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Abstract. Extreme flood (EF) disasters in China are characterized by large influence range, high frequency, strong burst and 

uneven distribution in time and space. Once the EF disaster occurs, it will pose a great threat to the people’s life safety, 10 

economic, natural and social environment. Compared with the hazards and exposure factors of EF, the vulnerability of 

disaster regions shows great differences due to China’s vastness and complex social and environmental background of 

disasters, which leads to less large-scale study at provincial-level on EF vulnerability. This study calculated the vulnerability 

to EF from the favorable and unfavorable factors of flood resistance of four aspects including life, economy, environment 

and society. The Cloud-improved Entropy Method is used to calculate the index weight, and the Fuzzy Variable Theory is 15 

used to calculate the comprehensive vulnerability grads. The vulnerability ranking of 31 provinces or regions in China was 

made according to the differences of population, social structure, economy and environment among these regions. 

Furthermore, synthesizing disaster science and geographic mapping, the spatial distribution map of vulnerability to EF in 

China was generated, which shows that vulnerability to EF in most regions of China is in “moderate” or “severe” grade. The 

spatial distribution of the EF risk vulnerability shows (1) a decreasing trend from the regions with high population density to 20 

regions with low population density, (2) a decreasing trend from economically developed regions to economically backward 

regions, (3) a decreasing trend from the eastern coastal regions to the central agricultural provinces and then to the southwest, 

northwest and northeast regions in China. The outcome of this study maybe one of the first efforts providing research 

database for vulnerability to EF in large scale of China, and it is useful for future regional research and risk management. 

1 Introduction 25 

In recent years, climate change has caused frequent extreme flood (EF) (Li, et al., 2021; Tebaldi, et al., 2006). EF caused by 

rainstorms, typhoons (hurricanes), flash flood and dam break flood have brought extremely severe challenges to mankind 

(Ge, et al., 2020, 2021). China is one of the countries most affected by EF (Ge, et al., 2017, 2020; Li, et al., 2019) From July 

6 to 12, 2018, Sichuan Basin and some areas in Northwest China were hit by heavy rainfall, causing flood, debris flows, hail 

and other disasters. According to statistics, the disaster affected 6.113 million people, 25 casualties and missing, 12,000 30 
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houses collapsed and 195,000 houses were damaged to varying degrees, 385,000 hectares of crops were affected, the direct 

economic loss was 33.42 billion yuan in 4 provinces of Chongqing, Sichuan, Shaanxi and Gansu (Ministry of Emergency 

Management of the People’s Republic of China, 2018). On July 2019, due to days of heavy rainfall, catastrophic flood 

occurred in Pingxiang of Jiangxi, Leiyang of Hunan and other middle and lower reaches of the Yangtze River, resulting in 

10.319 million people affected, 37 casualties, 3 people were missing, 21,000 houses collapsed, 171 thousand hectares of 35 

cultivated land failed to harvest, and a direct economic loss of 32.43 billion yuan (Ministry of Emergency Management of 

the People’s Republic of China, 2019). From July 17 to 23, 2021, Henan Province was hit by a torrential rain rarely seen in 

history and a serious flood disaster occurred. The disaster affected 14.786 million people in 150 counties (cities and districts) 

of Henan Province, 398 people died and were missing due to the disaster, and the direct economic loss was 120.06 billion 

yuan. (Ministry of Emergency Management of the People’s Republic of China, 2020). It can be seen that EF has caused non 40 

negligible losses to downstream life, economy and environment. 

Disaster vulnerability is the loss faced by human society because of disasters bearing capacity of human and society under 

various pressures and negative influences. It is not only the loss of individual, but also the loss of the whole society. Disaster 

vulnerability involves people's life safety, health, living conditions, social wealth, production capacity, social order, social 

recovery ability and so on. People gradually realize that it is more important to improve the adaptability of disaster-bearing 45 

bodies than to change the disaster-causing factors in order to reduce vulnerability. Ziegler et al. (2016) investigated the life 

loss vulnerability of deadly flash flood and debris flows in Ladakh (India), researched the impact of the disaster governance 

strategies on the reduction vulnerability in Ladakh. Ge et al. (2021) researched the risk of life-loss in the case of dam breach 

with the interval analysis, considering the uncertainty and the mechanism of the vulnerability influencing index. Lee et al. 

