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Abstract. A modelling approach to understand the tsunami-
genic potentiality of submarine landslides will provide new
perspectives on tsunami hazard threat, mostly in polar mar-
gins where global climatic change and its related ocean
warming may induce future landslides. Here, we use the L-
ML-HySEA (Landslide Multilayer Hyperbolic Systems and
Efficient Algorithms) numerical model, including wave dis-
persion, to provide new insights into factors controlling the
tsunami characteristics triggered by the Storfjorden LS-1
landslide (southwestern Svalbard). Tsunami waves, deter-
mined mainly by the sliding mechanism and the bathymetry,
consist of two initial wave dipoles, with troughs to the north-
east (Spitsbergen and towards the continent) and crests to the
south (seawards) and southwest (Bear Island), reaching more
than 3 m of amplitude above the landslide and finally merg-
ing into a single wave dipole. The tsunami wave propaga-
tion and its coastal impact are governed by the Storfjorden
and Kveithola glacial troughs and by the bordering Spits-
bergen Bank, which shape the continental shelf. This local
bathymetry controls the direction of propagation with a cres-
cent shape front, in plan view, and is responsible for shoaling
effects of amplitude values (4.2 m in trough to 4.3 m in crest),
amplification (3.7 m in trough to 4 m in crest) and diffraction

of the tsunami waves, as well as influencing their coastal im-
pact times.

1 Introduction

Submarine landslides represent one of the most common po-
tential offshore geohazards in the continental slopes of the
northern high-latitude margins (Elverhøi et al., 2002; Lee et
al., 2009). There, the slope failures are essentially focused at
their trough mouth fans (Dowdeswell et al., 2008; Rebesco et
al., 2014; Llopart et al., 2016; Ercilla et al., 2022, and refer-
ences therein). Some landslides may also cause tsunamis, as
has been evidenced for the Storegga landslide (3000 km3, at
8.1 kyr), with wave amplitudes of ∼ 20 m at the shore (Bon-
devik et al., 2003; Haflidason et al., 2005; Kvalstad et al.,
2005), or the Hinlopen landslide (1150 km3, at 30 kyr), with
wave amplitudes of ∼ 40 m (a.s.l.) (Winkelmann et al., 2008;
Vanneste et al., 2006). In the Fram Strait (500 to 1000 km3),
located between the main ice retreat areas of Greenland and
Svalbard, waves of up to 5.6 m were triggered (Berndt et al.,
2009). The factors controlling slope failures in the northern
high-latitude margins are still not fully understood. The most
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common causal factors are the interlayering of underconsoli-
dated glacially derived sediments and low-permeability inter-
glacial hemipelagic clay rich layers, combined with tectonic-
and isostatic-related seismicity and/or gas hydrate dissocia-
tion (Canals et al., 2004; Kvalstad et al., 2005;Sierro et al.,
2009; García et al., 2011; Casas et al., 2013; Vanneste et al.,
2014; Moernaut et al., 2017; Llopart et al., 2019).

The understanding of the tsunamigenic potential of sub-
marine landslides still needs to be improved (Chiocci and Ri-
dente, 2011; Løvholt et al., 2020). In this sense back analysis
of specific events is commonly used to advance their under-
standing, as well as to contribute to the hazard assessments
of future landslides (Macías et al., 2015; Rodríguez-Morata
et al., 2019; Sun and Leslie, 2020). In the European northern
high-latitude margins, e.g. Svalbard and Greenland coasts,
the tsunami threat has been assessed for a few past landslides.
It is important to point out that the tsunami geohazard asso-
ciated with Holocene landslides such as the Bjørnøyrenna
(Laberg and Vorren, 1993), which is the largest landslide
(volume of about 1100 km3) in the Barents Sea continen-
tal margin; the Nyk landslide in central Norway (Lindberg
et al., 2004); or the giant Andøya landslide (northeastern
Norwegian–Greenland Sea) (Bugge et al., 1987; Laberg et
al., 2000), have not been accurately modelled. The tsunami
modelling of recent landslides in this region is important be-
cause it will allow us to infer the tsunami potential of future
landslides due to climate change and its related ocean warm-
ing. Both those interconnected issues are significantly affect-
ing the northern high-latitude margins and may contribute to
an increase in the occurrence of submarine landslides, both
large and small, in the nearby future, mostly due to gas hy-
drate dissociation and isostatic-rebound-related earthquakes
(Maslin et al., 1998; Tappin, 2010; Urlaub et al., 2013).

Today, the archipelago of Svalbard is one the fastest warm-
ing areas of the Arctic Ocean, experiencing an increase
in the melting of their glaciers and a rise in the tempera-
ture of ocean water circulating along its continental mar-
gin (Meleshko et al., 2004; Førland et al., 2013; Skogseth,
2020). This fact may provide adequate conditions to trigger
unloading earthquakes and to increase pore water pressure
by gas hydrate breakdown, which can destabilize slope sedi-
ments (Solheim et al., 2005; Berndt et al., 2009), i.e. the oc-
currence of landslides and tsunamis in the near future. Both
landslides and tsunamis may represent a danger to offshore
infrastructures, associated with present and future hydrocar-
bons exploitation and other renewable energies (Zhang et al.,
2019). Tsunamis may also have an impact on the coastal ar-
eas of the nearby regions of northwestern Europe, consider-
ing the increasing human pressures of these areas (Imamura
et al., 2019). The geological record of the Svalbard conti-
nental margin can help us to assess the possible tsunamis in-
duced by future landslides. In fact, the sedimentary record of
its continental slope evidences numerous landslides, such as
the Storfjorden LS-1 landslide, which forms part of the Stor-
fjorden trough mouth fan, and even other recent landslides

located in the interfan area of the Storfjorden and Kveithola
trough mouth fans (TMFs) (Pedrosa et al., 2011; Rebesco et
al., 2012; Lucchi et al., 2012; Llopart et al., 2015).

The relatively medium-size tsunami potential of Storfjor-
den LS-1 provides new insights into tsunami wave charac-
teristics and evolution. It will help to better understand pos-
sible future tsunami hazard in high latitudes. Geomorphic
and geotechnical data have been integrated into the L-ML-
HySEA (Landslide Multilayer Hyperbolic Systems and Effi-
cient Algorithms) landslide tsunamigenic model simulating
landslide dynamics, tsunami wave generation, propagation
and coastal impact.

