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 23 

Abstract 24 

River discharge and water level data play a vital role for various hydrological applications 25 

worldwide. However, limited availability of in-situ data has drawn attention towards using 26 

remote sensing techniques to monitor river flow. Indeed, multi-mission satellite altimetry 27 

data has been used to generate stage-discharge rating curves through power-law relations 28 

and empirical methods. The validation of hydrodynamic model-based rating curves is 29 

missing. We investigate the potential of available altimetry series (Jason 2, Jason 3, 30 

Saral/AltiKa, Sentinel 3A and Sentinel 3B) over Mahanadi River to validate the estimated 31 

rating curves at virtual stations. The hydrodynamic model (HEC-RAS) was developed and 07 32 

virtual stations were identified for Mahanadi River from Boudh to Mundali Barrage. During 33 

calibration (July-October, 2018) and validation (July-October, 2018), Root Mean Square 34 

Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) between simulated and in-situ water level 35 

was found to be (0.46 m, 0.83) and (0.45 m, 0.76) respectively. The calibrated and validated 36 

model was used to generate rating curves at virtual stations. The RMSE ranging between 27 37 

cm to 88 cm was observed between simulated and altimetry water levels, specifying the 38 

potential of all the altimeters with varying specifications to validate the rating curves. The 39 

rating curves estimated at virtual stations provide a cost-effective tool for monitoring river 40 

flows at additional locations, producing discharge time series for various hydrological 41 

applications and assessing of contribution of lateral tributaries. 42 

Keywords: Satellite altimetry; Hydrodynamic modelling; Remote sensing; Mahanadi River; 43 

Stage-discharge rating curves  44 
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1. Introduction  45 

Monitoring and assessment of water resources within the watershed play a crucial role in 46 

meeting human requirements and influencing socio-economic practices in industrial and 47 

agricultural activities. The changing climate and resulting extreme hydrometeorological 48 

events in recent decades have increased the frequency of natural disasters (e.g., flood, 49 

drought) and stress on water resources (Alfieri et al., 2013; Banholzer et al., 2014; Oki & 50 

Kanae, 2006). The hydrological and hydrodynamic models used for various applications (e.g. 51 

hydrological forecasting, impact of climate change on water resources, flood risk 52 

assessment) typically depends on water level and discharge to test the reliability of the 53 

simulated outputs. Perhaps, field measurements over the many parts of the world are either 54 

unavailable or sparsely available and decreasing due to the highly economical and temporal 55 

efforts required for their maintenance (Andreadis et al., 2007; Bogning et al., 2018). The 56 

data-scarcity issue becomes worsen in delta region of the rivers (e.g. Mahanadi River) and 57 

high-mountain regions such as Himalayan river basins (Upper Ganga, Brahmaputra, Beas), 58 

which experience recurrent flood hazard (Dhote et al., 2021; Kebede et al., 2020).  59 

Spaceborne radar altimetry data has potentially monitored inland water bodies for more 60 

than 25 years (Abdalla et al., 2021; Birkett et al., 2002). There are nadir looking altimeter 61 

observations from the past (ENVISAT, Jason 1/2, Topex/Poseidon), present (Jason 3, 62 

Saral/AltiKa - drifting phase since July 2016, Sentinel 3)(Calmant & Seyler, 2006; Paris et al., 63 

2016) and the forthcoming Surface Water and Ocean Topography (SWOT) missions (Durand 64 

et al., 2010). Despite the challenges of inland water due to its complex surrounding 65 

environment, long term altimetry data have been used to assess change in water level of 66 
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large rivers, lakes, wetlands and reservoirs (Dubey et al., 2015; Frappart et al., 2006; Thakur 67 

et al., 2021). The upcoming SWOT mission will collect data differently from previous 68 

missions. It consists of two wide swath radar interferometers KaRINs (Ka-band Radar 69 

INterferometers) separated by the nadir altimeter at the middle (Biancamaria et al., 2016; 70 

Durand et al., 2010; Fu et al., 2009). The SWOT will map waterbodies on a global scale, aiming 71 

to simultaneously provide high-resolution WSE, slope and river width for rivers wider than 72 

50-100 m. The repeat cycle of the SWOT will be of 21 days, allowing 2-4 visits at specific sites 73 

at regular intervals, dependent on the latitude.  74 

Several previous studies revealed that radar altimetry could evaluate water levels in 75 

continental environments (Getirana & Peters-Lidard, 2013). The challenge is how to use this 76 

altimetry-based water level to estimate river discharge in addition to other methods based 77 

on remote sensing. The different approaches can be broadly classified as listed in Table 1.  78 

