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Abstract. The disastrous July 2021 flooding events made us question the ability of current hydrometeorological tools in 

providing timely and reliable flood forecasts. This is an urgent concern since extreme events are increasing due to global 

warming. For the July 2021 events, we simulated the hourly streamflows of seven catchments in western Germany, by 

combining five, partly polarimetric, radar-based quantitative precipitation estimates (QPE) with two hydrological models: a 

conceptual lumped model (GR4H) and a physically-based, 3D distributed model (ParFlowCLM). GR4H parameters were 15 

calibrated with emphasis on high flows using historical discharge observations, whereas ParFlowCLM parameters were 

estimated based on landscape and soil properties. The key results are as follows: (1) All radar-based QPE products 

underestimated the total precipitation depth relatively to rain gauges due to intense collision-coalescence processes near the 

surface, i.e. below the height levels monitored by the radars. (2) The use of polarimetric radar variables led to clear 

improvements compared to reflectivity-based QPE products. (3) The probability of exceeding the highest measured 20 

peakflow before July 2021 was highly impacted by the QPE product, and depended on the catchment for both models. (4) 

The estimation of model parameters had a larger impact than the choice of QPE product, but simulated peakflows of 

ParFlowCLM agreed with those of GR4H for five of the seven catchments. This study highlights the need for the correction 

of vertical profiles of reflectivity and other polarimetric variables near the surface to improve radar-based QPE for extreme 

floods. It also underlines the large uncertainty in peakflow estimates due to model parameter estimation. 25 

1 Introduction 

1.1 Old questions in the light of new extremes 

Many parts of the world will face an increase in the frequency and intensity of heavy summer precipitations under a warmer 

climate, as a result of the enhanced moisture-holding capacity of the atmosphere (Fowler et al., 2021; Kendon et al., 2014; 

Trenberth, 2011). This implies more frequent and flashier flood events (Dougherty and Rasmussen, 2020), hence increasing 30 
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damages to infrastructures and human losses (Dottori et al., 2018; Nissen and Ulbrich, 2017). The flooding events of July 

2021 in Europe resulted in more than 220 deaths (Deutsche Welle, 2021) and costed up to €5.5 billion in insured losses, 

making them the most severe natural disaster caused by heavy rain and flooding in Germany (GDV, 2021). Predicting such 

never-seen-before extremes challenges our forecasting chains (Hapuarachchi et al., 2011) and gives a new opportunity to re-

examine persistent questions: how accurate are new, state-of-the-art radar-based precipitation estimates for this event? Given 35 

the recent developments in radar-based precipitation estimation and hydrological modeling, which of these sources of 

uncertainty is prevalent in extreme peakflow estimation? 

1.2 Precipitation estimates and hydrological modeling approaches 

Rain gauges are often used as a reference source of quantitative precipitation estimates (QPE; Boushaki et al., 2009; Derin et 

al., 2019; Dumont et al., 2022; Schleiss et al., 2020). However, they are sparse and may miss the spatial variability of 40 

precipitation, especially of convective precipitation fields that can generate extreme flooding events in high-elevation, 

complex terrain configurations (Anquetin et al., 2005; Emmanuel et al., 2017; Sokol et al., 2021; Tetzlaff and Uhlenbrook, 

2005). Alternatively, operational radar-based QPE provide better coverage and characterization of precipitation dynamics 

with higher spatial and temporal resolutions, which is particularly useful for flooding events (Anagnostou et al., 2010; Zhou 

et al., 2017). Traditionally, radar-based QPE are derived from horizontal reflectivity (Zh) using Marshall-Palmer-type 45 

formulae (Marshall and Palmer, 1948). However, they are highly sensitive to the variability of the raindrop size distribution, 

and in some cases, QPE based on Zh only tend to underestimate heavy precipitation (Harrison et al., 2000; Park et al., 2019; 

Schleiss et al., 2020). In addition, they are affected by radar calibration, attenuation, partial beam blockage, and radome 

effect (Berne and Krajewski, 2013; Borga et al., 2007; Chen et al., 2021; Diederich et al., 2015a, b; Ryzhkov et al., 2014). 

These limitations can be overcome by using additional variables from dual-polarimetric radars, which provide a better 50 

characterization of the shape and the concentration of hydrometeors and are less sensitive to raindrop size distribution 

(Gourley et al., 2010; Ryzhkov et al., 2005). Phase-based observables from polarimetric radars, such as specific differential 

phase (KDP) and specific attenuation at horizontal/vertical polarization (AH/V), help improve QPE especially for heavy, 

convective and hail-contaminated rainfall events (Anagnostou et al., 2018; Berne and Krajewski, 2013; Chen et al., 2021; 

Ryzhkov et al., 2014). However, including these variables may only lead to better spatial correlations with limited 55 

improvements in biases (Cunha et al., 2015). These improvements in radar-based QPE have been commonly evaluated with 

regards to point-scale ground-based measurements, but when the ultimate goal is to provide an accurate estimation of flood 

severity, a catchment-scale hydrological evaluation is needed. 

Precipitation is the main driving factor of land-surface hydrological processes at the event-scale. Consequently, 

uncertainties in the input QPE strongly control the uncertainties of hydrological model outputs (Oudin et al., 2006; Renard et 60 

al., 2011), and are found to be larger than structural uncertainties of the models (Kuczera et al., 2006; Zappa et al., 2011). 

