
We summarize the physical equations and analytic solutions of three versions of the box model
equations, suitable for the integral formulation of axisymmetric gravity-driven particle currents with
constant volume. The first model is based on a simple constant resisting stress, while the second and third
models assume flow dilution by particle deposition. The third model is characterized by assuming an
interstitial fluid lighter than the ambient fluid. All the calculations are performed on a flat topography.
Ambient fluid entrainment and cooling effects are not considered. All particles are assumed to deposit at
the same velocity.

1 Introduction

The box model integral formulation for gravity-driven particle currents is based on the pioneering work of
Huppert and Simpson (1980). The theory is detailed in Bonnecaze et al. (1995); Hallworth et al. (1998). We

assume axisymmetric geometry and constant volume of the flow1. We solve the equations over a flat 
topography, with no slope or obstacles. Ambient fluid entrainment is neglected and thermal properties of
the flow remain constant2. In the second and third model all the solid particles are assumed to deposit at 
the same velocity, thus neglecting differences in particle size and shape.

2 Box model with constant resisting stress
This model is described in Dade and Huppert (1998) and it is at the base of the depth-averaged model in
Kelfoun et al. (2009). We consider the work W (t) done by a constant resisting stress τc acting over the basal
area A of the flow. We assume the flow geometry to be cylindrical, so A(r) = λr2, where r is the cylinder 
radius.
Let us consider the time interval [0, t] and assume L(0) = 0. We obtain:

W (t) =

∫ L(t)

0

τc ·A(r)dr =

∫ L(t)

0

τc · λr
2dr =

τc
3
λL(t)3 = τλL(t)3,

where L(t) is the radial distance reached by the current at time t, λ is half-central angle of the cylindrical
sector considered, and τ := τc

3
is the effective stress constant.

Let us also assume that the total energy of the flow at t0 = 0 is:

Q(t0) = gHρV,

where g is gravity, ρ is the density of the flowing material, H is the height drop of the flow, and V its
volume. We finally assume that the volume V of the current is preserved.
Hence, the kinetic energy of the flow at time t is given by:

K(t) = gHρV − λτL(t)3.

1this is not the formulation adopted in Dade and Huppert (1996), which assumed constant volume flux.
2air entrainment and cooling effects are explored in Bursik and Woods (1996); Fauria et al. (2016).
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Notes on the analytic solution of box model equations for gravity-driven 
particle currents with constant volume
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Assuming K(tf ) = 0 at the instant tf at which the runout distance L(tf ) is reached, we obtain:

V =
λτL(tf )

3

gHρ
.

3 Box model with particle deposition

This model is described in Dade and Huppert (1995) and it adopted in Neri et al. (2015); Bevilacqua et al.
(2017). Further description of this approach is provided in Bevilacqua (2016); Esposti Ongaro et al.
(2016). We consider the Von Kármán equation for density currents:

dL

dt
(t) = Fr

√

h(t)g
ρc(t)− ρa

ρa
,

where L(t) and h(t) are the radial distance reached by the current and its height, at time t. In our
notation Fr is the Froude Number, g is gravity. We express the density of the current ρc by:

ρc(t) = φ(t)ρ+ [1− φ(t)] ρa

where ρ is the density of the solid particles, and ρa is the density of ambient fluid. Finally, the equation

dφ

dt
(t) = −ws

φ(t)

h(t)

defines the particle volume fraction φ(t) at time t.
Let us also assume that the volume V of the current is preserved, and that its geometry is cylindrical:

V = L(t)2h(t)λ = const,

where λ is half-central angle of the cylindrical sector considered (λ = π in axisymmetric examples).
In summary:



























dL
dt

(t) = Fr
√

h(t)φ(t)g ρ−ρa
ρa

,

dφ
dt
(t) = −ws

φ(t)
h(t)

,

V ≡ L(t)2h(t)λ.

3.1 Derivation of the equation for the volume V

Let us consider the formal expression:

dφ

dL
(t) =

dφ

dt
(t)

[

dL

dt
(t)

]

−1

,

and so
dφ

dL
(t) = −ws

φ(t)

h(t)

[

Fr
√

h(t)φ(t)gp
]

−1

,

where we use the short notation gp := g ρ−ρa
ρa

.

If we plug in the expression h(t) = V
λL(t)2

, we obtain:

dφ

dL
(t) = −wsφ

1/2(t)L(t)3
[

Fr g1/2p
V

λ

3/2
]

−1

.

If we define

η := ws

(

Fr g1/2p
V

λ

3/2
)

−1

,

we can write:
φ(t)−1/2dφ = −ηL3dL.
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If we integrate the differential expression over [0, t], assuming φ(0) = φ0 and L(0) = 0, we get:

φ1/2(t) = φ
1/2
0 −

1

8
ηL(t)4.

