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Abstract. PRIMAVERA was a European Union Horizon 2020 project whose primary aim was to generate advanced and well-

evaluated high-resolution global climate model datasets, for the benefit of governments, business and society in general.  

Following consultation with members of the insurance industry, we have used a PRIMAVERA multi-model ensemble to 10 

generate a European winter windstorm event set for use in insurance risk analysis, containing approximately 1300 years of 

windstorm data.  The data is available at https://doi.org/10.5281/zenodo.6492182. 

 

To create the storm footprints for the event set, the storms in the PRIMAVERA models are identified through tracking.  A 

method is developed to separate the winds from storms occurring in the domain at the same time.  The wind footprints are bias 15 

corrected and converted to 3-s gusts onto a uniform grid using quantile mapping.  The distribution of the number of model 

storms per season as a function of estimated loss is consistent with re-analysis, as are the total losses per season, and the 

additional event set data greatly reduces uncertainty on return period magnitudes.  The event set also reproduces the temporally 

clustered nature of European windstorms.   

 20 

Since the event set is generated from global climate models, it can help to quantify the non-linear relationship between large-

scale climate indices such as the North Atlantic Oscillation (NAO) and windstorm damage.  Although we find only a moderate 

positive correlation between extended winter NAO and storm damage in northern European countries (consistent with re-

analysis), there is a large change in risk of extreme seasons between negative and positive NAO states.  The intensities of the 

most severe storms in the event set are, however, sensitive to the gust conversion/bias correction method used, so care should 25 

be taken when interpreting the expected damages for very long return periods. 

 

© Crown Copyright 2022, the Met Office. 
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1 Introduction 

Winter European windstorms are the costliest natural hazard over Europe in terms of insured losses, capable of inflicting 30 

billions of dollars of loss per event.  According to Swiss Re (2018), of all hazards affecting Europe since 1970, the top 5 

highest loss events (after adjusting for inflation to 2017 USD) were all winter windstorms: Daria (1990, 8.7bn USD), Lothar 

(1999, 8.5bn USD), Kyrill (2007, 7.2bn USD), 87J (1987, 6.7bn USD) and Vivian (1990, 6.5bn USD).   

 

Insurance and re-insurance companies must estimate the financial risk posed by these events to ensure they are able to pay out 35 

the resulting claims, and to satisfy industry regulations.  For example, European law requires that EU based insurers hold 

enough capital to withstand the 1 in 200 year loss (Solvency II, 2009), and the European Insurance and Occupational Pensions 

Authority (EIOPA) states that insurers must discuss the impact of climate change on their business (EIOPA, 2022), which 

involves assessing trends in hazards in present and future climate.  A common technique used to analyse risk is catastrophe 

modelling, where the insured losses due to a particular hazard are estimated by combining the hazard footprint with the clients’ 40 

exposure and policy data.  For European windstorms, the footprint is defined as the maximum wind gust associated with the 

storm over a 72 hour period (Haylock et al., 2011), where the gust is defined as the maximum 3-s average wind speed at 10m 

height, according to World Meteorological Organization observing practices (WMO, 2018).  The catastrophe models can be 

run using either a single event footprint (e.g. a notable past event or plausible extreme future event), which can be useful for 

verifying the catastrophe model or understanding the vulnerability of the insurer, or an event set – a set of thousands of event 45 

footprints – to estimate large return period losses.  Since observational and re-analysis datasets typically span decades rather 

than centuries, event set footprints must be constructed using either statistical models, dynamical (climate) models, or a 

combination of the two. 

 

In purely statistical methods, footprints can be generated in a variety of ways: the geospatial dependencies of observed extreme 50 

gusts can be captured in statistical models, allowing footprints to be generated from a random seed value (e.g. Youngman and 

Stephenson, 2016); or historical footprints can be ‘perturbed’ to generate a number of new events that differ slightly from past 

ones, so are deemed to be physically plausible (e.g. Welker at al., 2021).  Alternatively, a set of storm tracks can be generated 

based on the properties of historical tracks, and new footprints generated from the statistical relationship between tracks and 

footprints (e.g. Sharkey et al., 2019; Sharkey et al., 2020).  55 

 

Dynamical methods using climate models are commonly used in estimations of windstorm risk, in particular with regards to 

estimating the effect of climate change (e.g., Leckebusch et al., 2007; Della-Marta and Pinto, 2009), but the coarse resolution 

of the models means that to generate an event set for use in an industry catastrophe model, statistical downscaling and bias 

correction of the footprints are often required.  Examples include Haylock (2011), who extracted their windstorm event set 60 

from an ensemble of regional climate models at 25km resolution, driven by coarse resolution global climate models.  The 
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resulting footprints were downscaled further to 7km by accounting for changes in roughness and orography between the 25km 

and 7km grids.  Finally, the climate model footprints were bias corrected by applying quantile mapping to historical footprints 

on the same 7km grid.  The Windstorm Information Service (WISC) project (Steptoe, 2017), generated an event set from the 

UPSCALE atmosphere-only global climate models at approximately 25 km resolution (Mizielinski et al., 2014), which were 65 

then downscaled and bias corrected to 4.4 km, again using quantile mapping to historical storms on the target grid (but without 

correcting for roughness and orography).  Dynamical event sets can also be produced from medium to long range ensemble 

prediction systems (e.g. Osinski et al., 2016; Walz and Leckebusch, 2019), where the chaotic nature of the atmosphere means 

that after a few days to weeks individual storms in each ensemble member will be largely independent. 

 70 

Advantages of the statistical methods include low computational costs, but they are ultimately model based on a short 

observational time period (typically less than 50 years for re-analysis and observational datasets), and although they can be 

used to generate thousands of footprints, the frequency of each of those footprints is difficult to estimate.  The dynamical-

statistical methods are computationally expensive, but the frequency of the windstorms can easily be taken directly from the 

model, and they are likely to be physically plausible.  However, it is known that low resolution global climate models suffer 75 

from biases in the North Atlantic storm track, where it is too zonal or displaced southwards (Zappa et al., 2013), meaning that 

event sets with low resolution driving models could lead to errors in the spatial distribution of estimated storm loss. 

 

In this paper, we describe an event set produced from the PRIMAVERA high-resolution global climate model ensemble. 

PRIMAVERA (Process-based climate simulation: Advances in high-resolution modelling and European climate risk 80 

assessments; https://www.primavera-h2020.eu/) was a European Union Horizon 2020 project whose aim was to generate 

advanced and well-evaluated high-resolution global climate model datasets, and to interpret or process this data to meet the 

needs of sectors such as energy, water management, agriculture, transport, health, and finance/insurance.    

