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Answer to Anonymous Referee #1 

 

1 Summary of main changes 

We gratefully acknowledge the valuable suggestions made by the Anonymous Referee #1 and 
we would like to thank them for their time and evaluation. We addressed all comments in detail 
(Section 2). In summary, the major changes in the data and methods applied in the study are: 

 We included new radar-based, quantitative precipitation estimates (QPE) that better 
account for the vertical gradients of radar variables (and hence of precipitation rates). 
Compared to state-of-the-art QPE products (Chen et al., 2021), these new products 
(with VPC in their names, for Vertical Profile Correction) exploit measurements of Micro 
Rain Radars (MRR) that helped characterize the precipitation rates below the height 
monitored by the C-band radars of the DWD (Deutscher Wetterdienst, German 
Weather Service). In addition, a vertical profile correction was applied to horizontal 
reflectivity Z and specific differential phase KDP following an approach by Chen et al. 
(2020). These new products significantly improved the radar-based QPE with respect 
to estimates from rain gauges. 

 We removed the QPE product based on specific attenuation at vertical polarization (AV) 
and KDP (RAVKDP in the original manuscript) as it yielded similar results to RAHKDP, 
the one based on specific attenuation at horizontal polarization (AH). Hence, the 
number of radar-based QPE products is now RADOLAN + six other products (RZ, 
RZKDP and RAKDP, in addition to the version with corrected vertical profiles RZ-VPC, 
RZKDP-VPC, and RAKDP-VPC) 

 We added a new simulation of ParFlowCLM with distributed Manning’s coefficient 
assigned based on land cover. 

The conclusions of the paper have slightly changed. Namely, the new products with vertical 
profile correction improved the estimates of event precipitation with respect to rain gauges. 
The point-scale evaluation and catchment-scale evaluation led to similar ranking of the 
different QPE products with respect to RADOLAN. Finally, the probabilities of exceeding the 
historical peakflow were highly sensitive to QPE for all catchments. 

Below we provide a detailed reply to the comments of Referee #1. 
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2 Response to comments of Anonymous Referee #1 

 

General comment: “The authors present a modelling study targeted at evaluating different 
rainfall products and two hydrological models to simulate the flood event of 2021 in West 
Germany, in order to sow the uncertainties in quantitative precipitation estimates (QPE) and 
the modelling. In general, the study provides insights in the usefulness and weaknesses of the 
different radar-based rainfall products and their use in simulating extreme flood events.  The 
manuscripts is overall well written and structured. 
 
However, I have some reservations to the conclusions drawn, mainly because of the study 
design, in particular the hydrological modelling part. My concerns are as follows:” 
 
Comment 1: “Different model parameterizations (ParFlowCLM) and calibrations (GR4H) were 
derived and later used without any differentiation of their performance simulating the historic 
period. This is actually hindering a proper evaluation of the QPEs, because poor performing 
hydrological models might be (or are) used to simulate the flood in 2021 with the different 
QPEs. I strongly recommend to list the performance of the different model 
parameterizations/calibrations and sort out poor performing ones. In any case the model 
performances should be provided by the Nash-Sutcliffe and Kling-Gupta performance 
measures, because these were already calculated. The claim of the authors that the model 
parameterization/calibration has a larger impact than the QPEs is not that surprising, 
considering the sensitivity-analysis-like selection of the parameters and calibration routines. 
The conclusions towards selecting a particular QPE would be more meaningful, if only well 
performing models for flood events (high discharge) during the calibration period would be 
used.” 
 