Previous studies evaluated the added value of improved spatial and temporal resolutions of QPE using hydrological models. 

Cole and Moore (2009) showed the benefits of gauge-corrected radar-based QPE for ungauged locations using a distributed 
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hydrological model. Lobligeois et al. (2014) found that using high-resolution, spatially-distributed precipitation was mainly 

beneficial in regions with high spatial variability of precipitation and topography fields. For flash flood applications, several 65 

studies (e.g., Borga et al., 2007; Braud et al., 2010; Emmanuel et al., 2017; Lin et al., 2018) concluded that QPE are the 

major controlling factor of flash flood dynamics and of hydrological model performances. However, they found that the 

extent to which uncertainties in QPE impacted model outputs is dependent on the strength of the storage behavior of the 

catchment, which may hide the benefit of using high-resolution QPE (Pokhrel and Gupta, 2011). Yet, fewer studies (e.g., 

Gourley et al., 2010; He et al., 2018) assessed the added-value of polarimetric radar measurements to predicting hydrological 70 

extremes. Additionally, the reliability of calibrated models for predicting unprecedented extreme hydrological events is 

questionable as they depend on historical observations (Poméon et al., 2020). In this respect, little attention has been drawn 

to how highly contrasted model formulations (lumped, conceptual vs. distributed, physically-based) are affected by 

uncertainties in QPE inputs for the case of extreme precipitation events. 

1.3 Insights from the disastrous July 2021 events in western Germany 75 

This study investigated the influence of improved QPE and different representations of hydrological processes on the 

uncertainties in simulating extreme flooding events. The novelties of our study consist in: (1) using new QPE products from 

phase-based observables of C-band radars, (2) contrasting hydrological modeling approaches (conceptual vs. partial 

differential equations (PDE)-based model), and (3) proposing an evaluation framework of the hydrometeorological 

prediction chain for unprecedented extreme events with unavailable discharge measurements. Since no peakflow 80 

measurements are available (partly due to destroyed monitoring systems), our analysis focused on the probability that the 

simulated peakflow exceeds the highest historically observed peakflow. This is relevant because hydrological models are 

often evaluated based on their ability to detect the probability of flows exceeding catchment-specific, critical thresholds for 

flood warning applications (Anctil and Ramos, 2017). 

This paper is structured as follows: Sect. 2 presents the studied region, Sect. 3 explains the methodology, Sect. 4 and 5 85 

show and discuss our results, and Sect. 6 summarizes our conclusions. 

2 Study region 

Our study focused on a set of seven catchments located in western Germany (Fig. 1a), draining parts of the Eifel low-

mountain range, with areas ranging between 144 and 1670 km2 (Table 1). Four of the seven stream gauges are located on the 

Ahr and the Kyll rivers in the federal state of Rhineland-Palatinate. The remaining three stream gauges are located on the 90 

Erft and Rur rivers in the federal state of North Rhine-Westphalia. Their hypsometry shows a rolling plateau at mild 

elevations (300 m to 700 m) except for the catchments drained by the Erft river (Fig. 1b). Their land cover is dominated by 

agricultural and forest areas, with relatively small proportion of artificial areas (Table 1). Average precipitation depths range 
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from 700 mm yr-1 to 1080 mm yr-1 and corresponding aridity indices are between 0.5-0.9, which reflects a region with 

temperate climate under oceanic influence. 95 

3 Methodology 

3.1 The lumped conceptual hydrological modeling approach 

We selected GR4H (Ficchì et al., 2019) as a representative of the lumped, conceptual modeling approach. GR4H inputs 

consist of catchment-average precipitation and potential evapotranspiration at the hourly timestep. Potential 

evapotranspiration was estimated using a formula based on catchment-average temperature. GR4H estimates net 100 

precipitation from input precipitation using an interception with a soil-moisture accounting reservoir. Then, the net 

precipitation is split into 10 % routed through the quick-flow routing branch (via a unit hydrograph) and 90 % routed through 

the slow-flow branch (via a unit hydrograph and a nonlinear routing reservoir). On both branches, exchanges between 

surface water and groundwater are enabled. Detailed equations can be found in Ficchì et al. (2019) and Perrin et al. (2003). 

We calibrated GR4H parameters using historical observations of discharge and a gradient-descent based algorithm 105 

(Coron et al., 2017; Edijatno et al., 1999). Since hourly discharge values for all stream gauges were unavailable, hourly 

model simulations were aggregated into daily time steps to be compared to the daily discharge observations. Because we are 

interested in simulating high discharge values, we looked for optimal parameters 𝜃𝑜𝑝𝑡  that maximized the following 

objective function 𝐹𝑂(𝜃): 

 𝐹𝑂(𝜃) =
1

4
𝐶(𝑄𝑠𝑖𝑚(𝜃), 𝑄𝑜𝑏𝑠) +

3

4
𝐶(𝑄𝑠𝑖𝑚(𝜃), 𝑄𝑜𝑏𝑠|𝑄𝑜𝑏𝑠 ≥ 𝑄𝑜𝑏𝑠,𝑡ℎ)  

