
1 

 

Equivalent Hazard Magnitude Scale 

Yi Victor Wang1, Antonia Sebastian1 

1 Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States of 

America 

Correspondence to: Yi Victor Wang (y.v.wang@unc.edu) 5 

Abstract. Hazard magnitude scales are widely adopted to facilitate communication regarding hazard events and the 

corresponding decision making for emergency management. A hazard magnitude scale measures the strength of a hazard event 

considering the natural forcing phenomena and the severity of the event with respect to average entities at risk. However, 

existing hazard magnitude scales cannot be easily adapted for comparative analysis across different hazard types. Here, we 

propose an equivalent hazard magnitude scale, called the Gardoni Scale after Professor Paolo Gardoni, to measure hazard 10 

strength across multiple types of hazards. Using global historical records of hazard magnitude indicators and impacts of events 

of 12 hazard types from 1900 to 2020, we demonstrate that an equivalent hazard magnitude on the Gardoni Scale can be 

derived as correlated with the expectation of an impact metric of hazard event. In this study, we model the impact metric as a 

function of fatalities, total affected population, and total economic damage. Our results show that hazard magnitudes of events 

can be evaluated and compared across hazard types. For example, we find that tsunami and drought events tend to have large 15 

hazard magnitudes, while tornadoes are relatively small in terms of hazard magnitude. In addition, we demonstrate that the 

scale can be used to evaluate hazard equivalency of historical events. For example, we show that the hazard magnitude of the 

February 2021 North American cold wave event affecting the southern states of the United States of America was equivalent 

to the hazard magnitude of Hurricane Harvey in 2017 or a magnitude 7.5 earthquake. Future work will expand the current 

study in hazard equivalency to modelling of local intensities of hazard events and hazard conditions within a multi-hazard 20 

context. 

1 Introduction 

Natural hazards pose significant challenges to human societies around the world. Between 2000 and 2020, natural hazard 

events caused over 130 billion dollars in losses, 64 695 fatalities, and affected more than 196 million people on average each 

year (Guha-Sapir et al., 2021). Hazard events with a strong natural force, such as earthquakes, floods, and forest fires, can 25 

inflict heavy losses to communities when vulnerable living beings and properties of value are exposed to the natural forces of 

these events. To measure the size of a hazard event in terms of its impacts, several research teams have proposed impact scales, 

including the Bradford disaster scale (Keller et al., 1992; 1997), unified localizable crisis scale (Rohn and Blackmore, 2009; 

2015), disaster impact index (Gardoni and Murphy, 2010), and cascading disaster magnitude (Alexander, 2018). These impact 

scales take into consideration the effect of hazard strength. However, there is a qualitative difference between a hazard impact 30 
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scale and a hazard strength scale: while a hazard strength scale such as the earthquake moment magnitude can be used to 

indicate the degree of natural force of an event, the impacts of event are also determined by the exposure and vulnerability of 

entities such as individuals, communities, and infrastructures to the event. Thus, while a hazard event may have a large value 

on a hazard strength scale, it may also be associated with a small or zero measure on an impact scale due to low exposed value 

and/or low vulnerability. Simultaneously, a hazard with events frequently occurring in a geographic region with a small value 35 

on a hazard strength scale, may be ranked high in terms of its impact if there have been a large number of exposed entities 

and/or high vulnerability to that type of hazard historically. This makes it difficult to use impact scales to compare the hazard 

strength across natural hazard types.  

