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Abstract 17 

 18 

Heavy snowfall is a natural disaster that causes extensive damage in South Korea. Therefore, it is 19 

crucial to predict snowfall occurrence and establish countermeasures to reduce the damage caused by 20 

heavy snowfall. In this study, the meteorological and geographic data of the past 30 years were collected, 21 

and four machine learning algorithms were used: multiple linear regression (MLR), support vector 22 

regression (SVR), random forest regressor (RFR), and eXtreme gradient boosting (XGB). Subsequently, 23 

the performances of the machine learning algorithms were compared. Machine-learning algorithms 24 

were selected as regression models to predict heavy snowfall. Additionally, grid search and five-fold 25 

cross-validation techniques were used to improve learning performance. Model performance was 26 

evaluated by comparing the observed and predicted data. It was observed that the RFR model accurately 27 

predicted the occurrence of snowfall (R2=0.64) compared with other models with various statistical 28 

criteria. This result demonstrates the possibility of using the RFR model for heavy snowfall prediction. 29 

The proposed study can aid the government, local governments, and public institutions in developing 30 

strategies to respond to heavy snowfall in the fields of facilities, roads, and transportation. 31 
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1. Introduction1 35 

The 5th report of the IPCC stated that the abnormal climate observed worldwide is due to the rapid 36 

climate change caused by global warming (IPCC, 2014). Because of global warming, the ice in the Arctic 37 

region melts and subsequently evaporates to form a large number of clouds. This has increased the 38 

occurrence of heavy snowfall in the Northern Hemisphere, particularly in countries, such as Siberia. 39 

Heavy snowfall frequently occurs in the northern mid-latitudes (Krasting et al., 2013) and causes 40 

significant damage. In February 2021, shipments of COVID-19 vaccines to New York, USA, were 41 

suspended because of the heaviest snowfall in the past ten years. In January 2019, a snowstorm in Austria 42 

killed 11 people and isolated 12,000. In March 2018, heavy snowfall and cold waves in Europe killed 53 43 

people. In December 2020, approximately 2,000 vehicles were isolated in Tokyo, Japan owing to heavy 44 

snowfall.  45 

According to Article 3, No. 1 of the Framework Act on the Management of Disasters and SAFETY, 46 

in South Korea, heavy snowfall is classified as a major natural disaster. The damages caused by heavy 47 

                                           
1 Abbreviations: 

Artificial neural network (ANN) 

Automated synoptic observing system (ASOS) 

Coefficient of determination (R2) 

Decision tree (DT) 

eXtreme gradient boosting (XGB) 

Gradient boosting machine (GBM)  

Intergovernmental Panel on Climate Change (IPCC) 

Korea Meteorological Administration (KMA) 

Mean absolute error (MAE) 

Ministry of the Interior and Safety (MOIS) 

Multiple linear regression (MLR) 

Random forest (RF) 

Random forest regressor (RFR) 

Representative concentration pathway (RCP)  

Root mean square error (RMSE) 

Snow ratio (SR) 

Support vector machine (SVM) 

Support vector regression (SVR) 

Tolerance (TOL) 

Variance inflation factor (VIF) 
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snowfall have been incurred nationwide in the safety fields of roads, logistics, transportation, and facilities. 48 

According to the ‘Disaster Annual Report 2019’ published by the MOIS, which annually establishes and 49 

publishes major statistics on the damage and recovery status of natural disasters, typhoon, heavy rainfall, 50 

and heavy snowfall damage have accounted for approximately 53.85% ($1550 million) , 35.21% ($1014 51 

million), and 6.47% ($186 million) of the total damage caused by natural disasters over the past 10 years 52 