(1) 

where 𝜃  are model parameters, 𝑄𝑠𝑖𝑚(𝜃), 𝑄𝑜𝑏𝑠  are respectively simulated and observed discharges, 𝐶(𝑄𝑠𝑖𝑚(𝜃), 𝑄𝑜𝑏𝑠) is a 110 

calculated error criterion over the whole period of calibration, and 𝐶(𝑄𝑠𝑖𝑚(𝜃), 𝑄𝑜𝑏𝑠|𝑄𝑜𝑏𝑠 ≥ 𝑄𝑜𝑏𝑠,𝑡ℎ) is calculated only for 

periods when the observed discharge is above the threshold 𝑄𝑜𝑏𝑠,𝑡ℎ , which emphasizes high flows. To account for the 

uncertainties in parameter estimation, we split the available time series into two distinct and length-equivalent sub-periods 

(2007-2013 and 2014-2020), over which we calibrated the model with regards to two criteria 𝐶 : the Nash-Sutcliffe 

Efficiency (Nash and Sutcliffe, 1970) and the Kling-Gupta Efficiency (Gupta et al., 2009). For the threshold 𝑄𝑜𝑏𝑠,𝑡ℎ, we 115 

chose three values: the minimum discharge value (i.e., no particular emphasis on high flows), the 90 th percentile, and the 99th 

percentile of daily discharge values. Combining these choices yielded 2*2*3 = 12 optimal parameter sets for each catchment. 

During calibration, the first year of records (2006) was used for model spin-up to minimize the impact of model initialization 

on model calibration and simulation results. 

3.2 The distributed PDE-based hydrological modeling approach 120 

In addition to GR4H, we used the hydrological model ParFlow with its internal land surface module CLM (Common Land 

Model), hereafter ParFlowCLM (Kollet and Maxwell, 2006; Kuffour et al., 2020; Maxwell, 2013), implemented on a 611-m 
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resolution grid with 15 depth layers down to 60 m below the surface, with geometrically increased thickness. CLM resolves 

the energy budget at the land surface as well as the water exchange at the atmosphere-land-soil interface, which helps discern 

the net precipitation from interception, soil evaporation, plant transpiration, and infiltration. ParFlow resolves the 3D 125 

Richards’ equation for variably saturated subsurface and groundwater flow, coupled with the kinematic wave model for the 

overland flow routing. Assuming the continuity of pressure at the ground surface, the boundary fluxes for Richards’ equation 

are estimated from the kinematic wave model, and vice versa (Kollet and Maxwell, 2006). The model represents both the 

Hortonian and the Dunne runoff processes, and it accounts for exfiltration and re-infiltration at the downstream hydraulic 

pathway. 130 

ParFlowCLM was forced at the hourly time step with a spin-up period starting from 2007. Slopes were estimated from 

the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer; 

https://lpdaac.usgs.gov/products/astgtmv003) DEM (digital elevation model) combined with the hydrologically-enhanced 

DEM MERIT Hydro (Yamazaki et al., 2019). Soil and subsoil types are defined from the SoilGrids250m (Hengl et al., 2017) 

reclassified into 12 USDA (United States Department of Agriculture) texture types. The hydraulic parameters for each soil 135 

type (hydraulic conductivity, residual and saturated water content, and van Genuchten parameters) were obtained from the 

ROSETTA model (Schaap et al., 2001). Below the depth to bedrock, given by SoilGrids250m, the typology of the 

International Hydrogeological Map of Europe IHME1500 (scale 1:1500000) was used (Duscher et al., 2015). Land cover 

was characterized using the CORINE Land Cover database of the Copernicus Land Monitoring Service for the year 2018 

(Langanke et al., 2016), whose land cover classification was converted into the 18 IGBP (International Geosphere-Biosphere 140 

Programme) categories. To account for the uncertainty in Manning’s roughness coefficient, which highly impacts the 

peakflow simulations (Lumbroso and Gaume, 2012), three uniformly distributed values were tested for the whole domain: a 

default value of 0.2 s m-1/3 (HMann, i.e. high roughness, from Schalge et al., 2019), and two additional values of 0.1 s m-1/3 

(MMann, medium roughness) and 0.02 s m-1/3 (LMann, i.e. low roughness). These three values cover the whole range of 

Manning’s coefficient values reported by Lumbroso and Gaume (2012). 145 

3.3 Atmospheric forcing and streamflow data 

Eight atmospheric variables were needed for the runs of ParFlowCLM, namely 2-m air temperature, precipitation, surface 

pressure, downward solar and thermal radiation, specific humidity, and eastward and northward components of the 10-m 

wind. Precipitation was obtained from the operational radar-based RADOLAN product of the DWD (Deutsche Wetterdienst, 

German Weather Service), which is gauge adjusted and available at 1-km resolution. The remaining atmospheric variables 150 

were obtained from the ERA5-Land dataset (Muñoz-Sabater et al., 2021), available at 9-km resolution. All variables were 

regridded to the model resolution using a bicubic interpolation. For GR4H, data demand is limited to precipitation and 2-m 

air temperature, which were catchment-averaged using the Thiessen polygon method, and discharge data for model 

calibration, which were obtained for the period 2007-2021 from the state offices for environment of North Rhine-Westphalia 

(LANUV, https://www.elwasweb.nrw.de) and Rhineland-Palatinate (https://wasserportal.rlp-umwelt.de). 155 
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3.4 Evaluation of QPE products and modeling choices for the July 2021 events 

For the 14 July 2021, we tested five radar-based, 1-km gridded QPE products as detailed in Table 2. These products were 

derived from the measurements of polarimetric radars operated by DWD using algorithms that exploit horizontal reflectivity 

(Zh), specific differential phase (KDP), and specific attenuation at horizontal (AH) and vertical (AV) polarization (Chen et al., 

2021). We evaluated the radar-based QPE first with respect to their agreement with rain gauges both at the point scale and at 160 

the catchment scale, and then with respect to their effect on simulated peakflows by GR4H and ParFlowCLM. 