Because most of the hazard-related concepts such as hazard exposure, hazard vulnerability, and hazard resilience are only 

meaningful when considered with respect to a spectrum of hazard strength, studies on hazard strength indicators and scales 40 

provide the foundational knowledge and frameworks in the field of natural hazards. In addition, hazard scientists have long 

called for separation of natural forcing phenomena (Bensi et al., 2020) from the study of disasters to better understand the 

causes of impacts rooted in the social and economic fabrics of entities exposed to natural hazards (e.g., O’Keefe et al. 1976; 

Wisner et al. 2004). In this regard, quantifying hazard strength helps separate the natural force from other environmental, 

societal, and infrastructural impacts to facilitate scientific understanding of natural hazard phenomena for disaster risk 45 

reduction, especially within a multi-hazard context. Yet, despite the large volume of research that focuses on hazard strength 

for singular natural hazard types such as earthquake (e.g., Wood and Neumann, 1931; Richter, 1935; Kanamori, 1977; 

Katsumata, 1996; Grünthal, 1998; Wald et al., 2006; Rautian et al., 2007; Serva et al., 2016), tropical cyclone (e.g., Simpson 

and Saffir, 1974; Bell et al., 2000; Emanuel, 2005; Powell and Reinhold, 2007; Hebert et al., 2008), tornado (e.g., Fujita, 1971; 

1981; Meaden et al., 2007; Potter, 2007; Dotzek, 2009), and drought (e.g., Palmer, 1965; 1968; Shafer and Dezman, 1982; 50 

McKee et al., 1993; Byun and Wilhite, 1999; Shukla and Wood, 2008; Hunt et al., 2009), few have quantified or modelled 

hazard strength across multiple hazard types for cross-hazard comparison. 

To enable evaluation of event-wise hazard strengths across different hazard types, in this article, we propose a multi-hazard 

equivalent hazard magnitude scale – the Gardoni Scale – for natural hazards. The proposed scale is named after the Alfredo 

H. Ang Family Professor Paolo Gardoni (2017; 2019) at the University of Illinois at Urbana–Champaign (Gardoni and Murphy, 55 

2013; 2014; 2020). Because hazard strength is correlated with hazard impacts given average exposed value and vulnerability 

of considered entities, the expectation of a metric of observed impacts of hazard events can be used to calibrate models for 

deriving equivalent hazard magnitudes on the Gardoni Scale (Hillier et al. 2015; Hillier and Dixon 2020; Wang and Sebastian, 

2021b). In this article, a quantitative modelling methodology based on a principal component analysis (PCA) and a set of linear 

regressions is developed to construct the impact metric and derive equivalent hazard magnitudes on the Gardoni Scale. The 60 

impact metric is a function of three impact variables, i.e., fatality, total affected population, and total damage in 2019 USD. 

We use historical data from the EM-DAT International Disaster Database (Guha-Sapir et al., 2021) on hazard magnitude 

indicators and impact variables of global hazard events of 12 natural hazard types from 1900 to 2020 to calibrate the 
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quantitative models. To demonstrate the value of the proposed scale, we apply it to discuss the equivalent magnitudes of recent 

hazard events in the southern United States of America (USA). 65 

In subsequent sections, we first review issues associated with the existing scales for natural hazard events to provide the 

theoretical background of this study. We then introduce our methodology, including data processing, to derive equivalent 

hazard magnitude on the Gardoni Scale. Next, we lay out the results of applying our methodology and compare natural hazard 

types regarding derived equivalent hazard magnitudes. Finally, we discuss the potential contributions and limitations of the 

presented study before concluding the article. 70 

2 A Problem of Scales 

In natural hazards research, theoretical frameworks are based on basic concepts, such as hazard, impact, exposure, 

vulnerability, and resilience, that often have overlapping or discipline-specific definitions (see, e.g., Klijn et al., 2015). These 

inconsistencies across disciplines may result in confusion in quantitative modelling. To reduce conceptual confusion, we first 

outline the theoretical framework and clarify the meanings of basic concepts used in this study. Herein, the impacts of a natural 75 

hazard event, such as an earthquake, tropical cyclone, or tornado, are the result of natural strength of hazard agent, value of 

entities exposed to the event, and susceptibility of the exposed entities to hazard impacts (Nigg and Mileti, 1997; Coburn and 

Spence, 2002; Wisner et al., 2004; Dilley et al. 2005; McEntire, 2005; Peduzzi et al. 2005; Adger, 2006; Burton, 2010; Lindell, 

2013; Birkmann et al., 2014; Highfield et al., 2014; van de Lindt et al., 2020). As shown in Fig. 1, hazard strength of an event 

is one of the main drivers, albeit not the sole driver, of impacts. 80 

 

Figure 1: Hazard event impacts as the result of hazard strength, exposed value, and susceptibility of exposed entities. 