(2010–2019) (MOIS, 2020). Heavy snowfall has caused extensive damage in Korea, and studies on heavy 53 

snow prediction and damage reduction are required. 54 

Previous studies related to heavy snowfall prediction have been conducted primarily in 55 

meteorology and climate. Recently, studies related to heavy-snow prediction have been conducted in 56 

disaster management. The accumulated data on meteorological factors, such as temperature, 57 

precipitation, and relative humidity, and geographic factors, such as altitude, latitude, and longitude, 58 

were utilized to predict heavy snowfall. Research has been conducted using statistical and machine 59 

learning techniques that can consider the nonlinear relationship of factors and SR, which is the ratio of 60 

snowfall depth to the amount of liquid-equivalent precipitation (Byun et al., 2008). Because snow cover 61 

occurs as a complex nonlinear combination of factors caused by meteorological and geographic 62 

conditions, the nonlinear relationship between temperature, precipitation, relative humidity, and 63 

geographic factors that affect snow cover should be considered (Park et al., 2016). 64 

First, previous studies on snowfall prediction conducted in South Korea were reviewed. Kim et al. 65 

(2013) collected temperature, precipitation, and snowfall data and developed a snowfall prediction 66 

model using an ANN model and a multiple regression model. The ANN model exhibited better 67 

performance than the multiple regression model. Park et al. (2014) developed a snowfall prediction 68 

model by learning precipitation, minimum temperature, and maximum temperature as input variables 69 

using an ANN and proposed a frequency analysis result to the RCP scenarios. In addition, a comparison 70 

between the results of learning by individual weather stations with those of learning by the integrated 71 

data demonstrated that the performance of the model trained by integrating the data of all points was 72 

exceptional. Kim et al. (2014) used an ANN model to learn the temperature and precipitation data. In 73 
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addition, they calculated the probability of snow cover using the KMA-RegCM3 climate model and 74 

climate change RCP scenario data provided by the KMA. Oh et al. (2020) conducted a study that 75 

predicted the depth of snowfall by applying temperature and humidity changes and solar insolation 76 

using multiple linear regression analysis. 77 

Tabari et al. (2010) compared the predicted results derived using MLR, allowance ratio, and ANN, 78 

using latitude, longitude, altitude, snow cover, and snow density as the input variables. A comparison 79 

between the R2 and RMSE values of the model determined that the MLR model yielded optimum results 80 

with R2 and RMSE values of 0.67 and 47.12, respectively. Liang et al. (2015) predicted snow depth in 81 

Xinjiang, northern China, using data, such as visible and infrared surface reflectance, brightness, and 82 

temperature using the SVM method. The performance of the SVM prediction model was evaluated by 83 

using a correlation coefficient of 0.87. Hamidi et al. (2018) predicted monthly snowfall in Iran using 84 

SVM, RF, and MLR methods. This study was conducted using time-series forecasting, and monthly 85 

snowfall observation data were used as input variables. The performance of each model was evaluated 86 

using RMSE and R2 values, and it was observed that the SVM model exhibited exceptional performance 87 

with an R2 value of 0.95, which was applied for snowfall prediction in the area. Zhang et al. (2019) 88 

performed snow-load predictions for mountainous regions. Eight factors, including average temperature, 89 

relative humidity, wind speed, latitude, longitude, altitude, slope, and slope direction, were used as input 90 

parameters for the MLR and RF models to predict snowfall. The coefficient of determination of the RF 91 

model was 0.74, which was superior to that of the linear regression model. In addition, relative humidity, 92 

temperature, and longitude were identified as the three crucial variables affecting snowfall. Hu et al. 93 

(2021) derived a gridded predictive snowfall dataset using ANN, SVR, and RFR algorithms for five 94 

regions in the northern hemisphere. The geographic location (latitude and longitude), topographic data 95 

(altitude), and field observation data were used as input variables, and the RFR model exhibited the best 96 

performance.  97 

Recent studies have accurately predicted snowfall using various machine learning techniques. This 98 

is because nonlinear activation functions (sigmoid and hyperbolic tangent) are used in machine learning 99 
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algorithms to evaluate the nonlinear relationship between weather factors. Learning results are 100 

determined through trial and error (Tabari et al., 2010).  101 

 102 

2. Materials and methods 103 

 104 

2.1 Study Area and data description 105 

 106 

The input variables used in previous studies were used to develop a snowfall prediction model. Table 1 107 

shows that nine input variables were selected by dividing each factor into geographic (latitude, longitude, 108 

and altitude of the ASOS) and meteorological factors (minimum temperature, maximum temperature, 109 

average temperature, precipitation, relative humidity, and snowfall).  110 

 111 

Table 1. Geographic and meteorological factors for machine learning model training 112 