2 Geological setting

Svalbard is located west of the epicontinental Barents Sea
and Norwegian continental margin (Fig. 1a). The archipelago
resulted from the opening of the northern Atlantic. The ma-
jor northwest–southeast fault zone is associated with the
Knipovich Ridge and the Hornsund Fault Zone (HFZ), cross-
ing the Spitsbergen Island and spreading western of the Bar-
ents (Worsley, 1986; Eiken et al., 1994; Engen et al., 2008;
Faleide et al., 2008) (Fig. 1b). The post-rift activity of these
fault zones has contributed to deforming the Plio-Pleistocene
sedimentary sequence (Faleide et al., 1993, 2008; Fiedler
and Faleide, 1996). This fault zone has been reactivated by
isostatic loading and unloading rebound periods (Pirli et al.,
2013; Newton and Huuse, 2017) that are responsible for the
local seismicity in the continental margin and can become the
trigger of slope failures (Hampel et al., 2009; L’Heureux et
al., 2013; Bellwald et al., 2016). Historical earthquakes with
magnitudes up to Mw ∼ 5 have been recorded (Auriac et al.,
2016) (Fig. 1c).

The northwestern Barents continental slope is affected by
the Storfjorden and Kveithola TMFs (Fig. 2), created by
the high sediment input from the Storfjorden and Kveithola
glacial troughs crossing the continental shelf, during the on-
set of the major Northern Hemisphere glaciations, around
2.6–2.7 Ma (Faleide et al., 1996; Butt et al., 2000; Knies et
al., 2009). The Storfjorden TMF seafloor is shaped by the rel-
atively large Storfjorden landslide (LS-1) that extends from
the shelf edge to the lower continental slope. In spite of their
fresh morphological expression, the seismic stratigraphy in-
dicates that LS-1 (Fig. 3c) is a palaeolandslide above the
0.2 Ma R1 reflector (Rebesco et al., 2012), which is then
draped by regional 100 ms (∼ 8 m, considering 1600 m s−1

sediment velocity) thick sediment units (Lucchi et al., 2012;
Llopart et al., 2015), and the sliding mass is a subtabular de-
positional body, between 3 and 5 ms thick (Pedrosa et al.,
2011). The high-resolution seismic stratigraphy in the south-
ern Storfjorden TMF is dominated mainly by an alternation
of acoustically stratified and transparent units. Eight seismic
stratigraphy units (A to G, from top to bottom) have been
identified above the R1 reflector (Fig. 3c). Based on acoustic
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Figure 1. Geographic and geological settings of Storfjorden LS-1. (a) Location map of the study area (blue rectangle). (b) Shaded relief
map taken from the International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0 (Jakobsson et al., 2012) of the North Atlantic
Ocean (Norwegian and Barents seas). The major trough mouth fans (grey polygons) and the major submarine landslides (orange polygons)
are located on the map. Compilation from Haflidason et al. (2005), Laberg et al. (2000), Laberg and Vorren (1993), Lindberg et al. (2004),
Sejrup et al. (2005), and references therein. KF: Kongsfjorden Fan; IF: Isfjorden Fan; BeF: Bellsund Fan; SF & KvF: Storfjorden Fan and
Kveithola Fan; BIF: Bear Island Fan; NSF: North Sea Fan. (c) Shaded relief map of the northwestern Barents Sea (Ottesen et al., 2005)
displaying the location of the Hornsund Fault Zone (HFZ) and the historical earthquakes recorded from 1960 to 2018 (source from IRIS
catalogue; Incorporated Research Institutions for Seismology). This map also shows the locations of Figs. 2 and 3.

facies they are as follow: the stratified units A, C, E and G
and the transparent units B, D and F. The stratified units are
usually continuous with high amplitude and draping the ex-
isting topography, while the transparent units present an ir-
regular upper boundary and usually a basal erosive surface
that describe individual lenses. Comparable seismic facies
have also been found in other TMFs (Laberg and Vorren et
al., 1993; Cofaigh et al., 2003).

3 Dataset and methods

3.1 Bathymetric data

For slide modelling, high-resolution multibeam bathymetry
datasets from different cruises (SVAIS (The development
of an Arctic ice stream-dominated sedimentary system:
The southern Svalbard continental margin) onboard BIO
(Buque de Investigación Oceanográfica) Hespérides, 2007;
EGLACOM (Evolution of a GLacial Arctic COntinental
Margin: the southern Svalbard ice stream-dominated sedi-
mentary system) onboard R/V Explora, 2008) have been in-
tegrated (Fig. 2). Data processing consisted of cleaning and
filtering the navigation data, noise reduction and data edit-

ing using the Computer Aided Resource Information Sys-
tem (CARIS) HIPS and SIPS software. Data were gridded
at 75 m and partially cover the Storfjorden and Kveithola
TMFs (∼ 15 300 km2). The bathymetric mosaic was com-
pleted with lower-resolution bathymetry data at 250 m pro-
vided by the Norwegian Hydrographic Service (NHS); these
were collected between 1965 and 1985 (Ottesen et al., 2005).
Moreover, regional gridded bathymetry data for the Arctic
Ocean area (IBCAO version 3.0; https://gebco.net, last ac-
cess: 15 October 2020), interpolated to 2.5 km bin size, were
only used for regional figures (Fig. 1b).

3.2 Tsunami numerical modelling

The L-ML-HySEA is a mathematical model, which imple-
ments a two-phase model to reproduce the interaction be-
tween the landslide granular material and the fluid. In the
present work, a multilayer non-hydrostatic shallow-water
model is considered in order to model the evolution of the
ambient water, taking into account dispersive water waves
(Fernández-Nieto et al., 2018), and to simulate the kinemat-
ics of the Storfjorden LS-1 landslide using the Savage–Hutter
model (Eq. 3) (Fernando-Nieto et al., 2008).

https://gebco.net
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Figure 2. Shaded relief map from merging the regional dataset
(colour map, 250 m; Ottesen, 2005) and high-resolution datasets
(grey map, 75 m) of the Storfjorden and Kveithola TMFs, where
the Storfjorden LS-1 landslide reaches full data coverage.

The L-ML-HySEA model was validated using labora-
tory experimental data for landslide-generated tsunamis.
A milestone in the validation process of this code con-
sisted in the numerical simulation of the Lituya Bay 1958
mega tsunami with real topobathymetric data obtained from
González-Vida et al. (2019). The simulation was also used
to generate initial conditions for the Method of Splitting
Tsunami (MOST), in order to be initialized for the landslide-
generated tsunami scenarios of the National Tsunami Haz-
ard Mitigation Program (NTHMP) mandatory benchmarks
in the USA (EDANYA Research Group, HySEA; results
for NTHMP’s tsunami benchmarking process for landslide-
generated tsunamis are available at https://edanya.uma.
es/hysea/index.php/benchmarks/landslide-generated, last ac-
cess: 1 January 2015).

L-ML-HySEA needs to incorporate the physical proper-
ties of the sediment involved in the landslides. In the Stor-
fjorden (LS-1) case, properties determined by Lucchi et
al. (2013) and Llopart et al. (2019) were used. For the pur-
pose of modelling, we have assumed that the landslide took
place in a single event. The simulation has been performed
by considering a∼ 1.3◦ critical slope repose angle, since that
value has given the best results across the models.

