
Rebuttal for Reviewer #1 
 
Dear Reviewer #1, 
 
General comments 

The proposed manuscript deals with the estimation of return levels (or high quantiles) in regions affected by tropical 
cyclones. The paper focuses on using a synthetic database of cyclones to validate the proposed method, developed in other 
papers, namely the STM-E approach. The paper is well organized with clear motivations, sensible application of the method, 
and an important issue in tropical areas. 

>> Thank you for the encouraging comments. We have considered your suggestions for revision individually. 
Please find our correspondence below (in italic). Red text indicates the actual modification on the manuscript. 
In addition, the locations of modification are in blue text in the manuscript. We hope you find them acceptable.  
 
Specific issues 

[R1-1] Near L.200, the sentence " There is no obviously no spatial dependence between the size of STM and its location" 
is quite unclear to me. The figure clearly shows that the locations of STM are unevenly distributed in space, in particular, 
the points are located on the boundary of the domain, although there is no discussion about this repartition. 

>> Thank you for the comment and sorry for the confusion. We have revised the manuscript to clarify our 
message. STM-E only works when STM and exposure are exchangeable. The location of STM indicates where 
the peak of exposure is. For example, if there is an obvious spatial trend in STMs, the assumption of 
exchangeability is violated. Such exchangeability is assessed using the rank correlation of STMs and exposures 
with Kendall’s tau in this paper.  
Thanks for the comment regarding STMs located on the boundary of the domain. As suggested, the true STM of 
some extreme event occurred outside the region. In this model, STM and exposure are defined within the limited 
region. Essentially, we are defining a conditional STM and conditional exposure given within this region. For 
cases where the STM is truncated, the exposure will have larger values. We have modified the manuscript to 
elaborate on this point.  
 
[Modified P9 Line 208] 

There is no obvious spatial dependence between the size of STM and its location 

[Modified P10 Line 215]  

In this sense, we are performing the STM-E analysis conditional on the choice of region. For example, consider 

a cyclone for which the location of the STM value s∗ falls outside the region of interest. Then the conditional 

STM value s for the cyclone (within the region) will of course be smaller than s∗; however, the cyclone’s 

conditional exposure (assessed relative to the conditional STM s for the region, rather than the full STM s∗) will 

consequently be larger. 

[R1-2] Figure 6, 7,8,9: Quite difficult to read... What do the black boxplots correspond to? I think if the whole database is 
considered, the 500-year return level should be only one value per location, with associated CI? 



>> Thank you for the comment. We agree that the figure had too much information and was difficult to read. We 
have made the following modification for clarification.  

� We deleted the black boxplot and put a single black line in the figure indicating the empirical estimate of 
the 500-year return value that was derived from the full data set. This modification was based on a 
suggestion from Reviewer #2. The manuscript is revised accordingly with the updated true value, in 
general the performance of STM-E looks better. 

� We removed the green line indicating the depth as it could be explained in the caption of Figure 2. 
 
[Modified caption of Figure 2] 

Water depths along the line transect with locations numbered 20-31 are 58m, 235m, 543m, 754m, 819m, 

1206m, 1513m, 2350m, 3265m, 4059m, 5074m, 5586m. 

 
[Modified Figure. 6, 7, 8, 9 and 12 (new figure) and its captions] 

[Modified Table 1]  

[Modified Section 4.3 & 4.4 to update results] 

P12 Line 261: Bias characteristics for single-location and STM-E estimates are relatively similar in general. It 

can be seen however (from the longer red whiskers) that the uncertainty in single-location estimates is greater in 

general from the corresponding STM-E estimates. 

P13 Line 280: There is some evidence that the STM-E median estimate increases with increasing sample size, 

and that this reduces bias. 

 
[R1-3] There is no clear dependence of the depth here, nor is it included in the model, so maybe the authors should comment 
on why they include this covariate in the figures, or if it is a perspective for future work. 

>> Thank you for the comment. In general, the behavior of wave height can be dependent on depth. Ocean waves 
in shallow water can be affected by ocean bottom, and the wind or wave propagation can be weakened in the 
vicinity of coastlines. Thus, we decided to validate the method for various depth conditions. The results show a 
positive correlation between depth and wave height. We have added the following comment on our motivation in 
the manuscript. 
 
[Modified P10 Line 220] 

It is known that SWH at a location is dependent on water depth, bathymetry and coastlines, since e.g. ocean waves 

in shallow water are influenced by bottom effects, and since both wind and wave propagation can be weakened 

in the vicinity of coastlines. 

 

[R1-1] In the paragraph starting L290, the authors claim that they study the relationship between STM and Exposure in 
Figure 11, but the figure only shows two distributions for maximal and minimal STM, maybe a more quantitative assessment 
with parametric models would help understanding the (absence of) relation. 

>> Thank you for the comment. We have considered how to assess the exposure as suggested. Our first choice 
would be to use rank correlation, but there is no straightforward technique to rank the exposure as it is a 
cumulative distribution function. Instead, we decided to show that the exposure cdfs corresponding to the large 
STM and small STM are not “not special” relative to all the other pairs of exposure cdfs using the Kullback–
Leibler divergence to measure the difference between two exposure cdfs. We calculate "# for 1,000 sets of two 



randomly-selected exposure cdfs and build a null distribution of exposure cdf pair variability. In addition, we 
calculate "#∗ between the exposure cdfs for the largest and smallest STM. If "#∗ is randomly distributed within 
the null distribution, this indicates there are no special characteristics in the exposure distribution with large or 
small magnitude of STM (Figure 11). Also, the quantile values of "#∗ in the corresponding null distribution for 
all locations and sample size are summarized. We can see they are uniformly distributed (validated with 
Kolmogorov-Smirnov test with p-value of around 0.6), suggesting the independence of STM and exposure cdfs. 
The results are summarized in a new Figure 11 with an example of null distribution at Location 21 together with 
the cdf showing uniform distribution. 
 
[Modified P16 Line 301] 

One of the assumptions underpinning the STM-E approach is that the exposure distribution at a location is not 

dependent on the magnitude of STM. We investigate this further here. Our aim is to show that the empirical 

cumulative distribution function for exposure (henceforth ECDF for brevity) corresponding to the largest and 

smallest STMs are typical of ECDFs in general, and are in no way special relative to EDCFs corresponding to 

other cyclones. We can quantify the difference between two ECDFs using the Kullback–Leibler divergence (KL). 

We proceed to estimate the “null” distribution of KL using 1,000 sets of randomly-selected pairs of ECDFs. In 

addition, we calculate the Kullback-Leibler divergence (Liese and Vajda (2006)) KL∗ for the pair of ECDFs 

corresponding to cyclones with the largest and smallest STMs. If there is no dependence of ECDF on STM, then 

the value of KL∗ should correspond to a random draw from the null distribution of KL. The left-hand panel of 

Figure 11 illustrates the null distribution of KL at Location 21, for sample size 20, together with the corresponding 

value of KL∗. We note that the value of KL∗ is not extreme in the null distribution. In the right-hand panel of 

Figure 11, the empirical cumulative distribution function of the non-exceedance probability of KL∗ (in the 

corresponding null distribution) is estimated over all locations and sample sizes. The approximate uniform density 

found, suggests indeed that KL∗ corresponds to a random draw from the null distribution; a Kolmogorov-

Smirnoff test on the data suggested that it was not significantly different to a random sample from a uniform 

distribution on [0,1]  

Complementary analyses (not shown) evaluated KL∗ for ECDFs corresponding to the largest two STMs in the 

data, and (separately) for ECDFs corresponding to the smallest two STMs. Results again indicated that both of 

these choices for KL∗ could be viewed as random in their null distributions. Since exposure distribution at a 

location is not dependent on the magnitude of STM, we assume the overall performance of STM-E is mainly 

governed by the estimation of STM. 

