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Abstract. Forest fires constitute a major environmental and socioeconomic hazard in the Mediterranean. Weather and climate
are among the main factors influencing forest fire potential. As fire danger is expected to increase under changing climate,
seasonal forecasting of meteorological weather-conditions conductive to fires is of paramount importance for implementing
effective fire prevention policies. The aim of the current study is to provide high resolution (~9km) probabilistic seasonal fire
danger forecasts, utilizing the Canadian Fire Weather Index (FWI) for Attica region, one of the most fire prone regions in

Greece and the Mediterranean, employing the fifth generation ECMWF seasonal forecasting system (SEAS5). —Results

conditions-Results indicate that, depending on the lead time of the forecast, both FWI and ISI (Initial Spread Index) present

statistically significant high discrimination scores and can be considered reliable in predicting above normal fire danger

conditions. When comparing year-by-year the fire danger predictions with the historical fire occurrence recorded by the
Hellenic Fire Service database, both seasonal FWI and ISI forecasts are skilful idicate-a-skit-in identifying years with high
fire occurrences. Overall, fire danger and its subcomponents can potentially be exploited by regional authorities in fire

prevention management regarding preparedness and resources allocation-in-the-Atticaregion.

1 Introduction

The Mediterranean region includes more than 25 million hectares of forests and about 50 million hectares of other wooded
lands that make vital contributions to rural development, poverty alleviation and food security, as well as to the agriculture,
water, tourism, and energy sectors (FAO and Plan Bleu, 2018). The Mediterranean is considered a high fire risk region where
fires cause severe environmental and economic losses and even losses of human lives (MedECC, 2020). Severe forest fires

have consistently affected Europe since the beginning of the century, especially regarding as—regards-the five European
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Mediterranean countries of Portugal, Spain, Italy, Greece, and France which on average collectively account for approximately
85% of the total burnt area in Europe per year (Costa et al. 2020).

Weather and climate, vegetation conditions and composition, as well as human activities play an essential role in fire regimes
(Costa et al., 2020). According to Rogers et al. (2020), climate highly affects fuel properties and short-term weather patterns
determine fuel moisture and physical conditions necessary for fire spread. Regarding the Mediterranean, the combination of
extreme drought with extreme winds or heatwaves has been identified as crucial factor for the occurrence of wildfires (Ruffault
et al., 2020). Under changing climatic conditions, future fire danger as well as the frequency and the extent of large wildfires
are expected to increase throughout the Mediterranean basin (Dupuy et al., 2020; Ruffault et al., 2020; Turco et al., 2018).
According to Moreira et al. (2020), burnt areas may be further amplified by land use and management changes that increase
fuel load and continuity.

Fire management strategies in the Mediterranean Europe place emphasis on fire suppression which can indeed lead to higher
fuel load and fuel connectivity as encapsulated in the term ‘firefighting trap’ which culminates in hindering suppression under
extreme fire weather, ultimately leading to more severe and usually larger fires (Moreira et al., 2020). Fire management should
be enriched, comprising also prevention and adaptation measures (Alcasena et al., 2019; Fernandes et al., 2013). This holistic
point of view has been included in the new EU Forest Strategy for 2030 (European Commission, 2021) that explicitly considers
fire prevention as an integral component for maintaining and enhancing the resilience of European forests. Further underlining
this, in the recent report on wildfires of the United Nations Environmental Program (2022), a radical change in Governments
spending on wildfires was called for, with the aim to rebalance governments’ investment from reaction and response to
prevention and preparedness.

Seasonal forecasting of weather conditions conductive to fires (fire weather), is of paramount importance for implementing
effective fire prevention. The prediction of unfavourable conditions prior to each fire season may support policymakers and
civil protection agencies to implement adequate fuel management policies in vulnerable regions, along with optimising fire-
fighting resources to mitigate the adverse effects of forest fires (Turco et al., 2019).

For the relationship between meteorological conditions and fire danger, different indices are used worldwide that assess fire
danger for research and operational purposes with the Canadian Fire Weather Index (FWI) being one of the most widely used
systems (Field et al., 2015). FWI has been shown to correlate well with fire activity globally (Abatzoglou et al., 2018; Bedia
et al., 2015) and regionally, including parts of Europe (e.g., Dupuy et al., 2020; Karali et al., 2014; Ruffault et al., 2020). Since
2007, the FWI has been adopted at the EU level by the European Forest Fire Information System (EFFIS), component of the
Copernicus Emergency Management Service (CEMS), to assess fire danger level in a harmonized way throughout Europe
after several tests on its validity and robustness for the European domain (San-Miguel-Ayanz, 2012). EFFIS provides short
term FWI forecasts, as well as monthly and seasonal forecasts of temperature and rainfall anomalies that are expected to prevail
over European and Mediterranean areas for a time window of seven months. To the best of our knowledge, only two studies
the-only-study so far, have assesseding seasonal fire danger predictions for Europe. The first study is by Bedia et al. (2018),

where-in which the authors provided seasonal probabilistic predictions of FWI for Mediterranean Europe by utilizing the
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ECMWEF System-4, focusing on the calibration of model outputs prior to forecast verification, as well as on the analysis of

FW]I forecast quality compared to reference observed values. In the second study by Costa-Saura et al. (2022), the performance

of different seasonal forecasting systems to predict several indicators relevant to forestry and agriculture for Central Europe

and the Mediterranean, including FWI, was assessed.

