolk Ridges (WN Ridge on **Figure 11**) between the
 513 source area and New Zealand/Australia and the numerous banks located in the north-west of Fiji,

514 associated to the Vityaz trench, act as natural barriers and focus the tsunami south-westward and north-
515 westward in specific locations outside of the earthquake region.

516 The role played by those submarine features in focusing the wave energy is clearly visible: North Cape
517 in New Zealand and the south of New Caledonia, especially the Isle of Pines, respectively prolonging
518 toward the south and the north the Norfolk Ridge which acts as a waveguide, are particularly exposed
519 to tsunami waves. The Loyalty Islands Ridge and the Vanuatu subduction arc act as waveguides as well,
520 focusing the tsunami waves on the Loyalty Islands (Maré, Tiga, Lifou and Ouvéa) and the Vanuatu
521 Islands (Aneityum, Tanna, Erromango, Efate mainly). This has already been highlighted by Roger et
522 al. (2021) for the 5 December 2018 tsunami propagation. They are also two tsunami pathways clearly
523 focusing the tsunami waves on Tasmania and along the Gold Coast (Australia). More locally, the
524 tsunami shows relatively high amplitudes within lagoons and atolls like in Tuvalu, Tonga and Fiji or
525 trapped around islands like around Norfolk or the Samoa Archipelago. It is notable that the tsunami is
526 also amplified around the Chatham Islands, east of New Zealand. This could also be linked to the
527 trapping of waves on the islands' shelf. Finally, some places like Lenakel's Bay on Tanna Island,
528 Vanuatu, or Jackson Bay on the southwestern coast of New Zealand are acting as "tsunami magnets",
529 being able to catch tsunamis from a wide range of azimuths, and to show higher amplitudes of waves
530 than nearby locations.

531 **4.2.4 Plausible M_w 8.2 scenario**

532 The maximum wave amplitudes simulation of the tsunami triggered by a plausible M_w 8.2 earthquake
533 rupture scenario proposed in this study are shown on **Figure 12**.

534 Unsurprisingly, at a regional scale, the maximum wave amplitude maps obtained after 12 hours of
535 tsunami propagation over the southwest Pacific region show maximum amplitudes exceeding 0.5 m in
536 many coastal zones of the studied region. The chosen strike of the fault rupture (287°N) directly impacts
537 the orientation of the main energy path, NE-SW in that case (axis $17^\circ\text{-}197^\circ\text{N}$), which needs to be
538 considered cautiously: a slightly different strike would lead to a different orientation of the main energy
539 path. Nonetheless, these simulation results underline strongly the bathymetric influence on the
540 propagation. To the south of the trench, the main energy path is drastically deviated by the extension of

541 the Loyalty Ridge south of the VSZ bending zone, leading to a propagation more perpendicular to the
542 Norfolk Ridge, which seems to act as a barrier, with only one ray going through, directly toward Lord
543 Howe Island. Part of the energy is still propagating toward New Zealand, using the ridges like the Three
544 Kings Ridge toward North Cape. To the north, the tsunami propagates within the North Fiji Basin,
545 (between Vanuatu and Fiji) and is able to go through the Vityaz Trench region, reaching Tuvalu islands.
546 Just a small portion of the energy propagates toward the east and seems to disappear when crossing the
547 Kermadec-Tonga Trench. In details, the tsunami seems to be caught within the different lagoons or
548 trapped by shelves surrounding oceanic islands: Norfolk Island's shelf, for which a high-resolution
549 DEM has been specifically built using nautical charts, is the best example of waves being caught around
550 an island in this study, leading to consequent amplitudes of 1.5 m and more. High amplitudes are also
551 shown in Vanuatu, especially on the southern coast of Aneityum Island, its southernmost island, but
552 also in Tanna or Erromango, at the same locations already highlighted with the M_w 7.7 scenario herein,
553 but also for the 5 December 2018 tsunami study (Roger et al., 2021). In the nearby islands of New
554 Caledonia, the amplitudes are less important as would have been expected, especially in the Loyalty
555 Islands, but Ouvéa and Grande-Terre respective lagoons catch tsunami waves leading to amplitude
556 records of around 0.5 m. Similarly, the tsunami waves are caught within the islands in Fiji, Tonga and
557 in Tuvalu's Te Namo atoll. It is interesting to see that the tsunami can particularly affect the west coast
558 of New Zealand much more than its northern shore: locations such as Jackson Bay (southwest coast of
559 the South Island), already identified as reacting very easily to tsunami coming from a wide range of
560 azimuths, also shows amplitudes of more than 1 m.