 

[Modified Figure 11 with caption]  

Left: Histogram of KL from random pairs of empirical distribution functions for exposure (corresponding to the “null” 
distribution of KL), together with KL∗	 for Location 21 with sample size 20. Right: Histogram of the non-exceedance 
probability of KL∗	(in the corresponding null distribution for KL) over all locations and sample sizes. 

[R1-4] The authors look at a very high quantile (500-year return level), while it is of more common practice to estimate the 
100-year return level: the conclusions may be rather less clear due to the uncertainties linked to estimation of such high 
quantiles. 

>> Thank you for the comment. We agree with your comment and decided to add an additional analysis of 100-
year return level estimation. Our initial aim was to validate the methodology with long data, i.e. estimation with 
large enough samples. The case for 500-year return level estimation suggested that extracting the largest samples 



from around ⅓ of the tropical cyclones during the observation period is necessary to eliminate non-extreme 
samples.  
Based on this suggestion, we performance assessment of STM-E in a more realistic / practical situation, i.e. 
estimation of 100-year return level from 50 years data period choosing 10~ 20 top cyclones. The results for this 
analysis was generally the same as what we found in the 500yr return level case. 
The results and discussion made from the analysis is provided in the manuscript as follows. 
 
[Modified Abstract: P1 Line 11]  

similar results were found for estimation of the 100-year return value from samples corresponding to 

approximately 50 years of data.  

 

[Modified Introduction (Objective and Layout): P3 Line 69] 

This case will assess the performance of STM-E when reasonable sample sizes of extreme values are available 

for inference. In addition, we conduct the corresponding estimation for the T = 100- year return value for SWH, 

and its uncertainty, based on random samples of tropical cyclones corresponding to T0 = 50 years of observation. 

This case is to assess the performance of STM-E under practical conditions, i.e. when the size of the sample of 

extreme values for analysis is relatively small. 

[Add New Section: P17 Line 319]  

4.6 Model performance for smaller sample sizes 

Here we repeat the analysis in Sections 4.1-4.5 above for the T = 100-year return value for SWH on the iso-depth 

contour and line transect, based on T0 = 50 years of data. The typical number of tropical cyclone events occurring 

in 50 years is approximately 30, already corresponding to a very small sample size for extreme value analysis. 

We retain the largest n values of STM in the sample, for n = 10, 15 and 20 for this analysis. The overall 

performance of STM-E estimates, relative to those from single-location analysis and an empirical estimate from 

the full synthetic cyclone data is summarised in Figure 12 for the line transect, using the method of probability 

weighted moments (and see also Table 2 in the next section for a summary including estimates using maximum 

likelihood). The figure’s features are similar to those of figures discussed earlier. Estimates from STM-E show 

lower bias and reduced uncertainty relative to those from single location analysis. There is slight underestimation 

of the return value, but the empirical estimate sits comfortably within the 25%-75% uncertainty band 

(corresponding to the “box” interval). The corresponding plots (not shown) for the iso-depth contour, and for 

estimation using maximum likelihood, are similar. 

 

[Add new Table 2]  

 

[R1-5] There is constant under-estimation of the return levels as seen in the figures and table 1. Is there a way to decide if 
it does come from the STM part of the model or the Expose part? Maybe the authors could provide keys to understanding 
where do the limitations come from.  

>> Thank you for the comment. In Figure 10, we have summarised the slight under-estimation of STM for ML. 
As for PWM, the estimation is not biased but shows a positive trend as sample size increase. This is also seen in 
the STM-E results. In addition, the performance of the estimation improved as we modified how we estimate the 
true value on the suggestion of Reviewer2. Several modifications were made to the manuscript correspondingly. 



Regarding your first comment, we have thoroughly investigated the effect of exposure is independent of STM 
magnitude. Thus, we assume the STM-E is mainly influence by the estimation of STMs. 
We have added the following comment in the manuscript. 
 
[Modified P15 Line 285] 

We investigate the trend further here. Figure 10 gives estimates for the 500-year return value of space-time 

maximum STM (as opposed to the full STM-E estimate for SWH) as a function of sample size used for estimation, 

using maximum likelihood estimation (blue) and probability weighted moments (red). Also shown in black is the 

empirical estimate of the 500-year STM return value obtained directly from the synthetic cyclone data. The figure 

shows a number of interesting effects. Firstly, STM estimates from both maximum likelihood and the probability 

weighted moments increase with increasing sample size n, and that this effect is more pronounced for probability 

weighted moments. As a result, the bias of estimates using probability weighted moments is considerably larger 

than that from maximum likelihood estimation for sample size of 60. The uncertainty of estimates from 

probability weighted moments is also somewhat larger than that from STM-E. 

 

[Modified P16 Line 317] 

Since exposure distribution at a location is not dependent on the magnitude of STM, we assume that the overall performance 
of STM-E is mainly governed by the estimation of STM. 
 
Technical corrections 

[R1-6] Figure 10: the 0 on the x-axis should be a 1,200? Again, how do you obtain the box-plot here? 

>> Thank you for the comment and sorry for the confusion. Following the modification made above, the true 
value is no longer a boxplot. The N-year return period value is now derived from the synthetic data set as a point 
value and now depicted as a black dashed line. 

[Modified Figure 10 and caption]  

 

[R1-7] Table 1 may be more clear if the number of observations is replaced by the corresponding years. 

>> Thank you for the comment and sorry for the confusion. The results depicted in Table 1 all correspond to 
200-year data set. The number of samples (i.e. n = 20, 30, 40, 50, 60) indicates how many samples we extract 
from the data set, corresponding to lowering the extreme value threshold. The same is done for analysis of 100-
year return period value. We have clarified the manuscript to make our objectives clear. 

[Modified P11 Line 232] 

(corresponding to lowering the extreme value threshold) 

 

[Modified caption of Table 1]  

 

We again thank the reviewer for his/her kind suggestion and insightful comments on the paper. We hope we have 
addressed your concerns adequately. 
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Abstract. Occurrences of tropical cyclones at a location are rare, and for many locations, only short periods of observations

or hindcasts are available. Hence, estimation of return values (corresponding to a period considerably longer than that for

which data is available) for cyclone-induced significant wave height (SWH) from small samples is challenging. The STM-E

(space-time maximum and exposure) model was developed to provide reduced bias in estimates of return values compared to

competitor approaches in such situations, and realistic estimates of return value uncertainty. STM-E exploits data from a spatial5

neighbourhood satisfying certain conditions, rather than data from a single location, for return value estimation.