(2021) assessed the vulnerability of the Bangladesh region to flood on socioeconomic, health and coping capacity 50 

vulnerability and composite social-health vulnerability. Moreira et al. (2021) highlight global trends and future research 

directions by providing an updated description of the flood vulnerability indices. Ritter et al. (2020) carried out the real time 

assessment of flash flood by using a regional high resolution method. It is pointed that the whole region should be 

considered in the study of flood disasters. Adikari et al. (2010) researched the vulnerability of regions in Asia to flood and 

their impacts, and put forward that global changes, internal migration patterns, development practices and political instability 55 

factors have an impact on vulnerability of EF. Zhang et al. (2019) studied the impact of flood in Anhui province of China in 

2016. The flood risk agencies are advised to develop programs to prevent and control flood risk especially in regions close to 

dams and among high vulnerability areas. Duo et al. (2020) developed a hazards model to evaluate the coastal flood’s impact. 

The process was taken into account the uncertainty of the vulnerability and indicated the damage showing great spatial 

difference. Taylor et al. (2011) studied the threat of large-scale flood to environments, and pointed out that the risk are 60 

greatly affected by the group vulnerability in the region. The above shows that the research on vulnerability has attracted 

extensive attention, and the research on regional vulnerability has gradually become a hot spot.  

Many scholars have done a lot of research on the affecting factors and assessment of regional vulnerability. Yu et al. (2020) 

assessed the social vulnerability of Shenzhen, China, to storm surges. Zeng et al. (2012) used the method based on remote 
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sensing to establish a model of social vulnerability for county-scale regions. He put forward a new concept defined as 65 

“population density based on land use”, with other two indicators: age structure and distance to hospital. Min Kim et al. 

(2021) assessed the risk of flood and flashing flood based on three dimensions: exposure, sensitivity, and adaptive capacity. 

Li et al. (2018) and Li et al. (2020) studied the factors affecting the downstream environment and the vulnerability of life 

loss and analyzed the weight distribution of influencing factors, providing a technical basis for future research. Li et al. 

(2021) suggested that the land use types are impact by the EF and show great geomorphic variation. Tanner and Arvai (2018) 70 

focused on large-scale regions events that affect tens of thousands of people, and revealed that judgments about 

vulnerability—as a function of how people perceive physical distance—do differs according to one's evacuation experience. 

Chang and Chen (2016) studied spatial heterogeneity of local flood vulnerability indicators and pointed out that regions 

show great differences in the face of disasters. Muller (2013) comprised the interpretation of very high-resolution satellite 

data, the analysis of GIS, and census data as well as house-hold surveys and expert interviews, to researched flood 75 

vulnerability map at the scale of the administrative unit of a building block. Seo et al. (2020) monitored and assessed the 

ecological risk and its spatial distribution of the Yellow and Bohai seas. Chen et al. (2021) analysis flood risk and resulting 

loss in southern China by utilizing a method combing entropy weight and TOPSIS, and he assess southern China from both 

temporal and spatial perspectives. Taylor et al. (2013) studied the exposure risks in flood via GIS method and estimated the 

spatial flood vulnerability across the London. Liu et al. (2016) developed a household social vulnerability index (HSVI) for 80 

flood disasters and used it to assess the social vulnerability of rural households in mountainous areas in western Henan 

Province, China. You and Zhang (2015) assessed the flood vulnerability of the Huaihe River Basin in China based on the 

catastrophe evaluation method. 

The above researches shows that there are great differences in vulnerability between different regions. Therefore, for China, 

due to the great differences in geographical location, economy, environment and society among provinces, it is necessary to 85 

conduct provincial scale analysis. However, most of the current researches are aimed at a specific region (such as a 

community, a city or a watershed, etc.), and only consider the impact caused by environmental differences. There is still a 

lack of vulnerability analysis on China's provincial scale and considering the impact of social factors. Given the 

aforementioned problems, a systematic evaluation method of the vulnerability at provincial level in China is explored in this 

study. The objective of this study is as follow: (1) In addition to environmental factors, social factors are also considered. 90 

Construct a more comprehensive in-dex system in terms of favorable and unfavorable effects to resistance EF；(2) Variable 

Fuzzy set model is constructed to assess the grade of EF vulnerability of 31 provinces or regions in China by processing the 

statistical data within these provinces and regions；(3) The calculation results will be analyzed to explore the spatial 

distribution of EF vulnerability of scale in provinces of China; (4) It will provides important decision-making basis for flood 

control, disaster reduction, disaster relief and disaster reduction, and provides reference for similar research in the future. 95 
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2 Materials and Methods 

 

