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Abstract 

Tropical cyclones (TCs) have long posed a significant threat to Australia's population, infrastructure, 10 

and natural environment. This threat may grow under climate change as projections indicate 

continuing sea level rise and increases in rainfall during TC events. Previous TC risk reduction efforts 

have focused on the risk from wind alone, whereas a holistic approach requires multi-hazard risk 

assessments that also consider impacts of other TC-related hazards. This study assessed and mapped 

TC risk nationwide, focusing on the impacts on population and infrastructure from the TC-related 15 

hazards of wind, storm surge, flooding and landslides. Risk maps were created at the Local 

Government Area (LGA) level for all of Australia, using collated data on multiple hazards, exposure 

and vulnerability. The study demonstrated that the risk posed by all hazards was highest for coastal 

LGAs of eastern Queensland and New South Wales followed by medium risk across Northern 

Territory and north-west of Western Australia, with flood and landslide hazards also affecting 20 

several inland LGAs. The resulting maps of risk will provide decision-makers with the information 

needed to further reduce TC risk, save lives, protect the environment, and reduce economic losses. 

1. Introduction 

Tropical Cyclones (TCs), also known as hurricanes or typhoons, are powerful and highly destructive 

meteorological hazards.  Since 1970, almost 2,000 natural disasters have been attributed to TCs, 25 

which has led to over 700,000 deaths worldwide (World Meteorological Organisation, 2021). Costing 

about U.S.$26 billion annually in global damages (Mendelsohn et al., 2012), their impact is expected 

to multiply to U.S.$60 billion annually by 2100 (Bakkensen and Mendelsohn, 2019). 

The proportion of intense TCs (categories 4-5) and peak wind speeds of the most intense TCs are 

projected to increase at the global scale with increasing global warming (high confidence) (IPCC AR6) 30 

(ICC, 2021). The potential of more destructive TC events will require updating and enhancement of 

existing risk reduction strategy. The Sendai Framework for Disaster Risk Reduction provides a 

structure for reducing disaster damages and increasing resilience to hazards including TCs (Bennett, 

2020). One mechanism they encourage in Goals 18 and 24 is the distribution of multi-hazard risk 

information such as risk assessments. 35 

Risk assessments combine hazard information with human activity, infrastructure and natural 

resources to determine the possible impacts of hazardous events (Belluck et al., 2006; National 

Research Council, 1991) and make informed choices for risk management in the most exposed and 

vulnerable regions (Aguirre-Ayerbe et al., 2018). Disaster risk is defined as the probability of harmful 

consequences, or significant losses, resulting from interactions between a hazard, and the local 40 

exposure and vulnerability to that hazard (Crichton, 1999; Downing, 2001).  

As Local Government Areas (LGAs) are the smallest government decision-making body, information 

is sought to be provided on that scale. Risk assessments are a foundation for early warning systems 

to raise alerts of potential impacts, and to provide evidence for the prioritisation of funds and 

resources to areas in advance of any hazardous events. While the climate continues to change 45 

alongside evolving human activity, risk assessments must likewise be regularly updated to stay 

accurate and useful as a tool for disaster risk reduction (Peduzzi et al., 2012). 
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For TCs, the four main hazards are the destructive winds, associated storm surge, flooding from 

associated heavy rainfall, and landslides on steep terrain as soils saturate (Murray et al., 2020). TCs 

and other natural hazards are becoming increasingly recognised as multi-hazardous in nature 50 

(Scawthorn et al., 2006). These hazards impact regions differently and their effects can compound to 

cause even greater damage (Gori et al., 2020). 

While TCs can cause damage through different hazards, such as gale-force winds, storm surge or 

flooding, the communication of TC intensity and categorisation places emphasis on wind speed 

(Lavender and Mcbride, 2020). This is partially due to the availability of wind measuring technology 55 

and the relative ease to quantify wind. Publicly available warnings and forecasts are focusing on 

wind speeds, ultimately portraying the message that winds are the hazard to be most wary of. The 

literature however suggests the impacts of storm surge and flooding contribute to the most human 

lives lost and infrastructure damage (Mendelsohn et al., 2012; Zhang et al., 2008). Although some 

studies have included multi-hazard aspects of TCs (Burston et al., 2017), presenting different hazard 60 

models for storm surge, wind and flooding, these studies do not complete the story of combining 

hazard with exposure and vulnerability to map risk. Similarly, within the literature, there are many 

examples of standalone exposure or vulnerability index assessments for TCs (Marín-Monroy et al., 

2020; Bathi and Das, 2016; Amadio et al., 2019). This gap indicates compelling scope to develop a 

multi-hazard TC risk assessment that can differentiate the extent and severity of TC-related hazards.  65 

This study will address this gap and strengthen TC risk information for the Australian region. Multi-

hazard risk is assessed and visualised through interactive maps which show LGA categorisation, 

alongside hazard, exposure, and vulnerability layers. 