Input Variables Output Variables 

Geographic 

factors 

Minimum temperature (°C), maximum 

temperature (°C), average temperature (°C), 

precipitation (mm), relative humidity (%) 
Snowfall (cm) 

Meteorological 

factors 
Latitude (°), longitude (°), and altitude (m) 

 113 

 114 

Meteorological data over the past 30 years (1991–2020) during the winter season (October to April) were 115 

collected from 102 ASOS nationwide under the KMA. These factors included daily minimum temperature, 116 

maximum temperature, average temperature, precipitation, and relative humidity. Figure 1 shows the 117 

study area and ASOSs in South Korea. 118 

 119 
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 120 

Figure 1. Study area - ASOSs in South Korea 121 

 122 

Machine learning is difficult to perform when there are missing values in the dataset. Therefore, a 123 

complete removal method was used to eliminate the datasets with missing independent variables. 124 

Among the collected 945,748 daily datasets, 42,701 were selected after excluding non-snowy days and 125 

datasets with missing values. In addition, a multicollinearity analysis was performed. Multicollinearity 126 

is a problem that results in inaccurate analysis owing to the strong correlations between the independent 127 

variables in the regression analysis. A general diagnostic index of multicollinearity states that a 128 

multicollinearity problem occurs when the TOL is less than 0.1 or the VIF is greater than 10 (Ainiyah 129 

et al., 2016). A high VIF indicates a high collinearity (Mallick et al., 2021). This study performed 130 

multicollinearity analysis on meteorological factors (average temperature, minimum temperature, 131 

maximum temperature, daily precipitation, and average relative humidity) and snowfall among 132 
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independent variables. Table 2 shows the results of the collinearity analysis. The VIF of the average 133 

temperature was 21.738. After dimensionality reduction, the multicollinearity analysis was repeated by 134 

excluding average temperature from the independent variable. The variance expansion coefficient of 135 

the variables was ≤ 2, and it was verified that multicollinearity was absent. 136 

 137 

Table 2. Multicollinearity analysis 138 

1 

Input Variables TOL VIF 

2 

Input Variables TOL VIF 

Average 

temperature (°C) 
.046 21.738 

Average 

temperature (°C) 
- - 

Minimum 

temperature (°C) 
.104 9.585 

Minimum 

temperature (°C) 
.533 1.877 

Maximum 

temperature (°C) 
.149 6.689 

Maximum 

temperature (°C) 
.561 1.783 

Precipitation 
(mm) 

.816 1.226 
Precipitation 

(mm) 
.816 1.226 

Relative humidity 
(%) 

.849 1.178 
Relative humidity 

(%) 
.849 1.178 

Output variables: snowfall (cm) 

 139 

The pre-processed datasets consisted of the final eight input variables, and four machine-learning 140 

algorithms (MLR, SVR, RFR, and XGB) were trained. The snowfall prediction model was developed on 141 

a Jupyter Notebook (64-bit Windows 10) using Python 3.7. The optimal hyperparameters for each 142 

algorithm were selected and applied using a grid search technique during the learning process. 143 

Additionally, the data were used for training using 5-fold cross-validation to improve accuracy and solve 144 

the overfitting problem. The model performance was evaluated by comparing the snowfall estimated by 145 

the trained model with the actual snowfall value measured at the observation station. The optimal model 146 

was determined by comparing and verifying the accuracy of the models using  MAE, RMSE, and R2. 147 