2.1 Evaluation Method 

Based on the fuzzy uncertainty of the risk indicator of EF vulnerability, this study puts forward the Variable Fuzzy Set 

theory and Cloud-improved Entropy weighting method (Li et al., 2018, 2019). The solidification of membership degree in 100 

traditional fuzzy mathematics theory is corrected by using dynamic membership function (Li et al., 2018, 2019; Ge et al., 

2020). In this manuscript, we make full use of the expectation of cloud model and cloud entropy parameters, learn from the 

processing method of entropy weight method for index differences, take into account the subjectivity and objectivity of 

weight, and scientifically reflect the importance of risk factors (Li et al., 2018, 2019; Ge et al., 2020). The evaluating process 

of vulnerability to EF are shown in Figure1. 105 

Index

Improved Entropy 

Method
Quantified indicators

Grade standard

Vulnerability results

 Stability 

analysis

Variable Fuzzy 

Model

Vulnerability 

assessment grade

Spatial distribution of 

vulnerability

Geographic data 

processing

Disaster 

classification

Weight of 

indicators

Stable

Not 

stable

 

Figure 1 Spatial distribution calculation process of vulnerability facing EF 

https://doi.org/10.5194/nhess-2022-136
Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.

Evidenziato
risk or vulnerability?

Evidenziato



5 

 

2.1.1 Index System 

This study combined with the theory and the achievement of the research on natural disaster vulnerability (Guo et al., 2013), 

general vulnerability index (PVI) (Cardona et al., 2011) and social vulnerability assessment index (Cutters, 1996), to 110 

establish the index system of vulnerability facing EF and divided them into three layers: target layer, system layer and index 

layer.  

The target layer is the vulnerability to EF disaster. The system layer is based on the concept and connotation of EF disaster 

vulnerability, which is embodied in the environment, economy, life and society as the key factors affecting the vulnerability 

of the disaster bearing body. The index layer reflects the relationship structure of the system behavior and represented by a 115 

certain comprehensive index. It can be further divided into two categories: favorable and unfavorable of flood resistance 

(Gruijters and Fleuren, 2017). Favorable index describes the resilience of the disaster affected body and its ability to recover 

after the disaster, including population at risk (Rp), per capital GDP (Gp), water environment (WE) and soil environment (SE), 

while unfavorable ones describe the sensitivity of the disaster affected body including self-rescue ability (SA), transport 

network density (TD), provincial importance (PI) and social disaster tolerance index (SI). To sum up, the index system of the 120 

vulnerability to EF disasters is shown in Table 1. 

Table 1 Index system of vulnerability factors of EF 

Target layer System layer Index layer 

Index of vulnerability factors of 

EF disaster 

Life-loss vulnerability 
Risk population (Rp) 

Self-rescue ability (SA)1 

Economic vulnerability 
Per capital GDP (Gp) 

Transport network density (TD) 

Environmental vulnerability 
Water environment (WE) 

Soil environment (SE) 

2.1.2 Calculating Model 

(1) Construction of the Matrix of the evaluation value and standard value of index 

If there are n sample sets of provinces or regions to be evaluated, as {X1, X2,···,Xn}, each sample has m index eigenvalues, 125 

then the matrix of the sample eigenvalue to be evaluated can be expressed as: 
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(2) Determination of matrix of the standard interval of indicators 

If the evaluation interval of the indicators of the samples to be evaluated is divided by c levels, the matrix of the standard 

interval of evaluation indicators is: 

     
     

     

  

c c

c c

ih ih

c c
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(2) 

Where [aih, bih] is the standard interval of indicators i of level h, and aih, bih are the upper and lower limits of the interval. 130 

(3) Determination of the matrix of standard interval point value 

Mih is the point value when Index i (i = 1, 2, ··· m) in the standard interval [aih, bih] has a relative membership degree of 1 to 

the level h. Mih can be determined based on the physical meaning and the actual situation, for level 1 Mi1=ai1, for level r 

Mir=ai1r, for intermediate level l, when r is odd, Mil = (ai1+bil) /2. The general model of point value Mih satisfying the above 

conditions is: 135 
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. By formula (3), matrix  ihM M  can be obtained 

from the matrix Y. 