This article provides critical assessment of the STM-E model for tropical cyclones in the Caribbean Sea near Guadeloupe

for which a large database of synthetic cyclones is available, corresponding to more than 3,000 years of observation. Results

indicate that STM-E yields values for the 500-year return value of SWH and its variability, estimated from 200 years of cyclone

data, consistent with direct empirical estimates obtained by sampling 500 years of data from the full synthetic cyclone database;10

similar results were found for estimation of the 100-year return value from samples corresponding to approximately 50 years

of data. In general, STM-E also provides reduced bias and more realistic uncertainty estimates for return values relative to

single location analysis.

KEYWORDS: tropical cyclone spatial extremes synthetic storm return value

1 Introduction15

Tropical cyclones (also named hurricanes or typhoons depending on the region of interest) are one of the deadliest and most

devastating natural hazards that can significantly impact lives, economies and the environment in coastal areas. In 2005, hur-

ricane Katrina, which hit New Orleans, was the most costly natural disaster of all time for the insurance sector, with losses

totalling more than 1011 US dollars (Barbier 2015). In 2017, hurricanes Harvey, Irma and Maria caused record losses within

just four weeks totalling more than 9⇥1010 US dollars 1. Tropical cyclones present multiple hazards, including large damaging20

1https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/hurricanes-typhoons-cyclones.html-1979426458
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winds, high waves, storm surges, and heavy rainfall, as exemplified by Typhoon Hagibis in Japan (see context description in

Dasgupta et al. 2020) or Cyclone Idai in Mozambique in 2019. 2

Waves are one of the major hazards associated with tropical cyclones, of critical importance regarding marine flooding,

especially for volcanic islands like those in the Lesser Antilles – North Atlantic ocean basin (Krien et al. 2015), in the Hawaiï

– Northeast Pacific ocean basin (Kennedy et al. 2012), or in the Reunion Island – Southwest Indian ocean basin (Lecacheux25

et al. 2021). Here, the absence of a continental shelf and the steep coastal slopes limit the generation of high atmospheric storm

surge, but increase the potential impact of incoming waves. Moreover, wind-waves propagate with little loss of energy over

the deep ocean: this might potentially increase the spatial extent as well as time duration over which damaging coastal impacts

occur during a tropical cyclone event (Merrifield et al. 2014); this contrasts with tropical cyclone-induced storm surge, which

tends to be concentrated in the vicinity of the cyclone centre.30

To help decision makers in diverse fields such as waste-water management, transport and infrastructure, health, coastal

zone management, and insurance, one key ingredient is the availability of data for the frequencies and magnitudes of extreme

cyclone-induced coastal significant wave heights SWH, e.g. estimates of 100-year return values (e.g. as illustrated for Reunion

Island by Lecacheux et al. 2012: Figure 4). Yet, for many locations, only short periods of observations or hindcasts of tropical

cyclones are available, which can be challenging for estimation of return values (corresponding to a period considerably35

longer than that for which data are available). For this purpose, a widely-used approach relies on the combination of synthetic

cyclone track generation, wave modeling and extreme value analysis. The approach consists in the following steps: (1) tropical

cyclones, extracted from either historical data (Knapp et al. 2010) or climate model simulations (Lin et al. 2012) are statistically

resampled and modeled to generate synthetic, but realistic tropical cyclone records. Based on a Monte Carlo approach (Emanuel

et al. 2006; Vickery et al. 2000; Bloemendaal et al. 2020), a tropical cyclone dataset with same statistical characteristics40

as the input dataset, but spanning hundreds to thousands of years, can then be generated; (2) for each synthetic cyclone, a

hydrodynamic numerical model is used to compute the corresponding SWH over the whole domain of interest. An example

of such a simulator is the Global Tide and Surge Model of Bloemendaal et al. (2019); (3) SWH values at the desired coastal

locations are extracted. Extreme value analysis (Coles et al. 2001) can then be used to estimate the corresponding return values.

As an illustration of the whole procedure, one can refer to the probabilistic hurricane-induced storm surge hazard assessment45

(including wave effects) performed by Krien et al. (2015) at Guadeloupe archipelago, Lesser Antilles.

Implementation of steps (1) and (2) can however be problematic. Generation of synthetic cyclones with realistic character-

istics is a research topic in itself. Further, the hydrodynamic numerical model can be prohibitively costly to execute, limiting

the number of model runs feasible, resulting in sparse, non-representative data for extreme value modelling. To overcome this

computational burden, possible solutions can either be based on parametric analytical models (like the ones used by Stephens50

and Ramsay 2014 in the Southwest Pacific Ocean) or on statistical predictive models (sometimes called meta- or surrogate

models, Nadal-Caraballo et al. 2020). However, such approaches can only be considered “approximations”. The former para-

metric analytical models introduce simplifying assumptions regarding the physical processes involved. Statistical estimation is
2https://data.jrc.ec.europa.eu/dataset/4f8c752b-3440-4e61-a48d-4d1d9311abfa
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problematic, since inferences must be made concerning extreme quantiles of the distribution of quantities such as SWH, using

a limited set of data.55

Objective and layout

In the present work, we aim to tackle the problem of realistic return value estimation for small samples of tropical cyclones

using a recently-developed procedure named STM-E, which has already been successfully applied in regions exposed to trop-

ical cyclones near Japan (Wada et al. 2018) and in Gulf of Mexico (Wada et al. 2020). STM-E exploits all cyclone data drawn

from a specific geographical region of interest, provided that certain modelling conditions are not violated by the data. This60

means in principle that STM-E provides less uncertain estimates of return values than statistical analysis of cyclone data at a

single location. To date however, the STM-E methodology has not been directly validated: the objective of the present work

is therefore to provide direct validation of return values (in terms of bias and variance characteristics, for return periods T of

hundreds of years) from STM-E analysis using sample data for modelling corresponding to a much shorter period T0 (< T ) of

observation, drawn from a full synthetic cyclone database corresponding to a very long period TL (TL > T ) of observation.65

In the following sections, we present a motivating application in the region of the Caribbean archipelago of Guadeloupe,

for which synthetic cyclone data are available for a period TL corresponding to more that 3,000 years. We use the STM-E

method to estimate the T = 500-year return value for SWH, and its uncertainty, based on random samples of tropical cyclones

corresponding to T0 = 200 years of observation. This case will assess the performance of STM-E when reasonable sample

sizes of extreme values are available for inference. In addition, we conduct the corresponding estimation for the T = 100-year70

return value for SWH, and its uncertainty, based on random samples of tropical cyclones corresponding to T0 = 50 years of

observation. This case is to assess the performance of STM-E under practical conditions, i.e. when the size of the sample of

extreme data for analysis is relatively small. We compare estimates with empirical maxima from random samples corresponding

to T years of observation from the full synthetic cyclone data (covering TL years), and from standard extreme value estimates

obtained using data (corresponding to T0 years) from the specific location of interest only. Section 2 provides an outline of75

the motivating application. Section 3 describes the STM-E methodology. Section 4 presents the results of the application of

STM-E to the region of the main island pair (Basse-Terre and Grande-Terre) of Guadeloupe. Discussion and conclusions are

provided in Section 5.