Figure 2 shows a graphical representation of the research workflow. 148 

 149 
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 150 

Figure 2. Research workflow 151 

 152 

2.2 MLR 153 

Linear regression is an extensively used regression analysis model, and it has been used by researchers 154 

before the invention of artificial intelligence (Chaloulakou et al., 2003). This method derives the results 155 

of independent and dependent variables using a one-dimensional linear predictive equation. The derived 156 

equation when the cost function has a minimum value is defined as the optimal predictive model. The 157 

least-squares method or gradient descent method is mainly used to determine the minimum value of the 158 

loss function (Liu et al., 2021). Linear regression analysis refers to the estimation of a dependent 159 

variable using a statistical method considering the independent variables (X1, X2, ⋯, Xk) that are 160 

expected to affect the dependent variable (Y) significantly. The linear regression model expresses the 161 

relationship between the dependent and independent variables in linear form, as shown in Equation 1.  162 

 163 
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Y = a0 + a1X1 + a2X2 + … + akXk, Eq. 1 

 164 

where a0 represents the constant and a1, a2, and ⋯ ak are the regression coefficients of each independent 165 

variable. A multiple regression analysis was performed for the independent variables (factors affecting 166 

snowfall) in this study. Additionally, the variables were adjusted and analyzed after multicollinearity 167 

analysis was performed. 168 

 169 

2.3 SVR 170 

SVM (Cortes & Vapnik, 1995) is a supervised machine learning algorithm used for classification 171 

problems. The input variable is built into a high-dimensional functional space using a linear or nonlinear 172 

kernel function depending on the relationship between the dependent and independent variables. A 173 

linear model was developed in the feature space to maintain a balance between error minimization and 174 

overfitting (Bansal et al., 2021). SVR is an extension of SVM that can be applied to classification 175 

problems and prediction fields such as regression analysis (Bermolen & Rossi, 2009). SVR learns in a 176 

direction that maximizes the distance between the separation hyperplane and support vector within a 177 

threshold (Carrera & Kim, 2020). 178 

 179 

2.4 RFR 180 

The RF algorithm is a DT-based algorithm (Breiman, 2001). It is a model of an ensemble technique 181 

developed by combining multiple DTs with different structures and performance. It functions by 182 

outputting classification or average predictions (regression analysis) from multiple DTs that are 183 

constructed during the training process. The RFR compensates for the bias introduced by a single DT 184 

owing to the randomness. Therefore, it does not easily overfit and provides high accuracy and a fast 185 

training speed (Babar et al., 2020). The RFR algorithm randomly selects data (bootstrapping) and learns 186 

individually. Bagging is an abbreviation for bootstrap and aggregation, which is a concept that collects 187 

models generated from each bootstrap sample. Aggregating refers to the merging of datasets formed by 188 
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bootstrapping, and a random subspace is applied to train the dataset. A random subspace is a process of 189 

ensuring the independence of each basic algorithm. Determining the split point of the DT based on the 190 

split function implies that learning is performed by randomly selecting a number of variables that are 191 

less than the variables of the input data. In contrast to the DT algorithm, in which the error is transferred 192 

at each intermediate node in RF, the error generated in the intermediate node of each tree is not 193 

transmitted to the terminal node and converges to the limit value. This improves the predictive model’s 194 

performance by minimizing the correlation between individual trees (Ganguly et al., 2019). 195 

 196 

2.5 XGB 197 

XGB (Tianqi Chen & Guestrin, 2016) is known for its powerful performance, as demonstrated by recent 198 

studies. In addition, they have been extensively used in various applications. XGB is an algorithm based 199 

on GBM, a boosting model consisting of a series of basic regression trees using a sequential ensemble 200 

technique (Zhu et al., 2021). This is a method of improving the error by sequentially repeating the 201 

learning prediction for several weak learners and assigning weights when the predicted values differ 202 

from the input data. The residual error of the model derived from Tree 1 was checked, and a predictive 203 

model that reduced the residual error of Tree 1 was derived from Tree 2. Subsequently, the residuals in 204 

Tree 2 are checked, and a predictive model that reduces the residuals in Tree 2 is derived using Tree 3. 205 

