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Abstract. This article presents a framework for semi-automated building damage assessment due to earthquakes from remote

sensing data and other supplementary datasets, while also leveraging recent advances in machine-learning algorithms. The

framework integrates high-resolution building inventory data with earthquake ground shaking intensity maps and surface-level

changes detected by comparing pre- and post-event InSAR (interferometric synthetic aperture radar) images. We demonstrate

the use of ensemble models in a machine-learning approach to classify the damage state of buildings in the area affected by an5

earthquake. Both multi-class and binary damage classification are attempted for four recent earthquakes and we compare the

predicted damage labels with ground truth damage grade labels reported in field surveys. For three out of the four earthquakes

studied, the model is able to identify over fifty percent or nearly half of the damaged buildings successfully when using binary

classification. Multi-class damage grade classification using InSAR data has rarely been attempted previously, and the case

studies presented in this report represent one of the first such attempts using InSAR data.10

1 Introduction

In the immediate aftermath of an earthquake, timely and reliable assessment of the impact in terms of the damage sustained by

built assets and the associated repair and replacement costs assumes a crucial role in the strategic organization and prioritization

of the response and recovery efforts. Selection of a particular approach for damage and loss evaluation typically involves a

trade-off between the level of details collected and the timeliness of evaluation.15

Within the public sector, estimation of damage and loss after a natural disaster is typically performed through field missions

using paper forms, or more recently, data capture tools on tablet and mobile devices (Esri, 2021; United Nations Development

Programme, 2021). This approach requires the mobilization of technical experts to the affected areas. While field-surveys

still remain the most accurate solution, they can be highly resource intensive and time-consuming for disasters affecting large

areas. Lack of available and experienced personnel can also be an issue especially for large scale events. Furthermore, for some20

disasters it might not even be possible to access some of the affected regions due to disruption of the transportation network.
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Completing such detailed damage assessments for moderate to large events can take weeks, if not months (Silva et al., 2018).

For instance, collection and compilation of building-level damage data after the 2015 M7.8 Gorkha earthquake and landslides

in Nepal continued for over seven months (Silva et al., 2018).

Remote sensing data offers advantages over ground-inspection in terms of its collection speed and spatial coverage, par-25

ticularly when the emphasis is less about producing a detailed and highly accurate building-level inventory of damage, but

on providing rapid information about the potential locations, extents, and severity of damage. In recent years the improve-

ment of the level of detail, spatial resolution, and reduced latency of Earth-observation (EO) data has encouraged a variety of

applications in disaster damage assessment. Dell’Acqua and Gamba (2012); Dong and Shan (2013); Plank (2014); Ge et al.

(2020) provide thorough reviews of current methods for earthquake-induced building damage detection using EO data. Opti-30

cal EO data is currently available at sub-meter spatial resolution from several satellites, making it particularly appealing for

building-level damage detection methods. Optical imagery is also conducive for applications involving visual interpretation,

such as crowd-sourced damage labelling. There are presently a few rapid damage mapping services in operation which use

primarily optical EO data as the basis for damage assessment. These include the Operational Satellite Applications Programme

(UNOSAT) of the United Nations (United Nations Institute for Training and Research, 2003) and the Copernicus rapid damage35

mapping service supported by the European Commission (Copernicus Emergency Management Service and The European

Commission, 2012). These damage assessments by UNITAR and Copernicus need significant manual effort to scan the raw

optical imagery covering the affected area for collapsed buildings, signs of debris or other visible damage, and cracks in bridges

and other infrastructure elements.

As an alternative, radar EO data is provided by active airborne or space-borne radio detection and ranging sensors. These40

sensors emit pulses of microwave radiation towards a target on the Earth’s surface, which reflects back some of the emitted

energy. Synthetic Aperture Radar (SAR) is a technology used to exploit the continuous transmission and reception of radar

pulses to and from a radar imaging system mounted on a moving platform, such as an airplane or a satellite. Processing

of the signals from the multiple pulses received from the same target but at different relative locations of the sensor can in

effect, help create a larger “synthetic aperture” that can allow capturing images at a much higher resolution than a similar45

stationary antenna. Light detection and ranging (LiDAR) sensors work in a manner similar to radar sensors, using laser pulses

instead of radio pulses. For damage detection applications, LiDAR data is typically obtained through airborne sensors that

can collect 3D data in the form of point clouds. Pre-event LiDAR data are typically not available for most events, making it

challenging to attempt change detection. Thus, nearly all studies involving damage detection using LiDAR data involve only

the post-earthquake data.50

A significant advantage offered by SAR over optical EO and LiDAR is that SAR data can be obtained even in poor-light

conditions including at night, can penetrate through ground-level obstacles, and is independent of cloud cover. Heretofore, most

of the SAR-based methods described in the comprehensive review undertaken by Ge et al. (2020) attempt to infer changes and

predict damage at the block level, rather than at the building level. One reason for this has been the limited availability of very

high-resolution SAR data. However, meter-level spatial resolution is now offered by several SAR satellites, including ALOS-2,55

COSMO-SkyMed, TerraSAR-X, and TanDEM-X, which makes building level damage detection promising, especially when
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ancillary datasets such as digitized building footprint layers are available for use in conjunction with high resolution SAR data

(e.g., Bai et al. (2017); Ge et al. (2019); Miura et al. (2019); Natsuaki et al. (2018)).

Meanwhile, recent advances in machine learning (ML), with high-performance open-source libraries for training and eval-

uating models have led to an increasing body of work that aims to use learning algorithms to predict damage following earth-60

quakes. Broadly, these efforts can be classified into the following four categories: (i) ML models using building attributes and

geophysical features alone (e.g., Mangalathu et al. (2020); Roeslin et al. (2020)), (ii) ML models using optical EO data (eg. Ji

et al. (2018, 2019, 2020); Lee et al. (2020); Xu et al. (2019); Tilon et al. (2020); see Nex et al. (2019) for an extensive review),

(iii) ML models using SAR data alone (e.g., Wieland et al. (2016); Bai et al. (2017); Stephenson et al. (2021)), and (iv) ML

models using SAR EO data in conjunction with building attributes and geophysical features (e.g., Moya et al. (2018a, b); Xie65

et al. (2020)).

Roeslin et al. (2020) evaluated the performance of various ML classification algorithms to classify building damage for the

2017 Puebla, Mexico earthquake, based on input features including structural attributes of the buildings and seismic demand in

terms of maximum spectral acceleration. The random forest model was found to have the highest relative accuracy amongst the

models evaluated, being able to correctly identify 78% of the damaged buildings in the test set. Mangalathu et al. (2020) also70

evaluated the performance of different ML classification algorithms to classify building damage from the 2014 South Napa

earthquake, and indicated that the random forest algorithm provides the best performance amongst the evaluated techniques.

The input features included distance from the fault, spectral acceleration, and structural attributes of the buildings. However,

even the random forest algorithm was correctly able to identify only 12.5% of the red-tagged buildings, though it was able to

correctly classify 79% of the yellow-tagged buildings. Nex et al. (2019) provided a comprehensive summary of the state-of-75

the-art on earthquake building damage detection using deep learning methods, mostly based on convolutional neural networks

(CNNs), with optical imagery obtained by remote sensing satellite or airborne sensors.