Authors’ response: From a hydrological perspective, what is actually obstructing a proper 
evaluation of the QPEs is the absence of streamflow observations including error estimates for 
the event. Therefore, we performed a sensitivity study to understand how the different QPEs 
and model parameterizations impacted the peakflow estimates for the July 2021 event. In 
addition, we studied how QPE impacted the model estimation of the severity of the event 
(quantified by the chances of exceeding the historical peakflow). In the new version of the 
manuscript, we also added the estimates of peakflow based on water level (Mohr et al., 2022), 
which showed the ability of the models (especially the uncalibrated ParFlowCLM) of 
reproducing these estimates when RAKDP-VPC is used as QPE input. Acknowledging that 
this is not enough to discriminate the QPEs, we included an evaluation with respect to 
measurements from rain gauges, the results of which can help select a particular QPE in a 
meaningful way (in this respect, RAKDP-VPC seems to be the best one). 
 
We would also like to stress that relying on the performances of hydrological models on 
historical events does not guarantee a proper evaluation of the QPEs for the event under 
consideration, because the conditions of the event we are simulating are unprecedented. In 
addition, the criteria under which one can consider a model to be well-performing are not well 
defined. We illustrated this issue using GR4H and adopting several calibration objectives (i.e., 
with respect to reproducing the whole historical period, or with a focus on the top 10% of the 
discharge data, or with focus on the top 1% of the data), as explained in Lines 110-119 of the 
original manuscript. As can be seen from the results, this does not overcome the high 
uncertainties in the simulated hydrographs by GR4H (Figures 5 and 6 of the original 
manuscript). As suggested, Figure R1 shows the calibration performances for each of the 12 
sets of parameters and for each catchment. Most of the obtained calibration scores are better 
than the climatology model (i.e., NSE > 0 and KGE > - 0.41), except for four parameter sets 
for the Erft at Neubrueck, and one parameter set for each of the Erft at Bliesheim and the Kyll 
at Kordel, for which the calibration scores (in this case, NSE) were less than the chosen 
threshold (i.e., NSE = 0). 
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Figure R1 : Calibration performances of GR4H for the study catchments. Orange dashed line 
indicates the threshold NSE = 0, in which the hydrological model is as good as the climatology 
(i.e., mean observed flow). Pink dashed line indicates the KGE score for the same benchmark. 

Removing these parameter sets had little effect on the conclusions. Specifically, the 
probabilities of exceeding the highest (measured) peakflow for each catchment were not 
impacted by excluding these ill-performing parameters, as can be seen in Figure R2. 
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Figure R2 : Effect of different QPE on the probability that the simulated peakflows by GR4H and 
ParFlowCLM exceed the historical peakflow for each catchment, with (a) all GR4H parameters 
included, and (b) with only well-performing parameters (i.e., with NSE > 0 and KGE > -0.41). 

To conclude, even if it is not possible to rank the tested QPEs with hydrological simulations 
because of the absence of measured peakflows for the event, these results show that it is 
possible to compare QPEs from the flood-forecasting perspective by looking at their ability to 
detect historical peakflow exceedance probability. The comparison with rain gauges can 
identify the best QPE product with respect to rain gauges, but this does not necessarily inform 
us of their utility for flood forecasting. In addition, we kept the different parameterizations to 
consider the uncertainties related to the different modelling approaches and calibration 
options. The fact that the modeling approaches are contrasting may explain the dominant effect 
of model parameterizations compared to that of QPEs. Moreover, the level of uncertainty in 
peakflow estimates is in line with levels of uncertainty reported by Kreienkamp et al. (2021) for 
the Ahr at Altenahr (see their Table 2, p. 8). We added this specification in the revised 
manuscript, by modifying Lines 267-270 to: 
 
“The sensitivity of model simulations confirms the dominant impact of QPE on 
hydrological model performances (Braud et al., 2010; Oudin et al., 2006), underlining the 
need for reliable precipitation estimates especially for extreme flooding events. 
However, the effect of QPE seemed relatively smaller (but still important) than that of 
model parameterizations (Fig. 8), and it was variable from one catchment to another for 
the 14 July event (Fig. 6-7). The large differences between model estimates for a single 
QPE input reflect how uncertain peakflow estimates can be for such an extreme event 
(see Table 2 for the Ahr at Altenahr in Kreienkamp et al., 2021). The stronger effect of 
model parameterizations with respect to QPE may be due to the inclusiveness of our 
approach that did not exclude ill-performing parameterizations, especially in the case 
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of ParFlowCLM. Removing these would lead to lower differences due to hydrological 
models, but this removal needs streamflow measurements for the event, which are 
unavailable or highly uncertain for our catchment set” 
 