 

The event set is generated from the historical atmosphere-only experiments from five different models, at both a standard 85 

CMIP6-type resolution (typically 100 km) and at a significantly higher resolution (towards 25 km), producing approximately 

1300 years of model data.  Climate models run at these higher resolutions suffer less from the North Atlantic storm track biases 

found in models at typical CMIP5-generation and earlier resolutions (~200–300km) (e.g. Zappa et al., 2013; Baker et al., 2019; 

Priestley et al., 2020), which should result in more realistic storm frequencies, spatial distributions and intensities.  Possible 

reasons for this bias reduction include improvements in the representation of orographic drag which improves the simulation 90 

of climatological stationary Rossby waves (Pithan et al., 2016); increased latent heating leading to a more realistic 

intensification of extra-tropical cyclones (Willison et al., 2013) and a more tilted storm track (Tamarin-Brodsky and Kaspi, 

2017); improvements in European blocking which helps steer the storm track northwards rather than into central Europe 

(Schiemann et al., 2020); and sharpening of sea surface temperature (SST) gradients and reductions in SST biases leading to 

changes in low level baroclinicity and latent heat supply (Small et al., 2019).   95 

https://www.primavera-h2020.eu/
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Since the PRIMAVERA models are global, it is also possible to associate each storm to large scale climate indices such as the 

North Atlantic Oscillation (NAO).  Given recent advances in NAO prediction on seasonal (Scaife et al., 2014) to annual 

(Dunstone et al., 2016) and multi-annual (Athanasiadis et al., 2020; Smith et al., 2020) timescales, this gives insurers the 

possibility of using their catastrophe models in a predictive mode, assessing the change in storm risk for a given NAO forecast.  100 

 

The aim of this paper is to describe the method used to create the event set from PRIMAVERA models and to show how it 

compares to re-analysis.  The method involves first identifying the storms using a tracking algorithm, then extracting the model 

surface winds associated with each storm to make the footprint.  The footprints from different climate models are then re-

gridded to a common 0.25°0.25° grid, and the model winds are bias corrected and converted to gusts using quantile mapping.  105 

We note that the concept of this event set is similar to the stochastic event set created for the WISC project (Steptoe, 2017).  

The main differences between the two event sets are (i) use of a multi-model ensemble for PRIMAVERA rather than a single 

model ensemble; (ii) separating the footprints of storms occurring in the same 72 hour period in order to study temporal 

clustering; and (iii) applying different bias correction methods.  

 110 

The model and re-analysis data used are described in Sect. 2, and Sect. 3 gives a full description of the method.  In Sect. 4 we 

show the comparison with re-analysis, and also the relationship between storm loss and the NAO.  Section 5 discusses the 

sensitivity of footprint intensity to the bias correction method, and conclusions are given in Sect. 6. 

2 Data 

2.1 PRIMAVERA model data 115 

The event set is made from the highresSST-present PRIMAVERA experiments.  These simulations are atmosphere only, 

covering the period 1950–2014, and use the historical forcings detailed in the HighresMIP protocol (Haarsma et al., 2016, 

Table 1).  The lower boundary was forced by the daily, ¼° Hadley Centre Global Sea Ice and Sea Surface Temperature 

(HadISST.2.2.0; Kennedy et al., 2017) dataset, with area-weighted regridding used to map this to each model grid.   

 120 

The PRIMAVERA models used for the event set are summarised in Table 1.  Each model was run at both a standard CMIP6-

type resolution (typically 100 km) and at a significantly higher resolution (towards 25 km), and some models ran multiple 

ensemble members.  Note that although the CMIP6-type resolution is often referred to as ‘low-resolution’, these resolutions 

were considered relatively high for global models of the CMIP5 generation.  For example, the CMIP5 model HadGEM2-ES 

on the N96 grid (~135km grid spacing at mid-latitudes) was categorised by Zappa et al. (2013) as one of the higher resolution 125 

CMIP5 models with a small bias in the North Atlantic storm track. 
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A windstorm footprint is defined as the maximum 3-s gust associated with the storm over a 72-hour period, but because only 

two PRIMAVERA models outputted maximum gusts we instead extract daily maximum surface (10m) winds (sfcWindmax) 

from the PRIMAVERA models, and convert from winds to gusts as described in Sect. 3.1.3.  Only data for October–March is 130 

extracted, to cover the extended winter season.  These winter storms tend to be associated with extra-tropical cyclones and 

span a larger spatial area compared to smaller, convective storms that occur in summer.  6-hourly 850hPa u and v winds were 

extracted to calculate the relative vorticity needed for the tracking algorithm to identify storms, described in Sect. 3.1.1. 

2.2 Re-analysis data 

To validate the PRIMAVERA event set, footprints were also made from the ECMWF Reanalysis 5th Generation (ERA5; 135 

Hersbach et al., 2020; Copernicus Climate Change Service, 2020) wind gusts.  This data set covers the period 1979–2014, on 

a 0.25°0.25° grid (~18km grid spacing at 50° N).  Hourly maximum 3-s gusts for October–March were extracted and 

converted to daily maxima for fair comparison with PRIMAVERA models.  A re-analysis was chosen to represent observations  

rather than station data because of complete spatial coverage, but we acknowledge that re-analyses can suffer from biases.   

There is limited literature on the validation of ERA5 gusts, although Minola et al. (2020) showed a high temporal correlation 140 

between ERA5 gusts and station observations in Sweden, with evidence of a negative bias for strong gusts over mountainous 

regions.  We performed a comparison of the gusts in ERA5 footprints to station observations for a selection of famous historical 

storms revealing reasonable agreement between ERA5 and observations (see https://doi.org/10.5194/nhess-2022-12-AC1, Fig 

R1). 

  145 

Tracking to identify the re-analysis storms (Sect. 3.1.1) was performed on an earlier version of ECMWF Re-analysis, ERA-

Interim (Dee et al., 2011) since ERA5 tracks were unavailable at the time.  Since northern hemisphere cyclone tracks have 

been shown to match well between re-analyses, particularly for intense cyclones (Hodges et al., 2011), the inconsistency 

between the tracks and gust data is expected to be small.   

3 Methods 150 

3.1 Generating the footprints 

To comply with industry standards, a windstorm footprint is defined as the maximum 3-s gust associated with the storm over 

a 72-hour period. The footprint domain is defined as 25° W to 40.5° E in longitude, and 34.4° N to 71.5° N in latitude (Fig. 1). 