The use of machine learning algorithms in conjunction with SAR data for earthquake damage detection is a recent develop-

ment, and relatively fewer studies are found in the literature compared to optical EO data-based studies that employ machine

learning. Wieland et al. (2016) evaluated the application of a Support Vector Machine (SVM) classifier to identify changes in80

single- and multi-temporal X- and L-band SAR images from TerraSAR-X and ALOS PALSAR, and used their classifier to

detect damage from the 2011 Tohoku earthquake and tsunami. While the single-image approach that uses only the post-image

SAR data yielded reasonable results, the multi-temporal approach demonstrated a greater performance. The authors report

that the SVM classifier performs well for binary classification, but performance degrades when trying to classify damage into

multiple grades. Bai et al. (2017) in their research tried to shed some light on the difference in the building damage mapping85

performance when using multi-temporal or only post-event SAR images in the framework of machine learning. The K-Nearest

Neighbours learning algorithm was selected as the preferred classifier, as it showed the best performance in evaluation. Using

the 2016 Kumamoto earthquake as a case study, the authors indicate a prediction accuracy of 40.1% for damaged buildings

when only post-event SAR images were used, and a 38.9% accuracy for identifying damaged buildings when multi-temporal

SAR images were used.90

3



Moya et al. (2018b, a) proposed a new approach for the classification of collapsed buildings in the aftermath of a disaster

based on SAR imagery, the spatial distribution of hazard, and a set of fragility functions. The method was applied to the 2011

Tohoku earthquake and tsunami for collapsed building detection using two TerraSAR-X images (one pre-event image, and

one post-event image) of the coastal area of Miyagi Prefecture. Their binary classification into collapsed and non-collapsed

buildings was compared with field survey damage data. Depending on the fragility function used, the method was able to95

correctly classify between 80.4–92.7% of the buildings that were completely washed away by the tsunami, whereas 61.2–69.8%

of the buildings categorized as collapsed were actually washed away.

In this study, we build upon the aforementioned work and propose a supervised ML framework for building-level earthquake

damage assessment using high-resolution SAR data, which we combine with high-resolution building inventory datasets and

earthquake ground shaking intensity maps to classify buildings into different damage states. We attempt both binary damage100

classification, as well as multi-class damage classification for four recent earthquakes using ensemble models in a machine-

learning approach. Multi-class damage grade classification using SAR EO data has rarely been attempted, as evidenced by the

previously presented literature. Thus, the case studies presented in this report represent one of the first such attempts using

SAR data. Comparing the predicted damage states with ground truth data obtained through field surveys allows us to assess

the accuracy of the ML model for the different case study earthquakes.105

2 Data, Methodology, and Study Areas

The key elements of the framework include the SAR-derived damage proxy map (DPM) for the event, a ground shaking

intensity map such as the ShakeMap published by the U.S. Geological Survey (USGS), and a building inventory layer which

includes at minimum the building footprints in the affected area. Where available, additional building attributes can also be

incorporated into the framework. Finally, ground truth damage grade labels for the buildings in the affected area are needed110

to train and test the machine learning model for damage classification. The proposed approach is designed to be compatible

with both detailed exposure information (building-by-building data) or proxy exposure information mapped on to a building

footprint layer (for regions where building-specific data are not available), although its prediction accuracy is enhanced when

building-specific data are used. Whereas the illustrative application case studies in this paper focus on implementing and testing

this framework for earthquake related damage, the proposed framework adopts a modular approach, so that it can be extended115

to other natural hazards by tailoring the hazard-specific parts whilst using the core building blocks that would be common to

all hazards. The various input datasets used by the framework and the processing steps are described in this section.

2.1 Input data

2.1.1 SAR-derived Damage Proxy Maps

The Advanced Rapid Imaging and Analysis (ARIA) project for natural hazards, a joint effort of NASA’s Jet Propulsion Labo-120

ratory (JPL) and California Institute of Technology (Caltech), has developed a product called "Damage Proxy Maps" (DPMs),
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based on the methodology described by Yun et al. (2015a) for comparing InSAR coherence maps prior and subsequent to a

damaging event. The product is termed as a proxy map because it is derived from EO data and based on limited ground truth if

any. The ARIA team makes the DPMs available in standard GeoTIFF raster format, where each pixel typically measures about

30 meters across. Raw DPM pixel values range from 0 to 1, where higher values are indicative of increasingly larger surface125

change.

Automation of the DPM generation using SAR data from Sentinel-1, ALOS-2, and COSMO-SkyMed missions (i.e., two

C-band, one L-band, four X-band satellites, respectively) helps achieve a significant reduction in satellite overpass latency.

On average, at a latitude of 36°, one of the seven SAR satellites can be expected to overpass a disaster-hit area in about 10

hours, and DPM products can be potentially generated for an earthquake event within 24 hours of data acquisition. Figure 1130

shows the DPM generated by the ARIA team for the March 2020 Mw5.3 Zagreb earthquake in Croatia using multi-temporal

interferometric coherence of Copernicus Sentinel-1 SAR data (Jung et al., 2016). This event is one of the four earthquakes that

were considered to test the framework presented herein.

DPMs have also been previously used in earthquake damage assessment frameworks. For instance, Loos et al. (2020) used

the ARIA DPM product as one of the inputs in their geospatial data integration framework to assess post-earthquake mean135

damage ratios. The public availability of DPMs for a large number of significant damage-causing earthquakes starting from

the 2014 M6.0 South Napa earthquake, its qualitative validation in past events (Yun et al., 2015b; Sextos et al., 2018), and the

possibility of generating DPMs for new events within a few days of the event, makes the DPM product a logical choice for the

earth-observation proxy in the damage assessment framework proposed in this study.

2.1.2 Ground shaking intensity maps (ShakeMaps)140

For significant earthquake events worldwide, the USGS Earthquake Hazards Program in partnership with regional seismic

networks, distributes maps of shaking intensities in near real-time. This product is named ShakeMap, and it is released through

the USGS earthquake hazards program web-portal (Wald et al., 2022). An application programming interface (API) is also pro-

vided by the USGS for accessing ShakeMap data directly through automated programs. Amongst several use cases, ShakeMaps

provide rapid information about the areas that are likely to be affected by the ground shaking and the intensity of these effects.145

Amplitude values of ground shaking parameters are typically provided at a 1 km grid spacing. Figure 2 shows the USGS

generated ShakeMap for the March 2020 Mw5.3 Zagreb earthquake in Croatia. ShakeMaps are used in the earthquake damage

evaluation workflow to identify the geographical extent of the area likely to be affected by the earthquake, as well as one of the

input features for the machine learning models to predict damage.

2.1.3 Building inventories and building footprint maps150

A building footprint map is used to precisely identify the locations of the buildings in the areas affected by the earthquake.

Each building footprint serves as the anchor for both the input features for the damage classification model, as well as the

ground truth damage grade labels.
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The OpenStreetMap (OSM) project is one source offering near-global coverage for building footprints. Building extracts

from OSM can contain detailed information about building footprints and locations, and in some cases also data concerning155

the construction material, occupancy class, number of stories and built-up area. The OSM building inventory datasets, where

available, can thus offer exposure information at a high level of detail and reliability. Although these datasets are not available

with a sufficient degree of completeness at the global scale, recent initiatives harnessing advances in deep learning on high

resolution satellite imagery are aiming to fill in the missing gaps (eg. Microsoft (2018); Sirko et al. (2021)).

The building damage assessment framework proposed herein is designed to make use of existing exposure datasets developed160

by local governments or third-party agencies, if those datasets are found to be of better quality than the OSM building extracts.

Figure 3 shows the building inventory dataset compiled by the City of Zagreb, which includes not only the footprints of all

buildings in the historical city center, but also information about the number of stories and the occupancy class of each building.