(4) Determination of relative membership degree of the indicator xij to each level 

If the evaluation indicator xij of the sample uj falls into [Mih，Mi(h+1)], the interval between the adjacent two levels of the 

matrix M, level h and level (h +1), then the relative membership degree of Index i to level h can be calculated by the 140 

following formula: 
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According to physical concept, when Index i is less than level h and greater than level (h+1), its relative membership should 

be equal to 0, that is: 

 i h j ji h
u , u  

   （ ） （（ ）)（ ） （ ）
 

(5) 

When xij falls outside the range of Mi1 and Mic, according to physical concept: 

   2  1i1 j i ju = u = 
 

(6) 
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(5) Determination of the Comprehensive Membership Degree of the Index 145 

The comprehensive membership vectors are normalized, and the risk grade eigenvalues of the evaluation samples are 

calculated by the level eigenvalue formula: 

1

c

hh
H v h


   

(7) 

Where hv  is the normalized relative membership degree; H is the level eigenvalue of the evaluation sample. 

2.2 Data source 

In order to conduct vulnerability analysis more accurately, the data includes mainly official government yearbooks, reports 150 

and online official database. RP, SA, GP and TD are calculated according to the statistics of the yearbook data (Sheng and Ye, 

2014); The WE and SE are based on the basic data and government gazette of the Resource and Environmental Science Data 

Center of the Chinese Academy of Sciences (Resource and Environment Science and Data Center); PI and SI are based on 

the analysis of previous research results (Bankoff, 2007; Zhang, 2008). Evaluation indexes are constructed in the same type 

of data source for the consistency of data caliber. 155 

2.2.1 Index value basis and its standard 

(1) Risk population (RP) 

In general, a disaster’s impact on a region has a significant correlation with its population density. The safety of people in a 

region is one of the most fundamental indicators of a vulnerability. It is indicated through the large-scale population density 

of the provinces or the regions, which can reflect the risk of the downstream population more reasonably. From a spatial 160 

perspective. The eastern half of China has a much higher population density and that of the lands of the west and the 

northwest. The proportion of permanent residents in the eastern, western, central and northeastern regions is 37.98%, 27.04%, 

26.76% and 8.22%, respectively. The total population of such provinces as Guangdong, Shandong, Henan Sichuan and 

Jiangsu is large. The population density is relatively large in the eastern coastal regions such as North China, the Yangtze 

River Delta, and the Pearl River Delta, as well as along the Sichuan Basin and the Longhai railway (Census Office of the 165 

State Council, 2012; Ministry of Civil Affairs of the People's Republic of China, 2010). The RP is calculated according to the 

following formula: 

= /PR P A  (8) 

Where: RP denotes the risk population; P denotes the regional population; A denotes the regional area. 

(2) Self-rescue ability (SA) 

The young and middle-aged populations are physically stronger, so they tend to have the ability to rescue themselves and 170 

others when disasters occur. Therefore, they are regarded as the main social force for resuming production and life after a 

disaster. According to the China and international labor force classification standards (Samuel and Mirjam, 2018; Blien and 
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Hirschenauer, 2018; Du et al., 2019; National Bureau of Statistics of the People's Republic of China, 2010), the 15 to 64 

year-old is considered as the labor force. The SA is calculated according to the following formula: 

14 651AS = - N + N / N（ ）  (9) 

Where: SA denotes the proportion of self-help population; N14 denotes the number of people under 14 years old; N65 denotes 175 

the number of people over 65 years old；N denotes the total region population. 

(3) Per capital GDP (GP) 

Regional and urban-rural disparities are the important factors leading to regional disparities in disaster prevention in China. 

In terms of economic development, the eastern regions are the most developed, the central regions the second, and the 

western regions are the least developed. The economic development gap among these three regions is obvious. From the 180 

perspective of losses caused by disasters, the more intensive social and economic activities of an area, the more its social 

assets exposed to disasters due to the concentration of social wealth. Once damaged by disasters, the area will suffer greater 

economic losses (National Bureau of Statistics of the People's Republic of China, 2010). This study divides China's per 

capital GDP according to the adjustment of the World Bank's classification of “high, middle and low-income” economies in 

2013, with the statistics and ranking of China's per capital GDP in 2013. GP is calculated according to the following formula: 185 

/P TG G N  (10) 

Where: Gp denotes the per capital GDP, GT denotes the total GDP of the region, N denotes the total population. 

(4) Transport network density (TD) 

Convenient transportation leads to the efficient materials rescue, medical rescue and fire rescue. In terms of the distribution 

of natural environment, land resources and traffic in China, regions in southwestern and western China often lie near the 

rivers in a striplike shape, accompanied by mountains. This type of terrain condition is greatly unfavorable for the relief and 190 

recovery work after the EF disasters. TD is calculated according to the following formula: 

/D TT L A  (11) 

Where: TD denotes the traffic density, LT denotes the regional total highway length, A denotes the measure of regional area. 