2 Motivating application

The study area is located in a region of the Lesser Antilles (eastern Caribbean Sea) that is particularly exposed to cyclone80

risks (Jevrejeva et al. 2020) with several thousand fatalities reported since 1900 3. We focus on the French overseas region of

Guadeloupe, which is an archipelago located in the southern part of the Leeward Islands (see Figure 1).

This French overseas region has been impacted by several devastating cyclones in the past, including the 1776 event (of

category 5 according to the Saffir–Simpson scale, Simpson and Saffir 1974) which led to >6,000 fatalities (Zahibo et al. 2007),
3http://www.emdat.be
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Figure 1. Regional setting. Left: Full domain. The red rectangle indicates the region where the diagnostic of the STM-E approach is per-

formed. The orange and green tracks respectively represent those of Maria (2017) and Hugo (1989) cyclones (data extracted from Landsea

and Franklin (2013) with cyclone status "Hurricane"). Right: Enlarged view of the diagnostic region. The red rectangle indicates the region

in the vicinity of Guadeloupe archipelago where return values are estimated.

and the “Great Hurricane” of 1928 (Desarthe 2015) with >1,200 fatalities; the latter was probably the most destructive tropical85

cyclone of the 20th century. More recent destructive events include Hugo (in 1989, Koussoula-Bonneton 1994), and Maria (in

2017, which severely impacted Guadeloupe’s banana plantations). The tracks of both Hugo and Maria are illustrated in Figure

1. Analysis of the HURDAT database (Landsea and Franklin 2013) reveals that approximately 0.6 cyclones per year passed

within 400km of the study area on average for the period 1970-2019. Almost all events emanated from the south-east. More

than 80% of the events passed close to the northern and eastern coasts of Guadeloupe’s main island pair.90

To assess the cyclone-induced storm surge hazard, Krien et al. (2015) set up a modelling chain similar to that described in the

introduction: they randomly generate cyclonic events using the approach of Emanuel et al. (2006), and compute SWH and total

water levels for each event over a wide computational domain (45–65W, 9.5–18.3N) using the ADCIRC-SWAN wave-current

coupled numerical model. . The interested reader can refer to Krien et al. (2015) for more implementation and validation detail.

The resulting SWH data are the basis of the current study to assess the performance of STM-E in estimating the T -year return95

value, from data corresponding to T0 years of observation, for the cases T0 = 200,T = 500 and T0 = 50,T = 100.

In the present work, we use a total of 1971 synthetic cyclones passing nearby Guadeloupe (representative of 3,200 years, i.e.

about 0.6 cyclone per annum) and the corresponding numerically calculated SWH. These results are used to derive empirically

the 100-year SWH around the coast of Guadeloupe’s main island pair for a smaller area of interest (60.8� 62.0�W, 15.8�
16.6�N; see Figure 2). These results are useful to assess flood risk at local scale, since they provide inputs of high resolution100

hydrodynamic simulations (see e.g. the use of wave over-topping simulations at La Reunion Island by Lecacheux et al. 2021).

In the following, we analyse extreme SWH at 19 coastal locations around Guadeloupe’s main island pair (on the 100m iso-
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depth contour, see blue stars in Fig. 2), and at 12 locations along a line transect emanating to the north east from the island,

corresponding to increasing water depth (see red triangles in Figure 2).

Figure 2. Illustration of Guadeloupe archipelago (administrative boundaries are outlined in light blue), showing calculation grid points (black

dots), the selected numbered locations along the iso-depth contour at 100m (blue stars) and line transect (red stars). Calculation grid points

are more dense in shallow waters. Water depths along the line transect with locations numbered 20-31 are 58m, 235m, 543m, 754m, 819m,

1206m, 1513m, 2350m, 3265m, 4059m, 5074m, 5586m.

To illustrate the SWH data, Figure 3 depicts the spatial distributions of maximum SWH per location for the four cyclones105

with the largest single values of SWH in the whole synthetic cyclone database. All cyclones propagate from the south-east to

the north-west with intense storm severity near the cyclone track, which reduces quickly away from the track.

3 Methodology

In this section we describe the STM-E methodology used to estimate return values in the current work. Section 3.1 motivates

the STM-E approach, and Section 3.2 outlines the modelling procedure. Section 3.3 provides a discussion of some of the110

diagnostic tests performed to ensure that STM-E modelling assumptions are satisfied.

5



Figure 3. Spatial distributions of maximum SWH for the four largest synthetic cyclone events. Each panel gives the maximum SWH (over

the period of the cyclone) per location.

3.1 Motivating the STM-E model

The STM-E procedure has been described in Wada et al. (2018) and Wada et al. (2020). The approach is intended to provide

straightforward estimation of extreme environments over a spatial region, from a relatively small sample of rare events such

as cyclones, the effects of any one of which do not typically influence the whole region. For each cyclone event, the space-115

time characteristics of the event are summarised using two quantities, the space-time maximum (STM) of the cyclone and the

spatial exposure (E) of each location in the region to the event. For any cyclone, the STM is defined as the largest value of SWH
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observed anywhere in the spatial region for the time period of the cyclone. The location exposure E is defined as the largest

value of SWH observed at that location during the time period of the cyclone, expressed as a fraction of STM; thus values of

E are in the interval [0,1].120

The key modelling assumptions are then that (i) the future characteristics of STM and E over the region will be the same

as those of STM and E during the period of observation, (ii) in future, at any location, it is valid to associate any simulated

realisation of STM (under an extreme value model based on historical STM data) with any realisation of E (under a model for

the distribution of E based on historical exposure data).

3.2 STM-E procedure125

The steps of the modelling procedure are now described. The first three steps of the procedure involve isolation of data for

analysis. (a) An appropriate region of ocean is selected. The characteristics of this region need to be such that the underpinning

conditions of the STM-E approach are satisfied (as discussed further in Section 3.3). (b) For each tropical cyclone event

occurring in the region, the largest value of SWH observed anywhere in the region for the period of the cyclone (STM) is

retained. (c) Per location in the region, the largest value of SWH observed during the period of the cyclone, expressed as a130

fraction of STM, is retained as the location exposure E to the cyclone.

The next three steps of the analysis involve statistical modelling and simulation. (d) First, an extreme value model is esti-

mated using the largest values from the sample of STM; typically, a generalised Pareto distribution (see e.g. Coles et al. 2001)

is assumed. Then a model for the distribution of location exposure E is sought; typically we simply re-sample at random with

replacement from the values of historical exposures for the location, although model-fitting is also possible. (e) Next, reali-135

sations of random occurrences of STM from (d), each combined with a randomly-sampled exposure E per location, permits

estimation of the spatial distribution of SWH corresponding to return periods of arbitrary length. (f) Finally, diagnostic tools

are used to confirm the consistency of simulations (e) under the model with historical cyclone characteristics.