Hazard strength is often referred to as the hazard magnitude or hazard intensity (Blong, 2003; Alexander, 2018). However, 

these two things are not equivalent. A hazard magnitude is a measure of the size of, or the total energy involved in, the entirety 

of a hazard event (Blong, 2003; Alexander, 2018). Examples of hazard magnitude scale include earthquake Richter magnitude 85 

(Richter, 1935), earthquake moment magnitude (Kanamori, 1977), Abe tsunami magnitude (Abe, 1979), Murty–Loomis 

tsunami magnitude (Murty and Loomis, 1980), landslide magnitude (Arbanas and Arbanas, 2015), earthquake-triggered 

landslide magnitude (Tanyaş et al., 2018), volcanic explosivity index (Newhall and Self, 1982), Pyle volcanic eruption 
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magnitude (Pyle, 1995), accumulated cyclone energy index (Bell et al., 1999), tropical cyclone power dissipation index 

(Emanuel, 2005), and solar radiation storm scale [Space Weather Prediction Center (SWPC), 2011]. 90 

In contrast, hazard intensity often refers to the hazard strength of an event with respect to a given location or area and/or a 

moment or period. Recently, Wang and Sebastian (2021b) identified two definitive dimensions, i.e., the spatial and temporal 

dimensions, to categorize existing hazard strength indicators and scales. With respect to the spatial dimension, a hazard strength 

scale is categorized as agential if it indicates the size of an event within its entire spatial range and locational if it is given for 

a set of locations within the spatial range of an event. Likewise, a durational hazard strength scale corresponds to the entire 95 

duration of an event, while a momental hazard strength scale corresponds to a set of moments within the duration of an event. 

Considering both the spatial and temporal dimensions, we can therefore categorize hazard strength scales into four types, i.e., 

the agential-durational scale, the locational-durational scale, the agential-momental scale, and the locational-momental scale. 

In hazard literature, hazard magnitude scales can typically be categorized as agential-durational scales, while hazard intensity 

scales correspond to locational-durational, agential-momental, or locational-momental scales. For example, the previously 100 

mentioned hazard magnitude scales are all agential-durational, whereas the earthquake modified Mercalli intensity scale 

(Wood and Neumann, 1931; Wald et al., 2006), integrated tsunami intensity scale (Lekkas et al., 2013), and drought magnitude 

(McKee et al., 1993) are locational-durational; the volcanic Fedotov intensity scale (Fedotov, 1985), Saffir–Simpson hurricane 

wind scale [National Hurricane Center (NHC) and Central Pacific Hurricane Center (CPHC), 2021], and geomagnetic storm 

scale [Space Weather Prediction Center (SWPC), 2011] are agential-momental; and the tornado Fujita scale (Fujita, 1971), 105 

hailstorm intensity scale [The Tornado and Storm Research Organisation (TORRO), 2021], and Palmer drought severity index 

(Palmer, 1965) are locational-momental (Wang and Sebastian, 2021b). Given that an agential-durational hazard strength 

involves the entire spatial and temporal ranges of an event, with sufficient data, a locational-durational, agential-momental, or 

locational-momental hazard strength measure can be aggregated to form an agential-durational hazard strength measure of the 

event. In this study, we use term “hazard magnitude” to refer to an agential-durational hazard strength of an event. 110 

In addition to the hazard strength of an event, the value of exposed entities and susceptibility of the exposed entities also 

contribute to the impacts of the event. In hazard literature, the term “exposure” can be used to refer to either the exposed value 

or a quantity as the result of integration of hazard strength and exposed value (see, e.g., Dilley et al., 2005; Peduzzi et al., 2009; 

Klijn et al., 2015; Wang et al., 2020a; Tate et al., 2021; Wang and Sebastian, 2021a). There are also hazard exposure scales, 

such as the Northeast snowfall impact scale (Kocin and Uccellini, 2004) and regional snowfall index (Squires et al., 2014) for 115 

snowstorms, specifically developed to quantify the distribution of hazard strength and exposed value associated with an event. 