2.2 Data processing and supervised learning

2.2.1 Processing of the SAR-derived DPMs165

The SAR-derived DPMs published by the ARIA project are used as the primary remote-sensing proxy to identify surface-level

changes that are potentially attributable to earthquake-induced building damage. Since the DPMs involve inferences of damage

based on variations observed on the ground surface between the before and after SAR images, the DPM tiles may indicate some

apparent "damage" pixels where no buildings or infrastructure elements exist on the ground. This may happen, for instance, in

areas where the vegetation changed, or due to the appearance or disappearance of vehicles between the two images. Landslides170

and rockfall can also lead to surface-level changes, and so can other phenomena such as building construction. Thus, while

attempting to detect building damage, care needs to be exercised to limit the focus of the DPMs to locations where buildings

are known to exist. Thus, we clip out parts of the DPM that are outside of built-up areas, based on building footprint maps and

land-use maps. With a view to keeping the computations tractable and to reduce noise in the input vectors, we also limit the

analysis to an affected area defined as the envelope of the Modified Mercalli Intensity (MMI) V contours from the ShakeMap,175

effectively clipping out the parts of the DPM located outside a zone where building damages are likely to have occurred due to

the earthquake.

2.2.2 Multi-class damage classification

Supervised machine learning is employed in an attempt to predict the level of damage to the buildings. The problem presented

is one of multi-class classification, in which each building needs to be classified into one out of a number of predefined set of180

damage states.

Deep learning techniques are more suited for structured data such as images, audio, and text corpuses with large sample

sizes, while the datasets used in this study are tabular, with each row representing one building unit, and are small or medium

sized (typically of the order of 1,000–10,000 samples). While both decision forest based approaches and deep neural networks

could be used with tabular data, deep learning techniques perform better with large sample sizes, which is unfortunately not the185
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case for this study, given the limited availability of building-level damage datasets and the limited number of labelled damaged

buildings within each dataset. Grinsztajn et al. (2022) conclude that for medium sized tabular data (of the order of 10,000

samples), tree-based models outperform deep learning methods, with much less computational cost. Similarly, Xu et al. (2021)

also conclude that forests perform better than deep neural nets for tabular data with small sample sizes. Thus, deep learning

techniques were ruled out as not being apt for the current application.190

In a preliminary phase, we compared different algorithms that permit multi-class classification, including support vector ma-

chines, k-nearest neighbours, Naive Bayes, and Random Forest. Since the problem of damage classification typically involves

highly imbalanced datasets, where the buildings in "no damage" state dominate the buildings in all other damage states, often

by multiple orders of magnitude, all of the above classifier algorithms tended to overlearn the label with the higher number

of training examples (i.e., "no damage"). The Random Forest algorithm, developed by Leo Breiman and Adele Cutler, and195

described in Breiman (2001) was eventually selected for the study as it allows for the assignment of weights to the training

examples. The training examples in each damage class were then weighted in inverse proportion to the class frequencies ob-

served in the input data, in order to better handle the class imbalance in the input damage datasets. The Histogram-Based

Gradient Boosting classifier (Ke et al., 2017), was preferred in the cases where categorical features were present amongst the

selected building attributes, in addition to purely numerical features. This was because the Histogram-Based Gradient Boosting200

classifier provides native categorical support, which helps avoid one-hot encoding to transform categorical features as numeric

arrays.

The next step involves tuning of the hyper-parameters of the chosen classifier algorithms, where hyper-parameters are the

model parameters that are not directly learnt during the training phase. Probst et al. (2019) provide a thorough overview of

the hyper-parameters and tuning strategies for the random forest algorithm. Random forest algorithms have three main hyper-205

parameters, including the number of trees in the forest, the node size, and the number of features sampled when looking for the

best split for a node. The number of features sampled at each split is set to the square root of the number of predictor variables,

which Probst et al. (2019) indicate as a reasonable value for low-dimensional classification problems. Optimal values for the

number of trees in the forest and the node size are obtained through an exhaustive grid search strategy, to pick the combination

of hyper-parameter values that result in the best cross validation score. For all other hyper-parameters which have less of an210

impact on the model performance, we use the default values provided by the Python software package scikit-learn (Pedregosa

et al., 2011).

The models are then trained with a 70% subset of the available data, and then the best-fit models are tested against the 30%

hold-out subset. There is certainly a trade-off between using more samples for training the algorithm versus reserving sufficient

samples for the test set. Using a higher fraction of the available data for training can result in over-fitting. Previous empirical215

studies, such as Gholamy et al. (2018), have demonstrated that using 70-80% of the data for training and reserving 20-30% of

the data for testing yields optimal results in terms of improving the accuracy of the model while minimizing the tendency for

over-fitting. The decision to choose a 70%/30% split for the training and testing set (say, over an 80%/20% split) was ultimately

driven by the paucity of "collapse" labels in the damage datasets, where reserving only 20% of the dataset for testing would

leave very few "collapse" labels in the test set to evaluate the accuracy of the fitted model.220
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For each building, the input ‘feature vector’ for the classification algorithms comprises the ground shaking intensity as

measured in MMI, the highest value of the DPM pixels that fall within the building footprint, and any building attributes that

may be available such as the construction material, number of stories, year of construction and slope of the terrain at the location

of the building. The ‘labels’ that are used for the supervised learning comprise the damage grade assigned to the buildings by a

structural engineering field survey following the event. In the absence of detailed field survey data for the damage labels, proxy225

damage labels are used, such as those generated through aerial damage survey missions. Figure 4 shows an illustration of the

input feature vector and output label vector for a selected building in Zagreb.

Given the heavy imbalance typical in damage datasets, where the vast majority of buildings are in the “no damage” grade,

the classifier algorithms tend to overlearn the label with the higher number of training examples. Without proper handling of

this imbalance, the models tend to categorize most buildings in the test set into the “no damage” category. Several methods230

are available to better handle the class imbalance in the input datasets (e.g., Krawczyk et al. (2014); Feng et al. (2021)).

The approach adopted in this study is to weight the training examples in each damage class in inverse proportion to the

class frequencies observed in the input data. Thus, training examples involving buildings in higher damage grades would be

weighted higher than those in the “no damage” grade. The trained model is then used to predict the damage grades for the

subset of buildings that were intentionally left out of the training dataset, in order to gauge the prediction accuracy of the235

model.

2.2.3 Binary damage classification

While the preceding section looked at classification of building damage into multiple damage grades, an attempt is also made

to classify the buildings into one of just two damage grades, i.e., “Damaged” or “Undamaged”. Building damage datasets, even

if they involve field inspections, are apt to contain labelling noise, due to subjectivity in assigning the various damage grades.240

Compressing a multi-level damage scale to a binary damage scale can help mitigate this subjectivity, and thus potentially

improve the prediction accuracy, albeit at the expense of losing the finer gradation of damage levels.

The paucity of building damage data that can be used for training is one of the main challenges affecting machine learning

models for damage prediction. Different countries use different methodologies and different damage scales to assess building

damage following earthquakes. While the definition of the lower damage grades might differ considerably between different245

scales, collapse is often consistently defined. Thus, if the focus is restricted to identifying collapsed buildings from non-

collapsed buildings, a wider set of events from the region can be used train the model, given that the training labels in this case

coming from different events will be consistently defined.

Thus, another important reason to undertake a binary damage classification exercise is that it permits the aggregation of

building damage datasets from different events into a larger training pool. Such aggregation of damage datasets is often not250

possible with the original multi-level damage scales, given that different damage scales are typically used for events in different

countries. The procedure for creating a balanced model for binary classification is the same as that described in the preceding

section for the multi-class classification model.
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2.3 Study areas

Four recent earthquakes were used to evaluate the ML model and damage classification framework — the April 2015 M7.8255

Gorkha earthquake in Nepal, the September 2017 M7.1 Puebla earthquake in Mexico, the January 2020 M6.4 Puerto Rico

earthquake, and the March 2020 M5.3 Zagreb earthquake in Croatia. This section summarizes the four selected events and the

datasets and sources of information used in the input vectors for each event.