3.3 Diagnostics for STM-E modelling assumptions

The success of the current approach relies critically on our ability to show that simplifying assumptions regarding the charac-140

teristics of STM and exposure are justified for the data to hand. In particular, the approach assumes that (i) the distribution STM

does not depend on cyclone track, environmental covariates, space and time, and (ii) the distribution of exposure per location

does not depend on STM, cyclone track, environmental covariates and time. Diagnostic tests are undertaken to examine the

plausibility of these conditions for the region of ocean of interest for each application undertaken. Establishing the validity

of the STM-E conditions is vital for credible estimation of return values. Section 5 of Wada et al. (2018) provides a detailed145

discussion of diagnostic tests that should be considered to judge that the STM-E conditions are not violated in any particular

application. For example, the absence of a spatial trend in STM over the region can be assessed by quantifying the size of linear

trends in STM along transects with arbitrary orientation in the region. This is then compared with a “null” distribution for linear

trend, estimated using random permutations of the STM values. Illustrations of some of the diagnostic tests performed for the

current analysis are given in Section 4 below.150
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Return value estimates from STM-E are also potentially sensitive to the choice of region for analysis. We assume that the

extremal behaviour of STM can be considered homogeneous in the region, suggesting that the region should be sufficiently

small that the same physics is active throughout it. However, the region also needs to contain sufficient evidence for cyclone

events and their characteristics to allow reasonable estimation of tails of distributions for SWH per location. The absence of

dependence between STM and E per location can be assessed by calculating the rank correlation between STM (S, a space-155

time maximum) and exposure (Ej , at location j, for locations j = 1,2, ...,p) using Kendall’s tau statistic. If the values of S

and Ej increase together, the value of Kendall’s tau statistic will be near to unity. If there is no particular relationship between

S and Ej , the value of Kendall’s tau will be near zero. For large n, if S and Ej are independent, the value of Kendall’s tau

is approximately Gaussian-distributed with zero mean and known variance, providing a means of identifying unusual values

which may indicate dependence between S and Ej . An illustrative spatial plot of Kendall’s tau is given in Section 4.160

Finally, estimates from STM-E are potentially sensitive to the extreme value threshold  n (or equivalently the sample size

n of largest observations of STM) chosen to estimate the tail of the distribution of STM over the region. Results in Section 4

are reported for a number of choices of n for this reason.

3.4 Modelling STM and estimating return values

Suppose we have isolated a set of n0 values of STM using the procedure above. We use the largest n n0 values {si}ni=1,165

corresponding to exceedances of threshold  n, to estimate a generalised Pareto model for STM, with probability density

function

Pr(S  s|S >  n) = FS| S
(s) (1)

large  n⇡ FGP (s) = 1�
✓
1+

⇠

�n
(s� n)

◆�1/⇠

for ⇠ 6= 0

= 1� exp

✓
� 1

�n
(s� n)

◆
otherwise170

with shape parameter ⇠ 2 R and scale parameter �n > 0. Choice of n is important, to ensure reasonable model fit and bias-

variance trade-off. The estimated value of ⇠ should be approximately constant as a function of n for sufficiently large  n and

hence small n. The full distribution FS(s) of STM can then be estimated using

FS(s) =

8
<

:
F

⇤
n
(s) for s  n

⌧n +(1� ⌧n)FS| n
(s) otherwise

(2)

where F ⇤
n
(s) is an empirical “counting” estimate below threshold  n, and ⌧n is the non-exceedance probability corresponding175

the  n, again estimated empirically.

Using this model, we can simulate future values Hj of SWH at any location j, (j = 1,2, ...,p) in the region, relatively

straightforwardly. Suppose that Ej is the location exposure at location j, and FEj its cumulative distribution function, estimated
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empirically. Since then Hj = Ej ⇥S, the cumulative distribution function of Hj can be estimated using

FHj (h) = P(Hj  h) (3)180

=

Z

s

P(EjS  h | S = s)fS(s)ds

=

Z

s

P(Ej  h/s)fS(s)ds

=

Z

s

FEj (h/s)fS(s)ds

where fS(s) is the probability density function of STM, corresponding to cumulative distribution function FS(s) estimated in

Equation 2.185

4 Application of STM-E to cyclones SWH near Guadeloupe

The STM-E methodology outlined in Section 3 is applied to data for the neighbourhood of Guadeloupe’s main island pair

described in Section 2. The objective of the analysis is to estimate the T -year return value for SWH from T0 years of data

(for (T0,T ) pairs (200,500) and (50,100)). First, details of the set-up of the STM-E analysis are provided in Section 4.1.

Then, in Section 4.2, we describe two competitor methods included for comparison with STM-E. Section 4.3 then describes190

estimates for the 500-year return value on the 100m iso-depth contour around Guadeloupe’s main island pair and the line

transect introduced in Section 2, illustrated in Figure 2, using maximum likelihood estimation (see e.g. Hosking and Wallis

1987, Davison 2003). For comparison, Section 4.4 then provides estimates obtained using probability weighted moments (see

e.g. Furrer and Naveau 2007,de Zea Bermudez and Kotz 2010a, de Zea Bermudez and Kotz 2010b). Section 4.5 describes some

of the diagnostic tests undertaken to confirm that the fitted model is reasonable. Section 4.6 outlines inference for T = 100-year195

return value from data corresponding to T0 = 50 years.

4.1 Details of STM-E application

The spatial region of interest is the neighbourhood of Guadeloupe’s main island pair in the Caribbean Sea, corresponding to

approximately longitudes 12��18�N and latitudes 58��65�W (see Figure 1). An initial analysis using Kendall’s tau suggests

the full region (45� � 65�W,9.5� � 8.3�N) shows dependency of STM and exposure, with stronger cyclones tending to pass200

through the western part of the region. However, if a very high threshold  ⇡ 20m were to be selected for analysis, reasonable

decoupling of STM and E could be achieved, with relatively less intense tropical cyclones neglected. Since the focus of the

current work is the ocean environment of Guadeloupe archipelago, a smaller region (see Figure 1, right panel) was defined.

For this region, Kendall’s tau indicated low dependence between STM and E for thresholds  of 10m and above, as illustrated

in the left panel of Figure 4.205

The right panel of Figure 4 shows the location and magnitude of STM for each of the n= 60 largest cyclones observed in

the region. There is no obvious spatial dependence between the size of STM and its location. In Section 3.3, we discuss the
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Figure 4. Diagnostics for STM-E. Left: plot of Kendall’s tau for analysis region using a threshold of 10m. Each point corresponds to a location

where SWH data is available and water depth exceeds 100m. The black dots indicate values of Kendall’s tau within the 90% confidence

interval. Red (blue) crosses indicate positive (negative) values of Kendall’s tau exceeding the 90% confidence band. The percentage of

recorded exceedances of the 90% confidence band for Kendall’s tau is less than 10%. Right: Locations of all STMs exceeding 10m coloured

by size of STM in metres.

use of rank correlation of STM along latitude-longitude transects as a means to quantify dependence in general. In fact, the

Kendall’s tau analysis illustrated in the left panel would also indicate any strong spatial dependence in STM; therefore, results

of the rank correlation analysis along latitude-longitude transects are not presented. We conclude that Figure 4 does not suggest210

that the modelling assumptions underlying STM-E are not satisfied.