2. Data and Methodology 

To calculate the multi-hazard risk of TCs to Australia, hazard, exposure and vulnerability datasets 70 

were chosen and sourced. This data was then joined to LGA map shapefiles in ArcGIS Pro. To 

calculate exposure and vulnerability indexes from multiple indicators, equal weighting was used for 

exposure, while Pareto front-ranking was used for vulnerability. Combined with hazard values for 

each LGA, exposure and vulnerability indexes were used to calculate risk using equation 1: 

Risk = Hazard x Exposure x Vulnerability                                                        (1). 75 

2.1. Selection of indicators  

Hazard  

The main identified hazards of TCs include storm surge, winds, landslides, and floods. The 100 year 

return period was chosen to represent the danger of these hazards in the near future. 

Storm surge and wind datasets were specifically designed for TCs (Cardona et al., 2014; Arthur, 80 

2021), and spatial mean values were calculated over each LGA. For flood and landslide hazards the 

original datasets did not consider solely TC induced floods/landslides. Thus the flood and landslide 

hazards were weighted towards TC prone regions by multiplying values by the TC wind raster 

dataset. Weighted flood and landslide values were then summed over LGAs as there were many null 

values. Greater than zero values exist only around water catchments and rivers for floods, and 85 
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around mountain regions for landslides. Thus LGAs with higher flood and landslide values have more 

of these prone environments in total rather than a higher areal proportion. 

Exposure 

Exposure indicators of population, hospitals, substations, and power lines were chosen to represent 

physical assets of human life, as well as systems and infrastructure that are important in the case of 90 

emergency disaster events (hospitals, power). Failure to maintain the function of lifeline 

infrastructures such as hospitals and power can lead to exacerbated negative impacts (Ju et al., 

2019). These chosen indicators aim to spatially describe which LGA regions have more exposed 

assets relative to the rest of the country. Electrical substations provide power as critical 

infrastructure and are strategically placed to meet demand. Similar reasoning influenced the choice 95 

of public hospitals and powerlines.  

While population density data of each LGA was found in tabular form from the Australian Bureau of 

Statistics (ABS), the remaining exposure indicators’ raw format was as point or line shapefiles 

displayable in ArcGIS Pro. Thus geoprocessing tools such as spatial join were used to count the 

number of public hospitals in each LGA. Using absolute measurements can be inappropriate when 100 

considering regions of different sizes (Rygel et al., 2006), thus these counts were then divided by LGA 

area to give a density value similar to that of population density.  

Vulnerability 

Vulnerability indicators were chosen to represent regions most susceptible to high impact from a TC 

event occurring in the vicinity. Measures of socioeconomic status are commonly used to describe 105 

vulnerability to natural hazard events (Mitsova et al., 2018; Lianxiao and Morimoto, 2019) and the 

Index of Relative Socioeconomic Disadvantage (IRSD) has been used in previous literature for the 

Australian region (Rolfe et al., 2020). It summarises variables about the social and economic 

conditions of households. The more disadvantaged a region is socioeconomically, the more likely it 

will be more impacted by TCs, due to factors such as lower income, having families with only one 110 

parent or having a higher percentage of people that have English as a second language. The ‘no 

vehicle homes’ indicator was derived by calculating the percentage of homes with no vehicles, and 

the ‘vulnerable age groups’ indicator was constructed by calculating the percentage of an LGA’s 

population made up of the <15 and >65 age group combined. The ‘no vehicle homes’ indicator is 

particularly relevant to TCs as it provides information on LGAs that are more susceptible to loss of 115 

human life in evacuation situations. 

The data that was used to create the risk maps are summarised in Appendix. 

2.2. TC Risk Mapping 

The TC risk mapping process is schematically described in Figure 1. Before risk could be calculated 

and mapped based on the collected datasets, data was transformed and converted, as described in 120 

the diagram. Most processes occurred within ArcGIS Pro software, however, Python scripts were 

also utilised for some calculations. 
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Transforming raw indicator and hazard data into a workable file format  

(e.g., spatially representing data on a map as shapefiles, preparing raster hazard data) 125 

 
 

Summarising relevant values for each LGA (e.g., averaging wind hazard cell values,  

counting number of hospitals) 

 130 
 

Processing summarised values (e.g., converting the number of hospitals to hospitals per sq. km) 

 

Normalising values into a 0 to 1 range by ranking each LGA by decile against the rest of the country 

 135 

Creating the exposure index by equal weighting (averaging) decile values  

of the four exposure indicators 

 
 

Creating the vulnerability index by using Pareto Front ranking on the three vulnerability indicators 140 

 

Creating the risk index for each hazard by multiplying decile hazard values, the exposure index, and 

the vulnerability index for each LGA 

 

Creating map layers for each hazard, each indicator and each index, colour coding  145 

and using five classes of natural breaks as the symbology classification 

 
 

Creating a final TC risk layer by equally weighting the risk of each hazard 

Figure 1.TC risk mapping process.  150 

2.3. Indices Calculation 

First, for processing raw indicator data, decile and natural breaks transformations were explored.  