Table 1: Methods to estimate river discharge using satellite altimetry  79 

Approach Remote Sensing Data In-situ Data References 
generation of pseudo 
rating curves by 
application of power 
regression law using 
altimetry-based water 
level and in-situ 
discharge data 

water level – altimetry 
observations  

discharge 
(nearest station) 

(Belloni et al., 2021; Dubey et al., 
2015; Michailovsky et al., 2013; 
Papa et al., 2012; Rai et al., 2021; 
Zakharova et al., 2020) 

use of modelled 
discharge and 
altimetry-based water 
to generate rating 
curves at virtual 
stations  
 

water level – altimetry 
observations 

discharge 
river cross-
sections 
(bathymetry) 
roughness 
coefficients  

(Leon et al., 2006; Paris et al., 
2016; Tarpanelli et al., 2013) 
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calibration and 
validation of 
hydrodynamic 
models using satellite 
altimetry-based water 
levels  
 

water level – altimetry 
observations 

water level/ 
discharge 
river cross-
sections 
(bathymetry) 
roughness 
coefficients  

(Domeneghetti et al., 2021 ; 
Brêda et al., 2019; Chembolu et 
al., 2019; Domeneghetti et al., 
2014; Getirana & Peters-Lidard, 
2013; Milzow et al., 2011; 
Pereira-Cardenal et al., 2011; 
Wilson et al., 2007) 
 

assimilation of 
altimetry-based water 
level to improve 
prediction potential 
of large-scale 
hydrological models  

 

water level – altimetry 
observations 

water level/ 
discharge 
river cross-
sections 
(bathymetry) 
roughness 
coefficients 

(Michailovsky et al., 2013; Paiva 
et al., 2013; Tourian et al., 2017) 
 

the use of flow laws / 
empirical equations 
(Manning’s equation) 

width – 
(optical/SAR/altimeters) 
water level – altimetry 
observations  
slope - altimetry 
observations  

water level/ 
discharge 
river cross-
sections 
roughness 
coefficients 

(Garkoti and Kundapura, 2021 ; 
Tarpanelli et a., 2013; 
Zakharova et al.,2019Andreadis 
et al., 2007; Durand et al., 2016)  
 

 80 

Based on the approaches listed in Table 1, researchers have exploited the satellite altimetry 81 

data using various approaches to estimate river discharge, generate rating curves and 82 

improve the prediction potential of hydrological-hydrodynamic models. Few approaches 83 

entirely depend on the in-situ data, while others exploit the altimetry observations with 84 

limited in-situ data. Water monitoring agencies often use developed stage-discharge rating 85 

curves (e.g. Central Water Commission, India) to estimate discharge corresponding to gauge-86 

based water level. The rating curves developed by classical power regression law using in-87 

situ stage-discharge data are limited to the gauging locations (Herschy, 1993). Further, the 88 

rating curves estimated using the hydrodynamic model provides various benefits over 89 

traditional approaches, such as considering water surface gradient, roughness coefficient 90 

changes, hydraulic factors etc. (Di Baldassarre and Montanari, 2009; Lang et al., 2010; 91 

Mansanarez et al., 2019 ). In this direction, Dhote et al., 2021 used a hydrodynamic model to 92 

estimate rating curves at virtual stations and validated those using single mission 93 
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Saral/AltiKa data. It is important to know that they used limited available daily in-situ data 94 

to calibrate the hydrodynamic model and not altimetry data. Later, relatively coarse 95 

temporal resolution (35 days) altimetry-based water levels were used to evaluate the 96 

reliability of the rating curves at virtual stations. However, multi-mission satellite altimetry 97 

data is yet to be tested to validate the hydrodynamic model-based rating curves. 98 