Comment 2: “The parameterization of ParFlowCLM with uniformly distributed roughness 
values is very unrealistic for these catchments with diverse land uses, i.e. land surface 
properties. I am surprised that such a simplistic approach is used for such a sophisticated, 
physically based and spatially distributed model. Thus I strongly recommend to re-run the 
simulation with distributed roughness values estimated based on land use and standard 
roughness values, as mentioned in the outlook. This would give the ParFlowCLM simulation 
much more credibility.” 
 

Authors’ response: We agree with the Referee and added new runs in which the roughness 
values were distributed based on land use types. For all catchments, this yielded hydrographs 
that were bracketed by the uniform simulations of ParFlowCLM using the median roughness 
case (MMann, in which the parameter was set to 0.1 s/m1/3) and the low roughness case 
(LMann, where the parameter was set to 0.03 s/m1/3 in the new manuscript version). We added 
the following paragraph to the revised manuscript: 

“To account for the uncertainty in Manning’s roughness coefficient, which highly 
impacts the peakflow simulations (Lumbroso and Gaume, 2012), different scenario 
simulations with spatially homogeneous and distributed roughness values were 
performed. In total, three spatially homogeneous values were tested for the whole 
domain: a default value of 0.2 s m-1/3 (HMann, i.e. high roughness, from Schalge et al., 
2019), and two additional values of 0.1 s m-1/3 (MMann, medium roughness) and 0.03 s 
m-1/3 (LMann, i.e. low roughness). These three values cover the whole range of 
Manning’s coefficient values reported by Lumbroso and Gaume (2012), but adopting a 
uniform spatial distribution (although simple to implement and to interpret) is 
unrealistic given the differences in roughness values between land-cover types. 
Therefore, a fourth simulation was performed using distributed Manning’s coefficients 
(DMann) based on land cover types (and following Table 2 in Asante et al., 2008), with 
low values for water bodies (0.02 s m-1/3) and urban and barren surfaces (0.03 s m-1/3), 
mild values for croplands (0.033 s m-1/3), natural vegetation mosaics (0.037 s m-1/3), 
shrublands, grasslands, snow/ice, and permanent wetlands (0.05 s m-1/3), and high 
values for forests (0.1-0.12 s m-1/3).” 

The results of the new simulation for distributed Manning’s coefficients were accounted for in 
the remainder of the paper. 

 

Comment 3: “For the GR4H model I find using the calibration not focussing on extremes for 
the analysis of the QPEs not convincing, because a conceptual model calibrated on mean flow 
is unlikely to get the peak discharges of floods right, and should thus not be used for evaluating 
the QPEs. You might prove me wrong listing the performance values.” 
 

Authors’ response: Some of the 12 parameter sets of the GR4H simulations (actually 2/3 of 
them) were obtained with focus on the top 10% and 1% of the discharge values (see Lines 
109-119, where Qobs,th was changed to the discharge values with frequency of non-exceedance 
of 10% and 1%). The corresponding performances are shown in Figure R1. Most of the 
parameters obtained good NSE and KGE scores. However, we do keep in mind that the use 
of daily discharge values limit the information content of the estimated parameters, as 
mentioned in Section 5.3 regarding study limitations. But this can be less detrimental given the 
size of the catchments, for which the daily time step is somewhat reasonable. 
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Comment 4: “Furthermore, some of the comparisons/evaluations of the QPEs and simulations 
are based on comparison with uncertain or unknown quantities. The missing flood hydrographs 
are a major obstacle here. Meanwhile reconstructed flood hydrographs are available at least 
for the catchments in Rhineland-Palatine by the Landesamt fuer Umwelt (LfU). Similar data 
should be available from the authorities in Northrhine-Westphalia. These hydrographs can be 
seen as the best estimate of the actual flood event. I strongly recommend to obtain these data 
sets. This would increase the impact of the evaluation in terms of ability to simulate the flood 
2021 significantly.” 
 