Decile ranking in this context compares the values of each LGA to the LGAs in the rest of the country. 

A value of 0.9 would indicate the LGA has a value larger than 90% of LGAs in Australia, and every 0.1 

interval would hold 10% of LGAs. In this way, all indicators can effectively have an impact on 155 

resultant indices and risk maps even with the presence of outliers, which will take decile values on 

either end of the spectrum without causing any skew. Decile ranking is used in indices such as Socio-

Economic Indexes for Areas (SEIFA) from which IRSD is a part of, to give relative meaning to the raw 

scores.  

Natural breaks can similarly address the limitations of 0 to 1 normalisation by using optimisation to 160 

categorise values and minimise the amount of variance within each category. The number of 

categories can be increased automatically until a threshold of variance is met (96% in our case, as 

97% required more than 20 categories). The breaks or classes chosen depends on and is unique to 
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every distribution or set of data. Additionally, the number of classes is not fixed, which can result in 

fewer unique values and less value variation between LGAs, which is less informative.  165 

Based on these considerations, decile ranking was chosen as the method of processing raw indicator 

data. Natural breaks however were used in the presentation of maps and colour classes as it is the 

standard in geographical mapping for choropleth maps (Anchang et al., 2016), providing a quick 

overview and differentiating values more clearly than a continuous scale. 

Second, index calculations were performed. Equal weighting is commonly used to create index 170 

values from a set of indicators, and is used either for simplicity or because there is no supporting 

evidence to suggest how different indicators should be weighted (Rygel et al., 2006). In the context 

of TCs in Australia, while past studies have suggested that a weighted framework could improve 

results (Do and Kuleshov, 2022), it would require more research - such as gathering expert opinion - 

to weigh chosen indicators. One of the limitations of equal weighting is that very high values in one 175 

indicator are averaged with other indicators in the index, resulting in a potentially lower value that 

does not capture the extreme aspect of that LGA. This is particularly a problem for the vulnerability 

index because a region only needs to be extremely vulnerable in one factor to be considerably more 

at risk (Rygel et al., 2006). 

Pareto ranking, also known as Pareto front optimisation or multi-objective optimisation, was 180 

investigated to address some of the limitations of the equal weighting method. Pareto ranking can 

be used to construct an effective vulnerability index without weighting individual indicators (Huang 

et al., 2013; Nelson et al., 2020). It involves finding the values along the Pareto front, which are 

values considered to be non-dominated in all indicator axes and ranking these fronts in order. The 

process is depicted in Figure 2 which shows a step-by-step process of identifying non-dominated 185 

data points. 

https://doi.org/10.5194/nhess-2022-139
Preprint. Discussion started: 19 May 2022
c© Author(s) 2022. CC BY 4.0 License.



7 
 

Figure 2. Graphic demonstration of Pareto front classification in two dimensions. The same principle 

applies when scaled to N number of dimensions. Adapted from Rygel et al. (2016)  

First data is plotted along axes representing each component/indicator. Each data point in this study 190 

would represent an Australian LGA. Then the first non-dominated front would be identified as the 

set of points that do not have any LGAs with both a higher value in indicator 1 or indicator 2. This 

first front would be ranked highest and set aside, with the same methodology being used to identify 

subsequent fronts. In the case of the example in Figure 2, with 4 distinct fronts or classes, an index 

value would be given at even intervals (e.g. 0.2, 0.4, 0.6, and 0.8) with LGAs sharing the same index 195 

value as LGAs also in their front. 

The Pareto ranking method, therefore, can identify LGAs as vulnerable due to one or two indicator 

values even if its other indicator values are lower. Although vulnerability benefits from Pareto 

ranking as the maximum magnitude across all indicators is the defining factor, the exposure index 

benefits from taking into account all indicators cumulatively assuming the selected indicators are 200 

relevant. Thus Pareto ranking was used to calculate the vulnerability index in this study, while equal 

weighting was chosen for the exposure index. 

3. Results and Discussion 

The hazard, exposure, vulnerability, and risk maps are presented and discussed in this section. 