The present work proposes to estimate stage-discharge rating curves using a hydrodynamic 99 

model and multi-mission satellite altimetry data (category c of Table 1). The analysis was 100 

implemented on the Mahanadi River stretch from Boudh to Mundali Barrage (near Naraj), 101 

where 7 virtual stations (10 passes) were identified. We specifically refer to altimeter data 102 

from Jason 2 (J2), Jason 3(J3), Saral/AltiKa (SA), Sentinel 3A (S3A) and Sentinel 3B (S3B) 103 

missions, which were used to retrieve water levels. The hydrodynamic simulations were 104 

performed with HEC-RAS software package in a 1D-2D coupled configuration.  105 

2. Study area and data  106 

We focus on the 189 km river reach falling in the lower sub-basin of Mahanadi River, the 107 

major inter-state river of India flowing east direction (Fig. 1). The Mahanadi is the 8th largest 108 

basin having a total catchment area of 1.4 x 10^5 sq. km, covering 4.28% of the total 109 

geographic area of India (CWC & NRSC, 2014). It covers a path of 851 km from an origin in 110 

Dhamtari district of Chhattisgarh state until it drains into Bay of Bengal. The analysis in this 111 

study focuses on the river reach bounded by gauging station Boudh at upstream and Mundali 112 

barrage (near Naraj) at downstream end. Right after the Mundali, delta region of the 113 

Mahanadi River starts which experiences severe floods frequently in monsoon season 114 

(Samantaray and Sahoo, 2020; Jena et al., 2014). The extreme rainfall events induced flood 115 
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waves and low main channel carrying capacity at the upstream region, leading to recurrent 116 

flood havoc in the delta region. As per Parhi et al., 2012, 69 % of major floods events (1960-117 

2011) in the delta region are due to uncontrolled streamflow from the catchment area above 118 

delta head Mundali. Further, relatively low-lying area aggregates the flood situation in this 119 

region.   120 

 121 

Fig.1. Mahanadi River stretch (Boudh to Mundal Barrage) considered in the study along with 122 

locations of gauging stations, outlet and identified virtual stations (VSs) from multi-mission 123 

altimetry data (Background image credits: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 124 

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 125 

User Community) 126 

 127 

The different satellite altimetry missions data considered in this study are Jason 2, Jason 3, 128 

Saral/AltiKa, Sentinel 3A and Sentinel 3B (Table 2). The locations of virtual stations (07), VSs 129 
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(locations where altimeter tracks cross the river) considered in this study are shown in Fig.1. 130 

Radiometrically Terrain Corrected (RTC) ALOS PALSAR DEM with a spatial resolution of 12.5 131 

m was downloaded from Alaska Satellite Facility. This RTC DEM (released in 2014) is 132 

generated from ALOS PALSAR L1.1 image and global SRTM DEM (GL1: 30 m resolution) 133 

having accuracy as 20 m CE90 (Horizontal circular error at 90th percentile); 16 m LE90 134 

(Vertical linear error at 90th percentile). Land use land cover (LULC) map prepared under 135 

the Indian Space Research Organization-International Geosphere Biosphere (ISRO-IGBP) 136 

Programme was procured from the National Remote Sensing Centre ( NRSC), ISRO, 137 

Hyderabad, India. (NRSC, 2006). 138 

The stage-discharge data required for hydrodynamic model setup was obtained from Central 139 

Water Commission (CWC), Bhubaneswar, Odisha State, India. The gauge data of three 140 

stations, namely, Boudh, Tikarpara and Naraj and discharge data of Boudh and Tikarpara 141 

stations were obtained. The surveyed river cross-sections (12) of Mahanadi River from 142 

Boudh to Naraj were procured from CWC, Bhubaneswar. 143 

Table 2: Satellite altimetry data used in the study  144 

Mission Temporal Resolution 
(day) 

Height 
(m) 

Inclination 
(degrees) 

Source 

Jason 2 9.91 1336 66 AVISO 

Jason 3 10 1336 66 AVISO 

Saral/AltiKa 35 800 98.5 AVISO 

Sentinel 3A 27 814.5 95.65 COPERNICUS 

Sentinel 3B 27 814.5 95.65 COPERNICUS 

 145 

 146 
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3. Methods 147 

The entire methodology used in this study is divided into two parts. The first part involves 148 

preparing different input layers to set up a hydrodynamic model using geospatial data and 149 

field observations. The stage-discharge rating curves were generated at virtual stations 150 

using a hydrodynamic model. The second part includes retrieving water levels from the 151 

multi-mission satellite altimeters like SARAL/AltiKa, Jason-2/3, Sentinel-3A/3B using 152 

Python & BRAT. The estimated water levels were used to evaluate the hydrodynamic-model 153 

based rating curves.   154 

3.1 Model setup  155 

Extensively used freely available physically based hydrodynamic model HEC-RAS (Bruner, 156 