561

562

563

564

565

Figure 11: Maximum wave amplitude maps obtained after 12 hours of simulated tsunami propagation for the 10 February 2021 with a non-uniform slip model from waveform inversion (Gusman et al., 2022). The coloured circles locate the coastal gauges and DART stations having recorded the tsunami and used in this study, the coloration being linked to the maximum amplitude reported in Table 2. IdP: Isle of Pines; NI: Norfolk Island; NW Ridge: West Norfolk Ridge; VSZ: Vanuatu Subduction Zone (red dashed line).

566

567 **Figure 12** Maximum wave amplitude maps obtained after 12 hours of simulated tsunami propagation for a plausible Mw 8.2 rupture
 568 scenario with uniform slip proposed in this study. The white circles locate the coastal gauges and DART stations used in this study. IdP:
 569 Isle of Pines; NI: Norfolk Island; NW Ridge: West Norfolk Ridge; VSZ: Vanuatu Subduction Zone (red dashed line).

570 **5. Discussion**

571 **5.1 Comparison of the slip models results**

572 The tsunami modelling results show that both uniform slip model built from CMT solution (scenario
573 #1) and non-uniform slip models calculated from tsunami waves inversion (scenario #2) or seismic data
574 (scenario #3) are able to reproduce the recorded signal of the small tsunami following the 10 February
575 2021 M_w 7.7 thrust event generated at the southeasternmost part of the VSZ on most of the 24 coastal
576 gauges and 4 DART stations of the southwest Pacific region considered in this study. This reproduction
577 shows differences in some locations that can be attributed either to the resolution of the grids directly
578 linked to the available bathymetric data quality, or to the dispersion phenomenon affecting the tsunami
579 waves during propagation over long distances, or to the quality of the real coastal gauge data (including
580 possible time and vertical offsets) or finally to the initial assumption on the source geometry used in
581 tsunami inversion process.

582 This implies two things:

583 - a simple fault plane with uniform slip model (scenario #1) provides a good approximation of
584 the amplitudes of a small tsunami on a set of DEMs focussed over the southwest Pacific region.
585 This supports the results obtained by Roger et al. (2021) for the 5 December 2018 Loyalty
586 Islands tsunami;

587 - we can use the first waves recorded at DART and coastal stations to produce a good estimation
588 of the initial deformation (scenario #2) and use this initial (non-uniform) deformation to
589 calculate the propagation over the whole region and confirm the related threat (for more
590 information on the methodology, see Gusman et al., 2022). Depending on the relative location
591 of the event epicentre to the stations' location, this could be done within a relatively short time
592 using only the first 20-25 min of recorded tsunami waveforms. Considering that the New
593 Zealand DART network is now fully operational with stations located close to the Hikurangi-
594 Kermadec-Tonga and southern VSZ (three additional DART stations J, K and L have been
595 positioned closer to the VSZ in July 2021), with the capability to detect a tsunami within 30
596 minutes after an earthquake occurred in those 2 regions (Fry et al., 2020), it would be possible

597 to invert tsunami waveforms to achieve a good estimation of the initial surface displacement
598 within 50-55 minutes. This delay is unfortunately still too long to accurately confirm the threat
599 for neighbouring regions, e.g. for New Caledonia and especially the Loyalty Islands and south
600 Vanuatu if it occurs on the VSZ, but nevertheless in those specific cases it can help for further
601 exposed regions like New Zealand, the east coast of Australia, or neighbouring Pacific Islands
602 like Tonga, Fiji, Samoa, Tuvalu, Cook Islands and French Polynesia. If it occurs in the southern
603 VSZ like the 10 February event, it provides much more time for New Zealand to confirm the
604 threat by running inversion calculations. This inversion methodology is interesting in the sense
605 that it does not require a specific knowledge of the geology of the source area.