2.3.1 25 April 2015, M7.8 Gorkha Earthquake, Nepal

The Mw 7.8 Gorkha earthquake occurred on 25 April 2015 in central Nepal, causing damage to over 750,000 buildings, of260

which nearly 500,000 were completely destroyed, leading to nearly 9,000 fatalities (National Planning Commission, 2015).

While a complete building damage dataset covering all affected buildings in the country is available through the National Re-

construction Authority of Nepal, this dataset does not contain building footprints or geographical coordinates of the buildings.

Thus, we used a combined dataset comprising building locations and damage grades covering 4,787 buildings from the Bud-

hanilkantha municipality of the Kathmandu district, provided by the National Society for Earthquake Technology (NSET) of265

Nepal. This dataset also includes several building attributes for each building in the municipality, including the age, number of

stories, construction type, primary occupancy class, presence of structural irregularities, and slope of the ground at the location

of the building. The locations were joined to a building footprints layer for the Budhanilkantha municipality obtained from

OSM.

2.3.2 19 September 2017, M7.1 Puebla Earthquake, Mexico270

On 19 September, 2017, an earthquake of estimated magnitude Mw7.1 struck south of the city of Puebla in Mexico, causing

building damage in the three states of Puebla, Morelos, and Greater Mexico City. The earthquake caused 369 fatalities, with

38 buildings completely collapsing (Roeslin et al., 2018). Buendía Sánchez and Angulo (2017) and Reinoso et al. (2021) have

compiled a building damage dataset for the affected states of Puebla, Morelos, state of Mexico and Mexico City (CDMX),

after collating data from multiple sources. In addition to the location and observed damage grade for each building, this dataset275

also contains attributes such as the structural type, the use of the building, the number of stories, and the year of construction

for the majority of the buildings. Since the dataset does not contain building footprints, we joined this layer with the cadastral

layer for Mexico City available from the National Institute of Statistics, Geography and Informatics (INEGI). Since the building

attributes are available only for the damaged buildings and not for the undamaged buildings, we restrict the analysis to damaged

buildings alone.280

2.3.3 7 January 2020, M6.4 Puerto Rico earthquake

An earthquake of magnitude Mw 6.4 struck the southwestern region of Puerto Rico on 07 January 2020. This earthquake was

the largest of a series of seismic events that started in late December of 2019, which continued into the latter part of 2020.

While Puerto Rico lies in an active seismic region, the impact of this Mw 6.4 earthquake was the largest witnessed by the island
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since the 1918 Mw 7.1 San Fermín earthquake. Around 335 buildings were damaged in the earthquake, of which 77 were fully285

destroyed (Federal Emergency Management Agency, 2020).

The building inventory for Puerto Rico was derived from FEMA’s Hazus program. Input datasets involved in the creation of

this inventory included building footprints from OpenStreetMap, building height data from a LiDAR survey covering the island,

and the 2010 decennial census of Puerto Rico. The preliminary building damage assessment carried out by FEMA following

the earthquake was used as the primary damage database for training and testing the ML model for this event. Structures were290

classified into three damage grades in this dataset: “Minor Damage”, “Major Damage”, and “Destroyed”.

2.3.4 22 March 2020, M5.3 Zagreb earthquake, Croatia

On March 22, 2020, Zagreb was hit by an earthquake, the strongest the city has witnessed since 1880, resulting in considerable

damage to public buildings and services in Zagreb and the surrounding areas. The earthquake resulted in one fatality, 26 injuries,

and hundreds of people were displaced while the country was in a lockdown due to the ongoing pandemic (Government of295

Croatia, 2020).

The 3D model of the City of Zagreb shown in Figure 3 serves as the exposure layer in the analysis. Following the earthquake,

the Croatian Interior Ministry’s Civil Protection Directorate and the Croatian Chamber of Civil Engineer put out a call for the

mobilization of civil engineers to help with the building damage assessment. By August 2020, over 25,000 buildings had been

inspected for signs of structural and non-structural damage. A 3D view of the Lower and Upper Towns of the City of Zagreb300

based on the damage classifications is presented in Figure 5.

The sources for the building footprints, ground shaking intensity maps, and ground truth damage grade labels, and the

availability of other building attributes for each of the four earthquakes are summarized in Table 1. The table also includes the

damage grade labels that are combined into a single “Damaged” class for the binary damage classification case for each of the

four earthquakes. The remaining labels are merged into a single “Undamaged” class.305

3 Results and Discussion

We evaluate the best-fit model on both the training and test subsets using a few different performance metrics, including the

precision and recall scores, the F1 score, and the balanced accuracy score (Brodersen et al., 2010). These metrics are described

in brief below:

– Precision: Defined as the ratio (truepositives)/(truepositives+ falsepositives). The precision is intuitively the310

ability of the classifier not to label as positive a sample that is negative.

– Recall: Defined as the ratio (truepositives)/(truepositives+ falsenegatives). The recall is intuitively the ability of

the classifier to find all the positive samples.
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– F1 score: Defined as 2∗(precision∗recall)/(precision+recall). The F1 score can be interpreted as a weighted average

of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The precision and recall315

scores contribute equally to the F1 score.

– Balanced accuracy score: This is a score intended to measure the prediction accuracy while avoiding inflated perfor-

mance estimates on imbalanced datasets. It is the macro-average of recall scores per class or, equivalently, raw accuracy

where each sample is weighted according to the inverse prevalence of its true class.

The results for the four case study earthquakes, for both multi-class classification and binary classification of damage are320

summarized below in Table 2 through Table 9. When we attempt a multi-class damage grade classification, the trained model

exhibits a balanced accuracy score ranging from 0.23 for the 2017 Puebla earthquake, to 0.36 for the 2015 Gorkha earthquake

and 0.40 for both the 2020 Puerto Rico and Zagreb earthquakes. The balanced accuracy scores improve significantly to 0.65

for the 2017 Puebla and 2020 Zagreb earthquakes, 0.72 for the 2020 Puerto Rico earthquake, and 0.82 for the 2015 Gorkha

earthquake when we switch to a binary damage grade classification, i.e., attempting only to separate the damaged buildings325

from the undamaged buildings.

Figure 6 and Figure 7 show the confusion matrices for the four earthquakes for multi-class damage grade classification and

binary damage classification, respectively. Table 10 provides an overall summary of the balanced accuracy scores for all of the

cases considered. The recall score for the “Damaged” label in the binary damage classification scenario ranges from 0.38 for

the 2017 Puebla earthquake and 0.48 for the 2020 Zagreb earthquake, to 0.58 for the 2020 Puerto Rico earthquake and 0.73 for330

the 2015 Gorkha earthquake, i.e., for three out of the four earthquakes studied, the model is able to identify over half or nearly

half of the damaged buildings successfully when using binary classification.

We observe that for the 2015 Gorkha earthquake, for which multiple building attributes are available for both damaged and

undamaged buildings, the prediction accuracies for both binary and multi-class classification are significantly higher when

compared to the earthquakes where fewer or no building attributes are available for use as input features. In order to understand335

the impact of including the building attributes on the performance of the classifier, we also trained the ML model for this

earthquake without using any of the building attributes and limiting the input feature vector to the MMI and DPM values alone.