This method derives a model from the final tree with small residuals as the final prediction model while 206 

repeating this process (Zhu et al., 2021). Furthermore, XGB exhibits exceptional performance in 207 

classification and regression problems. The weight of the hidden layer is not known in the case of 208 

commonly used ANN-based algorithms. Therefore, the correlation between each variable and the 209 

prediction model remains unknown. However, XGB has the advantage of being able to analyze the 210 

feature importance of variables. 211 

 212 

2.6 Model performance 213 

Several criteria were used to evaluate the performance of the regression models. The accuracy of the 214 
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model was compared and verified using the MAE, MSE, RMSE, and R2 values(Guo et al., 2021). The 215 

MAE is the arithmetic mean of the absolute value of the difference between the measured and estimated 216 

values. The MAE has high applicability if it has a value close to zero. The low MSE and RMSE values 217 

demonstrate that the error of the estimation model was small. In this study, it was used to indicate the 218 

suitability of the estimation of high snowfall (Hamidi et al., 2018). R2 is used to measure the linear 219 

relationship between the observed and estimated snowfall and has a value in the range 0–1. An R2 value 220 

close to 1 indicates optimum model applicability. The MAE, MSE, RMSE, and R2 were calculated 221 

using Equations 2, 3, 4, and 5, respectively. 222 

 223 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖|𝑚

𝑖=1 ,    Eq. 2 224 

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1 ,   Eq. 3 225 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1 ,    Eq. 4 226 

𝑅2 = 1 −  
∑ (𝑋𝑖−𝑌𝑖)2𝑚

𝑖=1

∑ (𝑌̅−𝑌𝑖)2𝑚
𝑖=1

,    Eq. 5 227 

 228 

where Xi is the predicted ith value and Yi is the actual ith value. The regression method predicts 229 

the Xi element for the corresponding Yi element in the observation dataset (Chicco et al., 2021). 230 

231 
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2.7. Grid search and K-fold cross-validation 232 

The optimization of a regression model using machine learning refers to the estimation of a 233 

hyperparameter that minimizes a predefined loss function in the training data(Luo, 2016). This study 234 

applied the grid search and k-fold cross-validation methods to select the optimal hyperparameter. The grid 235 

search depicted in Figure 3 was used to select the optimal parameters for each model. The range of each 236 

parameter was set, the accuracy of the model generated according to the combinations was measured, and 237 

the optimal parameter that provided the highest accuracy was selected (Claesen & De Moor, 2015). In the 238 

case of the k-fold cross-validation method, as shown in Figure 4, the datasets were k equalized into sets 239 

of the same size. The k-1 among the divided datasets was used as the training data, and the remaining 240 

dataset was used as the testing data. This method was used to verify the performance of the model. In this 241 

study, 5-fold cross-validation was applied (Vabalas et al., 2019). 242 

 243 

Figure 3. Hyperparameter tuning using GridSearch 244 

 245 

Figure 4. 5-fold cross-validation 246 
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3. Result 248 

The optimum hyperparameter results of each machine-learning algorithm were derived through grid 249 

search and k-fold cross-validation (Table 3).  250 

 251 

Table 3. Results of hyperparameter tuning 252 

Models Evaluated Hyperparameters Hyperparameters 

SVR 

Kernel Linear, Polynomial, Sigmoid, RBF RBF 

Cost 0.01, 0.1, 1, 10, 100 1 

γ 0.01, 0.1, 1, 10, 100 1 

RFR 

max_features 4, 8, 10, 12, 14, 16, 18, 20 4 

n_estimators 10~1000 100 

max_depth 4, 8, 10, 12 10 

XGB 

max_features 4, 8, 10, 12, 14, 16, 18, 20 4 

n_estimators 10~1000 20 

max_depth 4, 8, 10, 12 6 

 253 

The applicability of fMLR(x), fSVR(x), fRFR(x), and fXGB(x), which were the optimal models for each 254 

algorithm, was evaluated using hyperparameters. The RFR model exhibited MAE, MSE, RMSE, and R2 255 

values of 1.65, 11.68, 3.35, and 0.64, respectively, using performance evaluation criteria. Additionally, it 256 

exhibited a higher prediction accuracy than the three models (MLR, SVR, and XGB models). The XGB 257 

model exhibited a similar performance to the RFR model because it was close to the evaluation standard 258 

value obtained based on the RF model. In the case of snowfall prediction, it was determined that ensemble 259 

models, such as RFR and XGB, demonstrated better performance than single regression models such as 260 