3.2.1 Reconstruction of pre-landslide bathymetry and
landslide body geometry

To perform the L-ML-HySEA numerical simulation, it
is necessary to reconstruct the pre-bathymetry before the
seafloor failure (Macías et al., 2015). For this aim, we used
the high-resolution multibeam bathymetry together with
seismic profiles published to define the landslide location,
its body geometry and its buried thickness (Pedrosa et al.,
2011; Lucchi et al., 2012; Rebesco et al., 2012, 2014; Llopart
2015). We assume that the sedimentary infill thickness of
100 ms (Llopart et al., 2015) is roughly similar inside and
outside of the landslide and then the present-day bathymetry
reproduces the pre-Storfjorden LS-1 100 ms difference.

The pre-Storfjorden LS-1 landslide (Fig. 4a) has been cal-
culated by filling the current headwall and lateral-scarp areas
using the cartographic sewing technique on the bathymetry
with B splines (Lee et al., 1997) and defining a network
of B-spline patches (Eck and Hoppe, 1996). The corre-
sponding control vertices splines were developed using CAD
(computer-aided design) software tools through contour lines
from the DEM (digital elevation model) and defined by a
tolerance rectangle. When creating the spline, the tolerance
rectangle is displayed in the form of construction lines. The
control vertices of the rectangle, which are shown as circles,
influence the spline curves. The spline is tangent to the tol-
erance rectangle at the start and end points. In this way, the
curve ends up adapting to the hypothetical geometry that best
fits each patch. Once the splines were developed, patches
were densified through the existing DEM and the points were
calculated through the splines, generating a new complete
DEM without patches. This procedure uses only data points
that are not affected by the landslide and assumes conver-
gence of both datasets (boundary conditions) where the slide
scars terminate. A second step involves obtaining the vol-
ume of the slid sediment body (Fig. 4b) by calculating the
difference between the reconstructed pre- and post-landslide
bathymetry.

3.2.2 The L-ML-HySEA model equations and
discretization

The Multilayer-HySEA model consists of a two-phase model
that represents the interaction between a submarine or sub-
aerial landslide (composed by granular material) and the
ambient fluid. A multilayer non-hydrostatic shallow-water
model is considered for modelling the evolution of the am-
bient water, and for simulating the kinematics of the sub-
marine/subaerial landslide the Savage–Hutter model is used.
As can be found in Fernández-Nieto et al. (2018) the simplest
model that can be used for this purpose consists of a single
fluid layer (Eq. 1) modelled by a non-hydrostatic shallow-
water equation coupled with a Savage–Hutter model (Eq. 2).

https://edanya.uma.es/hysea/index.php/benchmarks/landslide-generated
https://edanya.uma.es/hysea/index.php/benchmarks/landslide-generated
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Figure 3. Storfjorden and Kveithola interfan TMFs. (a) Shaded relief colour map of the southwestern continental slope of the Storfjorden
and Kveithola interfan TMFs. The orange line marks the headwall, and the white lines indicate its sidewalls. The pink line corresponds to
the multichannel seismic profile (EG-06) acquired during the EGLACOM cruise. (b) Slope gradient values. Artefacts are induced by the
slope parallel to the ship tracks. (c) The top corresponds to the Topographic Parametric Sonar (TOPAS) subbottom profile (modified from
Llopart et al., 2015) and multichannel seismic profile (EG-06, modified from Rebesco et al., 2014), acquired during the SVAIS cruise. Both
profiles are displayed at the same horizontal and vertical scales to show matching of acoustic facies. The bottom shows the line drawing of
the multichannel seismic profile displaying the seismic stratigraphy, where the R1 reflector (in blue) is the base of Storfjorden LS-1 and its
top is the unit D (Pedrosa et al., 2011; Rebesco et al., 2014; Llopart et al., 2015). TWTT: two-way travel time. (d) Table with the seismic
units and subunits, ages, and their lithologies (modified from Llopart et al., 2015).
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s

)
−g (1− r)zs∂xH =−rna (us − u)+ τP ,
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where g is the gravity acceleration (g = 9.81 m s−2);H (x) is
the non-erodible bathymetry measured from a predetermined
reference level, zs (x, t) denotes the thickness of the layer of
granular material at each point x at time t , h(x, t) is the to-
tal water depth, and η(x, t) represents the free surface (mea-
sured from the same aforementioned fixed reference level)
and is given by η = h+ zs −H . u(x, t) and us (x, t) are the
averaged horizontal velocity for the water and for the granu-
lar material, respectively, and r = ρ1

ρ2
is the ratio of densities

between the ambient fluid and the granular material. The fric-
tion between the fluid and the granular layer is parameterized

with the term na (us − u). Finally, τP (x, t) represents the
friction between the granular slide and the non-erodible bot-
tom surface. The parameterization follows the system pro-
posed in Pouliquen and Forterre (2002).

These two models are coupled through the boundary con-
ditions at their interface. The parameter r represents the ratio
of densities between the ambient fluid and the granular ma-
terial (slide liquefaction parameter).

Usually, it is formulated that

r =
ρf

ρb
,ρb = (1−ϕ)ρs +ϕρf, (3)

where ρs represents the typical density of the granular mate-
rial and ρf is the density of the fluid (ρs > ρf), both consid-
ered constant, and ϕ represents the porosity (0≤ ϕ < 1). In
this model ϕ is supposed to be constant in space and time,
and, consequently, the ratio r is also constant. This ratio r
ranges from 0 to 1 (i.e. 0< r < 1) and is a value difficult
to estimate even in a uniform material, as it depends on the
porosity (and ρf and ρs are also assumed constant) (Fig. 5).
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Figure 4. The Storfjorden LS-1 landslide geometry. (a) Reconstruction of pre-landslide seafloor morphology. (b) Available displaced sedi-
ment thickness in metres. Note the location of the different sliding upper and middle sectors (LS1-U and LS1-M, respectively).

Figure 5. Schematic figure to describe the multilayer system, with
water height (h), unchanged non-erodible bathymetry (H ), depth-
averaged velocity in the x direction (µα), depth-averaged veloc-
ity in the z direction (ωα), sediment thickness (zs ), non-hydrostatic
pressure at the interface (Pα−1/2), free-surface elevation measured
from a fixed reference level (η) and the number of layers (L).

Nevertheless, this system is not accurate enough for mod-
elling landslides where the dispersive effects are relevant, so
the model to be considered in this work and described in the
next section is the L-ML-HySEA.

The fluid model

The ambient fluid is modelled by a multilayer non-
hydrostatic shallow-water system (Férnandez-Nieto et al.,
2018) so that dispersive water waves can be taken into ac-
count. The model is obtained by a process of depth averag-
ing of the Euler equations and can be interpreted as a semi-
discretization with respect to the vertical coordinate.