(5) Water environment (WE) 

Water environment refers to that the pollutants around the downstream river, pesticide residues in farmland, domestic 

garbage of downstream residents, industrial waste and construction waste of downstream cities and towns flow into the 195 

downstream water body due to flood discharge, impact and entrainment, resulting in significant changes in water quality in 

the river. The decline of water quality will affect the survival and reproduction of aquatic animals and plants, the drinking 

water safety of residents, and the production of industry and agriculture. In 2013, the Ministry of Water Resources evaluated 

the water quality of 208,000 km of rivers in China. Based on the basic geographic data of the Resource and Environment 

Science Data Center of the Chinese Academy of Sciences and the survey of 208,000 km of rivers in China in the Water 200 

Resources Bulletin of 2013, the water quality of the southwest and northwest rivers is excellent, the water quality of the 
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Pearl and southeast rivers is good, the water quality of the Yangtze and Songhua rivers is medium, the water quality of the 

Yellow, Liaohe, Huaihe river is poor, and Haihe rivers is worst. The spatial distribution data of nine catchments is shown in 

Fig. 2. 

 205 

Figure 2 Spatial distribution data of nine catchments in China 

(6) Soil environment (SE) 

Soil environment refers to the change of soil quality under the comprehensive influence of soil ecological indicators, organic 

matter content and damage degree of pollution sources in the downstream area caused by flood. This change is mostly 

reflected in malignant changes, which leads to the decline of soil quality grade, thus affecting the growth of plants and trees, 210 

the decline of crop yield and quality, and even the toxic substances contained in the polluted soil are enriched in the fruits, 

and people and livestock are poisoned after eating. Considering the vastness of China, it is impossible to get accurate soil 

environmental quality reports for each province or city. So the division is based on the vulnerability of land types according 

to the basic geographic data of the Resource and Environment Science Data Center of the Chinese Academy of Sciences. 

According to their sensitivity to EF, settlements and wetlands are the most vulnerable one to EF, desert ecosystems are the 215 

least vulnerable one to EF, and the vulnerability of farmland, grassland and forest ecosystems to EF is medium. The spatial 

distribution of ecological environment in China is shown in Figure. 3. 
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Figure 3 Spatial distribution data of terrestrial ecosystem types in China in 2010 

(7) Provincial importance (PI) 220 

According to the administrative level of provinces and cities, this study takes the economy, politics, ethnic minority groups 

distribution, railway, agricultural output value as the relevant factors. Some provinces have a greater influence on national 

railways and agriculture, such as Henan and Hubei, and some provinces and cities, such as Beijing and Shanghai, enjoy 

higher administrative levels and political importance, while they are more vulnerable to EF. 

(8) Social disaster tolerance index (SI) 225 

Because of the great differences in disaster relief funds, disaster awareness and reconstruction ability between the developed 

regions and the underdeveloped ones, the influence on the society vulnerability of disaster varies. According to the previous 

research results focusing on the impact of the social impact of disaster (Zhang, 2008; Ge et al., 2020), the social disaster 

tolerance index reflects the disaster resistance, disaster relief and recovery ability of provinces and cities. The disaster 

bearing capacity of the regions can be reflected more accurately and objectively by analyzing them from multiple 230 

dimensions. 

2.2.2 Rating Standard 

This manuscript classify the degree of flood risk vulnerability and divides the vulnerability interval into five grades: slight 

vulnerability, low vulnerability, moderate vulnerability, high vulnerability and very high vulnerability. Based on the Graham 

method and previous research results (Scheuer et al., 2011), as well as the analysis of existing factors above, the criteria of 235 

influencing factors of vulnerability facing EF are shown in Table 2. 