First, total rainfall depths for the 14 July 2021 of the radar-based QPE are compared at the point scale with the rain 

gauges using the normalized root-mean-square error (𝑛𝑅𝑀𝑆𝐸 ), the normalized mean bias (𝑁𝑀𝐵 ), and the Pearson’s 

correlation coefficient (𝐶𝐶), expressed as: 

{
 
 
 
 
 

 
 
 
 
 

𝑛𝑅𝑀𝑆𝐸(%) =  100 ∙

√∑ (𝑃𝑟𝑎𝑑𝑎𝑟,𝑖 − 𝑃𝑅𝐺,𝑖)
2𝑁

𝑖=1

√∑ (𝑃𝑅𝐺̅̅ ̅̅ ̅ − 𝑃𝑅𝐺,𝑖)
2𝑁

𝑖=1

𝑁𝑀𝐵(%) =  100 ∙
∑ (𝑃𝑟𝑎𝑑𝑎𝑟,𝑖 − 𝑃𝑅𝐺,𝑖)
𝑁
𝑖=1

∑ 𝑃𝑅𝐺,𝑖
𝑁
𝑖=1

𝐶𝐶 =
∑ (𝑃𝑅𝐺,𝑖 − 𝑃𝑅𝐺̅̅ ̅̅ ̅)(𝑃𝑟𝑎𝑑𝑎𝑟,𝑖 − 𝑃𝑟𝑎𝑑𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ )𝑁
𝑖=1

√∑ (𝑃𝑅𝐺,𝑖 − 𝑃𝑅𝐺̅̅ ̅̅ ̅)2𝑁
𝑖=1 ∑ (𝑃𝑟𝑎𝑑𝑎𝑟,𝑖 − 𝑃𝑟𝑎𝑑𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

 

 
(2) 

where 𝑃𝑅𝐺,𝑖 is the total rainfall depth for the 14 July 2021 measured at the ith rain gauge, 𝑃𝑟𝑎𝑑𝑎𝑟,𝑖 is the total rainfall depth 165 

given by the radar-based QPE rad (Table 2) and averaged over the raster cell containing the ith rain gauge and its 8 

neighbouring cells, and 𝑃𝑅𝐺̅̅ ̅̅ ̅, 𝑃𝑟𝑎𝑑𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅  are the averages of total rainfall depths of the considered 𝑁  rain gauges and their 

corresponding 𝑁 averages from neighbouring raster cells of the radar-based QPE, respectively. 𝑛𝑅𝑀𝑆𝐸 and 𝑁𝑀𝐵 have both 

a perfect score of 0, and 𝐶𝐶 has a perfect score of 1. Positive 𝑁𝑀𝐵 indicate that the radar-based QPE overestimates the total 

rainfall depth for the 14 July 2021 compared to rain gauges, and vice versa. 170 

At the catchment scale, the spatial average QPE from radar for the 14 July 2021 is compared with that from rain gauges 

using the relative error: 

∆𝑟𝑒𝑙(𝑃𝑟𝑎𝑑𝑎𝑟 , 𝑃𝑅𝐺)(%) = 100 ∙  
𝑃𝑟𝑎𝑑𝑎𝑟 − 𝑃𝑅𝐺

𝑃𝑅𝐺
 (3) 

which is positive (respectively negative) when radar-based QPE overestimates (respectively underestimates) the total 

catchment-average precipitation depth with respect to rain gauges, and equals zero for a perfect match. 

Second, we examined the effect of QPE on the frequency of exceeding the highest historically observed peakflow for 175 

each catchment (Table 1) by simulated peakflows, which consist of 12 simulations of GR4H in addition to three simulations 

of ParFlowCLM. Although GR4H simulations predominate, this will still illustrate the effect of QPE input on how well a 

model can issue a warning of an upcoming event that has never been seen before. 

Third, for each catchment and for each model, the effect of the choice of QPE input is analyzed using the relative error 

in simulated peakflows attributed to replacing RADOLAN with another QPE product, such as: 180 
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∆𝑟𝑒𝑙𝑄𝑝,𝑠𝑖𝑚(𝑄𝑃𝐸, 𝑅𝐴𝐷𝑂𝐿𝐴𝑁)(%) = 100 ∙  
𝑄𝑝,𝑠𝑖𝑚(𝑄𝑃𝐸) − 𝑄𝑝,𝑠𝑖𝑚(𝑅𝐴𝐷𝑂𝐿𝐴𝑁)

𝑄𝑝,𝑠𝑖𝑚(𝑅𝐴𝐷𝑂𝐿𝐴𝑁)
 (4) 

which is positive (respectively negative) if using QPE products other than RADOLAN leads to higher (respectively lower) 

simulated peakflows. Similarly, agreement across all QPE products between GR4H and ParFlowCLM is estimated using: 