Beside exposed value in Fig. 1, susceptibility of exposed entities in hazard literature may also be referred to or modelled in 

terms of fragility or vulnerability (e.g., Gardoni et al., 2002; 2003; Choe et al., 2007; Zhong et al., 2008; Huang et al., 2010; 

Wang et al., 2020b). The inverse of susceptibility is usually conceptualized as part of the domain of resilience (Holling, 1973; 

Bruneau et al., 2003; Cutter et al., 2010; Alexander, 2013b; Ayyub, 2014; Dahlberg et al., 2015; Edwards, 2015; Yodo and 120 

Wang, 2016; Sharma et al., 2018; Logan and Guikema, 2020). In this study, we only focus on quantification of agential-

durational hazard strengths of events on the proposed equivalent hazard magnitude Gardoni Scale across multiple hazard types. 

https://doi.org/10.5194/nhess-2021-87
Preprint. Discussion started: 7 May 2021
c© Author(s) 2021. CC BY 4.0 License.



5 

 

3 Methodology 

3.1 Data 

To quantify hazard strength in terms of equivalent hazard magnitude, we used historical data on hazard impacts of hazard 125 

events to calibrate models. Because different protocols for data collection regarding different types of natural hazards may 

result in bias in model calibration, we only used data gathered from one database, i.e., the EM-DAT database (Guha-Sapir et 

al. 2021). To be included in the EM-DAT database, a hazard event needed to meet at least one of three criteria, i.e., 10 or more 

human fatalities, 100 or more people affected by the event, or a declaration of a state of emergency or an appeal for international 

assistance by a country (Guha-Sapir et al. 2021). For this study, we downloaded the entire EM-DAT datasets on all types of 130 

natural hazards. However, due to a lack of records of hazard magnitude indicators of events for some hazard types, we only 

included 12 hazard types and kept one magnitude indicator for each hazard type. In addition, we removed all data points with 

missing values of hazard magnitude indicators from our final datasets. 

The 12 considered hazard types, with their corresponding hazard magnitude indicators listed in parentheses, include: 1) cold 

wave (minimum temperature in °C); 2) convective storm (peak gust wind speed in km h-1); 3) drought (total affected area in 135 

km2); 4) earthquake (Richter magnitude); 5) extra-tropical storm (peak gust wind speed in km h-1); 6) flash flood (total flooded 

area in km2); 7) forest fire (total burnt area in km2); 8) heat wave (maximum temperature in °C); 9) riverine flood (total flooded 

area in km2); 10) tornado (peak gust wind speed in km h-1); 11) tropical cyclone (maximum sustained wind speed in km h-1); 

and 12) tsunami (earthquake Richter magnitude). We removed data points with questionable values of hazard magnitude 

indicators from our datasets. For cold wave events, we only included data points with a minimum temperature ≤0 °C; for 140 

convective storms, we only considered data points with a peak gust wind speed ≥60 km h-1; for forest fires, we only included 

data points with a burnt area ≤200 thousand km2; for heat wave events, we only considered data points with a maximum 

temperature ≥35 °C and ≤57 °C; for tornadoes, we only included data points with a peak gust wind speed ≥100 km h-1; and for 

tsunami, we only considered data points with an earthquake Richter magnitude ≥6. 