Table 2 Criteria for determining the influencing factors of flood risk vulnerability 
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System layer Index layer 
Level 1 Level 2 Level 3 Level 4 Level 5 

Slight Low Moderate High Very high 

Life-loss 

vulnerability 

RP(people/km2) Below 250 250-500 500-750 750-1000 Above 1000 

SA (%) Above 78.88 75.07-78.88 71.26-75.07 67.45-71.26 Below 67.45 

Economic 

vulnerability 

GP (¥) Below 39000 39001-52000 52001-65000 65001-78000 Above 78000 

TD (km/km2) Above 1.4 1.1-1.4 0.7-1.1 0.4-0.7 Below 0.4 

Environmental 

vulnerability 

WE [0-0.2] (0.2-0.4] (0.4-0.6] (0.6-0.8] (0.8-1] 

SE [0-0.2] (0.2-0.4] (0.4-0.6] (0.6-0.8] (0.8-1] 

Social 

vulnerability 

PI [0-0.2] (0.2-0.4] (0.4-0.6] (0.6-0.8] (0.8-1] 

SI Above 3.04 2.81-3.04 2.58-2.81 2.35-2.58 Below 2.35 

(1) Quantitative value of indicators 

According to the data base and value basis mentioned in the preceding section, the survey data and data are sorted out, and 

the values of 31 provinces and cities (Hong Kong, Macao, and Taiwan's data are not included) in China are obtained as 240 

shown in Table 3. 

Table 3. Vulnerability influencing factor of 31 regional value 

Province/city 

region  
RP (people/km2) SA (%) GP (¥) TD (km/km2) WE  SE SI PI 

Beijing  1195.09 82.7 94238 1.26 0.19 0.81 3.05 0.99 

Tianjin  1100.16 81.68 101689 1.22 0.12 0.79 2.76 0.78 

Hebei  487.1 75.02 38835 0.97 0.08 0.85 2.49 0.38 

Shanxi  259.57 75.34 34901 0.86 0.26 0.58 2.2 0.24 

Inner Mongolia  63.73 79 68277 1.12 0.81 0.41 2.97 0.33 

Liaoning  313.99 78.05 61745 0.67 0.38 0.81 2.82 0.46 

Jilin  168.8 79.04 47198 0.53 0.35 0.61 3.29 0.39 

Heilongjiang  92.52 79.72 38602 0.25 0.29 0.41 3.1 0.34 

Shanghai  3630.49 81.25 90749 2.49 0.56 0.78 3.13 0.99 

Jiangsu  832.28 75.72 74699 1.47 0.32 0.82 2.78 0.79 

Zhejiang 599.76 76.74 68593 1.13 0.52 0.41 2.85 0.81 

Anhui  528.32 73.09 31795 1.18 0.49 0.83 2.45 0.24 

Fujian 582.26 75.82 58057 0.87 0.78 0.38 3.03 0.58 

Jiangxi 327.42 71.2 31836 0.95 0.51 0.46 2.68 0.32 

Shandong 616.65 74.65 56463 1.46 0.31 0.85 2.7 0.62 

Henan 654.3 71.31 34187 1.53 0.3 0.91 2.66 0.57 
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Hubei 387.79 76.53 42686 1.11 0.48 0.67 2.68 0.43 

Hunan 341 72.51 36906 0.96 0.51 0.48 2.62 0.52 

Guangdong 1118.67 74.44 58678 1.11 0.7 0.42 2.97 0.9 

Guangxi 256.99 69.2 30709 0.45 0.77 0.46 2.79 0.11 

Hainan 486.6 74.95 35491 0.69 0.79 0.39 2.56 0.06 

Chongqing 551.17 63.64 42977 1.52 0.55 0.61 2.45 0.79 

Sichuan 374.46 71.59 32516 0.98 0.54 0.61 2.69 0.58 

Guizhou 232.58 66.5 22980 0.87 0.57 0.51 2.12 0.13 

Yunnan 118.55 72.14 25158 0.54 0.9 0.48 2.12 0.08 

Tibet 16.83 63.91 26071 0.06 0.99 0.61 2.65 0.52 

Shaanxi 265.08 76.48 42752 0.85 0.31 0.52 2.22 0.48 

Gansu 119.04 73.83 24442 0.42 0.87 0.31 2.3 0.05 

Qinghai 53.55 75.49 36657 0.28 0.85 0.39 2.13 0.17 

Ningxia 112.49 71.71 40174 0.39 0.85 0.42 2.86 0.06 

Xinjiang 36.03 71.13 38114 0.12 0.96 0.15 2.65 0.74 

3 Results 

3.1 Weight determination 

In view of the problems of strong subjectivity of expert scoring, difficult index comparison and too average weight 245 

distribution in the traditional method of determining weight when there are many indicators, the entropy weight method is 

improved by using the cloud model, and the cloud entropy is fully considered when applying SCM (Statistical Cloud Model) 

to convert the subjective opinions of experts, so as to obtain more scientific and accurate weight calculation results (Li et al., 

2018, 2019; Ge et al., 2020). According to the expert’s scoring results, the corresponding influencing factor indicators are 

extracted, and the weight of the indicators is calculated by using the Cloud-improved Entropy weight method (Li et al., 2018, 250 

2019; Ge et al., 2020). 