 

Storms are first identified with the tracking algorithm (Sect. 3.1.1). One 72-hour (3-day) footprint is produced per track, despite 155 

typical track lengths being longer than 72 hours.  Since daily data is used, each 72 hour period runs from 00 Z on day 1 to 00 

Z on day 4.  Following Roberts et al. (2014), for each track, the central day (day 2) of the 72-hour period over which to take 

https://doi.org/10.5194/nhess-2022-12-AC1
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the maximum gusts is identified by finding the day of the maximum 10m wind speed over land within 3° of the track centre 

(output by the tracking algorithm). 

 160 

Often two or more tracks will have the same or overlapping 72-hour periods identified for their footprints.  Taking the 

maximum winds/gusts over the whole domain for the specified 72-hour period for each event would result in several cyclones 

being present in a single footprint, and many cyclones would be double counted in the resulting event set.  The footprints are 

therefore separated as described in Sect. 3.1.2.  Finally, the footprints must be re-gridded to a common, high-resolution grid, 

converted from maximum winds to maximum 3-s gusts, and bias corrected; this is described in Sect. 3.1.3. 165 
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Institution MOHC, 

UREAD, 

NERC 

EC-Earth 

KNMI, SHMI, 

BSC, CNR 

CERFACS MPI-M CMCC 

Model name HadGEM3-

GC3.1 

EC-Earth3P CNRM-CM6.1 MPI-ESM1.2 CMCC-CM2-

(V)HR4 

Resolution 

names 

LM, MM, HM LR, HR LR, HR HR, XR HR4, VHR4 

Model 

atmosphere 

component 

MetUM IFS cyc36r4 ARPEGE6.3 ECHAM6.3 CAM4 

Atmospheric 

dynamical 

scheme (grid) 

Grid point 

(SISL; lat-lon) 

Spectral (linear; 

reduced 

Gaussian) 

Spectral (linear; 

reduced 

Gaussian) 

Spectral 

(triangular; 

Gaussian) 

Grid point 

(finite volume; 

lat-lon) 

Atmospheric 

grid name 

N96; N216; 

N512 

Tl255; Tl511 Tl127;Tl359 T127; T255 1°1°; 

0.25°0.25° 

Atmospheric 

mesh spacing at 

50oN (km) 

135; 60; 25 71; 36 142; 50 67; 34 64;18 

Atmospheric 

nominal 

resolution 

(CMIP6) 

250; 100; 50 100; 50 250; 100 100; 50 100; 25 

Ensemble 

members at 

each resolution 

5; 3; 3 2*; 2* 1; 1 1; 1 1; 1 

Atmospheric 

model levels 

(top) 

85 (85km) 91 (0.01 hPa) 91 (78.4 km) 95 (0.01hPa) 26 (2hPa) 

Reference(s) Williams et al. 

(2018); Roberts 

et al. (2019) 

Haarsma et al. 

(2020) 

Voldaire et al. 

(2019) 

Gutjahr et al. 

(2019) 

Cherchi et al. 

(2019) 

 

Table 1: Summary of PRIMAVERA models used for the event set. *Only 2 of the 3 ensemble members run at each resolution were 170 
used due to tracking failures. 
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Figure 1: Footprint domain and countries used for calculation of loss index. 175 

 

Footprints were made for every extra-tropical cyclone track identified by the TRACK algorithm.  Many of these cyclones do 

not have strong enough winds to cause damage, but since users will be interested in different domains and use different 

estimations of storm severity or vulnerability functions, all footprints are retained so that users can perform filtering tailored 

to their own needs. 180 

3.1.1 Storm tracking 

The identification and tracking of the extra-tropical cyclones in the model data is performed following the approach used in 

Hoskins and Hodges (2002) based on the Hodges (1995, 1999) tracking algorithm (TRACK). The cyclones are tracked on the 

6-hourly, T42 spectrally filtered 850 hPa relative vorticity field. Planetary waves with a wave number less than 5 are filtered 

out to remove the large-scale background and improve reliability of the algorithm.  Only cyclones with a maximum intensity 185 

greater than 1.010-5 s-1 lasting at least 2 days and travelling more than 1000 km are retained for the footprints. 

 

The tracking was performed on individual seasons (DJF, MAM, JJA, SON), but footprints were generated for all cyclones 

identified in the extended winter (October–March).  Some cyclone tracks may have been cut short by crossing the season 

boundaries, or split into two separate tracks, but assuming a constant cyclone formation rate throughout the season and that 190 

the severe winds of a cyclone last 72 hours (as is assumed by in the insurance industry), this will only affect 3% of tracks. 

The storm tracking in the ERA-Interim re-analysis was performed in a similar way (see Roberts et al., 2014 for a full 

description).  The main difference is that the re-analysis tracking used 3-hourly data, but only 6 hourly track positions were 

retained to be consistent with the PRIMAVERA model tracks. 

 195 
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Due to technical issues, occasionally the tracking algorithm was unable to complete a full winter season.  It was not possible 

to diagnose the issue and re-run the tracks in the time frame available, so these seasons were removed from the event set.  12 

model winters were affected, listed in Appendix A. 

3.1.2 Footprint separation 

It was not possible to apply the method of footprint separation used in previous studies such as Roberts et al. (2014), since this 200 

was developed for 6-hourly maximum wind data rather than daily maxima.  Instead, to separate footprints of storms with 

overlapping 72-hour periods, for each day in a model run, each grid point in the daily maximum wind field is assigned to a 

storm track, by identifying the closest cyclone track point during that day.  Grid points more than 1500 km from any track 

point are not assigned to a cyclone track.  To generate the footprint for each cyclone track, the daily maximum winds for the 

72-hour period (specified as above) are extracted, with the grid points assigned to other cyclones masked out, and the 72-hour 205 

maximum is taken.  Figure 2 demonstrates the method in ERA5 data for the observed famous storms Lothar and Martin, which 

struck France within 24 hours of each other on 26th–27th December 1999.  Without separating the wind fields in this way, Fig. 

2 shows that the footprints of Lothar and Martin would be almost identical over land. 

 

On some occasions storm tracks can come within 1500 km of each other in the same 24-hour period, making it impossible to 210 

separate the storms using daily data.  In these cases the winds can be assigned to the wrong storm and the footprints appear to 

have truncated wind fields (this can be seen over the Atlantic in the final footprint for storm Martin, Fig. 2(h)).  However, 

inspection of footprints in the event set shows that most strong winds (>20 ms-1) over land are captured in each footprint, and 

the truncation should not have an effect on seasonal aggregate losses.  

3.1.3 Downscaling and bias correction/conversion from winds to gusts 215 

Insurance industry windstorm footprints are typically maps of maximum 3-s gust at 10 m rather than windspeed, on a very 

high resolution grid (maximum grid spacing ~25 km, although <10 km is preferred; Bojovic et al., 2017).  To be consistent 

with these industry standards, the footprints must be converted from wind to gust speeds and downscaled to a common grid.  