The total pressure is decomposed into the sum of hydro-
static and non-hydrostatic components, in order to take into
account dispersive effects. In this process, the horizontal and
vertical velocities are supposed to have constant vertical pro-
files. The resulting multilayer model admits an exact energy
balance, and when the number of layers increases, the linear
dispersion relation of the linear model converges to the same
of Airy’s theory. Finally, the model proposed in Férnandez-
Nieto et al. (2018) can be written in a compact form as

∂th+ ∂x(hu)= 0,
∂t (huα)+ ∂x

(
hu2

α +
1
2gh

2
)
− gh∂x (H − zs)

+u
α+ 1

2
0
α+ 1

2
− u

α− 1
2
0
α− 1

2
=−h(∂xpα + σα∂zpα)− τα,

∂t (hwα)+ ∂x (huαwα)+wα+ 1
2
0
α+ 1

2
−w

α− 1
2
0
α− 1

2
=−h∂zpα,

∂xuα− 1
2
+ σ

α− 1
2
∂zuα− 1

2
+ ∂zwα− 1

2
= 0,

(4)

TS1 for α ∈ {1,2, . . . ,L}, with L being the number of layers
and where the following notation has been used:

fα+1/2 =
1
2
(fα+1+ fα)∂zfα+1/2 =

1
h1s

(fα+1− fα) ,

where f denotes one of the generic variables of the system
(i.e. u,w and p), 1s = 1/L and

σα = ∂x (H − zs −h1s (α− 1/2))σα−1/2

= ∂x (H − zs −h1s (α− 1)) .

A schematic picture of model configuration is where the
total water height h is decomposed along the vertical axis
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into L≥ 1 layers (Fig. 5). The depth-averaged velocities in
the x and z directions are written as uα and wα , respectively.
The non-hydrostatic pressure at the interface zα+1/2 is de-
noted by pα+1/2. The free-surface elevation measured from
a fixed reference level (for example the still-water level or
mean level in the ocean) is written as η and η = h−H + zs ,
where againH (x) is the unchanged non-erodible bathymetry
measured from the same fixed reference level. τα = 0, for
α > 1 and τ1 is given by

τ1 = τb− na (us − u1) ,

where τb stands for a classical Manning-type parameteriza-
tion for the bottom shear stress and, in this model, is given
by

τb = gh
n2

h4/3 u1 ∨ u1∨,

and na (us − u1) accounts for the friction between the fluid
and the granular layer. The latest two terms are only present
at the lowest layer (α = 1). Finally, for α = 1, . . . ,L− 1,
0α+1/2 parameterizes the mass transfer across interfaces, and
those terms are defined by

0α+1/2 =
∑L

β=α+1
∂x
(
h1s

(
uβ − u

))
,u=

∑L

α=1
1suα .

Here, we suppose that 01/2 = 0L+1/2 = 0, which means
that there is no mass transfer through the seafloor or the water
free surface. To close the system, the boundary condition

pL+1/2 = 0

is imposed at the free surface, and the boundary conditions

u0 = 0,w0 =−∂t (H − zs)

are imposed at the bottom. The last two conditions enter into
the incompressibility relation for the lowest layer (α = 1),
given by

∂xu1/2+ σ1/2∂zu1/2+ ∂zw1/2 = 0.

It should be noted that the hydrodynamic model described
here and the morphodynamic model described in the next
subsection are coupled through the unknown zs , which, in
the case of the model described here, is present in the equa-
tions and in the boundary condition (w0 =−∂t (H − zs)).

Some dispersive properties of the system (4) were orig-
inally studied in (Férnandez-Nieto et al., 2018). Moreover,
for a better-detailed study on the dispersion relation (such as
“phase velocity”, “group velocity” and “linear shoaling”) the
reader is referred to the work of Macías et al. (2020).

Along the derivation of the hydrodynamic model pre-
sented here, the rigid-lid assumption for the free surface of
the ambient fluid was adopted. Therefore, pressure variations
induced by the fluctuation on the free surface of the ambient
fluid over the landslide are neglected.

The landslide model

The 1D Savage–Hutter method implemented in the model
is given by system (2). The friction law τP (Pouliquen and
Forterre, 2002) is given by the expression

τP =−g (1− r)µzs
u2
s

us
,

where µ is a constant friction coefficient with a fundamental
role because it controls the movement of the landslide. Usu-
ally, µ is given by the Coulomb friction law as it is the sim-
plest parameterization that can be used in landslide models.
However, it is well known that a constant friction coefficient
does not allow for models to reproduce the steady uniform
flows over rough beds that are observed in the laboratory for
a range of inclination angles. In the work of Pouliquen and
Forterre (2002), in order to reproduce these flows, the authors
introduced an empirical friction coefficient µ that depends
on the norm of the mean velocity us on the thickness zs of
the granular layer and on the Froude number Fr = us√

gzs
. The

friction law is given by

µ(zs,us)=


µstart (zs)+

(
Fr
β

)γ
, for Fr < β,(

µstop (zs)−µstart (zs)
)

µstop (zs) , for β ≤ Fr,

with

µstart (zs)= tan(δ3)+ (tan(δ2)− tan(δ1))exp
(
−zs

ds

)
,

µstop (zs)= tan(δ1)+ (tan(δ2)− tan(δ1))exp
(
−zsβ

dsFr

)
,

where ds represents the mean size of the grains. β = 0.136
and γ = 10−3 are empirical parameters. tan(δ1) and tan(δ2)

are the characteristic angles of the material, and tan(δ3) is
another friction angle related to the behaviour when starting
from rest. This law has been widely used in the literature (see
for instance Brunet et al., 2017).

It is important to remark that this slide model can also be
adapted to simulate subaerial landslides. The presence of the
term (1− r), in the definition of the Pouliquen–Forterre fric-
tion law, is due to the buoyancy effects, which must be taken
into account only in the case that the granular material layer
is submerged in the fluid. Otherwise, this term must be re-
placed by 1 in order to consider subaerial landslides.

In Macías et al. (2021) the reader can find the details about
the numerical algorithms used to implement the model.

The discretization of the resulting systems is difficult.
For the hydrostatic systems that are expressed as non-
conservative hyperbolic systems, the natural extension of the
numerical schemes proposed in Escalante et al. (2018, 2019)
has been adopted and then solved using a second-order HLL
(Harten–Lax–van Leer), positive-preserving, well-balanced,
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path-conservative finite-volume numerical scheme (see Cas-
tro Díaz and Fernandez-Nieto, 2012). Then, the non-
hydrostatic pressure corrections at the vertical interfaces re-
quired the discretization of an elliptic operator, and that was
done using standard second-order central finite differences.
This resulted in a linear system that was solved using an iter-
ative scheduled Jacobi method. Finally, the computed non-
hydrostatic corrections were used to update the horizontal
and vertical momentum equations at each layer, and, at the
same time, the frictions were also discretized (see Escalante
et al., 2018, 2019). For the discretization of the Coulomb
friction term, the procedures presented in Fernández-Nieto
et al. (2008) were followed.