2016) was used to carry out numerical simulations of river reach in 1D-2D coupled 157 

configuration. HEC-RAS software provides a solution to full 1D Saint-Venant equations using 158 

four-point implicit finite difference technique. In contrast, full 2D Saint-Venant equations are 159 

solved using an implicit finite volume algorithm (Bruner, 2016). The 1D-2D coupled 160 

configuration used in this study enabled an option to simulate 2D flow dominating region 161 

near delta (downstream end, Mundali barrage) using 2D mode and approximate relatively 162 

unidirectional flow in rest river reach using 1D mode. This model setup arrangement 163 

facilitated the exploitation of both schemes' advantages, reducing computational time. 164 

Various studies have been carried out to evaluate the suitability of 1D, 2D, and 1D-2D 165 

coupled hydrodynamic models (Ghimire et al., 2022; Shustikova et al., 2019; Dhote et al., 166 

2019); however, detailed analysis on topographic input data, processes and output 167 

uncertainties is not within the scope of this study.  168 
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The different steps followed to set up the model are discussed below:  169 

1) River network profile: River network was digitized from Boudh to Mundali barrage 170 

using high-resolution images of Google Earth in the RAS Mapper module of HEC-RAS. 171 

Later, a digitized river file can also be imported in various formats (.shp, .kml) in other 172 

GIS platforms. 173 

2) Channel-floodplain geometry: To set up the 1D model, river cross-sections and 174 

elevation profiles (left to right bank) were extracted from ALOS PALSAR DEM using 175 

the tool available in HEC-RAS. The length of cross-sections was varied to ensure the 176 

coverage of floodplain and main channel geometry. Initially, cross-sections were 177 

extracted at 500 m spacing in automated mode from Boudh to Mundali barrage. Later 178 

few cross-sections were added/deleted/edited to account for the meandering of the 179 

river. To represent geometry of 2D flow dominating area near delta-head Mundali, 2D 180 

floodplain mesh was generated using ALOS-PALSAR DEM. We specifically 181 

represented the floodplain of flood-prone tributaries Kusumi and Rana (kindly refer 182 

to Fig. 3 and Boundary condition section) as 2D domain. The lateral structure was 183 

used to connect 2D flow areas with 1D main river.  184 

The topography of the floodplain can be well displayed with spaceborne DEM, but 185 

bathymetry is rather difficult to represent. Thus, we used the closest surveyed river 186 

cross-section data to modify the DEM-based cross-sections. Only 12 surveyed cross-187 

sections were available at an uneven spacing from Boudh to Mundali, first used to 188 

correct DEM-based cross-sections. As surveyed cross-sections are referenced to local 189 

datum, mean sea level (msl), datum correction was applied ranging from – 0.06 m to 190 

+6.2 m. Later, modified bathymetry was interpolated among other intermediate 191 
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cross-sections. This resulted in hybrid cross-sections (Dhote et al., 2021) used to 192 

model setup. The longitudinal profile of the main river channel and typical hybrid 193 

cross-section at 102 km chainage is shown in Fig 2.  194 

 195 

Fig.2. (a) Main channel longitudinal profile from Boudh to Mundali Barrage (b) Hybrid cross-196 

section at 102 km chainage from Boudh station 197 

 198 

 199 

 200 
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3. Boundary conditions: In this study, discharge hydrograph was provided as a 201 

boundary condition at all upstream nodes of the river network, while normal depth 202 

was provided at the downstream end (Mundali). However, in-situ discharge data 203 

were available at limited locations within the study area (Fig.1). Considering the 204 

importance of upstream boundary conditions on the accuracy of the model, the 205 

contribution of lateral tributaries (Fig. 3) was estimated using the discharge-area 206 

ratio method. In this method, discharge data for each tributary was estimated by 207 

multiplying drainage- area ratio (= watershed area of tributary/watershed area 208 

concerning Tikarpara) with discharge data at Tikarpara. The contribution of each 209 

tributary is shown in Table 3, highlighting that the contribution of right bank 210 

tributaries near the delta region, namely Kusumi and Rana, is on the relatively higher 211 

side.  212 

 213 
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Fig. 3. Mahanadi river tributaries contributing between Boudh and Mundali Barrage 214 

(Background image credits: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 215 