Authors’ response: We were in close contact with the Environment office of North Rhine-
Westphalia (Mr. Martin Brinkmann, martin.brinkmann@lanuv.nrw.de), and he told us that (5th 
of May) that unfortunately their analysis of the event is still unavailable. We sent another email 
recently and we’re waiting for a response. We also sent requests to the Rhineland-Palatinate 
office of Environment to get their analyses, with no response. Fortunately, a transdisciplinary 
study in review by Mohr et al. (2022) reported some of these estimates, which were obtained 
with hydraulic approaches based on relationships between water level and discharge or using 
hydraulic models. We added these estimates to Figure 6 of the manuscript, and we compared 
our model estimates with them. We found that ParFlowCLM estimates bracketed well these 
estimates when RAKDP-VPC (the best product relative to rain gauges) is used. In the new 
version of the paper, we added these results as follows: 

“Overall, the ranking of QPE products with respect to the total precipitation depth for 
the 14 July event was preserved by model simulations for all catchments, as shown in 
Fig. 6. Model simulations with RADOLAN as input barely reached reported estimates by 
Mohr et al. (2022) based on relationships between water level and streamflow (red 
dashed lines in Fig. 6). Using RAKDP-VPC as input, simulations of ParFlowCLM 
bracketed well the estimates based on hydraulic approaches, with the best estimates 
obtained with median or distributed Manning’s coefficient (MMann and DMann). GR4H 
also succeeded in bracketing these estimates except for the Erft at Bliesheim, but most 
of GR4H peakflow estimates for this catchment were lower than the ones based on 
hydraulic approaches.” 

 

Comment 5: “Another point: the comparison of the catchment average precipitation used the 
Thiessen polygons as reference, but these values are also very uncertain. Thus, the general 
statement that some of the QPEs outperform RADOLAN in catchment average is actually not 
supported. You only show that these products are closer to the uncertain catchment average 
based on rain gauges. Which of the QPEs is actually closer to reality cannot be derived form 
this comparison. This should be mentioned.” 
 

Authors’ response: We agree with the Referee’s comment. We changed the sentence in 
question to underline that some QPEs outperform RADOLAN with respect to reproducing the 
estimates from rain gauges, which themselves (we admit) are also uncertain. We specified this 
in the revised manuscript: 

“Conclusions about the agreement between QPE products and rain gauges are similar 
when we look at the catchment-scale evaluation. Specifically, QPE based on specific 
attenuation (A) with corrected vertical profiles for KDP (RAKDP-VPC) outperformed 
RADOLAN in reproducing estimates from rain gauges (using Thiessen polygons) 
across the seven catchments (Fig. 4), and reduced relative error from a median of -18 % 
for RADOLAN to +2 %.” 

We also added estimates from the REGNIE product, which uses a better interpolation method 
of precipitation fields from rain gauges (but available at the daily time step) to the new 
manuscript version. REGNIE estimates were similar to those we obtained from Thiessen 
polygons except for the Erft at Bliesheim (Figure R3). 
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Figure R3 : (a) Total precipitation depths for the 14 July 2021 estimated by rain gauges, REGNIE 
and radar-based QPE products. (b) Relative errors in REGNIE and radar-based QPE with respect 
to estimates from rain gauges using Thiessen polygons of the total catchment-scale 
precipitation depth for the 14 July 2021. 