The resulting 2D numerical scheme is well balanced for
the water at rest stationary solution and is L∞ stable under
the normal CFL (Courant–Friedrichs–Lewy) condition. The
scheme is also positive preserving; that means that the thick-
ness of the water layer will be always positive or zero but
never negative and can be used with emerging topographies.

For dealing with numerical experiments in 2D regions, the
computational domain must be decomposed into cells or fi-
nite volumes with a simple geometry. Here, a Cartesian-type
UTM (Universal Transverse Mercator) was used. The 2D nu-
merical algorithm for the hydrodynamic hyperbolic compo-
nent of the coupled system is well suited to be parallelized
and implemented in GPU (graphics processing unit) archi-
tectures, as is shown in Castro et al. (2011). Unfortunately,
the standard treatment of the elliptic part of the system is not
compatible with the parallelization of the algorithms. How-
ever, in Escalante et al. (2018, 2019), a multi-GPU imple-
mentation was presented and made possible because of the
compactness of the numerical stencil and the massive par-
allelization of the Jacobi method. Such a multi-GPU imple-
mentation of the complete algorithm results in much shorter
computational times, and that is the reason why it was used
in this work.

4 Results

4.1 The Storfjorden LS-1 landslide geometry

The Storfjorden LS-1 landslide is∼ 60 km in length and cov-
ers an area of more than 1300 km2 (Llopart et al., 2015).
Three main morphological elements are imaged by the multi-
beam bathymetry: the headwall, sidewalls and sliding area
(Fig. 3a). The headwall displays a well-defined seaward-
concave scarp that forms an amphitheatre-like feature about
12 km long and > 50 m in relief. Its slide scar is incised into
the shelf edge at 420–480 m water depth. The northwestern
sidewall is defined by a striking 25 km long scarp, 35–40 m
in relief, with a rectilinear to slightly sinuous pathway. The
southeastern sidewall is 35 km long with 25 to 80 m of re-
lief, representing the highest in the mid area (∼ 1500 m water
depth). The width between the sidewalls is variable downs-

lope. The sidewalls are roughly parallel and define a bottle-
neck shape of 18 km wide, down at ∼ 1330 m water depth,
which increases to 32 km at ∼ 1900 m water depth. The slid-
ing area displays an elongated lobate shape, in plan view,
with an irregular seafloor. The seafloor gradients are typi-
cally 2 to 3◦ at ∼ 1330 m water depth and < 2◦ toward the
distal ends (Fig. 3b). The chaotic landslide deposits in the
upper slope (800 m depth) are shown in Fig. 3c (Llopart et
al., 2015).

4.2 Submarine landslide and tsunami numerical
simulations

The numerical simulation consists of several successive steps
aimed at reconstructing (i) the smooth pre-landslide upper
slope and landslide body geometry following the methods
described in Sect. 3.2.1 (Fig. 4), (ii) the landslide dynamic
(Fig. 6), (iii) the tsunami wave generation (Fig. 7), and
(iv) the tsunami wave propagation and its impacts on the
coast (Figs. 8 and 9).

4.2.1 Modelling the landslide dynamic

Once the smooth pre-landslide upper slope had been calcu-
lated, following the methods described in Sect. 3.2.1 (Fig. 4),
the landslide body geometry was determined. The numeri-
cal landslide rupture simulation begins with the slope fail-
ure of Storfjorden LS-1, which assumes that it fails at once
and moves downslope by gravitational forces (Macías et al.,
2015). Conventional studies about submarine slides show
the difficulty in assessing whether their occurrence repre-
sents unique events (Casas et al., 2016; Chiocci and Casal-
bore, 2017; Vázquez et al., 2022). The morphological results
would also support that assumption for Storfjorden LS-1, due
to the lack of retrogressive structures, which would point to a
decrease in the tsunamigenic potential (Harbitz et al., 2006).
A few local and small-scale slope failures seem to occur on
the southeastern flank in the mid slope (∼ 1600 m deep), but
they would not be significant in the modelling of the main
landslide event, due to its low potential to transfer deforma-
tion to the water column.

In addition, by comparison with similar deposits from
other continental slopes (Iglesias et al., 2012; Casas et al.,
2013; Casas et al., 2013; Vanneste et al., 2006; Winkelmann
et al., 2008), Storfjorden LS-1 shows a well-defined arcuate
slide scar, mostly rectilinear side walls and a cutting basal
shear surface. Its moving mass defines a subtabular body
with chaotic deposits and without apparent internal disconti-
nuities that sharply interrupt the lateral continuity of the sur-
rounding deposits (Pedrosa et al., 2011; Lucchi et al., 2012).
All these characteristics put together tentatively point to a
single sliding process, not being demonstrated as multiple
failures in the previous literature (Pedrosa et al., 2011; Luc-
chi et al., 2012; Rebesco et al., 2012, 2013). The difference
between pre- and post-landslide bathymetries is 40 km3, a
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volume between 33 km3 proposed by Pedrosa et al. (2011)
and 46 km3 by Llopart et al. (2015). The numerical land-
slide rupture simulation shows that the moving mass was
comprised of two domains with different behaviour, based
on the velocity pattern (Fig. 6a and b). At 1 min after the
slide, an upper-slope domain (LS1-U, ∼ 500 m water depth,
∼ 3◦ slope gradients) is related to the moving sediment near-
est to the slide scar and moves faster (vu =5 m s−1) than
the mid-slope domain (LS1-M, ∼ 1000 m water depth, 2◦

slope gradients, vm =1 m s−1) (Fig. 6a, step 1; Fig. 7, step 1;
Supplement video 1, EDANYA Research Group, 2022a). At
4 min, the velocity increases in the upper-slope domain as
vu = 30 m s−1 and in the mid-slope domain as vm =22 m s−1

(Fig. 6, step 2; Fig. 7, step 2; Supplement video 1). At
20 min, the sliding velocity maximum in the frontal area is
vf = 20 m s−1 and decreases gradually towards the sides of
the slide with values around vs = 15 m s−1 (Fig. 6c, step 10;
Fig. 7, step 10; Supplement video 1). At 25 min, the sediment
sliding became homogeneous in the distal area (∼ 1500 m
water depth). The velocity decreases gradually downslope,
where the frontal area of sediment sliding velocities reach
around vf = 10 m s−1 and in distal area vs = 2–5 m s−1.

The landslide characteristics modelled by L-ML-HySEA
determine an average velocity (va) of 25 m s−1, a terminal
time (tt) of ∼ 40 min and a characteristic distance (dc) of at
least ∼ 60 km.