3.1. Exposure  205 

The exposure index was created from equally weighting the four indicators: population density, 

hospital density, electrical substation density and powerline length density. In Figure 3, it can be 

seen that population density is highest along the coast and surrounding major cities, especially in 

New South Wales (NSW) and Victoria (VIC). The hospital density indicator shows very similar 

patterns although there are fewer LGAs with the lowest exposure classification. Substation and 210 
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powerline indicators both have similar patterns to each other with the highest exposure along 

south-western Western Australia (WA), southern South Australia (SA), most of VIC, and eastern NSW 

and Queensland (QLD). The calculated exposure index in Figure 4 maintains the clear trends of 

highest exposure along the country’s eastern coast, and around major cities. Also of note are 

relatively high exposure values around the Pilbara region in north-western WA and the Mount Isa 215 

LGA in western QLD.  

 
Figure 3. Exposure indicator maps of population, hospital, substation, and powerline density. 
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 220 
Figure 4. Exposure index map created by equally weighting four exposure indicators. 

 

Exposure maps largely reflect the disproportionate percentage of Australia’s population that lives on 

the coast (Abuodha and Woodroffe, 2006) and near major coastal cities. As infrastructure such as 

public hospitals and substations are positioned to meet demand, it is also understandable why 225 

similar patterns are found amongst chosen indicators. 

Aside from these highly populated and built-up coastal regions, relatively higher exposure index 

values were identified around the Pilbara and Mount Isa regions. The mining industry’s presence in 

regional Australia is most obvious within the Pilbara region of north-west WA and the Mount Isa 

region of north-west QLD. There are a large number of fly-in-fly-out workers for these regions and 230 

they make a significant contribution to the economy. Although none of the chosen indicators were 

mining industry-related, the population and substation densities were able to indicate significant 

exposure in those areas related to the mining sector. 

3.2. Vulnerability 

The vulnerability index was created by Pareto ranking the three indicators: IRSD, vulnerable age 235 

groups and no vehicle homes. 

Figure 5 shows that IRSD vulnerability is extremely high across most of central and western Australia, 

with the highest class values across almost all of Northern Territory (NT). Otherwise, vulnerability is 

considerably lower in the LGAs surrounding the major cities in each state. Conversely, the vulnerable 

age indicator shows the lowest values across central and western Australia. Although inner cities 240 

also show low vulnerable age values, the highest values are found in outer suburban LGAs. For no 

vehicle homes, central and north-western Australia have the highest vulnerability values, with lower 

values near and surrounding major cities. The calculated vulnerability index in Figure 6 shows low to 

medium vulnerability values LGAs surrounding cities, with higher vulnerability regions across NT, 

northern QLD, and northern NSW to northern VIC. 245 
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Figure 5. Vulnerability indicator maps of IRSD, vulnerable age groups and no vehicle homes. 

 250 

Figure 6. Vulnerability index maps calculated by Pareto ranking three vulnerability indicators. 
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IRSD patterns show lower vulnerability in major cities, as they are most developed and relatively 

affluent. High vulnerable age group values outside of and surrounding major cities can be explained 

by the >65 age group retiring and relocating out of urban areas (Vintila, 2001). Of the 16 IRSD input 

variables, ‘NOCAR’, was described as the percentage of occupied private dwellings with no car. 255 

Although it is not certain whether this variable is the same as the no vehicle homes indicator used in 

this study from the Number of Motor Vehicles census record, some overlap is to be expected. This 

means regions with high no vehicle home vulnerability values are likely to have their vulnerability 

index overestimated. The fact that NOCAR is only one of 16 variables in the IRSD also suggests 

similarities between the two indicators may be from correlation in other variables instead. 260 

Compared to the exposure index, the transition from patterns in the indicator maps to the 

vulnerability index are not as clear, as Pareto ranking is used instead of equal weighting. Pareto 

ranking was used to address situations where a high value in one indicator would be overlooked 

after being equally weighted with indicators with medium to low values. Instead, it ranks LGAs on 

the higher end if a single indicator’s value causes it to be non-dominated much earlier. However, our 265 

analysis showed that having one indicator with the highest classification value does not guarantee a 

high vulnerability index value. In fact, having two indicators with the highest classification values 

does not guarantee a high value either as can be seen across central and north WA. This is partly 

because within each coloured class, there is a range of values, and only the highest values are picked 

out by Pareto ranking as non-dominated. This suggests the second highest class of values in the 270 

vulnerability index (2nd darkest purple) are also important and possibly underestimated. 

This idea of there being a lot of competition at the higher value range within indicators is highlighted 

by the case of the Maralinga Tjarutja LGA in western SA, which is in the highest vulnerability index 

class. The LGA does not have a recorded IRSD value from the ABS, meaning the region isn’t 

competing for a non-dominated spot on the IRSD axes. This allows the LGA to receive a very high 275 

vulnerability index score from only a very high vulnerability value in the no vehicle home indicator 

alone. 

Overall, the vulnerability index shows higher vulnerability and thus predicts higher risk throughout 

NSW, northern QLD and northern NT. 