The current study aims to provide high-resolution probabilistic FWI seasonal forecasts for Attica, Greece, employing the
methodology of Bedia et al. (2018) and further expanding it through statistical downscaling. Moreover, it aims to assess the
ability of these forecasts to provide robust information and support fire management decisions in the Attica region. Attica
encompasses the entire metropolitan area of Athens, the country's capital, and largest city with approximately 3.8 million
inhabitants (census of 2021). It is one of the country’s most vulnerable regions to rural and peri-urban forest fires due to its
complex topography, flammable vegetation, high concentration of population and activities as well as its extensive Wildland-
Urban Interface (WUI) (Mitsopoulos et al., 2020; Salvati and Ranalli, 2015).

The catastrophic fires that took place in Attica during the summer of 2021 that burnt more than 150,000 ha (Evelpidou et al.,
2022) of forests and arable land underpinned the timeliness and need for this study. These fires broke out during the most
severe and the longest heatwave (maximum daily temperature reached 43.9°C, while heatwave conditions prevailed for 10
days) occurred in Attica in the last decades according to the meteorological records of the National Observatory of Athens.

Our assessment includes the verification of the FWI ECMWFE SEASS5 forecasts against gridded observations using a

probabilistic tercile based approach and a qualitative comparison of predicted years with above normal fire danger conditions
using historical fire occurrence data.
The paper is organized as follows. In the next section, the data and methods are introduced. In Sec. 3, the results ef-on the

forecast performance of FWI, its subcomponents and the input meteorological variables to the FWI system forecastverification

for Attica region are presented, together with the results of the qualitative evaluation of above normal fire danger conditions

against historical fire occurrence data- In Sec. 4, the performance of the single meteorological variables, the impact of spin-up

and lead time on fire danger forecast performance, as well as the qualitative evaluation of fire danger forecasts, are discussed.
Finally, in Sec. 45, a-summary-ofourresulis-tegetherwith-the main conclusions and suggestions for future work are discussed.

2 Materials and methods
2.1 Fire Weather Index (FWI)

FWI is a daily meteorologically based system used worldwide to estimate fire danger in a generalized fuel type--{mature pine

forest_(van Wagner, 1987). According to Wotton (2009), fire danger refers to the assessment of both the static and dynamic

factors of the fire environment which determine the ease of ignition, rate of spread, difficulty of control and impact of a fire.
The meteorological inputs to the system are daily noon values of air temperature, relative humidity, wind speed and 24-h

precipitation_(Stocks et al., 1989). The FWI system consists of six subcomponents each measuring a different aspect of fire

danger—(van Wagner, 1987). The first three primary sub-indices are fuel moisture codes, which are numeric ratings of the
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moisture content of the forest floor and other dead organic matter. The Fine Fuel Moisture Code (FFMC) is a numeric rating

of the moisture content of litter and other cured fine fuels. FFMC is an indicator of the relative ease of ignition and the

flammability of fine fuel, having a fast response to weather variations (approximately 0.5 days under “standard” conditions,

i.e., noon temperature 25°C, relative humidity 30% and wind speed 10km/h). The Duff Moisture Code (DMC) is a numeric

rating of the average moisture content of loosely compacted organic layers of moderate depth. This code gives an indication

of fuel consumption and is characterised by a medium-term response to weather variations (approximately 10 days). The

Drought Code (DC) is a numeric rating of the average moisture content of deep, compact organic layers. DC has a long-term

response (about 50 days) to weather variations and is a useful indicator of seasonal drought effects on forest fuels, as well as

the amount of smouldering in deep duff layers and large logs. The two intermediate sub-indices, Initial Spread Index (ISI) and

Build-Up Index (BUI), are fire behaviour indices. The ISl is a numerical rating of the expected fire rate of spread which

combine the effect of wind and FFMC. The BUI is a numerical rating of the total amount of fuel available for combustion that
combines the DMC and the DC.

combines-the- DMGC-and-the-BDC-The resulting index is the Fire Weather Index (FWI), which combines ISI and BUI. FWI
represents the-frontal fire intensity (van Wagner, 1987) and can be used as a general index of fire danger_(\Wotton, 2009)-in

forested-areas. Each component of the FWI System has its own scale, but for all of them a higher value indicates more severe
burning conditions (de Groot, 1987). A more analytical description of the FWI system and its subcomponents can be found in
van Wagner (1987) and Wotton (2009). The structure of the index and the meteorological variables needed for its calculation

are presented in Fig.ure Al

2.2 Seasonal forecast data and reference observations
2.2.1 ECMWEF SEASS5 dataset

In the framework of the current study, the fifth generation ECMWF seasonal forecasting system (SEAS5) (Johnson et al.,
2019) available in the C3S Climate Data Store (CDS) (DOI: 10.24381/cds.181d637¢e) is-was utilized. SEAS5 has been
operational since November 2017, replacing System 4. The system includes updated versions of the atmospheric (IFS) and
ocean (NEMO) models with the addition of the interactive sea-ice model LIM2 (Johnson et al., 2019). The set of re-forecasts
(hindcasts) available in the CDS starts on the 1st of every month for the years 1993-2016 and contains 25 ensemble members.