For regression modelling, we further logarithmically transformed values of hazard magnitude indicators to fit within the range 145 

(–∞, ∞)  when necessary. Hazard magnitude indicators that were not logarithmically transformed included minimum 

temperature of cold waves, Richter magnitude of earthquakes, maximum temperature of heat waves, and earthquake Richter 

magnitude of tsunami. Cold wave and heat wave events were excluded from logarithmic transformations because Celsius 

temperature has a range [–273.15, ∞) with its lower bound, –273.15, far away from 0. In the meantime, the range of an 

earthquake Richter magnitude is already a desired (–∞, ∞). 150 

3.2 Impact Metric 

In this study, we designed the impact metric as the principal component (Jolliffe, 2002; Jolliffe and Cadima, 2016) of three 

logarithmically transformed and standardized impact variables. The selected three impact variables represent three major 

impact dimensions as defined by the EM-DAT database (Guha-Sapir et al. 2021). The first impact variable, fatality, indicates 
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the number of people killed in a hazard event. The second impact variable, total affected population, refers to the sum of 155 

numbers of residents injured, made homeless, or affected but not killed by the hazard event. The third impact variable, total 

damage, indicates the total amount of damage to property, crops, and livestock in 2019 USD caused by the hazard event. 

Values of impact variables were first logarithmically transformed to be within the range (–∞, ∞). The means and standard 

deviations of the logarithmically transformed impact variables were then applied to standardize the logarithmically transformed 

impact variables (see Table 1) with the formula 160 

IV = 
ln(IVO) – μlnIV

σlnIV
 ,            (1) 

where IV denotes the logarithmically transformed and standardized impact variable, IVO is the original impact variable, μ
lnIV

 

and σlnIV are respectively the mean and standard deviation of the logarithmically transformed impact variable. The principal 

component (Jolliffe, 2002; Jolliffe and Cadima, 2016) of the three logarithmically transformed and standardized impact 

variables corresponds to the dimension, along which the variation of data points is preserved to the largest extent in the three-165 

dimensional vector space. The principal component also shows the direction of the eigenvector associated with the largest 

eigenvalue with respect to the covariance matrix of the three transformed impact variables. Each data point represents the 

impact of one hazard event experienced by one country (see supplementary material Video S1). 

 

Table 1: Means and standard deviations of original and logarithmically transformed impact variables used in the studya. 170 

Variable Unit 
Original 

mean 

Original 

standard 

deviation 

Logarithmically 

transformed mean 

Logarithmically transformed 

standard deviation 

Fatality People 1.31×103 1.18×104 3.3892 2.1999 

Total affected 

population 
People 1.38×106 9.47×106 10.4116 3.1618 

Total damage 
1 thousand 

2019 USD 
1.36×106 8.45×106 11.1889 2.6304 

aThis table corresponds to supplementary material Data S1. 
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To reduce the bias caused by factors of exposed value and susceptibility of exposed entities (Fig. 1), we included all available 

data points at the country–year level for countries around the world and hazard events from a long period of 1900–2020 to 

construct impact metric for the 12 considered hazard types. For derivation of impact metric, we only kept data points 175 

(n = 1 470) without any missing values of the impact variables. A PCA was then conducted to determine the weights of 

transformed and standardized impact variables within the impact metric. These weights were the eigen values associated with 

the principal component of the transformed and standardized impact variables (Jolliffe, 2002; Jolliffe and Cadima, 2016). The 

resulting formula for impact metric is 

IM = 0.6158IVF + 0.6215IVTA + 0.4843IVTD ,        (2) 180 

where IM denotes the impact metric and IVF, IVTA, and IVTD refer respectively to the transformed and standardized impact 

variables of fatality, total affected population, and total damage. 

3.3 Missing Values and Data Aggregation 

With the same data points for derivation of impact metric, we also calibrated six simple linear regression models and three bi-

variate linear regression models. These regression models were created to fill in missing values of impact variables for data 185 

points with at most two empty entries among the three impact variables. Within each of these nine linear regression models, 

the dependent variable is one of the three impact variables. For each of the six simple linear regression models, the independent 

variable is one of the two impact variables that are not used as the dependent variable. The simple linear regression models 

have the form 

IV1 = a1 + b1IV2 + σ1ε ,           (3) 190 

where a1 = 0  and b1  are two model coefficients, IV1  and IV2  are two considered transformed and standardized impact 

variables, σ1 is the dispersion parameter, and ε is a standard normal random variable. The statistics of parameters of these 

simple linear regression models are shown in Table 2. Per the three bivariate linear regression models, the independent 