Here the target grid is that of the ERA5 gusts (0.25°0.25°, approximately 18 km grid spacing at 50° N), and ERA5 gusts are 

taken to represent observations. 220 

 

We use quantile mapping to achieve both the conversion from winds to gusts and bias-correction.  The method is as follows: 

The model daily maximum wind speeds are downscaled to the ERA5 grid using linear interpolation.  At each individual grid 

point, the empirical cumulative distribution function (CDF) is calculated at probability intervals of 0.5% up to the 98th 

percentile.  Above the 98th percentile, the CDF is fitted using a generalised Pareto distribution (GPD), which is commonly 225 

used for fitting extreme wind speeds (e.g., Sharkey et al., 2020).  Following Fawcett and Walshaw (2012), declustering to 

remove temporal dependence is not applied to improve precision of parameter estimates.  The mean extremal index, estimated 
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using intervals estimator of Ferro and Segers (2003), has mean value 0.61, so the effect of clustering on the return levels is 

expected to be small relative to other errors (Fawcett and Walshaw, 2012). The GPD fitting is performed separately for each 

model. 230 

 

Figure 2: Storm separation method: (a), (b), (c) and (d) show the daily maximum gust fields from ERA5 for 25th–28th December 

1999, with the 6 hourly track points of each storm identified in the domain on that day (the cyan number gives the track identification 

number).  The thick black lines mark the shape of the mask used for each track on each day; for example, the footprint of Lothar 

(track 507) is made by taking the maximum of the gusts in the marked areas around track 507 (the rest of the gusts are set to missing 235 
data) for 25th, 26th and 27th December.  The resulting footprint is shown in panel (g), compared to taking the maximum gusts over 

the whole domain on the same days shown in panel (e).  (f) and (h) are the same for storm Martin (track 514). 
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The quality of the GPD fits was assessed by calculating the difference between the fitted and empirical value of the 99.8th 

percentile.  If this was found to be greater than 1 ms-1 at a grid point i, then the parameters of the GPD fit were taken from the 240 

mean of the surrounding grid points.  The CDF estimations as described above were then repeated on the ERA5 gust 

distribution.  The model CDFs are estimated on wind speeds in the time period which overlaps with the ERA5 dataset, 

1979/80–2013/14 (October–March only), to take into account any non-stationarity in the wind/gust speed distribution due to 

climate change and/or low frequency climate variability.   

 245 

The daily maximum gust speeds, gi(t), at each grid point i and time t are then estimated using a transfer function:  

gi(t)= f-1
ERA5,i[fmod,i(wi(t))],            (1) 

where wi(t) is the daily maximum model wind speed at grid point i, and fERA5,i(x) and fmod,i(x) are the estimated CDFs of the 

ERA5 gusts and model windspeeds at grid point i respectively.   

 250 

Quantile mapping has been used for this purpose in previous event set methodologies (e.g., Steptoe, 2017; Osinski et al., 2016), 

but note that here quantile mapping is performed for each grid point individually rather than pooling data over the whole 

domain.  The reason for this is demonstrated in Fig. 3, which shows quantile-quantile (q-q) plots of the October–March daily 

maximum gusts from ERA5 against the October–March daily maximum wind speeds from the PRIMAVERA model 

HadGEM3-GC3.1-MM (other models are shown in Appendix B), for a selection of major cities around Europe.  The mapping 255 

from winds to gusts varies considerably depending on location, e.g., a 5 ms-1 wind speed in London maps to a gust speed of 

~9 ms-1, whereas the same wind speed in Geneva maps to a gust speed of nearly 21 ms-1.  One of the reasons for this discrepancy 

is the use of an effective roughness parametrisation in climate models, to take into account the effects of sub-grid scale 

orography and simulate realistic orographic drag on the upper level flow (Wood and Mason, 1993; Howard and Clark, 2007; 

Williams et al., 2020).  This can, however, lead to unrealistically low surface wind speeds, especially over high land (Roberts 260 

et al., 2014), and the degree of the bias is strongly dependent on the orographic properties of the grid point.   

 

A disadvantage with mapping on individual grid points is that there are a limited number of data points available for fitting 

the GPD, so extreme gust values in the corrected footprints should be considered highly uncertain.  In some cases, the mapping 

from model winds to gusts becomes unstable leading to unrealistically high estimated gusts, for example when an input model 265 

wind speed is greater than the maximum used in the fitting period.  In these cases the estimated gusts are capped at 60 ms -1 

over land and 70 ms-1 over sea grid points.  The limitations of this method to convert wind speeds to gusts are discussed further 

in Sect. 5. 

 

 270 
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Figure 3: q-q plots at selected locations (points in increments of 0.5%) showing relationship between ERA5 daily maximum 3-s gusts 

and daily maximum model winds in HadGEM3-GC31-MM.  The PRIMAVERA wind speeds have been linearly interpolated to the 

ERA5 grid. 

3.2 Loss estimation  275 

To estimate the damage resulting from each storm in the event set, for each storm footprint we calculate a dimensionless loss 

index (LI), based on the index derived by Klawa and Ulbrich (2003): 

𝐿𝐼 =  ∑ 𝑎𝑟𝑒𝑎𝑖 × 𝑝𝑜𝑝 𝑑𝑒𝑛𝑠𝑖 × (
𝑣𝑖

𝑣98,𝑖
− 1)

3

 for 𝑣𝑖 >  𝑣98,𝑖𝑖         (2) 

where areai and pop densi are the area and population density of grid point i, vi is the maximum gust speed in the footprint at 

grid point i, and v98,i is the 98th percentile gust speed at that same location (calculated separately for each model).  Following 280 

the approach of the WISC project (Steptoe, 2017), unless stated otherwise, the area summation is over land grid points for the 

following countries: Luxembourg, United Kingdom, Ireland, France, Spain, Portugal, Belgium, Netherlands, Germany, and 

Denmark (shaded countries in Fig. 1).  Population data is from the Gridded Population of the World, Version 4 (GPWv4; 

CIESIN 2016) 

 285 

This loss index has been found to correlate well with aggregate insured losses over a season in Germany and the UK (Klawa 

and Ulbrich, 2003; Leckebusch et al., 2007).  The index is calculated per event rather than the summation of daily data over a 

season, which is a commonly used modification (e.g. Karremann et al., 2014; Priestley et al., 2018).  For the aggregate (total) 

losses per season, the LI is summed over all events in a season.  We note that other loss indices exist (see Prahl et al., 2015, 
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for example), and those with exponents greater than three may amplify differences between models and re-analysis compared 290 

to the results presented here. 