Suppose there are n indicators (column vectors) and m experts (row vectors). Each indicator computes the expectation and 

variance according to the cloud model. The statistical equation for calculating the jth indicator is as follows. 

m
j j ij

i
Ex x x

m 


    (i=1,..,m; j=1,…,n) (12) 
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( jEn  ) 

Where: Ex is expectation, EN is entropy, HE is hyper-entropy,j is weight. If the Enj is not equal to 0, the equation of the 

weight is revised and the cloud entropy is involved in the calculation. The larger the cloud entropy, the more divergence of 255 

opinions the expert has on the index, so the weight of the index should be reduced. The smaller the entropy is, the smaller the 

expert’s disagreement on the indicator, so the weight of the indicator should be increased. When the minimum entropy Enj is 

equal to 0, indicating that the indicators of the experts have the same score, then the weight of the equation remains 

unchanged. According to the above equations, the weight calculation results are shown in Table 4. 

Table 4 Weights distribution of vulnerability influencing factor 260 

Index RP SA GP TD WE SE SI PI 

Weight 0.211 0.135 0.108 0.106 0.109 0.109 0.114 0.108 

3.2 Results of vulnerability level 

When the index of 31 provinces and municipalities substituted into the corresponding scope of matrix, applied with the 

Variable Fuzzy comprehensive evaluation model form formula (1) to (4), the corresponding subjection matrix of each level 

could be calculated. With different variable parameter combination, after the stability and rationality of different eigenvalue 

scopes are analyzed, the level eigenvalues could be calculated by formula (6) and (7). The result is demonstrated in Table 5. 265 

Table 5 Weights distribution of vulnerability influencing factor 

Province/City a=1，p=1 a=2，p=1 a=1，p=2 a=2，p=2 mean value of H 

Beijing 3.423 3.963 3.319 3.760 3.616 

Tianjin 3.454 3.922 3.300 3.689 3.591 

Hebei 2.684 2.560 2.786 2.611 2.660 
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Shanxi 2.447 2.144 2.609 2.260 2.365 

Inner Mongolia 2.460 2.120 2.514 2.007 2.275 

Liaoning 2.636 2.261 2.834 2.364 2.524 

Jilin 1.998 1.846 2.073 1.759 1.919 

Heilongjiang 1.673 1.556 1.701 1.491 1.605 

Shanghai 3.804 4.686 3.481 4.224 4.049 

Jiangsu 3.533 3.688 3.503 3.585 3.577 

Zhejiang 3.062 2.948 3.169 2.971 3.038 

Anhui 2.966 2.981 2.970 2.956 2.968 

Fujian 2.829 2.865 2.862 2.852 2.852 

Jiangxi 2.614 2.690 2.513 2.498 2.579 

Shandong 3.234 3.046 3.308 3.115 3.176 

Henan 3.244 3.182 3.135 3.154 3.179 

Hubei 2.718 2.564 2.763 2.548 2.648 

Hunan 2.721 2.871 2.520 2.590 2.675 

Guangdong 3.461 3.398 3.535 3.571 3.491 

Guangxi 2.388 2.137 2.526 2.321 2.343 

Hainan 2.559 2.430 2.656 2.462 2.527 

Chongqing 3.552 3.609 3.457 3.405 3.506 

Sichuan 2.854 2.967 2.632 2.693 2.786 

Guizhou 2.735 2.441 2.782 2.496 2.613 

Yunnan 2.561 2.011 2.660 2.204 2.359 

Tibet 2.720 2.072 2.810 2.315 2.479 

Shaanxi 2.582 2.371 2.668 2.401 2.506 

Gansu 2.341 1.662 2.560 1.988 2.138 

Qinghai 2.317 1.653 2.518 1.882 2.092 

Ningxia 2.234 1.714 2.472 1.892 2.078 

Xinjiang 2.461 1.725 2.701 2.152 2.260 

4 Discussion 

According to the calculation results of table 5, it is sorted in Figure. 4. 
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Figure 4 Ranking of vulnerability levels in each province/region 270 