The relatively large number of boundary STM values reflect occurrences of cyclones, the true STM locations of which occur

outside the analysis region. For these events, the value of STM used for analysis is the largest value of SWH observed within

the analysis region. In this sense, we are performing the STM-E analysis conditional on the choice of region. For example,

consider a cyclone for which the location of the STM value s
⇤ falls outside the region of interest. Then the conditional STM215

value s for the cyclone (within the region) will of course be smaller than s
⇤; however, the cyclone’s conditional exposure

(assessed relative to the conditional STM s for the region, rather than the full STM s
⇤) will consequently be larger.

Specific interest lies in the variation of extreme return value around Guadeloupe, and the rate of increase of return value with

increasing water depth away from the coasts. It is known that SWH at a location is dependent on water depth, bathymetry and

coastlines, since e.g. ocean waves in shallow water are influenced by bottom effects, and since both wind and wave propagation220

can be weakened in the vicinity of coastlines. For this reason, two sets of locations were adopted for the detailed analysis

reported here. The first set corresponds to 19 locations on an approximately iso-depth contour at 100m depth around the main

island pair of Guadeloupe. This depth value is typically chosen to define the boundaries of the local scale high resolution

flooding simulations. The second set corresponds to 12 locations on a line transect emerging approximately normally from
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the north-east of the main island pair of Guadeloupe. We focus on the north-east neighbourhood, because it has the highest225

exposure to cyclones. The contour and transect are illustrated in Figure 2, and location numbers are listed.

Focus of the analysis is estimation of the T = 500-year return value for SWH on the iso-depth contour and line transect,

based on T0 = 200 years of data, to quantify the uncertainty in the 500-year return value using STM-E analysis. The following

procedure was adopted. (a) Randomly select the appropriate number of cyclones (corresponding to T0 years of observation)

from the TL years of synthetic cyclones. (b) Identify the largest n values of STM in the sample, for n= 20,30,40,50 and 60230

(corresponding to lowering the extreme value threshold). (c) Estimate a model for the distribution of STM using maximum

likelihood estimation or the method of probability weighted moments. (d) Estimate the empirical distribution of exposure E per

location on the iso-depth contour and line transect. (e) Estimate the 500-year return value as the quantile of the distribution FHj

of significant wave height at location j with non-exceedance probability 1� (T0/n)/T . Finally, the whole procedure (a)-(e) is

repeated 100 times to quantify the uncertainty in the T -year return value.235

Figure 5 illustrates the tails of the distribution of STM from the largest 30 values of STM from each of 100 random samples

corresponding to 200 years, and from the full sample of synthetic cyclones. It can be seen that the 500-year return value for

STM lies in the region (20,30)m. Typical distributions of exposure E per location are given in Figure 11, and discussed in due

course.

Figure 5. Variability of tail of distributions for STM on log scale. Each of the 100 red lines is estimated from a sample size 30 of largest

STM values from a random sample of 124 cyclones corresponding to 200 years of observation. The black points indicate the corresponding

empirical distribution of STM from the full synthetic cyclone data.
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4.2 Benchmarking against the full cyclone database and single-location analysis240

One obvious feature of the current synthetic cyclone database is that it corresponds to long time period relative of TF = 3,200

years, much longer than the return period of T = 500 years being estimated in the current analysis. Thus, we are able to

estimate the 500-year return value at any location using the full synthetic cyclone data, by simply interpolating the 6th and 7th

largest values, corresponding to the non-exceedance probability in 500 years. This provides a direct empirical estimate.

From previous work, a key advantage found using the STM-E approach is that it provides less uncertain estimates at a245

location compared with conventional “single location” analysis. We wish to demonstrate in the current work that this is also

the case. For this reason, we also calculate estimates for comparison with those from STM-E, based on independent analysis

of cyclone data from each location of interest. The procedure is as follows. (a) Randomly select the appropriate number of

cyclones (corresponding to T0 years) from the TF years of synthetic cyclones for a single location (indexed by j). (b) Identify

the largest value of SWH per cyclone, and call this the peak SWH. (c) Identify the n values of peak cyclone SWH in the sample,250

for n= 20,30,40,50 and 60. (d) Estimate a model for the distribution of peak SWH using maximum likelihood estimation or

the method of probability weighted moments. (e) Estimate the T -year return value as the quantile of the distribution of peak

significant wave at location j with non-exceedance probability 1� (T0/n)/T . Finally, repeat (a)-(e) 100 times to quantify the

uncertainty in the T -year return value.

4.3 Maximum likelihood estimation255

Figure 6 illustrates the 500-year return value for SWH using maximum likelihood estimation for locations on the 100m iso-

depth contour around Guadeloupe’s main island pair, with location numbers given in Figure 2. The figure caption gives relevant

details of the figure layout. Across the 19 locations considered, the 500-year return value is estimated using STM-E (blue),

single-location (red) and full synthetic cyclone data (black); in general, there is good agreement between estimates per location.

Bias characteristics for single-location and STM-E estimates are relatively similar in general. It can be seen however (from260

the longer red whiskers) that the uncertainty in single-location estimates is greater in general from the corresponding STM-E

estimates.

As the number points used for STM-E estimation per location increases, there is evidence for reduction in the uncertainty

with which the return value is estimated, as might be expected. However, there is also some evidence for a small increase in

the mean estimated return value. This is explored further in Section 4.5. There is very little corresponding evidence for reduced265

uncertainty in the single-location analysis. There are more outlying estimates of return value for single-location analysis than

for STM-E.

The corresponding results for the line transect analysis using maximum likelihood estimation is given in Figure 7. The

general characteristics of this figure are similar to those of Figure 6. The return value increases as would be expected with

increasing water depth. Single-point estimates are more variable that those from STM-E. Biases appear to be relatively small270

and similar for STM-E and single-location estimates. There is little evidence that the STM-E median estimate increases with

12



Figure 6. 500-year return value for SWH using maximum likelihood estimation for the 100m iso-depth contour. The x-axis gives the reference

numbers of the 19 locations on the contour. Location numbers are given in Figure 2. Corresponding to each location, the blue box-whiskers

summarise the estimated return value from STM-E for different sample sizes 20, 30, 40 50 and 60; the red box-whiskers summarise the

estimated return values from single-location analysis for different sample sizes. For each blue-red cluster of box-whiskers corresponding to

a specific location, return value estimates for the increasing sequence of sample sizes are plotted sequentially outwards from the centre of

the cluster. For all box-whiskers, the box represents the inter-quartile interval, the median and mean are shown are solid and dashed lines.

Whiskers represent the 2.5% to 97.5% interval. Exceedances of this 95% interval are shown as dots. The black horizontal line for each

location corresponds to the empirical estimate of the return value obtained directly from the full synthetic cyclone data for that location.

increasing sample size. We infer from the analysis that water depth has little effect on the performance of the STM-E approach.

4.4 Results estimated using probability weighted moments

Estimates for the 500-year return value on the iso-depth contour, obtained using the method of probability weighted moments,275

are shown in Figure 8. The behaviour of STM-E and single-location estimates shown is very similar to that illustrate for

maximum likelihood estimation in Figure 6.