∆𝑟𝑒𝑙𝑄𝑝,𝑠𝑖𝑚(𝐺𝑅4𝐻, 𝑃𝑎𝑟𝐹𝑙𝑜𝑤𝐶𝐿𝑀)(%) = 100 ∙  
𝑄𝑝,𝑠𝑖𝑚,𝐺𝑅4𝐻 − 𝑄𝑝,𝑠𝑖𝑚,𝑃𝑎𝑟𝐹𝑙𝑜𝑤𝐶𝐿𝑀

𝑄𝑝,𝑠𝑖𝑚,𝑃𝑎𝑟𝐹𝑙𝑜𝑤𝐶𝐿𝑀
 (5) 

where 𝑄𝑝,𝑠𝑖𝑚,𝐺𝑅4𝐻 and 𝑄𝑝,𝑠𝑖𝑚,𝑃𝑎𝑟𝐹𝑙𝑜𝑤𝐶𝐿𝑀  are simulated peakflows by GR4H and ParFlowCLM, respectively. Perfect 

agreement is obtained with a relative error equal to zero, whereas positive (respectively negative) values indicate that GR4H 

overestimates (respectively underestimates) peakflows compared to ParFlowCLM. This relative error is estimated using all 185 

possible combinations of the 12 estimated peakflows of GR4H and the three estimated peakflows of ParFlowCLM. 

4 Results 

4.1 Point-scale and catchment-scale differences between the QPE product 

The different radar-based QPE show a relatively similar spatial pattern to rain gauges, as can be seen in Fig. 2. Heavy 

precipitation depths have fallen over the highest altitudes, namely the Eifel range on the left bank of the Rhine river and the 190 

Bergisches Land on the right bank. These rainfall depths were a result of long-lasting intense stratiform rain connected to a 

cut-off low pressure system (Junghänel et al., 2021), which locally broke historical precipitation records (Kreienkamp et al., 

2021). For the rain gauge measurements, precipitation depths reached up to 162 mm, which is equivalent to what would fall 

in 2-3 months on average. Conversely, the radar products significantly differ in terms of total precipitation depth for the 14 

July. QPE based on specific attenuation (RAHKDP and RAVKDP) showed higher precipitation depths compared to 195 

RADOLAN, whereas QPE based on horizontal reflectivity (RZH and RZHKDP) showed quite low precipitation depths. 

At the point scale, the comparison with N = 67 rain gauges over the region shows RADOLAN to be the radar-based 

QPE that agrees most with the rain gauges (Fig. 3). Values of 𝑛𝑅𝑀𝑆𝐸 varied from 32 % for RADOLAN to 37-39 % for the 

two products based on specific attenuation (RAHKDP and RAVKDP), and then jumped to 47-49 % for the remaining radar-

based QPE (RZHKDP and RZH). The negative 𝑁𝑀𝐵 values show that all products underestimated the precipitation amounts 200 

compared to rain gauges, but this underestimation remains below 15 % for RADOLAN, RAVKDP and RAHKDP. 𝑁𝑀𝐵 

values confirm the relatively high biases obtained with RZHKDP and RZH, for which underestimation was over 20 %. 

Nevertheless, the high 𝐶𝐶 values confirm that all products captured well the spatial pattern of the ground-based precipitation 

measurements. 

Conclusions about the agreement between QPE products and rain gauges change when we look at the catchment scale 205 

evaluation. Specifically, QPE based on specific attenuation outperformed RADOLAN across the seven catchments (Fig. 4), 

and reduced relative error from a median of -18 % for RADOLAN to -6 % for RAHKDP. Nevertheless, all products 

underestimated catchment-scale precipitation with respect to rain gauges, confirming the point-scale results (see 𝑁𝑀𝐵 scores 

in Fig. 3). This comparison underlines the fact that the assessment of QPE products is catchment-dependent. QPE based on 
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specific attenuation outperformed RADOLAN for the catchments drained by the Ahr, the Kyll, and the Erft at Bliesheim, 210 

whereas RADOLAN was the only product that agreed with rain gauges for the Rur at Monschau. However, all radar-based 

QPE underestimated the precipitation depth obtained on rain gauges for the largest catchment, the Erft at Neubrueck. 

4.2 Effect of QPE and modeling choices on simulated peakflows 

The QPE inputs significantly impacted both GR4H and ParFlowCLM model simulations, as illustrated in Fig. 5 for the Ahr 

at Altenahr. Changing from RADOLAN to RAVKDP led to increased peakflow simulations, which is in line with the 215 

catchment-scale comparison (Fig. 4). For this catchment, a relative agreement was reached between the two models as 

GR4H simulations bracketed ParFlowCLM simulations, except for the case when the Manning’s coefficient was the lowest 

(LMann). Both the choices of GR4H calibration and Manning’s coefficient led to high uncertainty of peakflow simulations. 

With a high Manning’s coefficient, ParFlowCLM succeeded in estimating both the timing and the magnitude of the last 

recorded peakflow at the catchment outlet (~330 m3 s-1 at ~19:00 of the 14 July), whereas the median simulation of GR4H 220 

was quite delayed with respect to ParFlowCLM simulated hydrographs. Finally, all model simulations with both RADOLAN 

and RAVKDP illustrate that the heavy precipitation event resulted in a record-breaking flood for the Ahr at Altenahr. 