 

3.3 NAO calculation 

In Sect. 4.4 the NAO index is defined as the anomaly in the difference between mean sea level pressure between a region 

centred on the Azores (longitude 20 to 28° W, latitude 36 to 40° N) and one centred on Iceland (longitude 16 to 25° W, latitude 295 

63 to 70° N; Dunstone et al., 2016).  In this paper the extended winter mean NAO is calculated for the re-analysis and each 

climate model.  The anomalies each winter are given with respect to the extended winter mean of the whole period available 

for each model (1950/51–2013/14) and the re-analysis (1979/80–2013/14), although almost identical results are obtained when 

anomalies are given with respect to the common period. 

4 Results 300 

4.1 Storm tracks and footprints 

Footprints were generated for all extended winter tracks identified by TRACK for all models, producing a total of 1332 years 

of data.  In total there are 268 620 footprints, 69 482 of which have a non-zero loss index (LI), and 2 738 represent severe 

damage storms (based on the LIs of the named events in Roberts et al. (2014) these are defined as events with LI > 1.0106; 

such storms occur approximately once every two winters over Europe and make up 70% of total losses).  Table 2 compares 305 

the mean number of storms per extended winter in PRIMAVERA models to re-analysis, for all storms, storms with a non-zero 

LI, and severe storms.  Numbers compare well with re-analysis, although all PRIMAVERA models appear to slightly 

underestimate the total number of storms.   The number of footprints with a non-zero LI tends to increase with model resolution, 

possibly because to have LI>0 there must be regions with wind speeds greater than the local 98 th percentile, which may occur 

in a higher proportion of storms if small scale features embedded with high wind speeds are better resolved.  The mean number 310 

of severe storms per winter remains remarkably stable at approximately two storms per winter, matching the re-analysis. 

 

The increase in storm numbers with resolution is also reflected in Fig. 4, which shows the track densities for footprints which 

have non-zero LI, and for severe storms only.  The maximum track density is located over the UK, which is expected given 

the area used to calculate the LI (Fig. 1), and the fact that maximum winds tend to occur south of the tracks.  The 315 

underestimation of non-zero LI tracks is most pronounced over the UK and western parts of the European continent, but the 

bias is much reduced in the higher resolution models.  For severe storms the bias in track density is mostly statsitcially 

insignificant over western Europe, but there is a slight over-estimation in storm numbers in the eastern Mediterranean basin at 

both resolutions. 

 320 
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The track densities for the individual models are shown in Appendix D.  The models all show the reduction in bias in non-zero 

LI storm numbers over western Europe as resolution increases.  The response is more mixed for the intense storms although 

the biases are mostly not statistically significant. 

 

Figure 5 shows a selection of some of the most damaging storms from the re-analysis and ones of similar strength (as measured 325 

by the LI) from the PRIMAVERA models.  The figure shows that the models can simulate different ‘types’ of storms, for 

example a large area storm like Daria (January 1990); intense, narrow storms such as Anatol (December 1999); storms with a 

southern track hitting the Iberian peninsula, such as Klaus (January 2009); and storms with a strong southwest-northeast tilt 

which travel northwards from Iberia to northern Europe such as 87J (the Great Storm of 1987; October 1987).  Note that the 

model simulations are not attempting to simulate the re-analysis storms (as can be seen by the very different dates for the 330 

footprints), the figure is simply to illustrate the variety of storms that can be simulated.  Also shown in Figure 5 are the 

footprints for the storms with approximate return periods of 200 yr, 100 yr and 50 yr.  The footprint of the 200 yr event is 

truncated indicating it may be part of a complex cluster of storms.  The 100 yr and 50 yr events are both large scale events 

over northern Europe, with footprints resembling that of Daria.  There are small areas of very extreme gusts around Benelux, 

Germany and Poland, whose magnitude should be considered uncertain due to the bias correction (see Section 5). 335 
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Names of the low-, med- 

and high-resolution 

models 

Mean number of footprints 

per winter 

Mean number of footprints 

with non-zero loss index 

per winter 

Mean number of severe 

footprints per winter 

Low res 

 

Med res High 

res 

Low 

res 

Med 

res 

High 

res 

Low 

res 

Med 

res 

High 

res 

CMCC-CM2-HR4 

CMCC-CM2-VHR4 

215.3  220.6 42.1  62.8 2.3  2.2 

CNRM-CM6-1 

CNRM-CM6-HR 

198.3  216.1 44.3  61.9 2.1  2.3 

EC-Earth3P 

EC-Earth3P-HR 

200.6 

 

 199.3 52.6  66.8 2.2  2.3 

HadGEM3-GC3.1-LM 

HadGEM3-GC3.1-MM  

HadGEM3-GC3.1-HM 

189.9 

 

202.6 205.96 41.6 51.5 61.7 2.0 1.8 1.8 

MPI-ESM1.2-HR  

MPI-ESM1.2-XR 

203.6  206.2 45.1  54.4 2.2  2.4 

Low res models,  

high res models* 

 

196.8 

 

206.1 

 

44.4  

 

59.2 

 

2.1 

 

2.0 

All models  201.7 52.2 2.1 

Re-analysis 237.8 64.7 2.0 

Table 2: Mean number of total footprints, footprints with a non-zero loss index and severe footprints per winter for each 

PRIMAVERA and re-analysis footprints.  For each PRIMAVERA model, the means from both the low and high-resolution versions 

are given in each row. *The model HadGEM3-GC3.1-MM is included in the ‘high-res’ count. 340 
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Figure 4: Track densities from re-analysis and PRIMAVERA models for tracks with a non-zero loss index (LI), and severe storms 

(LI>1106).  Following Economou et al., (2015), track density is defined by the number of tracks with at least one track point passing 

within 6.3° of each grid box (on a 2.5°2.5° grid) per winter.  The re-analysis track densities for non-zero LI storms are shown in (a) 

and severe storms in (g).  The track densities and bias (model – re-analysis) for the low resolution PRIMAVERA models are shown 345 
in panels (b) and (e) for the non-zero LI storms ((h) and (k) for the severe storms), and for the higher resolution PRIMAVERA 

models in panels (c) and (f) ((i) and (l) for the severe storms).  The medium resolution version of HadGEM3-GC3.1 is included in 

the higher resolution models.  The change in bias (|low resolution bias|-|high resolution bias|) from low to high resolution is shown 

in panel (d) for the non-zero LI storms, and in (j) for the severe storms, with red areas corresponding to improvement with increased 

resolution.  The yellow contour marks where the bias is statistically different from 0 with 95% confidence according to Welch’s 350 
unequal variances t-test. 
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Figure 5: Example observed and simulated footprints: Left column (a), (d), (g), (j) are re-analysis footprints of the famous storms 