 
Comment 6: “I am also missing the discussion of hydrologic processes that might become 
relevant or only occur during extreme floods. This is a generally ongoing discussion in 
hydrology, but for this particular event the increase interflow and thus runoff generation by field 
drainage pipes or the creation of additional drainage channels by erosion has been reported. 
Unfortunately, this is not published yet, thus you cannot cite it, but there should be reports in 
newspapers or by the authorities available.” 
 

Authors’ response: We focused on using available hydrological tools and informing them with 
different precipitation estimates for the event, and then analyze how the peakflow estimates 
varied. The main message is to show that for an extreme event, such as the July 2021 event, 
uncertainties in peakflow estimates can be very high due to high uncertainties in precipitation 
estimation and hydrological modeling. Other studies provide this discussion by focusing on the 
description of the event, such as the recent one by Mohr et al. (2022). 

Nevertheless, we included a paragraph in the discussion section advocating for a coupling of 
hydrological and hydromorphological models to account for the crucial interactions between 
hydrology and river morphology in the context of anthropogenic influence. We added the 
following lines to the revised manuscript: 

“Accounting for the 3D, soil and subsoil heterogeneities in the representation of 
hydrological processes allows for ParFlowCLM to well represent the runoff generation 
by overland flow and increased interflow in the upstream steep part of the study 
catchments, but it would be improved by including anthropogenic effects on 
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hydrological processes that had a large impact on the flood generation mechanisms for 
this event (Mohr et al., 2022). The structure of ParFlowCLM allows for coupling the 
complex hydrological and morphodynamical processes (sediment and debris transport, 
bank erosion, and developing landslides) that non-linearly interacted with the flood 
propagation and river morphology increasing the destructiveness of the event.” 

 

Comment 7: “The role of the antecedent soil moisture has been briefly discussed in the 
manuscript, but studies for its impact on flood generation has been given as an outlook only. I 
wonder about two aspects: First, the used initial soil moisture for the simulation of the flood 
2021: what initial soil moisture was assumed? Was it assumed dry, a guess of some wetness, 
or maybe based on satellite observation? Or did you use the hydrological simulations until the 
event to prime the model for the flood simulation? In the latter case the antecedent soil 
moisture should be realistic to some extent. If assumed, some justification or at least 
explanation has to be given. Second, an interesting aspect would be if the flood would have 
been different if the soil was in different state (drier, wetter) than in reality. You mentioned this 
in the outlook, and this is surely worth investigating, as the role of antecedent soil moisture is 
likely to differ in different flood/rainfall situations. If you have any capacities, I recommend to 
include this aspect, and drop the discussion of the simulation results of poor performing 
models.” 
 

Authors’ response: For the estimation of the antecedent soil moisture conditions, we used 
hydrological simulations to initialize the models for event simulations. Both GR4H and 
ParFlowCLM were run continuously starting from 2006-2007 for all catchments. This allowed 
for exploiting the whole record period to yield the best estimate of model initial conditions prior 
to the event. We now mentioned this in the revised manuscript when we present how QPEs 
are evaluated using hydrological models. The following statement was added to Section 3.4: 

“Second, we examined the effect of QPE on the frequency of exceeding the highest 
historically observed peakflow for each catchment (Table 1) by simulated peakflows. 
Both GR4H and ParFlowCLM were initialized using a long spin-up period starting from 
2006 for GR4H and 2007 for ParFlowCLM. This allowed for exploiting the whole available 
record period of climatic forcing to yield the best estimates of antecedent soil moisture 
conditions. Then, each radar-based QPE was used as input to both models to obtain 
twelve peakflow simulations from GR4H and four peakflow simulations from 
ParFlowCLM. These peakflows are compared with the highest historically measured 
peakflow.” 

For the question of the impact of uncertain antecedent soil moisture conditions, we agree that 
it is an important aspect to look at, but our aim is to focus on the quality and uncertainties of 
QPE products for the event and not their quality and uncertainties in front of initial conditions. 
Furthermore, we are limited by the computational costs for ParFlowCLM: the model is actually 
implemented at the scale of Central Europe (4*106 grid cells times 15 soil and subsoil layers), 
and analyzing other scenarios of antecedent soil moisture will require significant amount of 
computational resources. In addition, the current paper has already significant results with 
respect to the effect of QPE or modelling approaches, and adding another aspect (in this case, 
the effect of antecedent soil moisture) would occult the main messages. 