The precision and recall for all damage grades are lower for this reduced model compared to the results reported for the full

model in Table 2 and Table 3, for both multi-class classification and binary classification respectively. The recall score for the

“Destruction” damage grade drops from 0.47 for the full model to 0.31 for the reduced model in the multi-class classification340

task, and from 0.73 to 0.45 in the binary classification task. Similarly, the balanced accuracy score drops from 0.36 to 0.20 in

the multi-class classification task, and from 0.82 to 0.59 in the binary classification task. These results clearly demonstrate the

importance of including the additional building attributes in the analysis. A partial dependence analysis of the damage grade on

the non-location building attribute variables for this event indicates that the building age has an impact on the damage grade,

with older buildings being related to higher damage (see the Jupyter notebook for the analysis).345

While four key building attributes were also available for the damaged buildings for the 2017 Puebla earthquake, the non-

availability of the same for the undamaged buildings meant that a complete dataset with building attributes could not be
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used for the training of the ML model. Of the four events considered in this study, the 2017 Puebla event had the smallest

building damage dataset available for training the ML model. Only 219 buildings in Mexico city had a complete set of building

attributes and damage labels and were also covered by the DPM and ShakeMap layers, as compared to thousands or hundreds350

of thousands of buildings for the other three events. While the Random Forest classification model performs well for this

event in the training phase, the trained model fails to correctly identify even a single partially collapsed or totally collapsed

building in the test set. Further attempts at reducing the potential overfitting of the model to the limited training data subset by

adjustments to the model hyperparameters did not lead to any noticeable improvements in prediction accuracy for the event.

From Figure 6, we also observe that the true-positive prediction rates for the intermediate damage grades are lower than355

those for the no-damage and highest damage grades for the 2015 Gorkha earthquake and the 2020 Puerto Rico and Zagreb

earthquakes. We believe that this partly stems from the fact that the existing damage scales that are widely used for field

surveys of building damage, such as EMS-98 (European Sesimological Commission, 1998) do not map directly to information

available through earth observation data, particularly for the lower damage grades. For instance, the first three damage grades

for reinforced concrete structures according to EMS-98 involve increasing levels of cracking in the beams and columns or360

partition and infill walls, and buckling of the reinforcement rods. Unless this kind of damage results in debris caused by

excessive spalling of the concrete cover or partial collapse of infill walls that is visible outside the structure, these damage

levels as defined in EMS-98 may be challenging to identify from EO data alone. Dell’Acqua and Gamba (2012) and Cotrufo

et al. (2018) both propose a building damage assessment scale tailored for optical satellite imagery and aerial imagery. However,

a similar damage scale tailored for InSAR based building damage assessment is still lacking, and merits further research.365

Even for the higher damage grades, a potential limitation of SAR-derived damage assessment at the building-level is that it

is certainly possible to have significant seismic building damage without observing a significant corresponding change in the

ground surface level. While a fully collapsed building is expected to cause higher coherence loss compared to partial collapse,

field surveys of damage are likely to mark all such buildings as completely damaged or destroyed. Damage to internal walls

or columns that may have severely compromised the structural integrity of the building without causing externally visible370

damage or collapse may not be detectable through remote sensing, as these will be out of the line-of-sight of the satellites.

Storey drifts of 2% for braced steel structures or concrete shear wall structures may be technically classified as "collapsed" (eg.

FEMA and ASCE (2000)) even though the structure has not physically collapsed at all, but such drift levels might be smaller

than the level detectable with the 1–3 m spatial resolution offered by the current generation of SAR sensors. With the present

resolution of the DPM being around 30 m x 30 m per pixel, the proposed method is more likely to be useful for detecting large375

damaged buildings, damaged building aggregates, and damage to dense building blocks, more than damage to isolated smaller

buildings. With the advent of commercial SAR satellite constellations like Capella Space and ICEYE, sub-meter SAR imagery

is becoming available. Digital elevation maps (DEMs), which are used in terrain correction or removal of topographically

induced phase variations in the generation of the DPMs, are also now becoming available at meter and sub-meter resolutions.

Thus, some of the aforementioned deficiencies should be addressable.380
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4 Conclusions

This article describes a framework for semi-automated damage assessment due to earthquake from Earth Observation (EO) data

and other supplementary datasets, leveraging upon recent advances in machine-learning algorithms. This framework combines

high-resolution building inventory data from OpenStreetMap and other local sources with image-processing algorithms for the

detection of earthquake damage using InSAR data generated by the JPL-ARIA initiative, along with supplementary geospatial385

datasets as inputs to a random forest ML classification model. The ML model is trained using detailed building damage datasets

from past events in a supervised learning framework. Both multi-class and binary damage classification are attempted and we

compared the predicted damage labels with ground truth damage grade labels reported in field surveys. Binary damage clas-

sification is shown to outperform multi-class classification for the earthquakes studied, and the highest classification accuracy

scores are observed for the case where the largest number of building attributes relevant for structural damage are available.390

The time-span between the acquisition of the pre-event and post-event images can have a considerable impact on the potential

false positives. The closer the "before" and "after" bracket the event, the fewer the false positives that are likely to be observed.

Multiple SAR satellite missions currently have revisit intervals of a few days. DPMs are already reliably generated by the

ARIA team within a few days of major earthquakes. With the planned launches of the NASA-ISRO SAR (NISAR) mission

(Kellogg et al., 2020) and ALOS-4 (Motohka et al., 2020), and the advent of commercial SAR satellite constellations Capella395

Space (2022); ICEYE (2022), post-event image acquisition are expected to become available within 1-2 days after observation

or even within a few hours in response to disasters (Kellogg et al., 2020). Earthquake ground shaking intensity maps are also

made available by the US Geological Survey within a few hours after an event. The curation of building inventory datasets is

a critical step that should ideally be undertaken before the occurrence of a disaster event and such datasets should be regularly

updated. In the absence of a precompiled building inventory dataset for the affected region, building extracts from OSM400

can be used within the proposed damage detection framework. The training of the machine learning models would have been

undertaken prior to the disaster event, and the trained model can then be deployed for damage detection following an earthquake

as soon as the pre-event building inventory, ShakeMap, and DPM become available. Thus, the time-frame for obtaining the

first results from the proposed damage detection framework is expected to be in the order of 1–7 days following an earthquake.

Machine learning models for the prediction of post-disaster damage can benefit greatly from having access to labelled405

and georeferenced building damage data. Cross-regional training datasets will also help greatly improve the performance of

these models for earthquakes in new regions previously unseen by the model. By expanding the datasets used to train the

ML damage classification models, we can transfer the learning from regions with more damage data availability to data sparse

regions. Cross-regional training is also critical as it will ultimately make such damage classification models more robust as they

can be more confidently applied to future disasters, which may affect regions the model has not been trained on. This remains410

a challenge, however, particularly in the case of multi-class classification of damage grades, due to differences in the damage

scales used in the field damage surveys in different events, and also because of the subjectivity involved in the assignment of

damage grades by the field damage surveyors.
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One of the eventual promises of the framework described in this paper is to be able to predict damage using InSAR data even

for locations that aren’t present in the training data. Ideally, region-specific damage detection models could be developed that415

take into consideration input features that are region-specific. Alternatively, region-specific or location-specific characteristics

could be encoded as additional input features to a global remote-sensing based damage detection model. For instance, one

of the inputs in the proposed methodology is the ground shaking intensity map (ShakeMap) generated by the US Geological

Survey, which does take into consideration local site conditions, albeit through the proxy measure of Vs30 values. The tectonic

setting is also taken into account implicitly in the derivation of the ShakeMap, as the choice of the ground motion model used420

to predict the ground shaking intensities in the affected area depends on the tectonic region type. If information about building

construction types is available, this can be encoded as a categorical input feature, as was done for the 2015 Gorkha and 2017

Puebla examples in this study.