Daria, Anatol, Klaus and 87J (The Great Storm of 1987).  The footprints in the middle and right columns are from PRIMAVERA 

models, with each row showing two examples of storms of a similar type to the re-analysis examples.  The central date of each 355 
footprint is given in the panel titles.  The bottom row ((m) to (o)) shows the footprints for events with RPs of approximately 200 yr, 

100 yr and 50 yr. 
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 4.2 Loss index distribution 

We now examine how well the PRIMAVERA models capture the intensity distribution of storms, as measured by the loss 

index.  Figure 6 plots the distribution of number of severe storms (those with LI>1106) per extended winter as a function of 360 

LI for PRIMAVERA and re-analysis data.  The re-analysis data set contains only 35 winters so the distribution contains more 

noise than that for the PRIMAVERA models.  For a fair comparison with the models, we therefore take 1000 random samples 

(with replacement) of 35 winters from the PRIMAVERA data set to estimate the noise in a 35-winter sample.  The vertical red 

lines on the PRIMAVERA distribution in Fig. 6 show the 95% interval for each intensity bin based on the random samples.  

The re-analysis distribution lies well within the sample distributions of the models, showing that the models’ and re-analysis 365 

distributions are consistent with one another. 

 

 

Figure 6: Distribution of number of severe storms (LI>1106) per extended winter as a function of LI in PRIMAVERA models (red) 

and re-analysis (black).  Vertical red lines show the 95% range in frequency estimated from 1000 35 year samples (with replacement) 370 
from the model data.  Note that the last LI bin (LI>17106) is larger. 

Figure 7(a) shows the empirically estimated return periods for seasonal aggregate losses (seasonal sum of LI) in the 

PRIMAVERA models and the re-analysis data.  The extreme tail of the PRIMAVERA data (seasons with an aggregate loss 

above the 90th percentile) is fitted with a GPD curve (Welker et al., 2021, Walz and Leckebusch, 2019).  Note that three model 

storms (listed in Appendix C) had to be removed from the seasonal aggregate losses as they were considered unrealistically 375 

extreme.  They are clear outliers when plotting LI against empirical return period for individual storms, and their inclusion 

prevented a satisfactory GPD fit.  The extreme LIs are due to single grid points with extreme gusts occurring over large 
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population centres, and are a result of the bias correction method used (discussed further in Sect. 5).  The aggregate losses 

before their removal are shown with the open red circles in Fig. 7(a).   

 380 

The 95% confidence intervals on the GPD fit have been quantified by repeatedly (1000 times) randomly sampling M years of 

data from the fitted function (where M is the number of years of data used in the original fit, equal to 1332 for PRIMAVERA) 

and then re-fitting.  Asssuming the model LI distribution is representative of observations, the GPD fit estimates that the most 

extreme season over Europe in re-analysis (1989/90), which had a total LI of 4.5107, has a return period of 75-200 years 

under present day conditions, longer than the 35 years estimated from the re-analysis data alone. 385 

 

 

Figure 7: Return period curve for seasonal aggregate losses. The GPD fit to PRIMAVERA data is shown by the red line, with 

individual seasons shown by the red dots.  The open red circles show the aggregate losses for the three seasons which contained the 

unrealistically extreme storms, before these storms were removed from the aggregate (plotted at the same return period).  The cyan 390 
points show the losses from the PRIMAVERA data using an alternative bias correction/gust conversion method described in Sect. 

5.  The shading shows the 95% confidence intervals to the GPD fits, estimated by re-sampling.  ERA5 data is shown in black.  Panel 

(b) is a close-up version of panel (a).  The dashed lines in (b) show the 95% confidence intervals in LI for a given return period when 

sampling 35 years of PRIMAVERA data. 

 395 

To check if the PRIMAVERA models’ return periods are consistent with the re-analysis data, as in Fig. 6, 1000 35 year samples 

were taken from the PRIMAVERA dataset, and the 95% intervals of the measured aggregate losses for each return period are 

shown with the dashed lines in Fig. 7(b).  The ERA5 losses are well within the bounds of the PRIMAVERA data and 

demonstrate the huge uncertainty in losses/return periods when only 35 years of data are used.  Figure 7 also shows the return 
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period curve for PRIMAVERA aggregate losses when an alternative bias correction/conversion to gusts is used, which is 400 

discussed further in Sect. 5. 

4.3 Storm clustering 

Serial (or temporal) clustering of windstorms is the tendency of these events to arrive in groups (Dacre and Pinto, 2020).  It 

has been shown in both observations and climate models that storms are serially clustered in the flanks and exit region of the 

North Atlantic storm track, and thus on their arrival into Europe (e.g. Mailier et al., 2006; Vitolo et al., 2009; Pinto et al., 2013; 405 

Economou et al., 2015).  Priestley et al. (2018) demonstrated the importance of clustering in estimating losses from a high-

resolution climate model, with seasonally aggregated losses 20% higher in the (clustered) climate model output compared to 

random re-sampling of the data assuming a Poisson distribution for the storm frequency. 

 

Figure 8: Distribution of number of severe storms per winter in PRIMAVERA models (red) and re-analysis (black).  The red lines 410 
on each bar show the 95% range of season counts for 1000 35 re-sampled years of PRIMAVERA data. 

We assess clustering in the PRIMAVERA simulations by comparing the distribution of the frequency of severe storms 

(LI>1106) per season to re-analysis (Fig. 8).  As in Fig. 6, the consistency between PRIMAVERA and re-analysis data is 

assessed by taking 1000 35 year samples of PRIMAVERA data.  The re-analysis distribution is consistent with being a sample 

from the PRIMAVERA data, and the models can even simulate seasons as extreme as winter 1989/90, with 8 severe storms 415 

over Europe.  There are 5 (of 1332) seasons in the model with ≥8 severe storms, giving the chance of this occurring at least 

once in a 35 year period of 1-(1327/1332)35=12%. 
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The PRIMAVERA storm numbers show a clustered distribution, with the dispersion statistic (equal to σ2/µ - 1, where σ2 is the 

variance of storm counts per season and µ is the mean; Mailier et al., 2006) of 0.38, which is significantly greater than zero 420 

with 95% confidence (p=0.018, estimated from the distribution of dispersion statistic assuming a Poisson distribution), and 

close to the re-analysis value of 0.35 (significantly greater than zero with 90% confidence, p=0.07).   