3.3. TC Hazards 280 

Hazard maps were created from datasets of chosen hazards of storm surge, flooding, wind and 

landslides as shown in Figure 7. 
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Figure 7. Hazard maps of storm surge, flood, wind and landslides associated with Tropical Cyclones. 285 

Surge heights are seen to be highest in north-western WA and surrounding Darwin, having 100-year 

return period surge heights greater than 3m. Surge hazard is otherwise lower around other parts of 

the country’s northern shoreline and has values of 0 in LGAs not bordering the coastline. Flood 

hazard is shown to have the highest values across northern LGAs, with medium values over much of 

QLD. Wind hazard is more consistent with TC wind speeds highest in coastal LGAs, with hazard 290 

decreasing towards the centre of Australia and further south. Landslide hazard is highest in northern 

WA along with medium values throughout NT and along the Great Dividing Range along the eastern 

coast of the country. 

While it would be expected that the multiple hazards associated with TCs follow the general location 

TCs more commonly make landfall, there are clear differences between hazard maps in Figure 7. This 295 

shows how the physical characteristics of each LGA can change the intensity with which different 

hazards impact different regions. For example, flood and landslide hazards have the potential to 

affect more inland regions while storm surge is only relevant for coastal LGAs and wind more 

uniformly decreases south and inland. These results emphasise the importance of considering the 

multi-hazard nature of TCs and mapping their differing extents.  300 

The storm surge hazard map shows greater than zero values only for coastal LGAs, however, a few 

LGAs may raise concern. The first is East Pilbara, the large LGA in WA with very high surge values. 
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Although most of the LGA is quite far inland and would not be affected by potential storm surge, the 

LGA does border the coastline in its northwest corner. Due to input surge datasets having the format 

of point data dotted every few kilometres along Australia’s coastline and chosen methods averaging 305 

intersecting surge point data to each LGA polygon, East Pilbara was mapped with very high surge 

hazard. For a similar reason of input hazard data only dotting the main coastland, some island LGAs 

were left without a surge value and thus mapped with very low hazard. For example, Tiwi Islands 

north of Darwin, and Mornington Island in north-western QLD. Considering their location and the 

hazard values of neighbouring LGAs, these island LGAs in the country’s north potentially have 310 

medium to very high hazard values rather than none at all.  

An important consideration when evaluating flood and landslide hazards is that a cumulative 

method was used to calculate hazard values from input datasets. Rather than taking averages over 

each LGA as was done for surge and wind, flood and landslide input datasets were high-resolution 

raster maps with many null values. Using an averaging methodology would have described an LGA’s 315 

hazard in proportion to its area, meaning larger LGAs with many flood-prone regions could still have 

a low flood hazard value. Instead, values were summed, meaning greater than zero hazard values 

meant a region had some hazard-prone regions, and high hazard values meant they had more 

regions prone to flooding/landslides regardless of the LGA’s size. While this does mean larger LGAs 

have the potential to reach higher hazard values, this method represents all possible hazards, and 320 

therefore risk, rather than underestimating it due to averaging methods.  

3.4. TC Multi-hazard Risk 

Risk maps were created by multiplying each hazard with the exposure and vulnerability indices. This 

produced the four hazard-specific risk maps in Figure 8, from which a total TC risk map was created 

by equally weighting them as seen in Figure 9. 325 
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Figure 8. Risk maps for each hazard (surge, flood, wind, landslide). 

 
Figure 9. Combined multi-hazard risk calculated by equally weighting four hazard-specific risk maps. 330 

Surge risk is considerable along the northern, western, and eastern coasts, with the highest values 

between Brisbane and Cairns in QLD. Flood risk can be seen to be highest across both NSW and QLD 

with medium values along the top of NT and WA. Risk to the wind is very uncommon at distances 

greater than 500 km inland and south of NSW, with the highest wind risk found along with the 

eastern parts of NSW and QLD. Landslide risk also shows the highest risk in eastern NSW and QLD 335 

with medium risk across northern NT. The combined TC risk map displays some of these more 

prominent patterns from each hazard-specific risk map. For example, eastern NSW and QLD have 

the highest risk followed by medium risk across northern WA and NT. The risk to TCs is very low 

inland of the country surrounding SA, as well as south of NSW in VIC and Tasmania (TAS) states. 

As patterns seen in risk maps can be partially explained by similar patterns found in constituent 340 

layers, it is important to compare them to hazard, exposure and vulnerability layers. While an overall 

TC risk map is useful for such discussions, hazard-specific risks are important to consider and 
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compare at a local level, for example when LGA councils are planning disaster management 

strategies or communicating warnings to residents for an incoming TC. 