Both SAR and optical EO data have their relative strengths. SAR data can be obtained even in poor-light conditions, at

night, and independent of cloud cover. However, while meter-level spatial resolution is now offered by several SAR satellites,425

optical EO data is currently available at sub-meter spatial resolution from several satellites, making it particularly appealing

for building-level damage detection methods. Finer differentiation of damage grades involving detection of cracks in walls or

residual drifts is still quite challenging with the 1–3 m spatial resolution offered by the current generation of SAR sensors.

Thus, simultaneous use of SAR and optical EO data in a deep learning workflow could potentially combine the advantages of

the two different data types and increase the accuracy of damage detection. The addition of supplementary information, such430

as hazard intensity data measured at a few locations, local site conditions, and building attribute data could also help improve

rapid post-earthquake damage classification.
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Krawczyk, B., Woźniak, M., and Schaefer, G.: Cost-sensitive decision tree ensembles for effective imbalanced classification, Applied Soft

Computing Journal, 14, 554–562, https://doi.org/10.1016/j.asoc.2013.08.014, 2014.

Lee, J., Xu, J. Z., Sohn, K., Lu, W., Berthelot, D., Gur, I., Khaitan, P., Ke-Wei, Huang, Koupparis, K., and Kowatsch, B.: Assessing Post-

Disaster Damage from Satellite Imagery using Semi-Supervised Learning Techniques, in: NeurIPS 2020 Artificial Intelligence for Hu-

manitarian Assistance and Disaster Response Workshop, pp. 1–10, http://arxiv.org/abs/2011.14004, 2020.510

Loos, S., Lallemant, D., Baker, J. W., McCaughey, J., Yun, S.-H., Budhathoki, N., Khan, F., and Singh, R.: G-DIF:

A geospatial data integration framework to rapidly estimate post-earthquake damage, Earthquake Spectra, 36, 1695–1718,

https://doi.org/10.1177/8755293020926190, 2020.

Mangalathu, S., Sun, H., Nweke, C. C., Yi, Z., and Burton, H. V.: Classifying Earthquake Damage to Buildings Using Machine Learning,

Earthquake Spectra, 36, 183–208, https://doi.org/10.1177/8755293019878137, 2020.515

Microsoft: Open dataset of machine extracted buildings in Uganda and Tanzania, https://github.com/microsoft/

Uganda-Tanzania-Building-Footprintshttps://www.microsoft.com/en-us/maps/building-footprints, 2018.

Miura, H., Midorikawa, S., and Matsuoka, M.: Building Damage Assessment Using High-Resolution Satellite SAR Images of the 2010 Haiti

Earthquake:, https://doi.org/10.1193/033014EQS042M, 32, 591–610, https://doi.org/10.1193/033014EQS042M, 2019.

Motohka, T., Kankaku, Y., Miura, S., and Suzuki, S.: ALOS-4 L-Band SAR Observation Concept and Development Status, in: International520

Geoscience and Remote Sensing Symposium (IGARSS), pp. 3792–3794, https://doi.org/10.1109/IGARSS39084.2020.9323701, 2020.

17

http://arxiv.org/abs/2207.08815
http://arxiv.org/abs/2207.08815
http://arxiv.org/abs/2207.08815
https://www.iceye.com/hubfs/Downloadables/SAR_Data_Brochure_ICEYE.pdf
https://www.iceye.com/hubfs/Downloadables/SAR_Data_Brochure_ICEYE.pdf
https://www.iceye.com/hubfs/Downloadables/SAR_Data_Brochure_ICEYE.pdf
https://doi.org/10.3390/rs10111689
https://doi.org/10.3390/rs11101202
https://doi.org/10.3390/app10020602
https://doi.org/10.1109/TGRS.2016.2572166
https://github.com/Microsoft/LightGBM
https://ieeexplore.ieee.org/abstract/document/9172638
https://doi.org/10.1016/j.asoc.2013.08.014
http://arxiv.org/abs/2011.14004
https://doi.org/10.1177/8755293020926190
https://doi.org/10.1177/8755293019878137
https://github.com/microsoft/Uganda-Tanzania-Building-Footprints https://www.microsoft.com/en-us/maps/building-footprints
https://github.com/microsoft/Uganda-Tanzania-Building-Footprints https://www.microsoft.com/en-us/maps/building-footprints
https://github.com/microsoft/Uganda-Tanzania-Building-Footprints https://www.microsoft.com/en-us/maps/building-footprints
https://doi.org/10.1193/033014EQS042M
https://doi.org/10.1109/IGARSS39084.2020.9323701


Moya, L., Mas, E., Adriano, B., Koshimura, S., Yamazaki, F., and Liu, W.: An integrated method to extract collapsed buildings

from satellite imagery, hazard distribution and fragility curves, International Journal of Disaster Risk Reduction, 31, 1374–1384,

https://doi.org/10.1016/j.ijdrr.2018.03.034, 2018a.

Moya, L., Perez, L. R., Mas, E., Adriano, B., Koshimura, S., and Yamazaki, F.: Novel unsupervised classification of collapsed buildings525

using satellite imagery, hazard scenarios and fragility functions, Remote Sensing, 10, https://doi.org/10.3390/rs10020296, 2018b.

National Planning Commission: Nepal earthquake 2015: Post-disaster need assessment, Tech. rep., Government of Nepal, Kathmandu, Nepal,

https://doi.org/10.1007/978-981-13-6573-7_2, 2015.

Natsuaki, R., Nagai, H., Tomii, N., and Tadono, T.: Sensitivity and limitation in damage detection for individual buildings using InSAR

coherence – A case study in 2016 Kumamoto earthquakes, Remote Sensing, 10, https://doi.org/10.3390/rs10020245, 2018.530

Nex, F., Duarte, D., Tonolo, F. G., and Kerle, N.: Structural Building Damage Detection with Deep Learning: Assessment of a State-of-the-Art

CNN in Operational Conditions, Remote Sensing, 11, https://doi.org/10.3390/rs11232765, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Machine Learning in Python, The Journal of

Machine Learning Research, 12, 2825–2830, https://doi.org/10.4018/978-1-5225-9902-9.ch008, 2011.535

Plank, S.: Rapid damage assessment by means of multi-temporal SAR-A comprehensive review and outlook to Sentinel-1, Remote Sensing,

6, 4870–4906, https://doi.org/10.3390/rs6064870, 2014.

Probst, P., Wright, M. N., and Boulesteix, A. L.: Hyperparameters and tuning strategies for random forest, Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 9, 1–15, https://doi.org/10.1002/widm.1301, 2019.

Reinoso, E., Quinde, P., Buendía, L., and Ramos, S.: Intensity and damage statistics of the September 19, 2017 Mexico earthquake:540

Influence of soft story and corner asymmetry on the damage reported during the earthquake, Earthquake Spectra, 37, 1875–1899,

https://doi.org/10.1177/8755293020981981, 2021.

Roeslin, S., Ma, Q., and García, H. J.: Damage assessment on buildings following the 19th September 2017 puebla, Mexico earthquake,

Frontiers in Built Environment, 4, 1–18, https://doi.org/10.3389/fbuil.2018.00072, 2018.

Roeslin, S., Ma, Q., Juárez-Garcia, H., Gómez-Bernal, A., Wicker, J., and Wotherspoon, L.: A machine learning damage prediction model545

for the 2017 Puebla-Morelos, Mexico, earthquake, Earthquake Spectra, https://doi.org/10.1177/8755293020936714, 2020.