606 **5.2 Role of submarine features**

607 This study particularly highlights the role of the mostly submerged Zealandia continent on the tsunami
608 propagation through the focusing and amplification of waves over particular submarine features. That
609 is probably why Lenakel Harbour (Tanna, Vanuatu) and Jackson Bay (New Zealand) have recorded
610 relatively important tsunami waves in comparison to neighbouring gauges. Concerning Vanuatu, this is
611 consistent with deaggregated hazard maps in probabilistic tsunami hazard assessments such as Thomas
612 and Burbidge (2009) who show that countries such as Vanuatu are exposed to tsunami hazard from the
613 entire VSZ (as well as the northern Kermadec-Tonga Subduction zone to a lesser extent) even if the
614 main energy path of a given tsunami does not directly focused on Vanuatu.

615 It also highlights the trapping of waves around islands, especially around Norfolk Island, a phenomenon
616 due to wave refraction and bottom-depth dependence on the island slope and shelf leading to the
617 development of oscillations of standing waves (e.g. Tinti and Vannini, 1995; Roeber et al., 2010; Zheng
618 et al., 2017). Resonance between islands probably needs to be considered to explain the wave
619 amplitudes observed in some archipelagos (Tonga, Fiji and Samoa) as explained by Munger and
620 Cheung (2008) for the 2006 Kuril Islands tsunami in Hawaii.

621 Finally, it reveals that some specific locations which seem to be protected from a tsunami generated at
622 the southernmost part of the VSZ like the Chatham Islands or Tuvalu can still be impacted.

623 **5.3 Contribution to regional hazard assessment**

624 The 10 February 2021 event brings new light on the ability of the southernmost part of the VSZ to
625 produce a regional event, being able to reach far-field locations such as Tasmania in the south and
626 Tuvalu in the north, and showing particular behaviours associated with submarine features and coastal
627 shapes.

628 It is to note that this tsunami has not shown amplitudes like those of the 5 December 2018 tsunami
629 (from a M_w 7.5 earthquake) on New Caledonia and Vanuatu coastal gauges because of its location
630 (further east), a different triggering mechanism (reverse faulting versus normal faulting) and the
631 direction of the main energy path (N-S instead SW-NE). Nevertheless, tsunami wave amplitudes of
632 more than 28 cm have been recorded at 8 locations. This means that, according to most standard warning
633 level thresholds (issuance of advisories or warnings if amplitude above 20-30 cm), the threat linked to
634 this tsunami required at least, in principle, a response of some kind for at least 8 coastal sites, and
635 probably many more (without available coastal gauge records) according to the simulated maximum
636 wave amplitude map shown on **Figure 11**.

637 As the use of the model was validated with the M_w 7.7 scenarios, it was the opportunity to look at what
638 would happen in the region if a tsunami was generated by a plausible magnitude M_w 8.2 earthquake at
639 the southernmost part of the VSZ, which, as seen previously, has accumulated enough strain during at
640 least the last 100 years to be able to produce such event. According to the simulation results, the role of
641 waveguide and focusing of tsunami waves by submarine features of the former Zealandia continent
642 (limits from Mortimer and Scott, 2020) is enhanced, and a scenario of this type would have a greater
643 impact on the whole region in addition to all neighbouring islands of New Caledonia, Vanuatu and Fiji,
644 affecting the New Zealand north and west coasts and the east coast of Australia from the Gold Coast to
645 Tasmania as well. In fact, such earthquake would generate tsunami wave heights at shoreline higher
646 than 1 m in many coastal locations of the southwest Pacific region like in New Caledonia, Vanuatu,
647 Fiji, New Zealand, etc., representing a potential land threat. It would be of major interest to test many
648 potential scenarios in the southernmost part of the VSZ to see if they all behave the same way over
649 those submarine features or not. The same way, a set of scenarios would help to focus on very specific

650 areas in the region that are prone to higher tsunami amplitudes like Jackson Bay, Lenakel Harbor,
651 Norfolk Island, etc., conducting high resolution studies with a specific look at the resonance periods,
652 and the wave trapping.