The data from these re-forecasts are used to verify the forecasting system and calibrate real-time forecast products. Real time
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forecasts (from 2017 onwards) consist of a 51-member ensemble initialised every month and integrated for 7 months. The
seasonal forecasts are initialised with atmospheric conditions from ERA-Interim (Dee at al., 2011) until 2016 and the ECMWF
Operational Analysis since 2017. Re-forecast and forecast data are available at a global 1x1 degree grid.

For the daily FWI values calculations, the SEAS5 instantaneous outputs at 12 UTC for 2-m air temperature, northward and
eastward 10-m wind components, 2-m dewpoint temperature, and daily accumulated precipitation are-were used. The 12 UTC
was used as a proxy for local noon values required as input to FWI_as proposed by several previous studies for the
Mediterranean and Greece (e.qg., Bedia et al., 2012, 2018; Herrera et al., 2013; Papagiannaki et al., 2020). Additionally,

according to Papagiannaki et al. (2020), during the fire season the meteorological conditions at 12 UTC (i.e., 15 LST) are

highly conductive to the occurrence and spread of fires as corroborated by the Hellenic Fire Service, thus, the respective fire

danger predictions are considered to be particularly useful from an operational perspective. Moreover, relative humidity needed

for FWI calculations was computed from air and dew-point temperatures. Concerning precipitation, data correspond to the
accumulated values since the initialization time, therefore differences with the previous day’s values are-were computed (de-
accumulation) to obtain daily accumulated values for each grid point.

It should be noted: that in order to commence the calculations of FWI, default initial values of FEFEMC, DMC, and DC were

used. This means that a spin-up period was required to minimize the effects of errors in the initial conditions used in its

calculation. Given that the longest time lag of the fuel moisture codes, as described above, is about 50 days, a spin-up period

of up to two months was considered sufficient for both FWI and/or its subcomponents.

A fire season spanning from May to September (MJJAS), that coincides with the dry season in Attica according to the records

of the Hellenic National Meteorological Service, is-was considered and twe-six different experimental setups for FWI

calculations are-were perfermedimplemented. In particular, we performed SEAS5 MJJAS fire danger forecasts initialized in

March and April (two months and one month in advance of the target fire season, respectively), without and with spin-up,
using both SEAS5 and ERA5-Land data (Figure 1). In the case of spin-up, in 1-month (2-month) lead time forecasts, the FWI

time series for April (March and April) were firstly calculated for the index to stabilize and were then removed from the

analysis.
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2.2.2  ERAb5-Land reanalysis dataset

As reference observational dataset, the state-of-the-art global reanalysis dataset ERA5-Land (Mufioz-Sabater, 2019) of
Copernicus CDS (DOI: 10.24381/cds.e2161bac) is-was used. ERA5-Land comes with a series of improvements compared to
ERAS5 making it more accurate for all types of land applications. The dataset provides a total of 50 variables describing the
water and energy cycles over land, globally, hourly, and at a spatial resolution of 9 km from 1950 to present (Mufioz-Sabater
et al., 2021). To be consistent with the SEAS5 data, 2-m air temperature, 2-m dewpoint temperature, 10-m northward and
eastward wind components at 12UTC, and daily accumulated precipitation are-were used for the calculation of daily FWI

values.

2.3  Statistical downscaling of seasonal forecasts

To statistically downscale the seasonal forecasts at the ERA5-Land horizontal resolution a two-step approach is-was followed.
In particular, the seasonal forecast meteorological variables used to calculate FWI are-were initially regridded to the ERA5-
Land grid by means of bilinear interpolation_and next, while-in-a-secend-step-of bias correction is-was applied using the
empirical quantile mapping (EQM). This two-step approach is the reversed order of the bias correction and spatial
disaggregation framework, which has been previously used to statistically downscale global and/or regional models for both
climate change and seasonal forecast studies (Abatzeglou-and-Brown,2012:-L orenz et al., 2021; Markos et alt., 2018; Varotsos
et al., 2022). Regarding the bias correction method, EQM works by adjusting the 1-99 percentiles of the predicted empirical

probability density function (PDF) based on the observed empirical PDF, while for lower or higher values falling outside this
range, a constant extrapolation is applied using the correction obtained for the 1st or 99th percentile, respectively. For more
information on how EQM works, the reader may refer to the studies of Manzanas et al. (2018, 2019), Manzanas (2020) and
Bedia et al. (2018).

In this study bias correction is-was applied using daily data for the period May to September using a moving window width of
31 days to adjust the intra-seasonal biases originating from the model’s behaviour (i.e., model drift, Manzanas (2020) and
references therein). Following Bedia et al. (2018), FWI is-was bias corrected after its calculation from the regridded fields of
temperature, relative humidity, wind speed and precipitation to avoid unrealistic FWI trends that could occur by calculating
FWI from the bias corrected meteorological variables. Nevertheless, results of the statistically downscaled temperature,

relative humidity, wind speed and precipitation are also presented in the following sections.