From the overall TC risk map in Figure 9, QLD and NSW have the most LGAs with very high-risk 345 

scores, particularly along the eastern coast. This result can partially be attributed to high hazard 

values, as well as high exposure index values with many people and infrastructure built up around 

those regions. Of note is that although TCs generally form over tropical waters and affect regions of 

Australia near the tropics, they intensify away from the equator reaching maximum intensity at 

approximately 17-18°S of the equator (Kuleshov, 2020), which partially explains why risk is not 350 

highest in all northernmost LGAs. Another contributing factor to medium risk values in the country’s 

north is due to there being relatively fewer assets exposed compared to the rest of the country, as 

shown by the exposure index in Figure 4. Continuing moving further south away from the tropics, 

TCs are weakening as sea surface temperatures get colder in extra-tropical regions. Hence, 

substantial reduction of risk is observed in VIC and TAS. Similarly, TCs weaken over land which is why 355 

risk is also very low for central Australian LGAs. The lower risk in these states is supported by 

historical records of TC tracks from 1970-present (Kuleshov, 2020). 

3.5.  Limitations of Risk Assessment 

One of the limitations of this TC risk assessment of Australian LGAs is that indicators were selected 

partially because of availability, and hence may not represent all aspects of hazard, exposure, or 360 

vulnerability. For example, within the vulnerability index, indicators that informed a region’s 

preparedness to natural disaster events were not available. While some LGA councils may have 

informative documents or evacuation plans, it is difficult to determine how well understood they are 

by residents, and the data is not standardised in the format that can be compared against LGAs 

across the country. Additionally, in some cases lower resolution global hazard datasets were used 365 

because they were available, while higher resolution, Australia-specific datasets are yet to been 

created or were inaccessible. 

Being a risk assessment, subjective indicator choices were made which can shift how results should 

be interpreted (Aguirre-Ayerbe et al., 2018; Brooks, 2003). For example, chosen exposure indicators 

identified regions where many lives were exposed alongside physical lifeline infrastructure that 370 

contributes to health and utilities (hospitals, electricity). These indicators however do not necessarily 

represent potential financial losses if businesses and industries were not able to function due to TC 

impact. As a result, discussion of risk map implications would need to stay human-centric. While just 

adding more indicators could be identified as a possible solution, the nature of risk and index 

calculations mean that adding more indicators reduces the importance of each, resulting in a 375 

potentially less informative final risk map. 

Another limitation is that while each indicator map had patterns identified, the discussion was based 

on an incomplete understanding of Australian LGAs. Ideally, formal validation of each indicator with 

local knowledge from people who reside in or manage each LGA would ensure that each 

contributing input to end risk maps were accurately represented. Engagement with indigenous 380 

people would also be an essential aspect of validation so that cultural assets and indigenous 

knowledge are included in the maps.  
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4. Conclusions 

The developed novel methodology for multi-hazard TC risk assessment for Australia and created 385 

maps showed the differences in hazard extent and differing characteristics of each region that made 

an LGA at risk to TCs. Generally, the highest level for all TC-related hazards was found along the 

eastern, northern, and western coasts, with all hazards being weakest far inland and in the southern 

parts of the country. Selected exposure indicators represented human lives as the most important 

asset at risk, which was found to be highest around major coastal cities in each state, while 390 

vulnerability showed more varied spatial distribution. Final TC risk maps suggested most at-risk 

states were QLD and NSW for all hazards, particularly in the states’ eastern regions followed by 

medium risk across Northern Territory and north-west of Western Australia. As with all risk 

assessments, the selected indicators should be considered before using resultant maps to inform 

decisions, and future work includes all-important validation studies. 395 

5. References 

Abuodha, P. A. and Woodroffe, C. D.: Assessing vulnerability of coasts to climate change: A 
review of approaches and their application to the Australian coast, 2006. 

Aguirre-Ayerbe, I., Martínez Sánchez, J., Aniel-Quiroga, Í., González-Riancho, P., Merino, M., Al-
Yahyai, S., González, M., and Medina, R.: From tsunami risk assessment to disaster risk reduction – 400 
the case of Oman, Natural Hazards and Earth System Sciences, 18, 2241-2260, 10.5194/nhess-18-
2241-2018, 2018. 

Amadio, M., Mysiak, J., and Marzi, S.: Mapping Socioeconomic Exposure for Flood Risk 
Assessment in Italy, Risk Anal, 39, 829-845, 10.1111/risa.13212, 2019. 

Anchang, J. Y., Ananga, E. O., and Pu, R.: An efficient unsupervised index based approach for 405 
mapping urban vegetation from IKONOS imagery, International Journal of Applied Earth Observation 
and Geoinformation, 50, 211-220, 10.1016/j.jag.2016.04.001, 2016. 

Arthur, W. C.: A statistical–parametric model of tropical cyclones for hazard assessment, Natural 
Hazards and Earth System Sciences, 21, 893-916, 10.5194/nhess-21-893-2021, 2021. 