 

Figure 9: The relationship between extended winter NAO and storm damage. (a) Scatter plot of extended winter aggregate loss over 

the UK against extended winter NAO for PRIMAVERA and re-analysis data.  Contour levels (for aggregate losses < 1107) are 425 
shown to illustrate the density of PRIMAVERA data.  The contour levels are 2, 5, 10, 20, 30, 50 and 100 seasons, in bins of width 2.5 

hPa in NAO, and 1.1106 in aggregate losses. The rank correlation coefficients between aggregate losses and NAO are given in the 

legend.  For PRIMAVERA data, the 95% range of correlation coefficients when taking 1000x35 year random samples is also shown 

in brackets.  (b) As in (a) but showing the number of severe UK storms (UK LI > 1105) per season. (c) Rank correlation coefficients 

between seasonal aggregate LI and NAO over the countries in the European domain for PRIMAVERA (red dots) and re-analysis 430 
(black dots).  The vertical red solid lines indicate the 95% distribution of correlations from 1000 35 year samples from PRIMAVERA 

data (not the confidence intervals on the correlation coefficient of all 1332 years of data), to show consistency with re-analysis.  The 

red dashed lines show the 95% confidence intervals of correlation coefficients for 1332 years uncorrelated data: PRIMAVERA 

correlations are all outside these intervals indicating a significant difference from zero correlation with at least 95% confidence. 

4.4 Dependence on NAO 435 

The North Atlantic Oscillation (NAO) is the primary mode of variability in the North Atlantic European region (Wallace and 

Gutzler, 1981), and is closely linked with the position of the North Atlantic storm track (Rogers, 1990), and consequently 

European windstorm damage (Walz et al., 2020). Recent advances in the predictability of the NAO on timescales of seasons 

to decades (Scaife et al., 2014; Dunstone et al., 2016; Athanasiadis et al., 2020; Smith et al., 2020) have thus opened up the 

possibility of being able to predict European storminess on long range timescales (Befort et al., 2018).  Since the footprints in 440 

PRIMAVERA are generated from a global climate model, it is possible for insurers to extract storms associated with different 

NAO states to estimate the effect of the NAO on their particular portfolio, and even estimate the change in expected losses for 

a given NAO forecast. 
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Figure 9 shows the extended winter aggregate UK LIs and (b) severe storm counts over the UK against extended winter mean 445 

NAO, from PRIMAVERA models and re-analysis.  The threshold for severe storms is reduced from the European LI value of 

1106 to 1105, to take into account the smaller area and population of the UK.  The UK is chosen as an example because it is 

well within the northern region of influence of the NAO (e.g. Hurrell and Deser, 2010). 

 

Figure 9 (a) shows there is a non-linear relationship between aggregate storm loss and NAO, with a clear increase in risk of a 450 

high loss season as NAO increases.  Although the rank correlation coefficients (ρ) between aggregate losses and NAO for 

PRIMAVERA and re-analysis are modest (0.29 and 0.41 respectively, both statistically significantly different from zero with 

>95% confidence), PRIMAVERA data estimates that the probability of an extreme season over the UK (defined as having an 

aggregate seasonal loss above the 90th percentile, 4106) increases to 0.2 for NAO>5 hPa, and decreases to just 0.06 for NAO<-

5 hPa.  455 

 

There is a similar positive correlation for the number of severe storms striking the UK each winter (ρ=0.32 for PRIMAVERA 

and 0.40 for re-analysis, see Fig. 9(b)).  Figure 9 (c) shows the correlations between extended winter NAO and aggregate 

losses for the other countries in the domain and shows the expected relationship with positive (negative) correlations for the 

northern (southern) countries.  The 95% significance levels for the PRIMAVERA data (from a 2-tailed t-test) are shown by 460 

the dashed red lines, indicating that all the PRIMAVERA correlations (shown by the red dots) are statistically significant.  As 

before, consistency with ERA5 is tested by randomly sampling 35 year time series from the PRIMAVERA dataset, and the 

95% range of correlations for 35 year samples are shown by the solid red vertical lines in Fig. 9(c).  All the ERA5 correlations 

are within the bounds of the PRIMAVERA data. 

5 Uncertainty in storm severity due to the bias correction/conversion to gusts method 465 

Figure 7 showed that there were 3 model storms with unrealistically high loss indices, which had to be removed from the 

seasonal aggregate losses to obtain a satisfactory GPD fit for the calculation of return periods.  This is due to the quantile 

mapping method to bias correct/convert to gusts, which relied on GPD fits of daily PRIMAVERA model and ERA5 

winds/gusts (Sect. 3.1.3).  As the GPD fitting is performed separately for each model over the common time period with ERA5, 

and at individual grid points, only 35 years of data are available for each fit (apart from where multiple ensemble members are 470 

available).  Inspection of the most extreme footprint shows an intense storm centred over Barcelona, where the input raw model 

winds in this region were substantially greater than the maximum model winds used in the GPD fitting period.  Due to the high 

sensitivity of the transfer functions, and the fact that the loss index is population weighted and dependent on the cube of the 

gust, the high gusts in this area have a huge impact on the resulting loss index. 

 475 

In fact, all of the 10 most intense model storms (as measured by the LI) were for storms outside the fitting period used for the 

bias correction, indicating large uncertainty in the maximum gusts possible at each grid point.  In addition, 9 of the 10 most 
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intense model storms are centred on southern Europe, off the main storm track, where excessive gusts will have a larger impact 

on the LI due to the lower 98th local gust percentile.  9 of the 10 most intense storms are also produced from the lower resolution 

version of each model, which may indicate issues in the transfer functions when there is a large change in resolution from 480 

native to target grid. 

 

 

Figure 10: Scatter plot of European LI for individual footprints from the alternative bias correction method (Sect. 5) against LI 

using the original method.  The red line shows equality. 485 

Therefore, to estimate the sensitivity of LI to the estimated cumulative distribution function of ERA5 gusts and model winds, 

we tested using an empirical quantile mapping method (e.g. Steptoe, 2017, Osinski et al., 2016) to convert from winds to gusts.  

Here, instead of fitting the CDF of the gusts/winds with a GPD curve, we linearly interpolate between the empirically estimated 

quantiles.  When an input model wind is greater than the maximum wind used in the fitting period, it is converted to the 

maximum ERA5 gust in the fitting period at that grid point. 490 

 

Figure 10 shows a scatter plot of the loss index of each storm with this alternative bias correction method against the original 

loss index.  There is strong agreement between the two methods, although the original method tends to give higher intensities.  

A few (~20) storms show a large discrepancy, with substantially higher LIs using the original bias correction method.  The 

estimations of LI for these storms (when calculated over the countries shown in Fig. 1) should be considered unreliable. 495 

 

Figure 7 shows the return period curve for the aggregate losses with the alternative bias correction method (plotted in cyan).  