2.4 Metrics and methodology of fire danger forecast verification

According to WMO (2020), measures of historical predictive skill are an essential component of seasonal forecasts as they
provide the users an indication of the trustworthiness of the real-time forecasts. There are many different skill measures
describing the quality of specific forecast attributes that are estimated by calculating the corresponding properties of the set

(e.g., discrimination, reliability etc.) of hindcasts paired with reference observations (WMO, 2020). In the framework of the
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current study, the probabilistic Relative Operating Characteristic (ROC) skill score, measuring forecast discrimination,
together with the reliability diagrams are-were used, to assess the potential skill and usefulness of fire danger seasonal forecasts

after spatial disaggregation and bias adjustment.

2.4.1 ROC skill score (ROCSS)

ROC skill measures the frequency of occasions when the system correctly distinguished between events occurring and not
occurring (Jolliffe and Stephenson, 2003). ROC is based on the ratio between the hit rate and the false alarm rate and is
evaluated separately for each category (above normal, normal, or below normal). ROC Skill Score (ROCSS) ranges from -1
(perfectly bad discrimination) to 1 (perfectly good discrimination). A value of zero indicates no skill compared to a random
prediction or the climatological value.

As in previous studies (e.g., Bedia et al., 2018; Manzanas et al., 2014; Mercado-Bettin et al., 2021), a tercile-based probabilistic
approach for forecast verification has—beenwas applied. In order to assess fire-danger forecast performance, the
easyVerification (MeteoSwiss, 2017), SpecsVerification (Siegert, 2020), and VisualizeR (Frias et al., 2018) R packages, are
were used for skill calculation and visualization. The ROCSS were calculated at each grid-point for the different tercile
categories depending on the examined parameter, e.g., the upper tercile for FWI, temperature and wind speed or the lower
tercile for relative humidity and precipitation, averaged over the verification period -are-caleulated-and maps depicting the
geegraphical-spatial variations in their skill scores for the different initialization times are-were constructed. {Fig-—2-6)-
Moreover, tercile plots for the FWI (and its subcomponents) for Attica were built (Fig—7) to complement the spatial analysis
provided by the ROCSS maps, presenting the performance of the seasonal forecast along the hindcast period. In order to build
a tercile plot for a given variable, the observations as-weH-asalong with the bias corrected multi-member ensemble predictions
are-were categorised into three tercile categories, considering values above (upper tercile), between (middle tercile) or below
(lower tercile) the respective climatological values within the peried-1993—2016 period. Subsequently, a probabilistic forecast
is—computedwas computed year by year considering the number of members falling within each category. Moreover, the
observed category according to the ERA5-Land dataset is provided in the plot, to facilitate a visual comparison of hits and

misses of the forecast system along the hindcast period.

2.4.2  Reliability diagrams

Reliability diagrams are diagnostic tools measuring how closely the forecast probabilities of a specific event (for instance a
particular tercile category) correspond to the observed frequency of that event (Weisheimer and Palmer, 2014). According to
WMO (2020), in the context of decision-making, forecast reliability plays an important role in making a prior assessment of
the benefits of using seasonal forecast information. A construction of a reliability diagram involves binning forecasts by
probability category and plotting these values against the observed frequencies (WMO, 2020). For a perfectly reliable
forecasting system, the line obtained would match the diagonal (perfect reliability line)-(Figures-8-9}. The reliability line that

best fits the points in the diagram is calculated applying least squares regression weighted by the number of forecasts in each
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probability bin. Based on the slope of the reliability line and the uncertainty associated with it, six easy-to-interpret categories
can be defined: perfect, still very useful, marginally useful+, marginally useful, not useful, and dangerously useless (Manzanas
etal., 2018). The marginally useful+ category differentiated those cases for which the reliability line lies within the skill region
(Brier Skill Score>0, shaded in grey). The reader can refer to Frias et al. (2018) and Manzanas et al. (2018) for more information
on the construction of the reliability diagrams.

It should be noted that concerning FWI (and its subcomponents), both in the tercile maps/plots and the reliability diagrams,
only the results of the above normal conditions (upper tercile category) are discussed in the main body of the paper, as high
FWI (and its subcomponents) values are related to increased fire danger conditions and, hence, to increased wildfire activity
(e.g., Urbieta et al., 2015).

2.5  Qualitative evaluation of above normal fire danger conditions against historical fire occurrence

A qualitative evaluation of the ability of FWI hindcasts to predict actual fire occurrence as obtained by historical fire records
ts-was performed. To this aim, records of national wildfire time series data for the period between 2000 and 2016 have

beenwere obtained from the Hellenic Fire Service online database (https://www.fireservice.gr/el _GR/synola-dedomenon). As

these data concern both forest and urban fires, only fire events that burnt at least 1ha of forest or forested areas are-were
extracted from the database.

Burnt areas less than 1ha were excluded from our analysis, to limit the uncertainties associated with the recording of small
fires in fire databases as has-already-beenwas reported in previous studies (Jiménez-Ruano et al., 2017; Turco et al., 2013).
Regarding the number of fires and the respective burnt areas, these are-were constrained for the months covering the fire season
as defined in the current study (i.e., from May to September). We decided to exclude Fthe fire data for the hindcast years
between 1993—-1999, was-decided-notto-be-included-in-ouranalysis-as they were recorded by the Hellenic Forest Service
following a different methodology that -are-part-of a-different-database-of the Hellenic Forest-Serviee s which-features-majo
differences-and is not compatible with the Fire Service’s one.