653 **6. Conclusion**

654 The 10 February 2021 tsunami triggered by a magnitude M_w 7.7 earthquake at the southernmost part of
655 the VSZ was recorded by at least 35 coastal gauges and DART sensors in the southwest Pacific region
656 with amplitudes higher than 28 cm at 8 locations. This small event is an opportunity to test the accuracy
657 of the numerical model COMCOT used for tsunami hazard assessment for New Zealand and find ways
658 to improve the operation of warning systems. The results of numerical simulations of tsunami
659 propagation on a set of nested grids of both uniform and non-uniform slip models presented in this study
660 are able to reproduce the real records with a relatively good correlation in terms of arrival times, wave
661 amplitudes and polarity, and the identified differences could be linked to the lack of accurate
662 bathymetric data in some places, to the dispersion of the waves during the propagation, the potential
663 bad quality of the real records and eventually to the initial assumptions of the source location and
664 geometry. As this event occurred in a region where neither strong earthquake nor tsunami occurred
665 during at least the last 100 years, the validation of the M_w 7.7 parameters for tsunami modelling will
666 help to develop plausible scenarios for the southernmost part of the VSZ in agreement with geophysical
667 data including the subduction interface geometry which reproduces the curvature of the VSZ (SLAB
668 2.0: Hayes, 2018) and look at their potential tsunami impact in the southwest Pacific region. It helps to
669 highlight the significant role played by the numerous submarine features in the region, focusing on
670 stopping the tsunami waves, the Norfolk Ridge being the most important acting like a waveguide toward
671 the north and the south. It also underlines the trapping of waves on Norfolk shelf and potentially around
672 the Chatham Islands as well. Finally, it highlights the difficulty of identifying tsunami waves of small
673 amplitude within a stormy background.

674

675 **Data availability statement**

676 Most of the datasets used in the present study are available online: Global bathymetric dataset (ETOPO
677 1) is publicly available ([https://www.ncei.noaa.gov/access/metadata/landing-
678 page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316](https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316)); high-resolution DEM covering New Caledonia and
679 Vanuatu has been prepared as part of the New Caledonia TSUCAL project and can be shared for
680 research purposes. Norfolk Island DEM has been specifically built for this project and is available at
681 <https://doi.org/10.21420/H889-5393>. Other DEMs have been built in the framework of GNS Science
682 research or commercial projects and could be obtained under specific conditions (contact corresponding
683 author for more information). The earthquakes (<https://earthquake.usgs.gov>), centroid moment tensors
684 (<https://www.globalcmt.org>), coastal gauge records ([https://www.linz.govt.nz/sea/tides/sea-level-
data/sea-level-data-downloads](https://www.linz.govt.nz/sea/tides/sea-level-
685 data/sea-level-data-downloads); <http://www.ioc-sealevelmonitoring.org>) and New Zealand DART data
686 (<https://www.geonet.org.nz/tsunami/dart>) are publicly available.

687

688 **Author contribution**

689 JR organized the study, performed the numerical simulations, analysed the results and wrote the
690 manuscript. BP wrote the Tectonic context part and worked on the uniform slip scenarios definition.
691 AG worked on the source from waveforms inversion and the analysis of the simulation results and
692 helped to write the manuscript. WP and DB helped to improve the manuscript providing constructive
693 comments. XW provided COMCOT simulation code and assistance and worked on the Methodology
694 part. MD provided high-resolution DEM for New Caledonia and Vanuatu prepared within the
695 framework of a Master's thesis project. All authors agreed with the revised version of the manuscript.