MLR and SVR. 261 

 262 

Table 4. Comparative statistics of prediction models 263 

 Criteria 
MAE MSE RMSE R2 

Models  

MLR 2.32 18.20 4.22 0.45 

SVR 1.73 15.91 3.91 0.53 

14
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RFR 1.65 11.68 3.35 0.64 

XGBoost 1.64 12.31 3.44 0.62 

264 

15
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The snowfall prediction estimates obtained using the MLR, SVR, RFR, and XGB models and the 265 

corresponding observed snowfall values are shown in Figures 5 through scatter plots. It was observed 266 

that the snowfall simulation of the RFR and XGB models exhibited better performance compared with 267 

that of the other two models. The RFR and XGB models accurately evaluated the nonlinear relationship 268 

between the predictor and independent variables using a coefficient of determination. The MLR and 269 

SVR models partially interpreted the variance in snowfall. In the case of field observation data, there is 270 

a lack of datasets for high snowfall and there are a lot of datasets for low snowfall. The imbalance of 271 

datasets was analyzed as a result of underestimating the MLR and SVR models(Park et al., 2021). 272 

Finally, a comparison between the statistical criteria of the four models demonstrated that the RFR was 273 

the optimum model for predicting snowfall. The predictive performance of the RFR model was 274 

exceptional because it was not necessary to assume a correlation between the dependent and 275 

independent variables in this model. In addition, it is less sensitive to datasets with inappropriate error 276 

distributions (Zhang et al., 2019). 277 

16
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 278 

Figure 5. Correlation of observed and predicted snowfall results from (a) MLR, (b) SVR, (c) 279 

RFR, and (d) XGB 280 

 281 

4. Discussion and Conclusions 282 

 283 

In this study, the occurrence of snowfall over the past 30 years in Korea was investigated, and 284 

machine-learning algorithms were used to predict heavy snowfall. The optimal snowfall prediction 285 

model was selected to establish response strategies for heavy snowfall. 286 

The snowfall prediction model was developed according to the following steps. Independent 287 

variables were selected by analyzing previous studies, and data collection was performed by considering 288 

the meteorological and geographic factors collected through the ASOS. Data pre-processing was 289 

performed, and the pre-processed data were learned using MLR, SVR, RFR, and XGB machine learning 290 

17
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algorithms. A machine learning algorithm was selected as the regression model for prediction purposes. 291 

Grid search and k-fold cross-validation were used to improve learning performance. It was observed 292 

that the predictive model using the RFR algorithm had the best performance based on a comparison 293 

between the observed and predicted data. In addition, it was observed that the performance of the 294 

ensemble models (RFR and XGB) was better than that of the single regression models (MLR and SVM). 295 

Snowfall prediction is a nonlinear process in which precipitation, temperature, relative humidity, and 296 

geographic variables are correlated. Additionally, the prediction results may vary depending on the 297 

regional research scope and characteristics of the input variable data used for model development. The 298 

meteorological factors were provided in the form of daily data when they were used as input variables. 299 

Because the daily average observation data were used as input data for the meteorological factor, rather 300 

than the weather data when the actual heavy snowfall occurred, the performance of the prediction model 301 

was relatively low. In the future, the proposed model can be used as an estimation model to obtain the 302 

distribution of the predicted snowfall in South Korea using the RCP climate change scenario. 303 

Additionally, the model can aid in establishing response strategies for heavy snowfall disasters in road 304 

facilities and transportation sectors by providing long-term prediction (~2100 years) data for heavy 305 

snowfall. In particular, when predicting future snowfall using climate change RCP scenario data, it is 306 

difficult to improve the predictive power of the model considering the uncertainty of the scenario. 307 

Therefore, it is crucial to continuously develop and verify predictive models (Park et al., 2016). 308 
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