Overall, the ranking of QPE products with respect to the total precipitation depth for the 14 July was preserved by model 

simulations for all catchments, as shown in Fig. 6. Specifically, the distributed approach by ParFlowCLM reflected the 

relative differences between catchment-average QPE. ParFlowCLM simulations with high and medium Manning’s values 225 

were bracketed by those of GR4H except for the largest catchment (Erft at Neubrueck) and the smallest catchment (Rur at 

Monschau). However, both the distributions of simulated peakflows by GR4H and ParFlowCLM revealed a large 

uncertainty due to model parameter estimation. For instance, simulated peakflows by GR4H for the Ahr at Altenahr varied 

between 150-850 m3 s-1 using RZH as input, whereas they varied between 330-1360 m3 s-1 using RAHKDP as input. 

The exceedance frequency of the highest peakflow ever measured (orange dashed lines in Fig. 6) by model simulations 230 

was impacted by QPE inputs depending on the catchment (Fig. 7). The first subset of catchments, including the Ahr 

catchments and the Erft at Bliesheim, showed high chances of breaking the records with little or no impact of QPE inputs. 

Similarly, for the Rur at Monschau, all model simulations from the different QPE products agreed that the event was not 

heavy enough to surpass the highest measured peakflow. The second subset (Erft at Neubrueck and Kyll) showed different 

answers to whether there was a high chance (i.e., more than 50 %) that the event peakflow will overpass the highest 235 

measured peakflow before the event. In particular, simulations with the operational RADOLAN product for the Kyll at 

Kordel gave lower chances than 50 % compared to rain gauges and products based on specific attenuation. This subset of 

catchments underlines the crucial impact of the input QPE on our interpretation of the severity of the event. 

In general, the differences between simulated peakflows seemed to be more influenced by the model parametrization 

than the choice of the QPE input, as suggested by Fig. 8. GR4H tended to underestimate the event peakflow relatively to 240 

ParFlowCLM, and both models disagreed most in the Erft at Neubrueck and the Rur at Monschau. The differences between 

GR4H and ParFlowCLM were generally independent of the QPE input (Fig. 8a). Conversely, replacing RADOLAN with 
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any other QPE led to systematic increases in simulated peakflows (except for the Rur at Monschau) with error distributions 

less far from zero (Fig. 8b). GR4H showed higher sensitivity to QPE products compared to ParFlowCLM, which suggests 

that the distributed model smoothed more the differences between QPE products. 245 

5 Discussion 

5.1 Importance of hydrological, catchment-scale evaluation of QPE products 

Our evaluation shows that the radar-based QPE agreed with rain gauges in terms of spatial pattern (Fig. 2, 𝐶𝐶 values in Fig. 

3), which endorses that their use for a denser spatial characterization of precipitation fields is needed. Conversely, all radar-

based QPE still suffer from important underestimation of heavy precipitation relative to rain gauges, in particular for QPE 250 

relying only on horizontal reflectivity Zh. In a study over four countries, Schleiss et al. (2020) found that radar products 

underestimated heavy rain compared to rain gauges by up to 44%, and Park et al. (2019) found that the pan-European radar 

composites OPERA systematically underestimated daily precipitation compared to rain gauges. For the 14 July 2021 event, 

this underestimation may be explained by intense collision-coalescence processes taking place close to the surface, i.e. 

mostly below the height levels monitored by the radars. With increasing distance from the site, radars scan at increasing 255 

heights. As a consequence, a nearly complete vertical profile of radar-measured variables is available in the vicinity of the 

different radar sites, but not area-wide. To overcome the resulting deficiencies for radar-based QPE, the spatiotemporal 

variability of radar profiles available at the different sites needs to be exploited for an area-wide correction of the vertical 

profiles in further steps. 

Apart from the need for the correction of vertical profiles, Fig. 2 and Fig. 4 demonstrate the benefit of using polarimetric 260 

radar variables, such as specific attenuation and specific differential phase, to improve the QPE with respect to rain gauges, 

especially in extreme rainfall events (Gourley et al., 2010). However, the improvements relative to RADOLAN, which is 

based on reflectivity and rain-gauges adjusted, could only be demonstrated at the catchment scale. Model simulations by 

GR4H and especially by the distributed ParFlowCLM (Fig. 4-8) are coherent with the catchment-scale evaluation of Fig. 3, 

which suggests that the widely applied point-scale evaluation (e.g., Chen et al., 2021; Derin et al., 2019; Schleiss et al., 265 

2020) may not be thorough enough for hydrological applications. 

The sensitivity of model simulations confirms the dominant impact of QPE on hydrological model performances (Braud 

et al., 2010; Oudin et al., 2006), underlining the need for reliable precipitation estimates especially for extreme flooding 

events. However, the effect of QPE was relatively smaller than that of parameter estimation, and it was variable from one 

catchment to another for the 14 July event (Fig. 6-7). This indicates that the differences (particularly the improvements) may 270 

be filtered out depending on the catchment properties (size and shape), the spatial variability of antecedent moisture 

conditions and the precipitation fields (Lin et al., 2018; Pechlivanidis et al., 2016; Pokhrel and Gupta, 2011; Saulnier and Le 

Lay, 2009). Antecedent soil moisture conditions may indeed be a high factor in the variability of the impact of QPE on the 
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severity of the floods from one catchment to another, as the 10-day (respectively 5-day) antecedent precipitations varied 

from 40 to 66 mm (respectively 20 to 44 mm) over the seven catchments. 275 

5.2 (Dis)agreement of contrasting modeling approaches 

Earlier studies focused on the difference between a distributed and a lumped approach while retaining the same complexity 

of process representation (e.g., Cole and Moore, 2009; Huang et al., 2019; Lobligeois et al., 2014). Our study compared 

contrasting modeling approaches both in terms of spatial and process representation. This follows the study of Poméon et al. 