696 **Competing interests**

697 The authors declare that they have no conflict of interest.

698

699 **Acknowledgments**

700 This work has been funded by New Zealand's Strategic Science Investment Fund (SSIF). We would
701 like to acknowledge two anonymous referees for having reviewed this manuscript providing
702 constructive comments which helped to improve its quality.

703

704 **References**

705 Albrecht, N., Vennell, R. (2007). Tides in two constricted New Zealand lagoons, New Zealand.

706 Journal of Marine and Freshwater Research, 41(1), 103-118,

707 <https://doi.org/10.1080/00288330709509899>.

708 Amante, C., B.W. Eakins (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data

709 Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical

710 Data Center, NOAA. <https://doi.org/10.7289/V5C8276M>.

711 Baillard, C., Crawford, W.C., Ballu, V., Régnier, M., Pelletier, B., Garaebiti, E. (2015). Seismicity

712 and shallow slab geometry in the central Vanuatu subduction zone. Journal of Geophysical Research,

713 Solid Earth, 120(8), 5606-5623, <https://doi.org/10.1002/2014JB011853>.

714 Bilek, S.L., Lay, T. (1999). Rigidity variations with depth along interpolate megathrust faults in

715 subduction zones. Nature, 400, 443-446.

716 Blaser, L., Krüger, F., Ohrnberger, M., Scherbaum, F. (2010). Scaling relations of earthquake source

717 parameter estimates with special focus on subduction environment. Bulletin of the Seismological

718 Society of America, 100(6), 2914-2926, <https://doi.org/10.1785/0120100111>.

719 Bye, J.A.T, Heath, R.A. (1975). The New Zealand semi-diurnal tide. Journal of Marine Research, 33,

720 423-442.

721 Calmant, S., Pelletier, B., Bevis, M., Taylor, F., Lebellegard, P., Phillips, D. (2003). New insights on

722 the tectonics of the New Hebrides subduction zone based on GPS results, J. Geophys. Res., 108, B6,

723 2319-2340, <https://doi.org/10.1029/2001JB000644>.

724 Cleveland, K.M., Ammon, C.J., Lay, T. (2014). Large earthquake processes in the northern Vanuatu
725 subduction zone. *Journal of Geophysical Research, Solid Earth*, 119(12), 8866-8883,
726 <https://doi.org/10.1002/2014JB011289>.

727 Dziewonski, A. M., Chou, T.-A., Woodhouse, J. H. (1981). Determination of earthquake source
728 parameters from waveform data for studies of global and regional seismicity. *Journal of Geophysical*
729 *Research*, 86, 2825-2852, <https://doi.org/10.1029/JB086iB04p02825>.

730 Ekström, G., Nettles, M., Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-
731 moment tensors for 13,017 earthquakes. *Phys. Earth Planet. Inter.*, 200-201, 1-9,
732 <https://doi.org/10.1016/j.pepi.2012.04.002>.

733 Engdahl, E.R., Villaseñor, A. (2002). Global Seismicity: 1900-1999. In: Lee et al.: International
734 Handbook of Earthquake and Engineering Seismology, part A, 665-690,
735 <https://www.sciencedirect.com/bookseries/international-geophysics/vol/81/part/PA> [Available at GNS
736 Library].

737 Fry, B., McCurrach, S.-J., Gledhill, K., Power, W., Williams, M., Angove, M., Arcas, D., Moore, C.
738 (2020). Sensor network warns of stealth tsunamis. *EOS*, 101, <https://doi.org/10.1029/2020EO144274>,
739 Published on 26 May 2020.

740 Green, R.H., Lowe, R.J., Buckley, M.L. (2018). Hydrodynamics of a tidally forced coral reef atoll.
741 *Journal of Geophysical Research Oceans*, 123(10), 7084-7101,
742 <https://doi.org/10.1029/2018JC013946>.