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and 216 

the GIS User Community) 217 

 218 

  Table 3. Contribution of the tributaries 219 

Tributary Catchment Area (Sq. km) 
Contribution in % using 

drainage-area ratio 
method 

Rana 499 4.96 

RT1 103 1.18 

RT2 289 2.87 

Kusumi 2117 21.07 

RT3 1009 10.04 

RT4 269 2.68 

RT5 287 2.86 

RT6 205 2.04 

LT1 225 2.23 

LT2 205 2.03 

LT3 213 2.11 

LT4 195 1.94 

LT5 540 5.37 

LT6 528 5.25 

 220 

4. Roughness coefficients: The lookup table was created to relate the surface 221 

roughness coefficient (Manning's n, m-1/3 s) with varying land use land cover. The 222 

ISRO IGBP LULC and high-resolution images of Google Earth were used to identify 223 

different classes within a floodplain. The literature and previously published work 224 

was used to select n values (Chow et al., 1998; Parhi et al., 2013). The n value varied 225 

from 0.05 to 0.2 m-1/3 s for various classes in the floodplain, while the initial n for the 226 

main channel was kept as 0.035 m-1/3 s.  227 

5. Simulations: Hydrodynamic model was set up for a river stretch of 189 km from 228 

https://doi.org/10.5194/nhess-2022-101
Preprint. Discussion started: 25 April 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

Boudh to Mundali barrage, constrained with discharge data as a boundary condition 229 

at upstream nodes and normal depth at the downstream end. We ran this developed 230 

model in two phases: calibration and validation corresponding to extreme flood 231 

events within available data. The model was calibrated using daily observation for 232 

the 2015 monsoon season (July-October). During the calibration phase, a model was 233 

simulated for multiple sets by spatially varying the main river channel Manning's n in 234 

successive iterations (Dhote et al., 2019; Domeneghetti et al., 2021) and calculated 235 

the goodness-of-fit. The Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency 236 

(NSE) were used as the goodness-of-fit criteria between simulated and observed 237 

water levels at Tikarpara station. The optimized value of Manning's n of the channel 238 

(keeping n constant for floodplain classes) producing the lowest RMSE and highest 239 

NSE was identified during calibration. The model was validated by performing the 240 

boundary conditions for a period not included in the calibration phase (July to 241 

October 2018), and subsequently estimated statistical parameters. Later, the stage-242 

discharge rating curve was estimated at each virtual station corresponding 2018 243 

flood event.  244 

 245 

3.2 Retrieval of water level using satellite altimetry data 246 

Radar altimetry is an advanced remote sensing technique to estimate the water level of 247 

inland water bodies. In this study, virtual stations were identified based on tracks of multi-248 

mission altimetry data (Jason 2, Jason 3, SARAL/AltiKa, Sentinel 3A and Sentinel 3B) falling 249 

between Boudh and Mundali along Mahanadi River. It was found that 8 virtual stations can 250 

be established using data from 10 altimetry tracks having varying time duration (same 251 
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virtual station /pass for Jason 2 and Jason 3 tracks, see Table 4). To retrieve water level using 252 

altimetry data, first of all, we need satellite orbit altitude (Alt) and the altimeter range value 253 

(R). A retracing algorithm is applied to correct the range value (R), as the leading edge of the 254 

waveform diverges from the defined onboard altimeter gate. We used a standard Off-Center 255 

of gravity (OCOG) retracking algorithm to correct the range. Various geophysical corrections 256 

(dry tropospheric correction, wet tropospheric correction, ionospheric correction) to 257 

account for time delay of microwave pulses due to atmospheric effects, correction for pole 258 

and solid tidal effects on the Earth were applied to correct retrieved water level (Chelton et 259 

al., 2001; Wahr,1985; Cartwright and Edden,1973). The equation relating different terms to 260 

estimate water level is given below. We calculated the orthometric height considering EGM 261 

96 as datum because different altimetry missions use different reference ellipsoids.  262 

                     𝐻 = 𝐴𝑙𝑡 − 𝑅 − (𝐷𝑡𝑐 + 𝑊𝑡𝑐 + 𝐼𝑜𝑛𝑐 + 𝑆𝑡𝑐 + 𝑃𝑡𝑐) − 𝑀𝑆𝑆ℎ𝑡                                     (1) 263 