(2020) that compared the 3D distributed ParFlow with the calibrated HBV model for flash flood events in Germany. Poméon 280 

et al. (2020) found that parameter estimation of HBV was highly dependent on extreme flooding events in the calibration 

period to achieve similar performances to ParFlow. In our study, all previous extreme floods were kept in the calibration 

time-series, but the strongest peakflow obtained with ParFlowCLM was still higher than the range of peakflows simulated 

with GR4H. The non-bracketed, high ParFlowCLM simulations associated with a low Manning’s coefficient (LMann) may 

suggest that the tested value is perhaps too low, but it is still within the range of Manning’s values from guidance documents 285 

(Lumbroso and Gaume, 2012). In addition, using a coarse model resolution should be compensated by lower Manning’s 

coefficient values (Schalge et al., 2019). The large uncertainty due to the Manning’s coefficient is perhaps accentuated by the 

nature of the relationship between the coefficient and the discharge, but it is still here a lower bound since uncertainty to 

other parameters (hydraulic conductivity, van Genuchten parameters) was not included. This underlines that even the 

physically-based approach does not completely overcome the issue of parameter estimation, particularly for extreme and 290 

record-breaking floods.  

GR4H peakflows were delayed compared to the ones simulated by ParFlowCLM, which is perhaps related to the 

delaying effect of the unit hydrographs of GR4H. The base time of these unit hydrographs is lumped (i.e., catchment-

averaged) and calibrated on long-term discharge records, which implies that it reflects a smoother response than the 

exceptional July 2021 flood development. Moreover, GR4H significantly underestimated peakflow relative to ParFlowCLM 295 

for the Erft at Neubrueck and the Rur at Monschau. In the case of the Erft at Neubrueck, we suspect that these differences are 

related to the strong anthropogenic intervention (flood protection systems, dominant agricultural activity; see Table 1 and 

Staatliches Umweltamt Köln, 2005) which could be learned by GR4H from the calibration process on historical 

observations, in contrast to ParFlowCLM that does not explicitly account for such anthropogenic effects. For the Rur at 

Monschau, the differences between simulated hydrographs by ParFlowCLM and GR4H may be due to the existence of small 300 

reservoirs at the upstream. These differences would be better understood if GR4H parameters have been estimated using 

information from hourly discharge measurements. 

Due to the low computational cost of the GR4H implementation, estimating the uncertainty of its peakflow simulations 

was less demanding than with ParFlowCLM. However, using the extreme, physically possible values of Manning’s 

parameter allowed ParFlowCLM to simulate higher peakflows than the calibrated model, suggesting that it could provide a 305 

more accurate range of possible values of unprecedented events, unlike the calibrated GR4H. One could combine both 
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models by running a few ParFlowCLM simulations, use GR4H with various calibration approaches to map the uncertainty in 

peakflow estimation from different behavioural model parameters and different climatic inputs, and then transfer this 

uncertainty to ParFlowCLM simulations. This would, however, require exhaustive analysis of the agreement between 

ParFlowCLM and GR4H for a wide variety of catchments. 310 

5.3 Study limitations 

First, focusing on only one event for a few catchments makes our conclusions event- and location-dependent. A large sample 

approach (such as in Raimonet et al., 2017; Singh and Reza Najafi, 2020) would help analyze the interplay between QPE and 

contrasting modeling philosophies not only for extreme event purposes, but also for overall long-term hydrological needs. 

Second, the absence of reliable discharge measurements for the catastrophic event limits our model evaluation, but our 315 

model simulations could be used as estimates of the severity of the flooding event, despite the large uncertainty in simulated 

peakflows. Third, our study overlooked the effect of distributed antecedent saturation on the evaluation of QPE, which 

would help explain the differences between the catchments under humid antecedent conditions. Fourth, the accuracy of the 

parameter estimation in our study could be improved by adopting a distributed Manning’s value for the ParFlowCLM setup, 

investigating the uncertainty related to other distributed parameters (such as hydraulic conductivity; Poméon et al., 2020), or 320 

using hourly discharge streamflows for the GR4H calibration. 

6 Conclusions and future work 

The July 2021 events in western Germany questioned the ability of our current methods of precipitation estimation and 

hydrological modeling of correctly anticipating the severity of the floods. We evaluated state-of-the-art radar-based QPE and 

two contrasting hydrological models, the conceptual and lumped GR4H with the 3D-distributed and physically-based 325 

ParFlowCLM, to analyze how the choices of QPE or hydrological modeling approach impacted the simulated peakflows. We 

concluded that: 

1. The different radar-based QPE products underestimated the total precipitation depth for the 14 July 2021 relatively 

to rain gauges, due to high variability of the vertical structure of precipitation. 