Figure 7 (b) shows that this curve starts to diverge from the original dataset around the 5 year return period.  It is likely that 

the alternative bias correction method gives an underestimation of the ‘true’ losses, since maximum gusts cannot be greater 

than those in ERA5.  Nevertheless, it demonstrates the sensitivity of loss estimations for long return periods to the bias 500 
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correction method used.  It also shows that the uncertainty in the GPD fit to the model data does not cover the uncertainty 

arising from the LI values themselves. 

 

Other bias correction methods include correcting for the effective roughness parametrisation which leads to the 

underestimation of model winds, as described in Howard and Clark (2007) (or a simplified version in Haylock, 2011), or 505 

pooling data for the GPD fits and allowing for dependencies on covariates such as altitude, roughness and latitude (see eg. 

Economou et al., 2014, who pooled mean sea level pressure data from North Atlantic storm tracks to fit GPD functions, but 

included dependence on latitude and NAO in the fit parameters).  Alternatively, the relationship between winds on the native 

grid and high resolution gusts can be modelled (for example using linear regression) if there are like-for-like footprints on both 

grids.  This was not possible here since PRIMAVERA models are free-running and not attempting to simulate individual 510 

storms in ERA5, but this could be achieved by dynamically downscaling a selection of model footprints, as in Haas and Pinto 

(2012). 

6 Conclusions 

We have produced a freely available winter windstorm event set from PRIMAVERA global climate models for use in insurance 

risk analysis, which consists of 268 620 windstorm footprints, covering 1332 years of data.  The data is freely available at 515 

https://doi.org/10.5281/zenodo.6492182.  The method developed to create the event set separates the footprints of storms in 

the domain during overlapping time periods, allowing characteristics such as storm clustering to be studied more easily.  To 

be consistent with the insurance industry definition of a footprint, the raw model winds were statistically converted to gusts on 

a 0.25°0.25° grid.  The intensities of the most severe storms in the event set are, however, sensitive to the gust conversion/bias 

correction method used. 520 

 

The damage over Europe from each storm is estimated with a loss index.  The frequency distribution of estimated European 

windstorm losses from the resulting event set, as well as the total losses per season, are consistent with re-analysis, and the 

additional event set data greatly reduces uncertainty on return period magnitudes.  The event set also reproduces the distribution 

of the number of severe European storms per season seen in re-analysis, which is statistically distinct from a Poisson 525 

distribution and confirms the temporally clustered nature of severe European windstorms.  The PRIMAVERA data suggest 

that the total loss of the most extreme season in the re-analysis data, winter 1989/90, has a return period of 75-200 years (in 

present day conditions), longer than the empirical estimation from re-analysis (35 years).  

 

The model also simulates a relationship between extended winter aggregate storm loss and the extended winter mean NAO, 530 

consistent with the re-analysis data.  Although only moderate (but statistically significant) positive correlations between 

seasonal NAO and aggregate losses are found for northern European countries, the probability of extreme losses in a season 
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(>90th percentile) for the UK increase by a factor of 4 in positive NAO (NAO>5hPa) seasons compared to negative ones 

(NAO<-5hPa).  Since monthly NAO values are provided with the dataset, this allows users to investigate the effect of NAO 

on their individual portfolios, and to quantify the impact of a given NAO forecast, opening the possibility of predictive 535 

catastrophe modelling.  The data presented in this paper is for the multi-model ensemble, but similar conclusions are reached 

when looking at individual models. 

 

Future work includes refining the conversion to gusts/bias correction method, and extending the event set to include the coupled 

PRIMAVERA simulations, and the PRIMAVERA climate projections which run to 2050. 540 

Appendices 

Appendix A 

The following model winters were removed from the event set due to incomplete tracking: 

• CMCC-CM2-VHR4_highresSST-present_r1i1p1f1: 1993/1994 

• EC-Earth3P-HR_highresSST-present_r3i1p1f1: 1982/3 1983/4 1966/67 1967/68 545 

• EC-Earth3P_highresSST-present_r1i1p1f1: 1950/51 1951/52 

• EC-Earth3P_highresSST-present_r3i1p1f1: 1962/63 1963/64 1970/71 1971/72 

• HadGEM3-GC31-HM_highresSST-present_r1i3p1f1: 2006/7 
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Appendix B 550 

 

 

Figure B1: As in Figure 3 but for the remaining PRIMAVERA models. 
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Appendix C 555 

List of the 10 most extreme footprints in the event set according to European loss index.  The first three storms were excluded 

from the seasonal aggregate losses when fitting the return period curve in Figure 7. 

• CMCC-CM2-HR4_highresSST-present_r1i1p1f1_winter1957-1958_MAM_storm123_1958-03-

24_regrid_corrected.nc, LI = 163.7106 

• EC-Earth3P_highresSST-present_r3i1p1f1_winter1954-1955_DJF_storm294_1955-01-29_regrid_corrected.nc, LI 560 

= 160.3106 

• CNRM-CM6-1-HR_highresSST-present_r1i1p1f2_winter1974-1975_SON_storm267_1974-11-

05_regrid_corrected.nc, LI = 86.9106 

• HadGEM3-GC31-LM_highresSST-present_r1i2p1f1_winter1963-1964_SON_storm265_1963-10-

25_regrid_corrected.nc, LI = 60.9106 565 

• CMCC-CM2-HR4_highresSST-present_r1i1p1f1_winter1978-1979_DJF_storm29_1978-12-

06_regrid_corrected.nc, LI = 58.2106 

• CMCC-CM2-HR4_highresSST-present_r1i1p1f1_winter1968-1969_MAM_storm2_1969-03-

13_regrid_corrected.nc, LI = 53.5106 

• MPI-ESM1-2-HR_highresSST-present_r1i1p1f1_winter1976-1977_DJF_storm145_1976-12-570 

29_regrid_corrected.nc, LI = 48.6106 

• HadGEM3-GC31-LM_highresSST-present_r1i14p1f1_winter1963-1964_DJF_storm240_1964-01-

10_regrid_corrected.nc, LI = 46.9106 

• CMCC-CM2-HR4_highresSST-present_r1i1p1f1_winter1960-1961_MAM_storm12_1961-03-

05_regrid_corrected.nc, LI = 41.8106 575 

• HadGEM3-GC31-LM_highresSST-present_r1i1p1f1_winter1958-1959_DJF_storm303_1959-01-

25_regrid_corrected.nc, LI=40.3106 
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Appendix D 580 

 

Figure D1: Track density bias (model – ERA) for storms with a non-zero loss index over Europe for individual models, for the period 

Oct-Mar 1979/80-2013/14.  The yellow contour marks where the bias is statistically different from 0 with 95% confidence according 

to Welch’s unequal variances t-test. 
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 585 

Figure D2: As for Figure D1, but for severe storms only (LI>1e6). 
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