743 Gusman, A. R., Mulia, I. E., Satake, K., Watada, S., Heidarzadeh, M., Sheehan, A. F. (2016).
744 Estimate of tsunami source using optimized unit sources and including dispersion effects during
745 tsunami propagation: The 2012 Haida Gwaii earthquake. *Geophysical Research Letters*, 43, 9819–
746 9828, <https://doi.org/10.1002/2016GL070140>.

747 Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., Schurr, B.
748 (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide

749 tsunami waveforms and GPS data. *Geophysical Research Letters*, 42, 1053– 1060,

750 <https://doi.org/10.1002/2014GL062604>.

751 Gusman, A.R., Roger, J., Power, W., Fry, B., Kaneko, Y. (2022). The 2021 Loyalty Island earthquake

752 (Mw 7.7): tsunami waveform inversion and implications for tsunami forecasting for New Zealand.

753 *Earth and Space Science*, 9(11), e2022EA002346, <https://doi.org/10.1029/2022EA002346>.

754 Gutenberg, B. (1956). Great Earthquakes, 1896-1903; *Transactions of the American Geophysical*

755 *Society*, 37(5), 608-614,

756 <https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/TR037i005p00608>.

757 Hayes, G. (2018). A comprehensive subduction zone geometry model : U.S. Geological Survey data

758 release, <https://doi.org/10.5066/F7PV6JNV>.

759 Hanks, T.C., Kanamori, H. (1979). A moment-magnitude scale. *Journal of Geophysical Research*, 84,

760 2348-2350.

761 Ho, T.-C., Satake, K., Watada, S. (2017). Improved phase corrections for transoceanic tsunami data in

762 spatial and temporal source estimation: application to the 2011 Tohoku earthquake. *Journal of*

763 *Geophysical Research, Solid Earth*, 122(12), 10155-10175, <https://doi.org/10.1002/2017JB015070>.

764 Ioualalen, M., Pelletier, B., Solis Gordillo, G. (2017). Investigating the March 28th 1875 and the

765 September 20th 1920 earthquakes/tsunamis of the Southern Vanuatu arc, offshore Loyalty Islands,

766 New Caledonia, *Tectonophysics*, 709, 20-38, <https://doi.org/10.1016/j.tecto.2017.05.006>.

767 Ji, C., Wald, D.J., Helmberger, D.V. (2002). Source description of the 1999 Hector Mine, California

768 earthquake; Part I: Wavelet domain inversion theory and resolution analysis, *Bull. Seism. Soc. Am.*,

769 92(4), 1192-1207.

770 Kowalik, Z., Proshutinsky, A. (2010). Tsunami-tide interactions: A Cook Inlet case study. *Continental*

771 *Shelf Research*, 30, 633-642, <https://doi.org/10.1016/j.csr.2009.10.004>.

772 Kowalik, Z., Proshutinsky, T., Proshutinsky, A. (2006). Tide-tsunami interactions. Science of
773 Tsunami Hazards, 24(4), 242-256.

774 Kubota, T., Saito, T., Chikasada, N.Y. and Suzuki, W. (2020). Ultrabroadband seismic and tsunami
775 wave observation of high-sampling ocean-bottom pressure gauge covering periods from seconds to
776 hours. Earth and Space Science, 7(10), e2020EA001197, <https://doi.org/10.1029/2020EA001197>.

777 Liu, P. L.F., Cho, Y-S., Briggs, M.J., Synolakis, C.E., Kanoglu, U. (1995). Runup of solitary waves
778 on a circular island. Journal of Fluid Mechanics, 302, 259-285.

779 Louat, R., Baldassari, C. (1989). Chronology of felt earthquakes and tsunamis in the region Vanuatu
780 New Caledonia (1729 – 1989). Rapports Scientifiques et Techniques, Sciences de la Terre,
781 Géophysique, n°1, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers08-01/27091.pdf.

782 Louat, R., Pelletier, B. (1989). Seismotectonics and present-day relative plate motions in the New
783 Hebrides - North Fiji basin region, Tectonophysics, 167, 41-55.