2. Using phase-based variables from polarimetric radar retrievals helped improve the QPE, especially by including the 330 

specific differential phase (KDP) combined with specific attenuation at horizontal/vertical polarization (AH/V). These 

improvements were best highlighted at the catchment scale using the hydrological models, which suggests that a 

point-scale evaluation may not be enough for hydrological applications. 

3. The QPE impacted both GR4H and ParFlowCLM simulations, but their impact on the severity of the flood (i.e., 

surpassing the highest historically measured peakflow) varied from one catchment to another. 335 

4. A large uncertainty characterized the peakflow simulations by both GR4H and ParFlowCLM, but they agreed in 

detecting historical threshold in most catchments. 
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As future work, a larger timespan with more extreme events are to be considered to confirm these conclusions. A 

correction of vertical profiles of radar variables is to be implemented for further improvements of the accuracy of the QPE 

products. A modeling framework that combines ParFlowCLM and GR4H to better anticipate never-seen-before events is to 340 

be designed to benefit from the advantages of both modeling philosophies. 
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Table 1: Hydroclimatic and landscape characteristics of the seven studied catchments. Data sources are detailed in Sect. 3.3. 

River Area (km2) 

Mean 

precipitation 

(mm yr-1) 

Aridity 

index (-) 

Mean 

discharge 

(mm yr-1) 

Artificial 

(%) 

Agricultur

al (%) 
Forest (%) 

Water 

bodies (%) 

Highest 

measured 

peakflow 

before July 

2021 (m3 s-1) 

Ahr at 

Muesch 
350 790 0.75 280 4.0 52.9 43.1 0.0 132 

Ahr at 

Altenahr 
760 760 0.78 280 3.5 39.5 57.0 0.0 236 

Kyll at 

Densborn 
470 890 0.65 450 4.0 47.7 48.2 0.0 180 

Kyll at 

Kordel 
840 830 0.71 370 5.4 51.9 42.7 0.0 218 

Erft at 

Bliesheim 
550 700 0.89 130 12.6 59.1 28.2 0.0 55.8 

Erft at 

Neubrueck 
1670 740 0.86 180 17.7 64.3 17.8 0.2 46.6 

Rur at 

Monschau 
144 1080 0.52 760 6.1 25.4 62.9 5.6 109.6 

 360 
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Table 2: Summary of QPE products tested for the 14 July 2021 for the study region. 

QPE abbreviation Description Source Run with 

Rain gauges Precipitation measurements from rain 

gauges 

DWD 

(https://opendata.dwd.de) 

GR4H 

RADOLAN Radar-Online-Aneichung, the 

operational QPE product of the DWD, 

adjusted to rain gauges 

DWD 

(https://opendata.dwd.de) 

GR4H, 

ParFlowCL

M 

RZH Precipitation estimation based on 

horizontal reflectivity (Zh): R(Zh) 

Chen et al. (2021) 

RZHKDP Precipitation estimation based on 

horizontal reflectivity (Zh) when Zh ≤ 

40 dBZ and specific differential phase 

(KDP) when Zh > 40 dBZ: R(Zh)/R(KDP) 

RAHKDP Precipitation estimation based on 

specific attenuation at horizontal 

polarization (AH) and specific 

differential phase (KDP) when Zh > 40 

dBZ: R(AH)/R(KDP) 

RAVKDP Precipitation estimation based on 

specific attenuation at vertical 

polarization (AV) and specific 

differential phase (KDP) when Zh > 40 

dBZ: R(AV)/R(KDP) 
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 365 

Figure 1: (a) Location of study region and (b) hypsometry of the seven catchments. Negative elevations are due to open-pit mines in the 

region. 
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Figure 2: Total precipitation depths for the 14 July 2021 from the six QPE products (Table 2) over the study region. 370 
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Figure 3: Point-scale evaluation scores of radar-based QPE with respect to ground-based measurements of total precipitation depth of the 

14 July 2021. 
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Figure 4: (a) Total precipitation depths for the 14 July 2021 estimated by rain gauges and QPE products. (b) Catchment-scale evaluation 

scores of radar-based QPE with respect to ground-based measurements of total precipitation depth of the 14 July 2021. 
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 380 

Figure 5: Simulated hydrographs by GR4H (in green) and ParFlowCLM (with low Manning’s coefficient in black, medium Manning’s 

coefficient in dark orange, and high Manning’s coefficient in blue) using (a) RADOLAN and (b) RAVKDP as precipitation input for the 

Ahr at Altenahr. The dark red dashed line indicates the highest measured peakflow before July 2021. The orange dashed line indicates the 

last measured flow before measurement devices became unavailable, and the red dashed line its timing. 
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Figure 6: Distributions of simulated peakflows by GR4H (in green) and ParFlowCLM (in black) using six QPE inputs (on y-axis) for the 

seven catchments. Orange dashed lines indicate the highest measured peakflow before July 2021. 
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 390 

Figure 7: (a) Total precipitation depth for the 14 July 2021 from the six QPE products for each of the seven catchments and (b) resulting 

chances of overpassing the highest measured peakflow prior to July 2021. 
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Figure 8: Relative errors in simulated peakflow due to (a) applying GR4H instead of ParFlowCLM across all QPE products, and to (b) 395 
replacing RADOLAN by any of the remaining five QPE products (Table 2) as precipitation input for the July 2021 event. Orange dashed 

lines limit the 50% relative error region. 
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