Sextos, A., De Risi, R., Pagliaroli, A., Foti, S., Passeri, F., Ausilio, E., Cairo, R., Capatti, M. C., Chiabrando, F., Chiaradonna, A.,

Dashti, S., De Silva, F., Dezi, F., Durante, M. G., Giallini, S., Lanzo, G., Sica, S., Simonelli, A. L., and Zimmaro, P.: Local site ef-

fects and incremental damage of buildings during the 2016 Central Italy Earthquake sequence, Earthquake Spectra, 34, 1639–1669,

https://doi.org/10.1193/100317EQS194M, 2018.550

Silva, V., Kalakonas, P., Massabo, M., Bedrina, T., Campanella, P., Avagyan, A., Bevington, J., and Farrier, D.: Improving Post-Disaster

Damage Data Collection to Inform Decision-Making Inception Report, Tech. rep., GEM Foundation, Pavia, Italy, 2018.

Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E., Dauphin, Y., Keysers, D., Neumann, M., Cisse, M., and Quinn, J.:

Continental-Scale Building Detection from High Resolution Satellite Imagery, arXiv preprint, 2107.12283, 1–15, http://arxiv.org/abs/

2107.12283, 2021.555

Stephenson, O. L., Kohne, T., Zhan, E., Cahill, B. E., Yun, S.-H., Ross, Z. E., and Simons, M.: Deep Learning-Based

Damage Mapping With InSAR Coherence Time Series, IEEE Transactions on Geoscience and Remote Sensing, pp. 1–17,

https://doi.org/10.1109/tgrs.2021.3084209, 2021.

18

https://doi.org/10.1016/j.ijdrr.2018.03.034
https://doi.org/10.3390/rs10020296
https://doi.org/10.1007/978-981-13-6573-7_2
https://doi.org/10.3390/rs10020245
https://doi.org/10.3390/rs11232765
https://doi.org/10.4018/978-1-5225-9902-9.ch008
https://doi.org/10.3390/rs6064870
https://doi.org/10.1002/widm.1301
https://doi.org/10.1177/8755293020981981
https://doi.org/10.3389/fbuil.2018.00072
https://doi.org/10.1177/8755293020936714
https://doi.org/10.1193/100317EQS194M
http://arxiv.org/abs/2107.12283
http://arxiv.org/abs/2107.12283
http://arxiv.org/abs/2107.12283
https://doi.org/10.1109/tgrs.2021.3084209


Tilon, S., Nex, F., Kerle, N., and Vosselman, G.: Post-disaster building damage detection from earth observation imagery using unsupervised

and transferable anomaly detecting generative adversarial networks, Remote Sensing, 12, 1–27, https://doi.org/10.3390/rs12244193, 2020.560

United Nations Development Programme: UNDP Household and Building Damage Assessment (HBDA) Toolkit, https://www1.undp.org/

content/integrateddigitalassessments/en/home/hbda.html, 2021.

United Nations Institute for Training and Research: UNOSAT Rapid Mapping Service, https://www.unitar.org/maps/

unosat-rapid-mapping-service, 2003.

Wald, D. J., Worden, C. B., Thompson, E. M., and Hearne, M. G.: ShakeMap operations, policies, and procedures, Earthquake Spectra, 38,565

756–777, https://doi.org/10.1177/87552930211030298, 2022.

Wieland, M., Liu, W., and Yamazaki, F.: Learning change from Synthetic Aperture Radar images: Performance evaluation of a Support

Vector Machine to detect earthquake and tsunami-induced changes, Remote Sensing, 8, https://doi.org/10.3390/rs8100792, 2016.

Xie, B., Xu, J., Jung, J., Yun, S.-H., Zeng, E., Brooks, E. M., Dolk, M., and Narasimhalu, L.: Machine Learning on Satellite Radar Images

to Estimate Damages After Natural Disasters, in: 28th International Conference on Advances in Geographic Information Systems, edited570

by Lu, C.-T., Wang, F., Trajcevski, G., Huang, Y., Newsam, S., and Xiong, L., pp. 461–464, Association for Computing Machinery, New

York, NY, United States, Seattle, Washington, https://doi.org/0.1145/3397536.3422349, 2020.

Xu, H., Kinfu, K. A., LeVine, W., Panda, S., Dey, J., Ainsworth, M., Peng, Y.-C., Kusmanov, M., Engert, F., White, C. M., Vogelstein,

J. T., and Priebe, C. E.: When are Deep Networks really better than Decision Forests at small sample sizes, and how?, pp. 1–20, http:

//arxiv.org/abs/2108.13637, 2021.575

Xu, J. Z., Lu, W., Li, Z., Khaitan, P., and Zaytseva, V.: Building Damage Detection in Satellite Imagery Using Convolutional Neural Networks,

in: 33rd Conference on Neural Information Processing Systems, NeurIPS 2019, Vancouver, Canada, http://arxiv.org/abs/1910.06444,

2019.

Yun, S.-H., Fielding, E., Webb, F., and Simons, M.: Damage Proxy Map From Interferometric Synthetic Aperture Radar Co-

herence, http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=580

50&d=PALL&s1=9207318.PN., https://patentimages.storage.googleapis.com/35/54/b6/ef3c461c82436c/US9207318.pdf, 2015a.

Yun, S.-H., Hudnut, K. W., Owen, S., Webb, F., Simons, M., Sacco, P., Gurrola, E., Manipon, G., Liang, C., Fielding, E., Milillo, P., Hua,

H., and Coletta, A.: Rapid damage mapping for the 2015 Mw 7.8 Gorkha Earthquake Using synthetic aperture radar data from COSMO-

SkyMed and ALOS-2 satellites, Seismological Research Letters, 86, 1549–1556, https://doi.org/10.1785/0220150152, 2015b.

19

https://doi.org/10.3390/rs12244193
https://www1.undp.org/content/integrateddigitalassessments/en/home/hbda.html
https://www1.undp.org/content/integrateddigitalassessments/en/home/hbda.html
https://www1.undp.org/content/integrateddigitalassessments/en/home/hbda.html
https://www.unitar.org/maps/unosat-rapid-mapping-service
https://www.unitar.org/maps/unosat-rapid-mapping-service
https://www.unitar.org/maps/unosat-rapid-mapping-service
https://doi.org/10.1177/87552930211030298
https://doi.org/10.3390/rs8100792
https://doi.org/0.1145/3397536.3422349
http://arxiv.org/abs/2108.13637
http://arxiv.org/abs/2108.13637
http://arxiv.org/abs/2108.13637
http://arxiv.org/abs/1910.06444
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PALL&s1=9207318.PN.
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PALL&s1=9207318.PN.
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PALL&s1=9207318.PN.
https://patentimages.storage.googleapis.com/35/54/b6/ef3c461c82436c/US9207318.pdf
https://doi.org/10.1785/0220150152


Figure 1. DPM for the March 2020 Zagreb earthquake (Contains modified Copernicus Sentinel data and © Google Earth 2020 imagery,

processed by NASA / JPL-Caltech)
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Figure 2. USGS ShakeMap for the March 2020 Mw5.3 Zagreb earthquake
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Figure 3. Building inventory dataset for the city of Zagreb (Source: Office for Strategic Planning and City Development, Grad Zagreb. URL:

https://zagreb.gdi.net/zg3d/)
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Figure 4. Illustration of the input feature vector and output label vector for a selected building in Zagreb (Map source: Office for Strategic