Regarding the approach to the qualitative evaluation, the years between 2000 and 2016 are-were characterized as high fire

activity years since the number of fire events for the entire Attica domain for each year is-was greater than the medianmean
number-of the fire events observed for the whole period. Moreover, only the years with ebserved-{based-on-ERAS-Land)-fire
danger (based on ERA5-Land) in the upper tercile category (above normal conditions) are-were selected from the tercile plots

for Attica and the relevant proportion of ensemble members predicting upper tercile values is-was recorded. Consequently, the

number of fires per year are-were shown along with the abovementioned proportion.
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3 Results and-discussion

The results section is organized in two parts presenting: a) the forecast performance of the FWI, its subcomponents and the

input meteorological variables to the FWI system and b) the qualitative evaluation of above normal fire danger conditions

against historical fire occurrence data.

2:63.1 Forecast performance of meteorological variables and fire danger components Fire-dangerforecastperformance

The quality of the downscaled fire danger hindcasts for Attica was initially assessed via the ROCSS. In Figure 2, the spatial

distribution of the ROCSS for the upper tercile category of the FWI for MJJAS fire season for both lead times, with and without

the performance of spin-up, are presented. Statistically significant ROCSS greater than 0.4 were found almost in the entire

domain for the 1-month lead time experiments, while higher scores (>0.6) were found for the 2-month lead time experiments.

In order to complement this spatial analysis, Figure 3 depicts the tercile plots of FWI averaged over Attica, for both lead time

experiments providing a year-to-year visual comparison between hindcast tercile categories and the corresponding observed

values as obtained by ERA5-Land. These spatially averaged predictions for the upper tercile of FWI for all experiments

indicate statistically significant positive ROCSS resonating the spatial analysis results (Fig. 2). Reaching increasingly higher

values, for the 1-month lead time forecasts the ROCSS was 0.45 for no spin-up experiment, 0.57 with spin-up using the SEAS5

model data and 0.62 when the ERA5-Land were implanted in the spin-up procedure. For the 2-month lead time forecasts,

higher ROCSSs were calculated for all spin-up experiments compared to 1-month lead (the attained values were 0.66, 0.73

and 0.7, respectively) with the SEAS5 performing slightly better than the observations. Regarding the temporal performance

on a year-by-year basis, both lead time experiments depicted high agreement (60-80%) among the members for half of the

years with observed above normal conditions.

To further elaborate in the fire danger forecast verification, the reliability diagrams are presented in Figs. A2-A3. The upper

tercile FWI predictions for 2-month lead time experiments were classified as perfectly reliable, while predictions fell in

marginally useful+ category for 1-month lead time experiments.

Considering the forecasted meteorological variables used in FWI calculations, the ROCSS were calculated for 1-month and 2-

month lead time forecasts ef theforecasted-meteorelogical variables-used-in-F\Wi-calewlations; only when the variable resulting

tnindicates high fire danger conditions, i.e., high air-temperature, low relative humidity, low total precipitation and high wind
speed;-are-caleulated-for. LML and LMO-predictions: Thus, the ROCSS for the upper tercile category of air temperature and

wind speed, as well as the lower tercile category of relative humidity and total precipitation for the different lead times are

seore(Fig—4)— Both lead time forecasts of relative humidity and wind speed exhibited high discrimination skills, temperature

exhibited low skill almost for the entire domain, while precipitation showed no skill for both experiments. In particular, for

relative humidity, statistically significant ROCSSs, greater than 0.6 for 1-month lead time forecast, were attained for the entire
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domain, while ROCSS ranges between 0.6-0.8 for the 2-month lead time forecast. For wind speed, statistically significant

discrimination skill scores between 0.4 and 1.0 were attained for 1-month lead time, while lower values (0.4-0.6) were found

for 2-month lead time forecast mainly in the eastern part of the area of interest. Overall, the highest skills averaged over the

study domain, were found for the lower tercile of relative humidity (0.73, perfect), the upper tercile of wind (0.45, marginally

useful+) and the upper tercile of temperature (0.34, marginally useful+) for 1-month lead time forecasts (not shown).

Given that relative humidity {beth-in-LM0O-and-LML)-and wind speed {enhy-in-EML)- demonstrated high seme-discrimination
power-skill (ROCSS=0:4) for both lead-time experiments, the ROCSSs skill-sceres-of the FWI subcomponents that directly
depend on these variables are-were further investigated-(Figure-1). In particular, the ROCSSs for Fine Fuel Moisture Ceode
(FFMC)_and; Duff Moisture Code (DMC) that receive relative humidity as input variable as well as and-deseribe-the-fuel

O cHe-CoRteRtHhRtRe-SuHaceanGHpperiaye cHOore 00 esSpe ery—are-CatCtHatet- imiarhythe ROC S/ thelnltlal

Spread Index (ISI) which integrates the fuel moisture of fer fine dead-fuels (FFMC) and near-surface wind speed, were

characterizing—spread—potential,—is—assessed. All fuel moisture subcomponents presented poor discrimination scores

(ROCSS<0.3 averaged over the area) for both lead time experiments and depending on the spin-up experiment were classified

as not useful or dangerously useless (not shown). -The only exceptions are the 1-month lead time FFMC forecast without spin-

up and the 2-month lead time DC with spin-up using observations, which were classified as marginally useful+ (not shown).