4.2.2 Tsunami wave generation

Free-water-surface changes at any point along the time are
determined according to seafloor deformation (Fig. 7 and
Supplement video 1). In the initial stage (4 to 5 min), the
tsunami wave has two northwest–southeast-trending dipoles,
LS1-U, smaller (25 km long) and more striking, and LS1-M,
larger (35 km long) and smoother. They have been created
by the water mass infilling the empty spaces produced by the
sudden evacuations and uplifting of fast-downslope-moving
mass. Both wave dipoles have the troughs in shallower wa-
ters (∼ 600 to 800 m) than their respective crests (∼ 700 to
1000 m water depth) (Fig. 7, steps 1 and 8). The synthetic
marigram on the upper slope (station 1) of Storfjorden LS-1
(Fig. 9a, b and c) highlights the initial wave generation with
the crest and trough well defined, registering a crest ampli-
tude value of 0.4 m (above LS1-U) and a trough amplitude
value of up to 1.1 m at 3 min, followed by a crest amplitude
value of 0.3 m (Fig. 8, step 1; Fig. 9b; Supplement video 2,
EDANYA Research Group, 2022b).

After 3 min, the two initial dipoles evolve into a single
northwest–southeast-trending dipole (crest amplitude value
of 0.3 m), whose trough (0.5 m) is also in shallower wa-
ters than the crest (Fig. 7, step 3; Fig. 8, step 1). Wave re-
bound occurs (Fig. 7, steps 4 to 9) when a maximum am-
plitude of ∼ 2.7 m is registered over the distal area of the
landslide (Fig. 9c, station 2; Supplement video 2). At 7 to
9 min, a new crest wave amplitude value of 0.5 m appears

Table 1. Storfjorden LS-1 geometry and mechanical characteris-
tics. The inputs for the model are related to the landslide geometry:
the total volume (V ), the longitude and latitude of the submarine
landslide relative to the LS1-U slope area (X1, Y1) and the LS1-M
slope area (X2, Y2), the initial depth (h) before the slope failure,
the length (l) (long axis) and width (w) (small axis), the maximum
thickness in the proximal and distal areas (Tp and Td, respectively),
the mean azimuth direction of the landslide (Az), and the mean
slope gradient (O). The outputs of the model are related to the land-
slide dynamic: velocities to the landslide in the upper slope (vu)
and the landslide located in the mid slope (vm), sliding sediment in
the frontal area (vf), sliding sediment in the sides (vd), total veloc-
ity (Vt), terminal duration (tt), and characteristic distance (dc). The
outputs related to initial tsunamis: wave crest (Ci) tsunami velocity
at 1900 m depth (vts), tsunami wave velocity during refraction (vr),
tsunami wave velocity toward the north (vn) and tsunami wave ve-
locity toward the southeast (ve). LS1-U: Storfjorden landslide upper
slope; LS1-M: Storfjorden landslide mid slope.

Landslide geometry V (km3) 40
X1 LS1-U (m E) 490 000
Y1 LS1-U (m N) 8 350 000
X2 LS1-M (m E) 485 000
Y2 LS1-M (m N) 8 340 000
h (m) 420
l (km) 60
w (km) 8
Tp (m) 35
Td (m) 122
Az (◦) N225◦ E
O (◦ ) 2◦

Landslide dynamics vu (m s−1) at 1 min 5 m s−1

vu (m s−1) at 1 min 30 m s−1

vm (m s−1) at 4 min 1 m s−1

vm (m s−1) at 5 min 22 m s−1

vf (m s−1) at 20 min 15 m s−1

vf (m s−1) at 25 min 10 m s−1

vs (m s−1) at 20 min 15 m s−1

vs (m s−1) at 25 min 2-5 m s−1

Vt (m s−1) 25 m s−1

tt (s) ∼ 2400 s
dc (km) ∼ 60 km

Initial tsunami Ci (m) 0.3 m
vta (m s−1) 136 m s−1

vr (m s−1) 81 m s−1

vn (m s−1) 46.6 m s−1

ve (m s−1) 51.6 m s−1

parallel to the single dipole (Fig. 7, steps 4 to 5; Supple-
ment video 1) in shallower waters. It enlarges with time up to
0.7 m, whereas the trough largely keeps its dimensions or re-
lief. At the 16 min mark, the tsunami wave reaches the high-
est amplitude (at 1780 m water depth), with a trough ampli-
tude value of 2 m and a crest amplitude value of 0.7 m (Fig. 9,
station 2).
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Figure 6. Velocity pattern of the landslide in different frames and the displaced sediment thickness. (a) A 1 min frame, where the upper-
slope domain (LS1-U, ∼ 500 m water depth, 3◦ slope gradient) with an average velocity vu = 5 m s−1 contrasts with the mid-slope domain
(LS1-M, ∼ 1000 m water depth; 2◦ slope gradients) with an average velocity vm = 1 m s−1. (b) A 4 min frame, with a progressive velocity
increase in both areas (vu = 30 m s−1 and vm = 22 m s−1, respectively). (c) A 20 min frame, where velocity is maximum in the frontal area
as vf = 20 m s−1, coinciding with maximum sediment thickness displacement (122–108 m) and decrease towards the sides as vs = 15 m s−1.
(d) A 25 min frame, where both moving masses are joined with central velocity vf = 10 m s−1 and lateral velocity vs = 2–5 m s−1 in the
distal area (∼ 1500 m water depth).

At 25 min, the tsunami wave evolves into a larger dipole
above the landslide, opposite to the first ones, with a trough
amplitude value of 0.5 m and a crest amplitude value of 0.3 m
(at 1200 m water depth). This dipole gets smaller with time,
with a crest amplitude value of 0.5 m in shallower waters
(900 m water depth) covering large areas with time (Fig. 7,
step 10).

4.2.3 Tsunami wave propagation and coastal impact

The tsunami wave dynamics are illustrated by the maps of the
wave height across time (Fig. 8 and Supplement videos 1 and
2). Synthetic marigrams have been included at key locations
in order to highlight the wave propagation and coastal im-
pact in the northwestern flank of Spitsbergen Bank (Fig. 9d,
station 3), the onshore area of the Kveithola glacial trough
(Fig. 9e, station 4), Spitsbergen Bank (Fig. 9f, station 5), the
onshore northern boundary of the mid shelf of Storfjorden

glacial trough (Fig. 9g, station 7) and the onshore southwest-
ern Spitsbergen coast (Fig. 9h and i, stations 7 to 8).

The initial tsunami wave starts propagating from the land-
slide area with a trough wave moving northeast towards the
coast and a crest wave moving southwest (Fig. 8, step 3; Sup-
plement videos 1 and 2). The tsunami waves propagate ellip-
tically, with the crest and trough elongated in the northwest–
southeast direction (Fig. 7, step 3) and a total velocity (vts)
of ∼ 136 m s−1. During the tsunami propagation from depth
(∼ 1900 m) towards shallow water (∼ 250 m) (Fig. 8 and
Supplement video 2), the refraction phenomenon occurs dur-
ing shoaling. The synthetic marigram records the refraction
clearly due to an irregular variation in the general amplitude
pattern (Fig. 9d, station 3). Refraction effects in a wave front
show a decrease in velocity down to vr = 81 m s−1 and an in-
crease in amplitude. The values change from a trough ampli-
tude of 0.25 m to a crest amplitude value of 0.18 m (Fig. 9e,
station 4), and the values change from a trough amplitude
of 4.2 m to a crest amplitude of 4.3 m (Fig. 9f, station 5).
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Figure 7. Main composition in 12 consecutive frames. (a) Evolution of the landslide, where two sliding sediment masses in the firsts 25 min
can be distinguished, one in the upper slope (LS1-U) and the other one in the mid slope (LS1-M), which are merged into a unique one after
25 min. The colour scale corresponds to available sediment thickness to be displaced in metres. (b) Dipole wave evolution of the outgoing
tsunami with the wave height values.