Planning and City Development, Grad Zagreb. URL: https://zagreb.gdi.net/zg3d/)
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Figure 5. Building damage grades in the city of Zagreb following the 2020 March earthquake
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Figure 6. Normalized confusion matrices for the test set for multi-class damage classification. The labels refer to progressive damage grades,

as described in Tables 2, 4, 6, and 8.
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Figure 7. Normalized confusion matrices for the test set for binary damage classification. Label 0 refers to undamaged buildings and label 1

refers to damaged buildings.
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Table 1. Data sources and available input features for the case study earthquakes

Input feature sources

and attributes

2015 Gorkha earth-

quake

2017 Puebla earth-

quake

2020 Puerto Rico earth-

quake

2020 Zagreb earth-

quake

Date, magnitude of

event, and country

25 April 2015, M7.8,

Nepal

19 September, 2017,

M7.1, Mexico

7 January, 2020, M6.4,

United States

22 March, 2020, M5.3,

Croatia

Affected buildings 750,000 buildings dam-

aged, of which 500,000

completely destroyed

Over 3,000 buildings

damaged, and 38 build-

ings collapsed

335 buildings damaged,

of which 77 completely

destroyed

26,000 homes damaged

or destroyed

Source of building foot-

prints

OSM INEGI OSM Grad Zagreb

Available building at-

tributes

Number of stories, age,

construction type, pri-

mary occupancy, struc-

tural irregularities, floor

type, roof type, adjacent

buildings, slope of the

ground

Number of stories, age,

construction type, soil

period

None Number of stories, pri-

mary occupancy

Source of ground shak-

ing intensity map

USGS ShakeMap USGS ShakeMap USGS ShakeMap USGS ShakeMap

Source of remote sens-

ing damage proxy

ARIA DPM ARIA DPM ARIA DPM ARIA DPM

Source of ground truth

damage labels

NSET (subset covering

Budhanilkantha munici-

pality of Kathmandu)

Buendía Sánchez and

Angulo (2017) &

Reinoso et al. (2021)

FEMA University of Zagreb,

Faculty of Civil Engi-

neering

Number of damage

grades (excluding “No

damage”)

Five (EMS-98) (Slight,

moderate, substantial,

very heavy, destruction)

Five (Slight, intermedi-

ate, heavy, partial col-

lapse, total collapse)

Three (Slight, moderate,

heavy)

Three (Green, yellow,

red) or (Slight, moderate,

heavy)

Damage grades consid-

ered as “Damaged” for

binary classification

Substantial damage, very

heavy damage, destruc-

tion

Heavy damage, partial

collapse, total collapse

Moderate damage, heavy

damage

Moderate damage, heavy

damage
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Table 2. Test-set performance metrics for multi-class classification for the 2015 Gorkha earthquake

Damage Grade Precision Recall F1-score Support

0. No Damage 0.62 0.59 0.60 2,046 buildings

1. Slight Damage 0.46 0.38 0.42 1,567 buildings

2. Moderate Damage 0.20 0.24 0.22 557 buildings

3. Heavy Damage 0.14 0.19 0.16 263 buildings

4. Very Heavy Damage 0.21 0.30 0.24 171 buildings

5. Destruction 0.34 0.47 0.39 183 buildings

Accuracy 0.44 4,787 buildings

Macro average 0.33 0.36 0.34 4,787 buildings

Weighted average 0.47 0.44 0.45 4,787 buildings

Balanced accuracy 0.36 4,787 buildings
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Table 3. Test-set performance metrics for binary classification for the 2015 Gorkha earthquake

Damage Grade Precision Recall F1-score Support

0. Undamaged 0.96 0.92 0.94 4,170 buildings

1. Damaged 0.57 0.73 0.64 617 buildings

Accuracy 0.89 4,787 buildings

Macro average 0.76 0.82 0.79 4,787 buildings

Weighted average 0.91 0.89 0.90 4,787 buildings

Balanced accuracy 0.82 4,787 buildings
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Table 4. Test-set performance metrics for multi-class classification for the 2017 Puebla earthquake

Damage Grade Precision Recall F1-score Support

1. Slight Damage 0.66 0.77 0.71 142 buildings

2. Intermediate Damage 0.24 0.18 0.20 51 buildings

3. Heavy Damage 0.36 0.22 0.28 18 buildings

4. Partial Collapse 0.00 0.00 0.00 4 buildings

5. Total Collapse 0.00 0.00 0.00 4 buildings

Accuracy 0.56 219 buildings

Macro average 0.25 0.23 0.24 219 buildings

Weighted average 0.51 0.56 0.53 219 buildings

Balanced accuracy 0.23 219 buildings
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Table 5. Test-set performance metrics for binary classification for the 2017 Puebla earthquake

Damage Grade Precision Recall F1-score Support

0. Undamaged 0.92 0.91 0.91 193 buildings

1. Damaged 0.36 0.38 0.37 26 buildings

Accuracy 0.84 219 buildings

Macro average 0.64 0.65 0.64 219 buildings

Weighted average 0.85 0.84 0.85 219 buildings

Balanced accuracy 0.65 219 buildings
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Table 6. Test-set performance metrics for multi-class classification for the 2020 Puerto Rico earthquake

Damage Grade Precision Recall F1-score Support

0. No Damage 1.00 0.81 0.89 185,139 buildings

1. Slight Damage 0.01 0.22 0.01 329 buildings

2. Moderate Damage 0.01 0.14 0.01 107 buildings

3. Heavy Damage 0.00 0.44 0 18 buildings

Accuracy 0.81 185,593 buildings

Macro average 0.25 0.40 0.23 185,593 buildings

Weighted average 1.00 0.81 0.89 185,593 buildings

Balanced accuracy 0.40 185,593 buildings
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Table 7. Test-set performance metrics for binary classification for the 2020 Puerto Rico earthquake

Damage Grade Precision Recall F1-score Support

0. Undamaged 1.00 0.86 0.93 185,468 buildings

1. Damaged 0.00 0.58 0.01 125 buildings

Accuracy 0.86 185,593 buildings

Macro average 0.50 0.72 0.47 185,593 buildings

Weighted average 1.00 0.86 0.93 185,593 buildings

Balanced accuracy 0.72 185,593 buildings
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Table 8. Test-set performance metrics for multi-class classification for the 2020 Zagreb earthquake

Damage Grade Precision Recall F1-score Support

0. No Damage 0.94 0.79 0.86 75,118 buildings

1. Slight Damage 0.36 0.22 0.27 6,431 buildings

2. Moderate Damage 0.13 0.19 0.16 1,694 buildings

3. Heavy Damage 0.01 0.42 0.02 432 buildings

Accuracy 0.73 83,675 buildings

Macro average 0.36 0.41 0.33 83,675 buildings

Weighted average 0.87 0.73 0.79 83,675 buildings

Balanced accuracy 0.40 83,675 buildings
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Table 9. Test-set performance metrics for binary classification for the 2020 Zagreb earthquake

Damage Grade Precision Recall F1-score Support

0. Undamaged 0.98 0.82 0.89 81,549 buildings

1. Damaged 0.06 0.48 0.11 2,126 buildings

Accuracy 0.81 83,675 buildings

Macro average 0.52 0.65 0.50 83,675 buildings

Weighted average 0.96 0.81 0.87 83,675 buildings

Balanced accuracy 0.65 83,675 buildings
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Table 10. Summary of balanced accuracy scores for multi-class and binary classification

Balanced accuracy scores 2015 Gorkha earth-

quake

2017 Puebla earth-

quake

2020 Puerto Rico

earthquake

2020 Zagreb earth-

quake

Binary classification 0.82 0.65 0.72 0.65

Multi-class classification 0.36 0.23 0.40 0.40
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