ISI differs as can be seen in Figure 5, showing the spatial distribution of the ROCSS, where statistically significant scores

(>0.4) were found almost in the entire domain for both lead time experiments, with higher scores depicted for 1-month lead

time. Moreover, the spatial pattern of the ROCSS does not differ within each lead time experiment between the different spin-

up experiments. Looking into the tercile plots (Fig. 6), it is evident that the highest ROCSSs for ISI upper tercile predictions

are found for the 1-month lead time experiments, having minor differences between the different spin-up experiments (0.85-

0.87). Lower values were found for the 2-month lead time experiments, however, the ROCSSs remain high (0.6). From the

interannual perspective, concerning 1-month lead time ISI forecasts, most of the observed above normal years were fairly

predicted by SEAS5 (by 50%-60% of the members). For 2-month lead time experiments, ISI hindcasts tend to underestimate

the observed above normal events, as less than 40% of the above normal years were predicted by most of the members (by

more than 60% of the members). Moreover, the FWI and ISI forecast probabilities for 2021 fire season are presented in Figs.

3 and 6. Here, most of the ensemble members (>70%) predict above normal conditions for both FWI and ISI for a year with

elevated fire activity, supporting the case of their usefulness for providing fire danger forecasts under operational usage. Lastly,

according to the reliability diagrams, the ISI predictions for 1-month lead time experiments are classified as perfectly reliable,

while 2-month lead time experiments fall in the marginally useful+ category (Fig. A4-Ab).
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2-+43.2 FWI and ISI predictions against fire statistiesoccurrence

In this section, the focus will only be on FWI and ISI as these were found to perform better with respect to their ROCSSs and

340 respective reliability. The qualitative evaluation of above normal fire danger conditions against historical fire occurrence was

thus implemented for the FWI and ISI subcomponent, for both lead times and only for the spin-up experiments with the highest

discrimination scores, as discussed in the previous section.

In order to decide which fire occurrence aspect should be considered, the correlation between FWI and ISI hindcasts with burnt

areas and the number of fires for the years 2000-2016_was calculated and; revealed moderate correlation between FWI and

345 |ISI with the number of fires (r=0.55 and 0.52-45 respectively, p-value<0.05) and no statistically significant correlation with
burnt areas. Similar results were reported in a recent study of Galizia et al. (2021) suggesting that fire-prone pyro-regions, with

Greece and Attica categorized as such, present moderate (>0.4) and strong (>0.6) positive correlations of the number of fires
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with the FWI and IS, respectively. Thus, the number of fires instead of burnt area was eventually favoured as the variable of

choice for the qualitative evaluation of fire danger hindcasts.

Figure 10-7 depicts the number of fires (with burnt area greater than 1ha) per year, for the years between 2000 and 2016 of the
hindcast period and the respective proportion of ensemble members predicting above normal FWI and ISI values as obtained
by the tercile plots averaged over the entire Attica domain (Figs._3 and 6-7).-Concerning both FWI and ISI, the prediction of

years with increased fire activity (i.e., the years with total number of fires greater than the 2000-2016 mean-valuemedian based

on the fire records), is-was clearly dependent on the lead time of the forecasts. It is reminded that only the years with observed

(based on ERA5-Land) fire danger in the upper tercile category (above normal conditions) were taken into account. This

includes also the 2003, 2009 and 2010 high fire activity years which according to the ERA5-Land observations fall in the
middle (2003, 2009) and lower (2010) terciles.

As seen in Fig. 107, mest-half of the remaining years with increased fire activity are indeed predicted-captured by more than
half-60% of the_ensemble members eitherbyby at least one of the 1-month or 2-month lead time EMO-o-LMI-FWI forecasts.
The high fire activity of 2007 is captured only by 2-month lead time experiment, while 2012 is missed by both lead time
experiments. Moreover, 2016 is overshot by the 1-month lead time experiment. As-far-astSHs-concernedRegarding ISI, more

than half of the years are captured with the percentage of ensemble members varying between 50-80% by at least one of the

lead time experiments. Lastly, -the high fire activity of the 2000 and 2012 3 fire seasons is-are missed-not captured by 2-month
lead time forecasts.enti i j

4 Discussion

4.1 Prediction skill of single meteorological variables

Before delving into the indicators more directly associated with fire danger, the individual meteorological variables that serve

as input to the FWI system were examined. As discussed in Sect. 3.1, it appears that relative humidity and wind speed exhibit

high discrimination skills, temperature exhibits low skill, while precipitation showed no skill for both lead time experiments.