Furthermore, it can be observed that the tsunami propagation
front displays a crescent shape.

The tsunami arrival times are observed based on the prop-
agation direction toward the coast. The impact of tsunami
waves affects Sørkappøya at 50 min (southern Spitsbergen),
with a trough amplitude value of 0.3 m, increasing to a crest
amplitude value of 0.2 m at 75 min (Fig. 8, step 5; Fig. 9h).
At the same time (50 min), the impact occurs at Kapp Dunér
(northwestern Bear Island) with tsunami waves having a crest
amplitude value of 0.3 m at 50 min, which increases to 0.5 m
at 53 min (Fig. 8, step 5; Supplement video 2). After these
two first coastal impacts, the tsunami affects different parts
of both islands at different times. Southwestern Bear Island
is reached by the tsunami waves at 60 min with a maxi-
mum crest amplitude value of 0.5 m (Fig. 8, step 6), followed
by a trough amplitude value of 0.5 m at 65 min. Likewise,
the north of Bear Island is affected by a trough amplitude
value of 0.5 m (Fig. 8, step 6) and a crest amplitude value
of 0.5 m at 80 min (Fig. 8, step 7). In Svalbard, Stormbukta
Bay (southwestern Spitsbergen Island) is the next impacted
coastline (Fig. 9a). There, the tsunami waves show specific
velocity of vs = 13 m s−1 (at 18 m of depth), with trough am-

plitude values of 0.3 m at 63 min that increase crest ampli-
tude values up to 0.32 m (85 to 95 min) (Fig. 8, steps 7 to
8; Fig. 9i). Finally, tsunami wave series propagating toward
the coast occur until 2 h after the Storfjorden LS-1 landslide
triggering (Supplement video 2).

5 Discussion and conclusions

The L-ML-HySEA landslide tsunamigenic model provides a
fast and consistent method for simulating landslide dynam-
ics, tsunami wave generation, propagation and coastal im-
pact. The results reveal several fundamental insights regard-
ing the assessment of the main factors that control the charac-
teristics and evolution of the Storfjorden LS-1 tsunamigenic
landslide, as well as the related coastal hazard.

The submarine landslide geohazard studies are not easy to
conduct due to the difficult access that the marine environ-
ment imposes, which makes it hard to obtain accurate anal-
ysis and monitoring. Our case study suggests that numeri-
cal modelling is of great help in understanding the dynam-
ics of submarine landslide geohazard and their tsunamigenic
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Figure 8. Eight steps displaying the tsunami waves generated at dif-
ferent times. The dotted red line indicates the shelf break. The first
step shows the generation of the tsunami wave and its spread. At
23 min the outgoing wave suffers refraction. At 50 min the tsunami
wave arrives at the northern coast of Spitsbergen and Bear Island,
and at the 60 min, it hits the westernmost coast of Spitsbergen.

potential. The Storfjorden upper continental slope presents
critical conditions that need to be taken into account and
warrants carrying out studies to assess slope stability. Sev-
eral factors support this assertion: (i) the overpressure ratios
measured in the subsurface sediments (Lucchi et al., 2013;
Llopart et al., 2019) and (ii) the seismicity related to the ac-
tive Hornsund Fault Zone (Hampel et al., 2009; Auriac et
al., 2016; Pirli et al., 2013). In addition, (iii) the recent envi-
ronmental stress represented by the factors mentioned above
may intensify processes such as gas hydrate dissociation and
fluid flow migration (León et al., 2021). Lastly, (iv) unload-
ing rebound seismicity during ice retreat/melting (Berndt et
al., 2009) also may contribute to triggering new submarine
landslides.

5.1 Landslide dynamics and wave generation

Key landslide parameters for the generation of tsunamis
commonly include volume, velocity and initial acceleration
of the sliding mass (Harbitz et al., 2006; Urlaub et al., 2013;
Løvholt et al., 2015; Macías et al., 2015; Urgeles et al., 2019)

(Table 1). In our case study, the relationship between the
above-mentioned parameters is also fundamental for the for-
mation of a tsunami. The L-ML-HySEA model indicates that
the 40 km3 of available displaced sediment volume moved by
the Storfjorden LS-1 landslide is enough to trigger a tsunami.
The morphosedimentary characteristics of the Storfjorden
LS-1 landslide suggest that mass failure deposits could oc-
cur as a single event, as opposed to several, implying a better
energy transfer to the water column (Vázquez et al., 2022,
and references therein); therefore, velocity and initial accel-
eration also would be key to the formation of the tsunami.
In this sense, for the phase velocity to be highly effective at
the depths of Storfjorden LS-1 (H = 420 to 1900 m) during
the tsunami wave onset, its value should be vta = 136 m s−1

(Tinti et al., 2000; Fryer et al., 2004). The relatively average
velocity (roughly 25 m s−1, Table 1) obtained for our tsunami
indicates that it was out of phase, and, therefore, it would not
have been effective enough to create high-amplitude tsunami
waves (Huggel et al., 2005; Evans et al., 2009; Pudasaini,
2014; Dietrich and Krautblatter, 2019).

Our results indicate that the characteristics of the tsunami
wave are influenced by landslide dynamics at two stages of
the downslope moving mass: initial (1 to 4 min) and late (20
to 25 min), with different velocity values (Fig. 6). The two
initial wave dipoles, generated when seafloor failure occurs,
are the consequence of two large seafloor depressions, one at
the slide scar (i.e. main evacuation area) and the other one
located between the two mass moving domains (Fig. 7 and
Supplement video 1). At 25 min, a new dipole is formed,
opposite to the previous ones. This new dipole is created
when the faster sliding mass reaches the slower one and both
masses merge producing a significant impact in the avail-
able displaced sediment thickness (100 m) of the distal mov-
ing mass. The increase in thickness would contribute to in-
creasing the pressure in the water column, causing the up-
lift in the water surface and the enhancement of the tsunami
waves (Ramadan et al., 2018; Ercilla et al., 2021). Thus,
our study demonstrates that a proper understanding of land-
slide dynamics at their initial stages (or first motion) and of
their deformation during the run-out is a crucial requirement
for understanding the characteristics of the initial tsunami
waves and the effects that those characteristics have on their
evolution. In addition, our study also suggests that identify-
ing the initial tsunami wave forms could reveal the tsunami
sources, e.g. landslides (generating single or multiple trough
and crest pairs) versus faults (generating a single or crest
wave) (e.g. Macías et al., 2015; Ercilla et al., 2021; Estrada
et al., 2021; Bécel et al., 2017).