784 Lowe, R.J., Leon, A.S., Symonds, G., Falter, J.L., Gruber, R. (2015). The intertidal hydraulics of tide-
785 dominated reef platforms. Journal of Geophysical Research Oceans, 120(7), 4845-4868,
786 <https://doi.org/10.1002/2015JC010701>.

787 Luis, J.F. (2007). Mirone: a multi-purpose tool for exploring grid data. Computers and Geosciences,
788 33(1), 31-41, <https://doi.org/10.1016/j.cageo.2006.05.005>.

789 Munger, S., Cheung, K.F. (2008). Resonance in Hawaii waters from the 2006 Kuril Islands tsunami.
790 Geophysical Research Letters, 35(7), L07605, <https://doi.org/10.1029/2007GL032843>.

791 Mortimer, N., Campbell, H.J., Tulloch, A.J., King, P.R., Stagpoole, V.M., Wood, R.A., Rattenbury,
792 M.S., Sutherland, R., Adams, C.J., Collot, J., Seton, M. (2017). Zealandia: Earth's hidden continent.
793 GSA Today, 27(3), 27-35, <https://doi.org/10.1130/GSATG321A.1>.

794 Mortimer, N., Scott, J.M. (2020). Volcanoes of Zealandia and the Southwest Pacific. New Zealand
795 Journal of Geology and Geophysics, 63(4), <https://doi.org/10.1080/00288306.2020.1713824>.

796 Okada, Y. (1985). Surface deformation due to shear and tensile fault in a half-space. Bulletin of the
797 Seismological Society of America, 75(4), 1135-1154.

798 Pelletier, B., Calmant, S., Pillet, R. (1998). Current tectonics of the Tonga-New Hebrides region,
799 Earth and Planetary Science Letters, 164, 263-276.

800 Poulain, P.-M., Centurioni, L. (2015). Direct measurements of World Ocean tidal currents with
801 surface drifters. Journal of Geophysical Research Oceans, 120(10), 6986-7003,
802 <https://doi.org/10.1002/2015JC010818>.

803 Power, W., Wallace, L., wang, X., Reyners, M. (2012). Tsunami hazard posed to New Zealand by the
804 Kermadec and Southern New Hebrides Subduction Margins: An assessment based on plate boundary
805 kinematics, interseismic coupling, and historical seismicity. Pure and Applied Geophysics, 169, 1-36,
806 <https://doi.org/10.1007/s00024-011-0299-x>.

807 Richter, C.F. (1958), Elementary Seismology, W.H. Freeman, San Francisco, CA., 768 pp.

808 Roeber, V., Yamazaki, Y., Cheung, K.F. (2010). Resonance and impact of the 2009 Samoa tsunami
809 around Tutuila, American Samoa. Geophysical Research Letters, 37(21), L21604,
810 <https://doi.org/10.1029/2010GL044419>.

811 Roger, J. Records of the 5 March 2021 Raoul Island transoceanic tsunami around the Pacific Ocean.
812 *Submitted to New Zealand Journal of Geology and Geophysics.*

813 Roger, J. (2022). Digital Elevation Model of Norfolk Island and Sydney Bay, Australia. [Data set]
814 GNS Science. Accessed on 15/12/2022. <https://doi.org/10.21420/H889-5393>.

815 Roger, J., Aucan, J., Pelletier, B., Lebellegard, P. and Lefèvre, J. (2019b). The December 5, 2018 Mw
816 7.5 earthquake on the south Vanuatu subduction zone: numerical modelling and development of a
817 scenario database for New Caledonia tsunami hazard assessment, Geophysical Research Abstracts,
818 21, EGU2019-3210, <https://meetingorganizer.copernicus.org/EGU2019/EGU2019-3210.pdf>.

819 Roger, J., Pelletier, B. and Aucan, J. (2019a). Update of the tsunami catalogue of New Caledonia
820 using a decision table based on seismic data and marigraphic records, Natural Hazards and Earth
821 System Sciences, 19, 1471-1483, <https://doi.org/10.5194/nhess-19-1471-2019>.