Results for the line transect using probability weighted moments are given in Figure 9; again, the figure shows similar trends

to Figure 7. There is some evidence that the STM-E median estimate increases with increasing sample size, and that this

reduces bias.280

4.5 Assessment of model performance

Comparing box-whisker plots from centre to left for each location in the figures in Sections 4.3 and 4.4 suggests that there is

sometimes a small increasing trend in return value estimates from STM-E as a function of increasing sample size for inference.
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Figure 7. 500-year return value for SWH using maximum likelihood estimation for the line transect. The x-axis gives the reference numbers

of the 12 locations on the transect. Briefly, for each location, blue and red box-whiskers summarise the estimated return value from STM-E

and single-location analysis respectively; see caption of Figure 6 for other details. The black horizontal lines for each location correspond to

the empirical estimate of the return value obtained directly from the full synthetic cyclone data for that location. Water depths at the 12 line

transect locations are given in the caption to Figure 2.

Figure 8. 500-year return value for SWH estimated using probability weighted moments for the 100m depth contour. The x-axis gives the

reference numbers of the 19 locations on the contour. Briefly, for each location, blue and red box-whiskers summarise the estimated return

value from STM-E and single-location analysis respectively; see caption of Figure 6 for other details. The black horizontal lines for each

location corresponds to the empirical estimate of the return value obtained directly from the full synthetic cyclone data for each location.
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Figure 9. 500-year return value for SWH estimated using probability weighted moments for the line transect. The x-axis gives the reference

numbers of the 12 locations on the transect. Briefly, for each location, blue and red box-whiskers summarise the estimated return value

from STM-E and single-location analysis respectively; see caption of Figure 6 for other details. The black horizontal lines for each location

corresponds to the empirical estimate of the return value obtained directly from the full synthetic cyclone data for each location. Water depths

at the 12 line transect locations are given in the caption to Figure 2.

We investigate the trend further here. Figure 10 gives estimates for the 500-year return value of space-time maximum STM

(as opposed to the full STM-E estimate for SWH) as a function of sample size used for estimation, using maximum likelihood285

estimation (blue) and probability weighted moments (red). Also shown in black is the empirical estimate of the 500-year STM

return value obtained directly from the synthetic cyclone data. The figure shows a number of interesting effects. Firstly, STM

estimates from both maximum likelihood and the probability weighted moments increase with increasing sample size n, and

that this effect is more pronounced for probability weighted moments. As a result, the bias of estimates using probability

weighted moments is considerably larger than that from maximum likelihood estimation for sample size of 60. The uncertainty290

of estimates from probability weighted moments is also somewhat larger than that from STM-E.

A number of studies in the literature compare the performance of different methods of estimation of extreme value models.

The method of probability weighted moments is known to perform relatively well relative to maximum likelihood estimation

for small samples (see, e.g., Jonathan et al. (2021), Section 7 for a discussion). For small samples, for example, maximum

likelihood estimation is known to underestimate the generalised Pareto shape parameter, and over-estimate the corresponding295

scale parameter, leading to bias in return value estimates. The results in Figure 10 indicate that, if anything, maximum likelihood

estimation performs somewhat better than the method of probability weighted moments for the current application. Regardless,

the trends in Figure 10 serve to illustrate the importance of performing the STM extreme value analysis with great care,

particularly for small sample sizes.
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Figure 10. The effect of sample size on estimates of return values for STM. Box-whiskers summarise estimates for the 500-year STM return

value based on maximum likelihood estimation (blue) and the method of probability weighted moments (red), for different sample sizes. The

black dashed line gives an empirical estimate of the return value obtained directly from the synthetic cyclone data.

One of the assumptions underpinning the STM-E approach is that the exposure distribution at a location is not dependent on300

the magnitude of STM. We investigate this further here. Our aim is to show that the empirical cumulative distribution function

for exposure (henceforth ECDF for brevity) corresponding to the largest and smallest STMs are typical of ECDFs in general,

and are in no way special relative to EDCFs corresponding to other cyclones. We can quantify the difference between two

ECDFs using the Kullback–Leibler divergence (KL). We proceed to estimate the “null” distribution of KL using 1,000 sets of

randomly-selected pairs of ECDFs. In addition, we calculate the Kullback-Leibler divergence (Liese and Vajda (2006)) KL⇤305

for the pair of ECDFs corresponding to cyclones with the largest and smallest STMs. If there is no dependence of ECDF on

STM, then the value of KL⇤ should correspond to a random draw from the null distribution of KL. The left-hand panel of

Figure 11 illustrates the null distribution of KL at Location 21, for sample size 20, together with the corresponding value of

KL⇤. We note that the value of KL⇤ is not extreme in the null distribution. In the right-hand panel of Figure 11, the empirical

cumulative distribution function of the non-exceedance probability of KL⇤ (in the corresponding null distribution) is estimated310

over all locations and sample sizes. The approximate uniform density found, suggests indeed that KL⇤ corresponds to a random

draw from the null distribution; a Kolmogorov-Smirnoff test on the data suggested that it was not significantly different to a

random sample from a uniform distribution on [0,1]

Complementary analyses (not shown) evaluated KL⇤ for ECDFs corresponding to the largest two STMs in the data, and (sep-

arately) for ECDFs corresponding to the smallest two STMs. Results again indicated that both of these choices for KL⇤ could315

be viewed as random in their null distributions. Since exposure distribution at a location is not dependent on the magnitude of

STM, we assume the overall performance of STM-E is mainly governed by the estimation of STM.
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Figure 11. Left: Histogram of KL from random pairs of empirical distribution functions for exposure (corresponding to the “null” distri-

bution of KL), together with KL⇤ for Location 21 with sample size 20. Right: Histogram of the non-exceedance probability of KL⇤ (in the

corresponding null distribution for KL) over all locations and sample sizes.

4.6 Model performance for smaller sample sizes

Here we repeat the analysis in Sections 4.1-4.5 above for the T = 100-year return value for SWH on the iso-depth contour

and line transect, based on T0 = 50 years of data. The typical number of tropical cyclone events occurring in 50 years is320

approximately 30, already corresponding to a very small sample size for extreme value analysis. We retain the largest n

values of STM in the sample, for n= 10,15 and 20 for this analysis. The overall performance of STM-E estimates, relative

to those from single-location analysis and an empirical estimate from the full synthetic cyclone data is summarised in Figure

12 for the line transect, using the method of probability weighted moments (and see also Table 2 in the next section for a

summary including estimates using maximum likelihood). The figure’s features are similar to those of figures discussed earlier.325

Estimates from STM-E show lower bias and reduced uncertainty relative to those from single location analysis. There is

slight underestimation of the return value, but the empirical estimate sits comfortably within the 25%-75% uncertainty band

(corresponding to the “box” interval). The corresponding plots (not shown) for the iso-depth contour, and for estimation using

maximum likelihood, are similar.