5.2 Seafloor morphology

It is widely known that how a tsunami wave propagates is
highly dependent on the morphology of the seafloor (Urlaub
et al., 2013; Estrada et al., 2021). The model shows that
tsunami waves propagate elliptically with respect to the
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Figure 9. Synthetic marigrams. (a) The location map of the synthetic marigrams above the reference stations, numbered in panel (a) (station 1
to 8). (b–i) Note the different arrival times, periods, wave heights and polarities at the different stations.

northeast–southwest elongated seafloor shape of the land-
slide relief. In the Storfjorden LS-1 tsunami, the average ve-
locity waves (vta = 136 m s−1) travel northeastern and are fo-
cused between the continental shelf of Svalbard and of Bear
Island, which helps to confine it and forces its direction of
propagation (Fig. 8 and Supplement video 2). The continen-
tal shelf morphology determines tsunami shoaling, with the
shallowest water depths located at Spitsbergen Bank (80 m
water depth). The shoaling by the bank produces the refrac-
tion phenomenon and the amplification of the tsunami. As
the tsunami propagates across the ocean, waves can undergo
refraction, which is caused by segments of the wave mov-
ing at different speeds as the water depth along the wave
front varies (Berkhoff, 1972). This effect produces variations
in the amplitude of the tsunami waves and in their arrival
times: 15 min later at southwestern Spitsbergen and 11 min
later at northwestern Bear Island. When encountering an ob-
stacle, the tsunami waves discharge their energy with great
force, as in the case of Sørkappøya and Sørkapp at 75 min,
decreasing the amplitude and slowing down the arrival time
of the tsunami waves in the corresponding bay to 100 min
(Supplement video 2). The tsunami wave arrival is recorded
at 80 to 95 min at the eastern Hornsund fjord. On the other

hand, the crescent shapes of the tsunami front seem to be
conditioned by the Storfjorden and Kveithola glacial troughs
separated by Spitsbergen Bank. The elongated negative re-
liefs of the glacial troughs would cause the funnelling of the
tsunami seawater with relative higher specific velocities of
propagation (vs = 56 m s−1 in the Storfjorden glacial trough
at 320 m water depth). Therefore, the numerical simulations
are a useful tool to assess tsunami hazard in places where lo-
cal seafloor topography could advance or delay the tsunami
waves and therefore the coastal impact.

The Storfjorden LS-1 modelling has demonstrated that the
shelf seafloor morphology is a decisive factor: it influences
the propagation velocity of the tsunami waves, the variations
in wave amplitude (shoaling effect) and the impact of coastal
arrivals (Iglesias et al., 2012; Estrada et al., 2021; Salaree and
Okal, 2020).

5.3 Coastal location

The initial tsunami waves start propagating as negative and
positive disturbance dipoles. The trough is always located to-
wards the upper part of the margin, which determines that,
in general, the first arrival to the coast corresponds to a sea
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level drop, hence decreasing the coastal impact. This factor,
together with coastal location and orientation (i.e. angle of
the waves with the coastline), conditions the polarities of the
first arrival wave. In our study, the first arrival wave impacted
with trough values of 0.1 to 0.5 m against the coast of south-
western Spitsbergen and crest values of 0.1 to 0.5 m against
Bear Island (Fig. 8 and Supplement video 2).

5.4 Comparison with other landslide tsunamis: hazard
assessment for the northern glaciated margins

Landslide parameters (age, area, volume, seafloor gradi-
ents, location and velocity) and related tsunami parame-
ters (wave amplitude and velocity) of different landslide-
inducing tsunamis have been compared with those defining
Storfjorden LS-1 and its tsunami, in Table 2.

This comparison highlights that not only large but also
relatively small–medium-sized landslides could have trig-
gered tsunamis in the past. Despite Storfjorden LS-1 hav-
ing a smaller area and volume with respect to the larger
landslides of the Kongsfjorden TMF, the amplitude value of
their respective tsunami waves is roughly similar. The ef-
fects of global warming over the landslide-triggering fac-
tors (e.g. isostatic rebound seismicity and gas hydrate desta-
bilization by the rise in temperature of the ocean water) is
not likely to provoke the occurrence of such large landslides
as those formed during glacial maxima and the transition
from glacial to interglacial periods (Lee, 2009, and refer-
ences therein). However, the present trend of global warning
should over time increase the probability of slope instabil-
ity, especially on those glaciated margins that have not yet
failed after the last glacial to interglacial transition, for in-
stance, the Bear Island, Kongsfjorden and Storfjorden TMFs
(Berndt et al., 2009). Therefore, the results presented here
should encourage us to continue working in the prediction
of tsunamigenic landslide hazards and their coastal impact,
mainly in the northern glaciated margins.

The water depth location of the landslide scar seems to in-
fluence the coastal impact of tsunami waves (Table 2). In the
study area, they present low-amplitude values at the coastal
area and their arrival times are longer (50 to 80 min) than the
tsunamis modelled in the nearby coast of western Spitsber-
gen (Bernt et al., 2009), where the slope failure is at shal-
lower water depths (200 m) and the distance to the nearby
coast is shorter (∼ 90 km). Landslides triggered in shallower
water result in more localized waves, and the elongated land-
slide velocity profile delays the appearance of the first posi-
tive landward-propagating wave, hence reducing the chances
of constructive interference along the coast (Harbitz et al.,
2006). This suggests that tsunami modelling based on past
landslides should pay more attention to those sectors of the
northern glaciated margins with narrower continental shelves
and submarine landslide head scarps that are near the shore-
line. The landslides located in the middle and northern parts
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2013; Beaten et al., 2013). Also, much smaller collapses,
either submarine or subaerial, also pose a significant local
threat. In Norway, several rockslide tsunamis occurred in the
20th century, the most devastating in Storfjorden in 1934
(Blikra et al., 2005; Böhme et al., 2015). Although this is not
the scope of the paper, they could be more frequent with an
estimated rate of 1 event per 1000 years (Blikra et al., 2005).

In summary, our findings demonstrate that tsunami mod-
elling based on past landslides using the L-ML-HySEA land-
slide tsunami model will be useful to provide new perspec-
tives on tsunami hazard assessment in polar margins, where
global climatic change and its related ocean warming may
contribute to the activation of landslides. Landslide tsunami
models will allow us to identify the areas with maximum and
faster coastal impact and the effect of the local bathymetry
on tsunami direction of propagation, shoaling, amplification
and diffraction. This knowledge is very important for the de-
sign of early-warning strategies, as it will contribute to assess
the key factors that are useful as emergency planning tools.
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