822 Roger, J., Pelletier, B., Duphil, M., Lefèvre, J., Aucan, J., Lebellegard, P., Thomas, B., Bachelier, C.,
823 Varillon, D. (2021). The Mw 7.5 Tadine (Maré, Loyalty Is.) earthquake and related tsunami of
824 December 5, 2018: implications for tsunami hazard assessment in New Caledonia. Natural Hazards
825 and Earth System Sciences, 21, 3489-3508, <https://doi.org/10.5194/nhess-21-3489-2021>.

826 Sahal A., Pelletier B., Chatelier J., Lavigne F., Schindelé F. (2010). A catalog of tsunamis in New
827 Caledonia from 28 March 1875 to 30 September 2009, Comptes Rendus Geoscience, 342(6), 437-
828 444, <https://doi.org/10.1016/j.crte.2010.01.013>.

829 Strasser, F.O., Arango, M.C., Bommer, J.J. (2010). Scaling of the source dimensions of interface and
830 intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters,
831 81(6), 941-950, <https://doi.org/10.1785/gssrl.81.6.941>.

832 Thomas, C., Burbidge, D. (2009). A Probabilistic Tsunami Hazard Assessment of the Southwest
833 Pacific Nations. Geoscience Australia Professional Opinion. No.2009/02, 60 pp. Re-released in 2011,
834 http://www.ga.gov.au/webtemp/image_cache/GA20154.pdf.

835 Thomson, R.E., Rabinovich, A.B., Krassovski, M.V. (2007). Double jeopardy: Concurrent arrival of
836 the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and
837 Canada. Geophysical Research Letters, 34(15), <https://doi.org/10.1029/2007GL030685>.

838 Tinti, S., Vannini, C. (1995). Tsunami trapping near circular islands. Pure and Applied Geophysics,
839 144, 595-619, <https://doi.org/10.1007/BF00874385>.

840 Tolkova, E., Tanaka, H., Roh, M. (2015). Tsunami observations in rivers from a perspective of
841 tsunami interaction with tide and riverine flow. Pure and Applied Geophysics, 172, 953-968,
842 <https://doi.org/10.1007/s00024-014-1017-2>.

843 VLIZ (Flanders Marine Institute); IOC (Intergovernmental Oceanographic Commission) (2021): Sea
844 level station monitoring facility. Accessed at <http://www.ioc-sealevelmonitoring.org> on 2021-10-11 at
845 VLIZ. <https://doi.org/10.14284/482>.

846 Wang, X., 2008. Numerical modelling of surface and internal waves over shallow and intermediate
847 water. PhD Thesis, Ithaca (NY), Cornell University, 245 pp.

848 Wang, X., Holden, C., Power, W., Liu, Y., Mountjoy, J., 2020. Seiche effects in Lake Tekapo, New
849 Zealand, in an Mw8.2 Alpine Fault earthquake. Pure and Applied Geophysics, 177, 5927-5942.

850 Wang, X., Power, W., 2011. COMCOT: a tsunami generation, propagation and run-up model. GNS
851 Science Report, 2011/43, Lower Hutt, New Zealand: GNS Science, 121 pp.

852 Watada, S., Kusumoto, S., Satake, K. (2014). Traveletime delay and initial phase reversal of distant
853 tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research, Solid earth,
854 119(5), 4287-4310, <https://doi.org/10.1002/2013JB010841>.

855 Zhang, Y.J., Witter, R.C., Priest, G.R. (2011). Tsunami-tide interaction in 1964 Prince William Sound
856 tsunami. Ocean Modelling, 40(3-4), 246-259, <https://doi.org/10.1016/j.ocemod.2011.09.005>.

857 Zheng, J., Fu, D., Wang, G. (2017). Trapping mechanisms for long waves over circular islands with
858 power function profiles. J. Ocean Univ. China, 16(4), 655-660, [https://doi.org/10.1007/s11802-017-3404-7](https://doi.org/10.1007/s11802-017-
859 3404-7).