For all meteorological variables, the forecast performance declines as the forecast lead time (i.e., the period between the target

fire season and the initialization date of the forecast) increases, which is in line with previous studies (e.g., Doblas-Reyes et
al., 2013; van den Hurk et al., 2012).
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Looking at the individual variables, according to Mishra et al. (2019), limited predictive skill of seasonal temperature and very

low skKill of seasonal precipitation was found over entire Europe based on the EUROSIP multi-model framework, including

the ECMWE System 4, the predecessor of SEASS. Regarding the area under study, it is part of the Mediterranean region which

is considered an area of transition between subtropical and mid-latitudes, where seasonal forecasts are challenging, therefore,

the assessment of the added value and the identification of limitations of seasonal forecast products are of paramount

importance when developing climate services (Cali Quaglia et al., 2022). The same study found statistically significant

temperature anomaly correlations over the eastern Mediterranean between the SEAS5 and the ERA5 reference dataset,

however, summer ROC skill score was not discussed in that study. Additionally, summer precipitation showed limited skill,

located mainly at the western part of the Mediterranean. In general, the climate of the western Mediterranean is more

predictable than the eastern part of the domain, probably due to the influence of El Nifio-Southern Oscillation (ENSO) and

North Atlantic Oscillation (NAO) teleconnections (Cali Quaglia et al., 2022; Frias et al., 2010). Concerning relative humidity,

our results are in line with previous studies (Bedia et al., 2018; Bett et al., 2018) who found significant skills over the eastern

Mediterranean using the ECMWE System 4 forecasting system. Finally, wind speed can be considered a promising variable

regarding skill, as it is more closely related to the larger-scale atmospheric circulation than more complex processes like

precipitation. According to Bett et al. (2022), the wind skill was found to be patchy throughout Europe especially during

summer using however the Sys4 forecasting system. The high wind skill for Attica empowers the discussion of the next section

as the FWI is highly sensitive to wind speed (Karali et al., 2014). In addition, Kassomenos (2010) found that the Etesians (dry

north winds prevailing during summer) are very often associated with the development of extreme wildfires in Greece, while

Pashalidou and Kassomenos (2016) pointed out that mesoscale and local systems can play an important role on fire

development, as they interact with, and may exacerbate the larger scale circulation patterns.

4.2 Impact of lead-time and spin-up on fire danger forecast performance

Concerning the performance of the FWI and its subcomponents, according to the results presented in Sect. 3.1, it appears that

the lead time of the forecast highly affects their skill scores and especially those of FWI and ISI which attained the highest

ROCSSs and are therefore discussed here. As far as ISl is concerned, the highest ROCSSs were found for the 1-month lead

time forecasts and can be attributed to the high performance of wind speed for this exact lead time experiment. I1SI ROCSSs

(Fig. 5) also indicate that the specific subcomponent is insensitive to spin-up as it remains unaffected between experiments

and its performance is mostly controlled by the skill of the meteorological variables used for its calculations for the different

lead time forecasts. This can be attributed to the fact that ISl is calculated by solely combining wind speed with FFMC, the

latter having a fast response (less than one day) to weather variations as presented in Sect. 2.1.

Concerning FWI, its high complexity and the non-linear relationships between its input meteorological variables and

subcomponents, makes it difficult to attribute its performance to a single variable and/or subcomponent. According to the

results, FWI performs better in 2-month lead time experiments (even in the no spin-up experiment), even though the forecast
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performance of the single variables as discussed in Sect. 4.1 is decreased. A potential reason could be the higher scores of DC

and, therefore, of BUI subcomponent (Fig. A6), compared to 1-month lead, which may be attributed to the memory of the DC

subcomponent associated to soil moisture. The improved BUI of 2-month lead time (Fig. A6), combined with the relatively

high ISI (Fig. 5) skill scores lead to high FWI performance. The spin-up impact on FWI, which can be seen in Fig. 3, is positive

as higher discrimination scores were achieved in both 1-month and 2-month lead time experiments, without however altering

the reliability class. From the terciles plots, it is also evident that although spin-up alters the discrimination skill of FWI

forecasts, the choice between model or observations in the spin-up procedure plays a minor role.

In summary, depending on the lead time of the forecasts, both FWI1 and ISI were found useful tools in decision making for the

region under study as the scores imply. As several subcomponents of FWI system (such as ISI, BUI, FFMC) can be used by

fire management authorities (Wotton, 2009), further research could be directed to utilizing multi-model ensembles in order to

study potential improvements in the scores of FWI and these subcomponents.

4.3 Qualitative evaluation of fire danger forecasts to predict fire occurrence based on fire statistics

The qualitative evaluation of the best performing forecast experiments of ISI and FWI has been carried out against fire

occurrence data presented in Sect. 3.2. Both FWI and ISI forecasts managed to capture high fire activity years adequately (for

the period 2000-2016), while the forecast probabilities were found to be highly dependent on the lead time. For half of the

high fire activity years, both indices managed to capture high fire activity fire seasons with forecast probabilities greater than

0.6 (>60% of the ensemble members for both lead time experiments). This implies that at least for high activity seasons, the

seasonal approach for these two indices can be useful for complementing current fire management tools.
Regarding the misses discussed in Section 3.2, the reason is twofold. On one hand it should be considered Fhis-isstray-be

due-to-thefact-that fire activity is not only driven by climate but rather by interactions among climate, vegetation and human

activities as-stated-in-(Galizia et al. {2021).; Tthus, a climate-only approach, as proposed here may be proven insufficient for

particular-certain years. Disasters such as forest fires arise from a complex interplay between hazard, vulnerability and exposure

(GlZ, 2017; IPCC, 2022). The integration of seasonal forecast information (i.e., constituting the hazard component of risk)

with other types of information, describing the natural and human capital as well as the vulnerability of the exposed system

(Bacciu et al., 2021), is critical in order to enhance planning and decision-making regarding fire prevention and preparedness.
On the other hand, the misses H-alse highlights the sensitivity of the results to the ERA5-Land dataset which_was used to

statistically downscale and evaluate the seasonal forecasts output (Herrera et al., 2019; Mavromatis and Voulanas, 2021).