  

Comment 8: “In addition to these general comments, I have some more specific comments 
in the annotated manuscript.” 

 

Authors’ response: We accounted for the specific comments in the annotated manuscript 
as follows: 
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Specific comment Answer 

“the actual damages were even much larger 
due to non-insured damages in 
infrastructure. might be worth mentioning.” 

Based on the paper by Mohr et al. (2022), 
we updated the line in question:  

“The flooding events of July 2021 in 
Europe resulted in more than 220 deaths 
(Deutsche Welle, 2021), large-scale 
damages to infrastructure (Koks et al., 
2021) and costs of up to €8.2 billion in 
insured losses (GDV, 2021) and up to 
€32.05 billion in total losses in Germany 
alone (BMI, 2022), making them the most 
severe natural disaster caused by heavy 
rain and flooding in Germany (Mohr et 
al., 2022).” 

“some information about major geological 
(underlying rock formations) and soil 
properties would also be helpful.” 

We computed the catchment average silt, 
sand, and clay content (%) of the 
catchments from the European Soil 
Database and added these to the 
paragraph describing the study region: 

“The region is characterized by 
sedimentary rocks interbedded with 
volcanic rocks, with relatively shallow 
soils characterized by low water-holding 
capacity (Kreienkamp et al., 2021) and 
dominated by sand (catchment 
averages: 34%-41%) and silt (catchment 
averages 29%-38%; Panagos, 2006).” 

“this means (calibration with either period 1 
or 2) * (NS or Kling-Gupta) * (three 
thresholds)? The first two terms are not that 
clear from the description. should be 
improved. And why calibrating on two 
different performance  values separately, 
and not combine them in one performance 
measure to make the best out of both 
performance measures? This would ease 
the selection of a selection of models for the 
evaluation of the QPEs.” 

Yes. The equation is now clarified according 
to the Referee’s suggestion. We chose not 
to combine the measures in order to see 
how the use of each of the objective 
functions impacts the estimated 
parameters. Of course combining both 
measures would lead to better constraining 
the parameter sets, but this would not help 
elucidate the impact of choosing one or the 
other criterion. 

“the definition of a uniform roughness over 
the whole domain must be justified. It 
makes much more sense to differentiate the 
hydraulic roughness according to 
landuse/landcover. The high roughness of 
0.2 is likely appropriate for forest, but not for 
the river course of build-up areas. The 
opposite holds true for the low roughness. 
From a hydraulic perspective the selection 
of uniform roughness for simulating 
overland flow is highly questionable, thus 
the approach of making a sensitivity 

We added a simulation using distributed 
Manning’s roughness coefficients. See our 
response above to Comment 2, where we 
acknowledged that using uniform roughness 
is unrealistic. However, this sets a 
comparison framework using simple 
benchmark parameterizations to evaluate 
the added value of using a distributed 
Manning’s roughness. 
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analysis with uniformly distributed 
roughness values needs to be justified.” 

“why averaged over the 8 neighbouring 
cells, i.e. over an are of 9 km2, and not only 
the radar pixel? This implies the assumption 
that the rain gauge is representative for an 
area of 9 km2, which might be appropriate, 
but also not, depending on the topography 
and the rainfall spatial distribution. Thus an 
explanation is required.” 

We chose to average over the 8 
neighboring cells to account for small 
differences in location between radar cells 
and gauges observations due to motion and 
vertical variability, as done by Dai and Han 
(2014) and Schleiss et al. (2020). Using 
only one radar cell without averaging had 
little effect on the estimated criteria. We 
added a justification for this choice to the 
revised manuscript. 