5 Discussion330

This work considers the estimation of T -year return values for SWH over a geographic region, from small sets of T0 years of

synthetic tropical cyclone data, using the STM-E (space-time maxima and exposure) methodology. We assess the methodology

by comparing estimates of the T -year return value (T > T0) for locations in the region from STM-E, with those estimated
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Figure 12. 100-year return value for SWH using probability weighted moments for the line transect. The x-axis gives the reference numbers

of the 12 locations on the transect. Briefly, for each location, blue and red box-whiskers summarise the estimated return value from STM-E

and single-location analysis respectively; see caption of Figure 6 for other details. The black horizontal lines corresponds to the empirical

estimate of the return value obtained directly from the full synthetic cyclone data for each location. Water depths at the 12 line transect

locations are given in the caption to Figure 2.

directly from a large database corresponding to TL (> T ) years of synthetic cyclones. We find that STM-E provides estimates

of the T = 500-year return value from T0 = 200 years of data in the region of Guadeloupe archipelago with low bias. We also335

compare STM-E estimates of T -year return values for locations in the region with those obtained by extreme value analysis of

data (for T0 years) at individual locations. We find that the uncertainty of STM-E estimates is lower than that of single-location

estimates. Comparison of the performance of inferences for the T = 100-year return value from T0 = 50 also suggests STM-E

outperforms single-location analysis.

For reasonable application of the STM-E approach, it is important that characteristics of tropical cyclones over the region340

under consideration satisfy a number of conditions. These conditions are shown not to be violated for a region around Guade-

loupe archipelago, but that use of the STM-E method over a larger spatial domain would not be valid (see e.g. Wada et al.

2019). This demonstrates that selection of an appropriate geographical region for STM-E analysis is critical to its success.

Once such a region is specified, we find that STM-E provides a simple but principled approach to return value estimation

within the region from small samples of tropical cyclone data.345

Return value estimates from STM (see e.g. Figure 10) show a small increasing bias with increasing sample size for extreme

value estimation. However, the resulting bias in full STM-E return values is small. Corresponding estimates based on single-

location analysis also show relatively small but increasing negative bias with increasing sample size. In the present work, the

tail of the distribution of STM was estimated by fitting a generalised Pareto model, using either maximum likelihood estimation
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or the method of probability weighted moments. Estimates for extreme quantiles of STM using either approach are in good350

agreement.

Table 1 summarises the performance of STM-E and single-location analysis in estimation of the bias and uncertainty of

the 500-year return value, relative to empirical estimates from the full synthetic cyclone data, for analysis sample sizes of

n=20, 30, 40, 50 and 60. Bias B(n;Mth) and uncertainty U(n;Mth) are estimated as average characteristics over all |L|= 31

locations ` 2 L= {1,2, ...,31} on the iso-depth contour and line transect corresponding to the relevant sample size, using the355

expressions

B(n;Mth) =
1

|L|
X

`2L

⇣
h̃(`;n,Mth)� h̃0(`;n)

⌘
, U(n;Mth) =

1

|L|
X

`2L

✓
r(`;n,Mth)
r0(`;n)

� 1

◆
. (4)

Here, h̃(`;n,Mth) and h̃0(n) correspond to the mean 500-year return value estimated using sample size n from inference

method Mth (either maximum likelihood or probability-weighted moments) and directly from the full synthetic cyclone

database; r(`;n,Mth) and r0(n) are the corresponding 50% uncertainty bands. The table summarises the findings presented360

pictorially in Figures 6-8. In terms of bias, STM-E and single-location estimates underestimate the return value on average.

STM-E is less biased than single location estimates except for sample sizes 20 and 30 using probability weighted moments.

STM-E also provides estimates of the 500-year return value with higher precision than the single-location analysis.

]

Table 1. Performance of STM-E and single-location analysis in estimation of the bias and uncertainty of the 500-year return value, relative

to empirical estimates from the full synthetic cyclone data, for analysis sample sizes of 20, 30, 40, 50 and 60 all extracted from 200-year

data set. Bias B is assessed as the average difference (over the iso-depth contour and line transect analyses) between the mean STM-E (or

single-location) estimate and the return value estimate from the full cyclone database. Similarly, uncertainty U is assessed in terms of the

average width of the 50% uncertainty band of the STM-E (or single-location) estimate.

Maximum likelihood n= 20 30 40 50 60

Bias mean STM-E �0.073 �0.171 �0.225 �0.198 �0.018

Bias median for single location �0.437 �0.225 �0.246 �0.333 �0.419

50% intervals STM-E 2.589 2.200 1.734 1.589 1.529

50% intervals for single location 2.842 2.971 3.025 2.915 2.778

Probability weighted moments n= 20 30 40 50 60

Bias mean STM-E �0.199 �0.263 �0.158 �0.109 �0.381

Bias median for single location �0.158 �0.096 �0.246 �0.494 �0.713

50% intervals STM-E 2.487 2.053 1.773 1.650 1.594

50% intervals for single location 3.054 3.154 3.261 3.377 3.436
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Table 2 provides the corresponding summary for estimation of the T = 100-year return value from a sample corresponding

to approximately T0 = 50 years of data. Features are similar to those of Table 1.

Table 2. Performance of STM-E and single-location analysis in estimation of the bias and uncertainty of the 100-year return value, relative to

empirical estimates from the full synthetic cyclone data, for analysis samples of size of 10, 15, and 20 all extracted from 50-year data set. Bias

B is assessed as the average difference (over the iso-depth contour and line transect analyses) between the mean STM-E (or single-location)

estimate and return value estimated from the full cyclone data. Similarly, uncertainty U is assessed in terms of the average width of the 50%

uncertainty band of the STM-E (or single-location) estimate.

Maximum likelihood n= 10 15 20

Bias mean STM-E �0.476 �0.234 �0.087

Bias mean for single location �0.744 �0.787 �0.771

50% intervals STM-E 2.545 2.089 1.705

50% intervals for single location 3.071 3.044 3.005

Probability weighted moments n= 10 15 20

Bias mean STM-E �0.740 �0.246 �0.017

Bias mean for single location �0.770 �0.737 �0.798

50% intervals STM-E 2.603 2.105 1.857

50% intervals for single location 3.087 3.029 3.138

365

An appropriate choice of sample size n for STM-E analysis is likely to be related to the size n0 of the full sample available,

and the period T0 to which the sample corresponds. For example, in the current work for T = 500 years, n= 20 and n0 = 124

is approximately equivalent to the largest 15% of cyclones for the sample period T0 = 200 year. That is, the smallest cyclone

considered in the n= 20 STM-E model has a return period of the order of 10 years. With n= 60, we use approximately half

the sample for STM-E analysis, and the smallest cyclone in the STM-E analysis has a return period of the order of 3 years. In370

the case T = 100 years, T0 = 50 and n0 ⇡ 30, we found that STM-E performance was still reasonable using n= 12,15 and

20.

Inferences from the current work confirm the findings of previous studies (Wada et al. 2018, Wada et al. 2020) that STM-E

provides improved estimates of return values compared to statistical analysis at a single location. From an operational perspec-

tive, STM-E is useful for regions like the south-west Pacific ocean (McInnes et al. 2014) or Indian Ocean basin (Lecacheux et al.375

2012) where cyclone-induced storm wave data is limited. For such locations, STM-E achieves low bias and higher precision,

and should be preferred to the single-location approach.

Code availability. MATLAB code for the analysis is provided on GitHub at Wada et al. (2021).
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