Therefore, further research is needed to investigate the impact of the selected reference dataset on the statistically downscaled

forecasts.
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35 Conclusions

As climate plays an important role in fire dynamics and climate change is increasing the frequency and severity of fire weather,
the ability to forecast fire danger conditions prior to the beginning of the fire season can enhance preparedness and support
decision making in fire management for fire-prone areas. Moreover, the resilience of the forestry sector may be enhanced by
developing dedicated climate services, such as fire danger seasonal forecasts, in order to reduce risks and offer opportunities

for long-term reduction of wildfire disasters. The aim of this study is to provide high resolution probabilistic seasonal fire

danger forecasts, utilizing Fire Weather Index (FWI) for Attica Greece and verify these forecasts using probabilistic

verification measures for skill assessment (ROC skKill score, reliability diagrams). The ultimate goal is to explore whether these

forecasts can support disaster management and relevant regional authorities by incorporating such fire risk assessment

indicators, in prevention and preparedness plans (Oom et al., 2022).

score—+ehabHity-diagrams)—The analysis s-foeused-focuses on the predictability of above-normal (upper tercile) FWI years
which have been associated in several studies with increased fire occurrence. Moreover, the study tried to assess the ability of
fire danger forecasts to capture years with increased fire activity, by comparing hindcast years of above normal fire danger

conditions with historical fire occurrence data obtained by the Hellenic Fire Service. Our results suggest that depending on the

lead time of the forecast, both FWI and ISI present statistically significant high discrimination scores and can be considered

reliable in predicting above normal fire danger conditions.

15



475  atalesser-extentF\WH-seasenal-forecast-predictions,—may-Therefore, they can be viewed as valuable climate related alarms of

increased fire danger and fire occurrence and may be further exploited by regional authorities in fire management regarding

prevention, preparedness and resources allocation in the Attica region and other fire prone regions and sub-regions in the

Mediterranean.

Future work should focus on the assessment of large ensemble approaches utilizing different forecasting systems available in
480 Copernicus CDS, as well as alternative pathways to enhance the skill of seasonal fire danger predictions to be applicable to

the whole Greek or even Mediterranean wide domain. Finally, the impact of the selected reference dataset, here ERA5-Land,

on the statistically downscaled forecasts should also be explored.
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Figure 1: Experimental setups used for FWI1 calculations. Forecasts are initialized in April (1-month lead time, in yellow) and March
(2-month lead time, in red) while three different experiments concerning the spin-up period (a) with no spin-up (dashed ling), (b)

690 with spin-up implanting the ERA5-Land (solid line-circle symbol) and (c) with spin-up using the SEAS5 model data (solid line-
diamond symbol) are shown.
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(@) 1-month lead time no spin up FWI MJJAS [ upper tercile | (b)  1-month lead time spin up FWI MJJAS [ upper tercile ]
1 1

(d) 2-month lead time no spin up FWI MJJAS [ upper tercile ]
1

Figure 2: ROC SKill Scores (ROCSSs) of the upper tercile SEAS5 FWI predictions for 1-month lead time: (a) with no spin up, b)

695  with spin-up using the SEASS data, ¢) with spin-up implanting the ERA5-Land data and 2-month lead time: d) with no spin-up, )
with spin-up using the SEAS5 data and f) with spin-up implanting the ERA5-Land data. The grid points with significant ROCSS
values are indicated by circles (0=0.05).
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Figure 3: Tercile plots for May to July FWI predictions covering the hindcast period (1993-2016) for 1-month lead time: (a) with no
700 spin-up, (b) with spin-up using the SEAS5 model data, (c) with spin-up implanting the ERA5-Land data and for 2-month lead time
(d) with no spin-up, (e) with spin-up using the SEAS5 model data and (f) with spin-up implanting the ERA5-Land data. Forecast
probabilities for the three tercile categories are codified in a yellow (0, no member forecasts in one category) to blue (1, all the
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members in the same category) scale. The white bullets represent the observed category according to the ERA5-Land dataset.
ROCSS values obtained from the hindcast period are shown on the right side of each category and the asterisk indicates significant

705  values (6=0.05).
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Figure 4: ROCSSs of the FWI input variables for 1-month (left column) and 2-month lead (right column) time forecasts that
710 correspond to high fire danger values: (a) upper tercile of air temperature (T2M), (b) lower tercile of air relative humidity (RH), (c)

(c) lower tercile of total precipitation (PR) and (d) upper tercile of wind speed (WSS). The grid points with significant ROCSS values
are indicated by circles (¢=0.05).
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(C)  1-month lead time spin up * IS MJJAS [ upper tercile ]

(f

Figure 5: Same as Fig. 2 but for IS predictions.
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