4.1 Vulnerability spatial distribution results 

According to the guidelines of the Natural Disaster Risk Classification Method (Zhang and Li, 2014) and grading methods of 

natural disaster risk issued by the Ministry of Civil Affairs of the People's Republic of China (2012), in this manuscript, an 

average and second average analysis are performed on the level feature value data of the vulnerability. The grade data is 

divided into four levels: “slight”, “moderate”, “severe” and “extremely serious”. ArcGIS9 software is used to convert the 275 

original geographic map into a shape format, and the coordinate map is converted into a Gauss Kruger projection map. The 

spatial distribution of vulnerability facing EF in China is shown in Figure 5. 
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Figure 5 Spatial distribution of vulnerability to EF in China 

It can be seen from the Fig. 5： 280 

(1) The “extremely serious” grades of vulnerability to EF are in Beijing, Shanghai, Tianjin, Guangdong and Jiangsu, which 

are mostly developed municipalities or provinces with large populations. 

(2) Hebei, Henan, Shandong, Sichuan, Chongqing, Hunan, Hubei, Anhui, Zhejiang and Fujian are the provinces or cities 

with the “severe” level of vulnerability to EF. Most of the provinces are in the Yangtze River, Yellow River and Huaihe 

River basins with large populations and relatively developed economies. 285 

(3) The provinces with “moderate” level of vulnerability are Jilin, Liaoning, Inner Mongolia, Shanxi, Shanxi, Ningxia, 

Qinghai, Gansu, Xinjiang, Tibet, Yunnan, Guizhou, Jiangxi and Guangxi, which are mainly in the west and northwest of 

China. Most of them have relatively low population density and are less developed in Northeast China. 

(4) Heilongjiang province is only one with “slight” vulnerability to EF. 

4.2 The spatial distribution law of the vulnerability to EF in China 290 

(1) From the perspective of population density, the distribution of vulnerability facing EF in China shows a decreasing trend 

from a region with a high population density to one with a low population density. 

(2) From the perspective of economic development, the distribution of vulnerability to EF in China shows a decreasing trend 

from developed regions to backward ones. 

(3) From the perspective of geographical space, the distribution of vulnerability facing EF in China shows a decreasing trend 295 

from the eastern coastal regions to the central agriculturally developed provinces, and then to the southwest, northwest and 

northeast regions. 

In general, the vulnerability to EF in most regions of China is in “moderate” or “severe” grade. Developed province-level 

municipalities and the provinces with a large population are in extremely serious grade, even though they are strong in 

disaster prevention and control capabilities. The regions in the Yangtze River, the Yellow River and the Huaihe river basin 300 

have a large population, and most of them are major grain-producers and economically developed provinces in China. When 

EF disaster happens the loss will be very serious. So more attention should be paid to these regions. With the exception of 

Heilongjiang, most of the provinces or regions, such as those in the northwest, southwest and northeast China, are ethnic 

minority regions and economically underdeveloped regions. Though the vulnerability in these regions is lower, but they have 

a low traffic road network density, resulting in weak disaster-carrying capability and the disaster reduction capability. Once 305 

serious EF disasters occur, they will bring great difficulty to the transfer of affected people and property, and are likely to 

cause indirect losses triggered by poor disaster relief and slow recovery, greatly threatening the downstream society. 

Heilongjiang province has become the only one whose vulnerability facing EF disasters is slight. The reasons include its low 

population density and high proportion of labor force, and its high disaster prevention and relief capability. 
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5 Conclusions 310 

The spatial distribution of vulnerability to EF in China varys, and the distribution of disaster-bearing bodies such as 

population, economy and natural environment also varies greatly with the regions. In this study, the spatial distribution of 

vulnerability to EF in China is analyzed based on the disaster system theory. 31 provinces or regions in China are taken as 

research units. The favorable and unfavorable aspects of flood resistance of vulnerability of life, economy, environment and 

society are taken as evaluation indexes, which were processed by the Cloud-improved Entropy Weight calculation model 315 

and the Variable Fuzzy Set model to obtain the vulnerability level. Finally, the spatial distribution pattern and distribution 

law of vulnerability to EF disaster in China are studied via statistical yearbooks, bulletins and geographic information data. 

The results show that the vulnerability to EF disaster in China is mainly in the moderate or serious level. The distribution of 

vulnerability to EF shows a decreasing trend from regions with a high population density to one with a low population 

density, from economically developed regions to economically backward ones, and from the eastern coastal regions to the 320 

central agriculturally developed provinces and then to the southwest, northwest and northeast regions. This manuscript 

studies the vulnerability at provincial scale in China, plays a guiding role in improving the disaster resistance ability of local 

governments, and puts forward feasible research ideas for the follow-up vulnerability research. 
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