Where H: corrected orthometric height; Alt: the satellite altitude from reference ellipsoid; R: 264 

the satellite range; 𝐷𝑡𝑐: the dry tropospheric correction; 𝑊𝑡𝑐: the wet tropospheric 265 

correction; 𝐼𝑜𝑛𝑐: the ionospheric correction; 𝑆𝑡𝑐: the solid tide; 𝑃𝑡𝑐: the pole tide correction; 266 

and 𝑀𝑆𝑆ℎ𝑡: the mean sea surface from the reference ellipsoid. 267 

Table 4: Virtual stations identified based on the altimeter passes 268 

Sl. No.  Satellite Pass Data Availability Nearest Location  

1 Jason 2 155 2008-2015 Kanasinga 

2 Jason 2 192 2008-2015 Mahukana 
3 Jason 3 155 2016-Present Kanasinga 
4 Jason 3 192 2016-Present Mahukana 
5 Sentinel 3A 66 2016-Present Mahakudpalli 
6 Sentinel 3B 180 2018-Present Khaparmala 
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7 SARAL/AltiKa 137 2013-2016 Badabar 

8 SARAL/AltiKa 238 2013-2016 Dubapalli 

9 SARAL/AltiKa 681 2013-2016 Badhupalli 

10 SARAL/AltiKa 696 2013-2016 Khaparmala 

 269 

4. Results and discussion  270 

Here we present the findings of calibration and validation of hydrodynamic model (a); and 271 

the use of available altimetry series to validate the model-based stage-discharge rating 272 

curves (b).  273 

4.1 Calibration and validation of the model 274 

The calibration and validation of the model were carried out for extreme monsoon events, 275 

respectively, for 2018 and 2015, at a daily time scale. The channel n value was varied from 276 

0.02 to 0.06 m-1/3 s, until there was good agreement between simulated and observed water 277 

levels at Tikarpara station (Chow et al., 1988; Horritt and Bates, 2002; Dhote et al., 2019). 278 

During calibration, the comparison of simulated and observed water levels at Tikarpara 279 

produced minimal RMSE (0.46 m) and high NSE (0.83) corresponding to optimized n value 280 

of 0.03 m-1/3 s (Fig. 4 ). Parhi., 2013 evaluated the channels n value of the HEC-RAS model to 281 

simulate extreme flood events peak discharge and time of peak in Mahanadi River basin. 282 

They showed that, Manning's n of 0.029 lead to lowest error of 5.42%, thus validating our 283 

calibration performance. It is worth mentioning that, observed water level is reference to 284 

local datum (msl), while datum of simulated water level is EGM 96. Thus, datum correction 285 

of -0.79 m was applied to the observed stage before comparative assessment. Fair agreement 286 
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during independent boundary condition of validation year 2015 (RMSE 0.45 m ; NSE 0.76 ), 287 

suggested good performance of hydrodynamic model (Fig 4).  288 

 289 

Fig. 4. Calibration (a, b, during year 2018) and validation (c, d, during year 2015) of the 290 

hydrodynamic model at Tikarpara. 291 

 292 

4.2   Multi-mission satellite altimetry observations to evaluate model-based stage-293 

discharge rating curves  294 

Observations from multi-mission altimeter tracks provide an opportunity to study water 295 

level dynamics (courser temporal resolution) at additional locations compared to in-situ 296 

gauging stations. The challenging question is how efficiently river discharge can be 297 

monitored at these locations (virtual stations, see Fig. 5). The rating curves were estimated 298 

at 07 virtual stations using hydrodynamic simulations for extreme flood events during 299 
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monsoon seasons 2018 and 2015. The comparative assessment was carried out between 300 

simulated and altimetry-based water levels at virtual stations.   301 

 302 

Fig.5. Virtual stations identified using tracks of satellite altimeters over the river stretch 303 

(Background image credits: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus 304 

DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User 305 

Community) 306 

The simulated model was found to agree with altimeter-based water levels (after applying 307 

bias correction) among all the altimetry datasets with different durations (Fig. 6, 7 and Table 308 

5). In general, simulated water levels followed altimeter observations with high accuracy, 309 

showing NSE always more significant than 0.76. Even though variation in errors during 310 
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comparison were very marginal, Saral/AltiKa showed the lowest error (average RMSE 0.49 311 

m), followed by Jason 02 (0.58 m), Sentinel 3 (0.72 m) and Jason 3 ( 0.74 m). Moreover, the 312 

temporal resolution of altimeters ranging from 10 days to 35 days did not affect the 313 

reliability of the estimated water levels. This compassion at virtual stations ensures the 314 

validation of estimated rating curves (Fig. 8). These rating curves can be utilized as a virtual 315 

gauging network (in addition to in-situ stations), facilitating a cost-effective tool for 316 

monitoring river flows at additional locations, producing discharge time series for various 317 

hydrological applications, and assessing the contribution of lateral tributaries.  318 