Bakkensen, L. A. and Mendelsohn, R. O.: Global tropical cyclone damages and fatalities under 410 
climate change: An updated assessment, in: Hurricane Risk, Springer, 179-197, 2019. 

Bathi, J. R. and Das, H. S.: Vulnerability of Coastal Communities from Storm Surge and Flood 
Disasters, Int J Environ Res Public Health, 13, 239, 10.3390/ijerph13020239, 2016. 

Belluck, D., Hull, R., Benjamin, S., Alcorn, J., and Linkov, I.: Environmental security, critical 
infrastructure and risk assessment: definitions and current trends, Environmental security and 415 
environmental management: The role of risk assessment, 3-16, 2006. 

Bennett, D.: Five years later: Assessing the implementation of the four priorities of the Sendai 
framework for inclusion of people with disabilities, International Journal of Disaster Risk Science, 11, 
155-166, 2020. 

Brooks, N.: Vulnerability, risk and adaptations - A conceptual framework, Tyndall Centre for 420 
Climate Change Research, 2003. 

Burston, J. M., Taylor, D., Dent, J., and Churchill, J.: Australia-wide tropical cyclone multi-hazard 
risk assessment, 185–191 pp., 10.3316/informit.933938862134694, 2017. 

Cardona, O.-D., Ordaz, M. G., Mora, M. G., Salgado-Gálvez, M. A., Bernal, G. A., Zuloaga-Romero, 
D., Marulanda Fraume, M. C., Yamín, L., and González, D.: Global risk assessment: A fully 425 
probabilistic seismic and tropical cyclone wind risk assessment, Int. J. Disaster Risk Reduct., 10, 461-
476, 10.1016/j.ijdrr.2014.05.006, 2014. 

Crichton, D.: The Risk Triangle, Natural Disaster Management, 102-103, 1999. 
Do, C. and Kuleshov, Y.: Tropical Cyclone Multi-Hazard Risk Mapping for Queensland, Australia, 

Natural Hazards, NHAZ-D-21-01044. 2022. 430 

https://doi.org/10.5194/nhess-2022-139
Preprint. Discussion started: 19 May 2022
c© Author(s) 2022. CC BY 4.0 License.



17 
 

Downing, T. E., Butterfield, R., Cohen, S., Huq, S., Moss, R., Rahman, A., Sokona, Y. and Stephen, 
L: Vulnerability indices: climate change impacts and adaptation, UNEP Policy Series, UNEP, 2001. 

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to 
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, 
V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. 435 
Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. 
Zhou (eds.)]. Cambridge University Press. 

Gori, A., Lin, N., and Xi, D.: Tropical Cyclone Compound Flood Hazard Assessment: From 
Investigating Drivers to Quantifying Extreme Water Levels, Earth's Future, 8, 10.1029/2020ef001660, 
2020. 440 

Huang, J., Liu, Y., Ma, L., and Su, F.: Methodology for the assessment and classification of 
regional vulnerability to natural hazards in China: the application of a DEA model, Natural Hazards, 
65, 115-134, 2013. 

Ju, Y., Lindbergh, S., He, Y., and Radke, J. D.: Climate-related uncertainties in urban exposure to 
sea level rise and storm surge flooding: a multi-temporal and multi-scenario analysis, Cities, 92, 230-445 
246, 10.1016/j.cities.2019.04.002, 2019. 

Kuleshov, Y.: Climate Change and Southern Hemisphere Tropical Cyclones International 
Initiative: Twenty Years of Successful Regional Cooperation, in: Climate Change, Hazards and 
Adaptation Options, Climate Change Management, 411-439, 10.1007/978-3-030-37425-9_22, 2020. 

Lavender, S. L. and McBride, J. L.: Global climatology of rainfall rates and lifetime accumulated 450 
rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size, 
International Journal of Climatology, 41, 10.1002/joc.6763, 2020. 

Lianxiao and Morimoto, T.: Spatial Analysis of Social Vulnerability to Floods Based on the MOVE 
Framework and Information Entropy Method: Case Study of Katsushika Ward, Tokyo, Sustainability, 
11, 10.3390/su11020529, 2019. 455 

Marín-Monroy, E. A., Hernández-Trejo, V., Romero-Vadillo, E., and Ivanova-Boncheva, A.: 
Vulnerability and Risk Factors due to Tropical Cyclones in Coastal Cities of Baja California Sur, 
Mexico, Climate, 8, 10.3390/cli8120144, 2020. 

Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact of climate change 
on global tropical cyclone damage, Nature climate change, 2, 205-209, 2012. 460 

Mitsova, D., Esnard, A.-M., Sapat, A., and Lai, B. S.: Socioeconomic vulnerability and electric 
power restoration timelines in Florida: the case of Hurricane Irma, Natural Hazards, 94, 689-709, 
10.1007/s11069-018-3413-x, 2018. 