“derived by the Thiessen polygons, I 
assume?” 

Yes, we specified this in the revised 
manuscript. 

“this is not that surprising, considering that 
RADOLAN is adjusted to rain gauge 
records, isn't it?! might be worth mentioning, 
as international readers will not understand 
the meaning of the acronym RADOLAN” 

This statement is no longer valid when 
adding the radar-based QPE with vertical 
profile correction (VPC). The sentence in 
question now reads:  

“At the point scale, the comparison with 
N = 67 rain gauges over the region 
shows that the radar-based QPE with 
vertical profile correction and gap-filling 
are the ones that agreed most with the 
rain gauges (Fig. 3).” 

The meaning of the acronym RADOLAN is 
already mentioned in Table 2. 

“If I am not mistaken, the reference 
catchment scale precipitation is obtained by 
Thiessen polygons based on the rain 
gauges. This means that also the reference 
is very uncertain, thus I have reservations 
about the conclusions. You can state that 
the QPE under-/overestimate the catchment 
rainfall in relation to the uncertain gauge-
based catchment rainfall, but not to the 
actual catchment rainfall, which is in fact 
unknown. It might also be argued, that the 
spatial distribution of rainfall is much better 
represented by the radar QPEs that be the 
interpolated rain gauges.  

This is a dilemma, unfortunately, but you 
should take this into consideration when 
interpreting your results.” 

See our response to Comment 5 above. 

“which spatially uniform distribution is 
unrealistic!” 

See our response to Comment 2 above, 
where we acknowledged that the uniform 
distribution is unrealistic. In addition, we 
modified the part in question to: 

“Both the choices of GR4H calibration 
and Manning’s coefficient for 
ParFlowCLM led to high uncertainty of 
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peakflow simulations. With a high 
Manning’s coefficient, ParFlowCLM 
succeeded in estimating both the timing 
and the magnitude of the last recorded 
peakflow at the catchment outlet (~330 
m3 s-1 at ~19:00 of the 14 July), whereas 
the median simulation of GR4H was 
quite delayed with respect to simulated 
hydrographs by ParFlowCLM. Using a 
distributed Manning’s coefficient 
(DMann) led to similar ParFlowCLM 
simulation as when using uniformly 
distributed, median Manning’s value 
(MMann) for the Ahr at Altenahr. Finally, 
all model simulations with both 
RADOLAN and RAKDP-VPC illustrate 
how the heavy precipitation event 
resulted in a record-breaking flood for 
the Ahr at Altenahr.” 

“what causes the spread of the GR4H 
simulations? the different calibration 
periods, the performance measure of the 
different thresholds for peak flows? 

This is an interesting information for the 
interpretation of the results and should be 
mentioned.” 

Looking at Figure R4 below, Most of the 
spread is caused by the period of 
calibration, with systematically higher 
peakflows obtained when calibrating on P2 
then when calibrating on P1. Simulated 
peakflows based on KGE led to higher 
peakflows on average compared to NSE. 
However, the effect of thresholds is variable 
from one catchment to another. For some 
catchments, focusing on the high flows in 
the calibration led to higher estimated 
peakflows, whereas for others (especially 
the Erft at Neubrueck, albeit with some ill-
performing parameters), it led to the same 
or lower peakflows compared to the default 
calibration (i.e., no specific focus on high 
flows). 

Although this is an interesting result, we 
chose not to add another figure to the 
manuscript. Instead, we added in the 
Results section in the part related to 
interpreting Figure 6 the following: 

“For GR4H, analyzing the effect of 
calibration choices (not shown here) 
showed that the choice of the calibration 
period had the greatest impact on the 
simulated peakflows across the 
catchments, with higher peakflows 
obtained when the latest period in time 
is used for calibration.” 