Finally, assuming φ(tf ) = 0 at the instant tf at which the runout distance L(tf ) is reached, we obtain:

L(tf ) =

(

8φ
1/2
0

η

)1/4

=

[

8
Fr φ

1/2
0 g

1/2
p (V/λ)3/2

ws

]1/4

,

and so

V = λ

(

L4ws

8φ
1/2
0 g

1/2
p Fr

)2/3

= λ
L8/3w

2/3
s

4φ
1/3
0 g

1/3
p Fr2/3

.

4 Two-phase box model (interstitial fluid + solid particles)

We consider the Von Kármán equation for density currents:

dL

dt
(t) = Fr

√

h(t)g
ρc(t)− ρa

ρa
,

where L(t) and h(t) are the radial distance reached by the current and its height, at time t. In our
notation Fr is the Froude Number, g is gravity. We express the density of the current ρc by:

ρc(t) = φ(t)ρ+ [1− φ(t)]ρi

where ρ is the density of the solid particles, and ρi is the density of interstitial fluid. We have that:

ρc − ρa
ρa

=
φ(t)ρ+ [1− φ(t)]ρi − ρa

ρa
= φ(t)

ρ− ρi
ρa

+
ρi − ρa

ρa
= [φ(t)− φcr]

ρ− ρi
ρa

,

where we called φcr := ρa−ρi
ρ−ρi

.
Finally, the equation

dφ

dt
(t) = −ws

φ(t)

h(t)

defines the particle volume fraction φ(t) at time t.
Let us also assume that the volume V of the current is preserved, and that its geometry is cylindrical3:

V = L(t)2h(t)λ = const,

where λ is half-central angle of the cylindrical sector considered (λ = π in axisymmetric examples).
In summary:



























dL
dt

(t) = Fr
√

h(t) [φ(t)− φcr] g
ρ−ρi
ρa

,

dφ
dt
(t) = −ws

φ(t)
h(t)

,

V ≡ L(t)2h(t)λ.
3the analytic solutions in cartesian geometry are provided in Esposti Ongaro et al. (2016).
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4.1 Derivation of the equation for the volume V

Let us consider the formal expression:

dφ

dL
(t) =

dφ

dt
(t)

[

dL

dt
(t)

]

−1

,

and so
dφ

dL
(t) = −ws

φ(t)

h(t)

[

Fr
√

h(t) [φ(t)− φcr] gc
]

−1

,

where we use the short notation gc := g ρ−ρi
ρa

.

If we plug in the expression h(t) = V
λL(t)2

, we obtain:

dφ

dL
(t) = −ws

φ(t)
√

φ(t)− φcr

L(t)3
[

Fr g1/2c
V

λ

3/2
]

−1

.

If we define the function:

φ̂(t) =
φ(t)

φcr
,

and the constant

η := ws

(

Fr g1/2c
V

λ

3/2
)

−1

,

we can write:
dφ̂

dL
(t) = −η

φ̂(t)

φ
1/2
cr

(

φ̂(t)− 1
)1/2

,

and then

φ
1/2
cr

(

φ̂(t)− 1
)1/2

φ̂(t)
dφ̂ = −ηL3dL.

If we integrate the differential expression over [0, t], assuming φ̂(0) = φ̂0 and L(0) = 0, we get:

F
(

φ̂(t)
)

= F
(

φ̂0

)

−
η

4φ
1/2
cr

L(t)4,

where we defined the function:

F (x) := 2
[√

x− 1− arctan
(√

x− 1
)]

.

Indeed:
∫

√
x− 1

x
dx =

∫

2z2

z2 + 1
dz = 2

∫

dz − 2

∫

1

z2 + 1
dz = 2 [z − arctan(z)] + c,

where z :=
√
x− 1.

Finally, assuming φ̂(tf ) = 1 at the instant tf at which the runout distance L(tf ) is reached, we obtain:

L(tf ) =





4φ
1/2
cr F

(

φ̂0

)

η





1/4

=







8φ
1/2
cr

[√

φ0

φcr
− 1− arctan

(√

φ0

φcr
− 1
)]

g
1/2
c Fr (V/λ)3/2

ws







1/4

,

and so

V = λ





L4ws

4φ
1/2
cr F

(

φ̂0

)

gc Fr





2/3

= λ
L8/3w

2/3
s

4φ
1/3
cr

[√

φ0

φcr
− 1− arctan

(√

φ0

φcr
− 1
)]2/3

g
1/3
c Fr2/3

.
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