Murray, V., Abrahams, J., Abdallah, C., Ahmed, K., Angeles, L., Benouar, D., Torres, B., Choe, H. 
C., Cox, S., and Douris, J.: Hazard Information Profiles: Supplement to UNDRR-ISC Hazard Definition 465 
& Classification Review, in: UNDRR-ISC Hazard Definition & Classification Review: Technical Report: 
Geneva, Switzerland, United Nations Office for Disaster Risk Reduction; Paris, France, International 
Science Council, UNDDR, 2020. 

National Research Council: Hazard and Risk Assessment, A Safer Future: Reducing the Impacts of 
Natural Disasters, 2, 1991. 470 

Nelson, E., Saade, D. R., and Greenough, P. G.: Gender-Based Vulnerability: Combining Pareto 
ranking and geostatistics to model gender-based vulnerability in Rohingya refugee settlements in 
Bangladesh, 2020. 

Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F., and Nordbeck, 
O.: Global trends in tropical cyclone risk, Nature Climate Change, 2, 289-294, 10.1038/nclimate1410, 475 
2012. 

Rolfe, M. I., Pit, S. W., McKenzie, J. W., Longman, J., Matthews, V., Bailie, R., and Morgan, G. G.: 
Social vulnerability in a high-risk flood-affected rural region of NSW, Australia, Natural Hazards, 101, 
631-650, 10.1007/s11069-020-03887-z, 2020. 

https://doi.org/10.5194/nhess-2022-139
Preprint. Discussion started: 19 May 2022
c© Author(s) 2022. CC BY 4.0 License.



18 
 

Rygel, L., O’sullivan, D., and Yarnal, B.: A Method for Constructing a Social Vulnerability Index: An 480 
Application to Hurricane Storm Surges in a Developed Country, Mitigation and Adaptation Strategies 
for Global Change, 11, 741-764, 10.1007/s11027-006-0265-6, 2006. 

Scawthorn, C., Schneider, P., and Schauer, B.: Natural Hazards—The Multihazard Approach, 
2006. 

Vintila, P.: Moving out: Aged migration in Western Australia 1991–96, Urban Policy and 485 
Research, 19, 203-225, 10.1080/08111140108727872, 2001. 

Zhang, K., Xiao, C., and Shen, J.: Comparison of the CEST and SLOSH Models for Storm Surge 
Flooding, Journal of Coastal Research, 242, 489-499, 10.2112/06-0709.1, 2008. 

World Meteorological Organization 2021. Tropical Cyclones. Available online: 
https://public.wmo.int/en/our-mandate/focusareas/natural-hazards-and-disaster-490 
riskreduction/tropical-cyclones (accessed on 12/05/2022) 
 

Code/Data availability 

Data used for LGA risk analysis are available from public sources listed in Appendix. 

Author contribution 495 

Conceptualization, C.D. and Y.K.; methodology, C.D. and Y.K.; software, C.D.; validation, C.D.; formal 

analysis, C.D.; investigation, C.D.; resources, C.D. and Y.K..; data curation, C.D. and Y.K.; writing—

original draft preparation, C.D.; writing—review and editing, C.D. and Y.K.; supervision, Y.K.; project 

administration, Y.K. 

Competing interests 500 

Authors declare not competing interest.  

Appendix 

Data table for LGA risk analysis. Links are provided for the data sources as well as the year that the 

dataset was last updated.  

Indicator Dataset used Source Year 

Hazard 

Surge hazard Point feature layer of Storm surge 
run-up height, 100yr return period 

GAR Atlas  2015 

Flood hazard Raster Flood depth inundation, 
100yr return period 

GAR Atlas  2015 

Wind hazard Raster Cyclone wind, 100yr return 
period 

Geosciences Australia  2018 

Landslide hazard Raster Global landslides hazard ARUP  2020 

LGA Exposure 
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Population density  Recorded total number of people 
living in each LGA.  

ABS Census data  2016 

Public hospital  Point feature layer of public 
hospitals around Australia 

 ArcGIS Online Dataset   2019 

Substations  Point feature layer of power 
substations around Australia 

 Geosciences Australia   2016 

Powerlines  Line feature layer of powerlines 
around Australia 

 Geosciences Australia   2016 

LGA Vulnerability 

IRSD  Summary statistic for 
socioeconomic status,  

ABS Census data  2016 

No vehicle homes  Percentage of households within 
each LGA that owns zero vehicles. 

ABS Census data  2016 

Vulnerable age groups  Percentage of LGA population 
that is under 15 or over 65 

ABS Census data  2016 

Shape layers  

LGA polygon layer Shapefile containing the size of 
each LGA as of 2016 

ABS  2016 

 505 
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