Table 5: Statistics of the comparison between satellite altimetry water level and modelled 319 

water level 320 
Satellite Pass NSE RMSE (m) Bias Correction (m) 

Jason 2 155 0.76 0.42 -0.204 

Jason 2 192 0.84 0.74 -0.009 

Jason 3 155 0.83 0.60 +0.035 

Jason 3 192 0.76 0.88 -0.173 

Sentinel 3A 33 0.93 0.72 -0.045 

Sentinel 3B 90 0.94 0.72 -0.094 

SARAL/AltiKa 137 0.76 0.35 +0.270 

SARAL/AltiKa 238 0.81 0.27 -0.171 

SARAL/AltiKa 681 0.93 0.60 -0.0225 

SARAL/AltiKa 696 0.90 0.77 +0.307 
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Fig.6. Comparison of the simulated and altimetry-based water level during the year 2015 (black 322 

dotted lines in right panes indicates 1:1 line) 323 

 324 

 325 

Fig.7. Comparison of the simulated and altimetry-based water level during the year 2018 (black 326 

dotted lines in right panes indicates 1:1 line).  327 

 328 
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The altimetry-based water level has been the most exploited remote sensing data to estimate 329 

river discharge. Most of these approaches (see Table 1) use altimeter data along with the 330 

limited in-situ data to develop rating curves. The proposed framework in this study ensures 331 

estimation of relatively accurate rating curves, however, restricts its application in ungauged 332 

basins. Mere comparison of water levels at virtual stations does not rule out uncertainty 333 

associated with the estimated discharge. However, as model was already calibrated and 334 

simulated water levels mimicked satellite observations accurately, we can rely on estimated 335 

discharge produced from modelled stage-discharge relation (Dhote et al., 2021). The outputs 336 

of the physically-based models are governed by adopted modelling scheme and model 337 

parameterization. Perhaps, rating curves based on these models (HEC-RAS) eliminates the 338 

uncertainty associated with other empirical /power law approaches (Garkoti and 339 

Kundapura, 2021 ; Tarpanelli et a., 2013) such as constant roughness coefficient, influence 340 

of drainage area, overflows of the banks.  Thus, it is tough to remove all the errors but we 341 

must be aware of degree of uncertainty associated with the adopted approach. Further, as 342 

the proposed framework is generic, it can implemented on the high-mountains data-scarce 343 

Himalayan river basins. It will be interesting to evaluate the impact of hilly terrain on 344 

accuracy of the altimetry-based water levels and its application to generate stage-discharge 345 

rating curves. This could be the potential future work.  346 
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 347 

Fig. 8. Rating curves generated at virtual stations using the hydrodynamic model run during 348 

the monsoon season of the year 2018 (07 rating curves corresponding 10 altimetry tracks: 349 

Pass 155 shared by J2 and J3, Pass 190 shared by J2 and J3, S3B180 shared by SA696). 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 
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5. Conclusions  360 

The present work investigated the use of multi-mission altimeter data to validate the model-361 

based stage-discharge rating curves in Mahanadi River, India. Using hydrodynamic 362 

modelling simulations, the rating curves were estimated at 7 virtual stations falling between 363 

Boudh and Mundali barrage. The altimeter data from different missions such as Jason 2, 364 

Jason 3, Saral/AltiKa, Sentinel 3A and Sentinel 3B were used to retrieve water levels at these 365 

virtual stations. The statistical indicators (RMSE 0.27-0.88 m, NSE 0.76-0.94) revealed that 366 

simulated water levels could reproduce altimeter observations at these virtual stations with 367 

high agreement. Even though the temporal resolution of altimeters ranged from 10 days to 368 

35 days, no substantial implications on the reliability of the water level were observed. The 369 

rating curves estimated at virtual stations  can be utilized as a virtual gauging network (in 370 

addition to in-situ stations), facilitating a cost-effective tool for monitoring of river flows at 371 

additional locations, producing discharge time series for various hydrological applications 372 

and assessment of the contribution of lateral tributaries. 373 
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