When discussing the GR4H simulations 
(second paragraph of Section 5.2), we 
added the following: 
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“Finally, the analysis of the effect of the 
calibration choices on GR4H simulations 
(not shown here) highlighted the effect 
of the hydroclimatic specificities of the 
calibration period on the model 
simulations for an unprecedented or 
future events (Brigode et al., 2013).” 

“antecedent soil moisture surely plays a role 
in flood generation. it's impact depends, 
however, on the rainfall intensities. It might 
play a large role particularly on floods on a 
alarge scale like in the flood in 2013 in 
Germany (Schröter et al. 2015), but its role 
can also be negligible in case of heavy 
convective rainfall and flash floods, as for 
e.g. in case of the flood in Braunsbach in 
2016. It would be interesting to know and 
find out by you modeling concept, if 
antecedent soil moisture played a role, or 
could have played a role in the 2021 flood 
(i.e. would the flood have been different with 
wetter or drier catchments, or the same). I 
suggest to includde this in the manuscript. 

Schröter, K., M. Kunz, F. Elmer, B. Mühr, 
and B. Merz (2015), What made the June 
2013 flood in Germany an exceptional 
event? A hydro-meteorological evaluation, 
Hydrol. Earth Syst. Sci., 19, 309-327, doi: 
10.5194/hessd-11-8125-2014.” 

If we would like to assess the effect of soil 
moisture, we need historical events that are 
similar in terms of precipitation amount to 
the July 2021 event but with different 
antecedent soil moisture conditions, as 
done by Schröter et al. (2015). However, 
this is beyond the scope of our study (see 
our response to Comment 7 above). We 
nevertheless mentioned in the new 
manuscript how antecedent soil moisture 
plays a role in flood generation especially in 
extreme flooding events (including the 
proposed reference by the Referee) as 
follows: 

“High enough antecedent soil moisture 
conditions can indeed lead to extreme 
flooding events even when the 
precipitation amount is not relatively 
extreme (with respect to historical 
events), as shown by Schröter et al. 
(2015) for the exceptional June 2013 
flooding event in Germany.” 

“how is this translated into antecedent soil 
moisture at the onset of the event?” 

We did not use those estimates to initialize 
the event, but we run the models 
continuously starting from 2006-2007 to 
estimate the initial conditions for the event. 
See our response to Comment 7 above. 

“what about the large mining pits? They 
should, and as far as I am informed, indeed 
had a significant impact on the flood 
generation, as thy stored a lot of water.” 

We added the large mining pits as a 
possible factor for differences between 
GR4H and ParFlowCLM. 

“The Landesamt für Umwelt in Rhineland-
Palatinate reconstructed the water levels 
and discharge of the event. These might (or 
should?) be acquired to evaluate the 
models.  

Likely also the authorities in Northrhine-
Westphalia have similar information.” 

See our response above to Comment 4. In 
addition, these are also highly uncertain 
estimates, but are complementary with 
ours: theirs are based on hydraulic 
approaches, whereas ours is based on 
hydrological considerations. 

“I strongly suggest to include these aspects 
in the study to increase its impact and 
reduce questionable assumptions like the 
uniform Manning roughness.” 

We added a simulation with distributed 
Manning’s roughness, see our response to 
Comment 2 above. For the effect of soil 
moisture, see our response to Comment 7 
above. 
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“explain the green shaded area. I assume 
that it is the min/max range of the simulation 
with different parameter sets for GR4H, but 
this needs to be explained.” 

We added an explanation of the green 
shaded area in Figure 5 of the manuscript:  

“The green shaded area is delimited by 
the minimum and maximum values of 
estimated discharge by GR4H for each 
time step.” 

 

 

Figure R4 : Differences between simulated GR4H peakflows due to (a) calibration period, (b) 
calibration criterion (Nash-Sutcliffe Efficiency – NSE or Kling-Gupta Efficiency – KGE), and (c) 
the threshold defining the range on which model calibration is focused (the whole range for 
Qmin, the top 10% of the discharge data for Q90, and the top 1% of the discharge data for Q99). 
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