variables are the two impact variables other than the one used as the dependent variable. The formula for the bivariate linear 

regression models is 195 

IV1 = a2 + b2IV2 + c2IV3 + σ2ε ,          (4) 

where a2 = 0, b2, and c2 are three model coefficients, IV3 is the third transformed and standardized impact variable, and σ2 is 

the dispersion parameter. Table 3 lists the statistics of parameters of the bivariate linear regression models. By applying the 

derived linear regression models, we filled in the missing values of data points. We then aggregated the country–year data 

points event-wise and reached a total of 3 844 data points, each representing one unique hazard event.  200 
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Table 2: Statistics of parameters of six simple linear regression models for filling in missing values of impact variablesa. 

Model number Dependent variable Independent variable b1 σ1 

I1 Fatality Total affected population 
0.5096 

(0.0224) 

0.8604 

(0.0159) 

I2 Fatality Total damage 
0.2802 

(0.0250) 

0.9599 

(0.0177) 

I3b Total affected population Fatality 
0.5096 

(0.0224) 

0.8604 

(0.0159) 

I4 Total affected population Total damage 
0.2948 

(0.0249) 

0.9556 

(0.0176) 

I5c Total damage Fatality 
0.2802 

(0.0250) 

0.9599 

(0.0177) 

I6d Total damage Total affected population 
0.2948 

(0.0249) 

0.9556 

(0.0176) 

aThis table corresponds to supplementary material Data S2; R2s are included in Fig. 2; standard errors are in the parentheses; estimations of 

b1 and σ1 are all significant at p < 10–20. 

bModels I1 and I3 share the same model parameters and R2. 

cModels I2 and I5 share the same model parameters and R2. 205 

dModels I4 and I6 share the same model parameters and R2. 

 

Table 3: Statistics of parameters of three bivariate linear regression models for filling in missing values of impact variablesa. 

Model number Dependent variable Independent variable 1 Independent variable 2 b2 c2 σ2 

I7 Fatality Total affected population Total damage 
0.4676 

(0.0232) 

0.1423 

(0.0232) 

0.8496 

(0.0157) 

I8 Total affected population Fatality Total damage 
0.4633 

(0.0230) 

0.1650 

(0.0230) 

0.8457 

(0.0156) 

I9 Total damage Fatality Total affected population 
0.1755 

(0.0286) 

0.2054 

(0.0286) 

0.9435 

(0.0174) 

aThis table corresponds to supplementary material Data S3; R2s are included in Fig. 2; standard errors are in the parentheses; estimations of 

b2, c2, and σ2 are all significant at p < 10–8.  210 
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3.4 Regression Models for Individual Hazards 

For each of the 12 considered hazard types, we calibrated one simple linear regression model to establish the relationship 

between hazard magnitude indicator and hazard impact metric. In general, such a regression model can be written as 

IM = a3 + b3MI + σ3ε ,           (5) 

where a3 and b3 are two model coefficients, MI denotes hazard magnitude indicator, and σ3 is the dispersion parameter. The 215 

statistics of parameters of these 12 regression models are listed in Table 4. Parameters of all linear regression models involved 

in this study were determined with a maximum likelihood approach based on Raphson’s algorithm (Raphson, 1697; Wang et 

al., 2019; Wang 2020). For each regression model, the standard errors of parameter estimates were derived from the main 

diagonal of the covariance matrix of model parameters computed as the negative inverse of the observed Fisher information 

matrix.  220 
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Table 4: Statistics of parameters of 12 simple linear regression models for deriving equivalent hazard magnitudesa. 

Model number Hazard a3 b3 σ3 

M1 Cold wave 
–0.2404 

(0.2171) 

–0.0111 

(0.0080) 

0.8595 

(0.0726)*** 

M2 Convective storm 
–7.5637 

(2.1192)* 

1.3755 

(0.4309)* 

0.7812 

(0.0977)*** 

M3 Drought 
–0.8833 

(0.4691) 

0.2206 

(0.0524)** 

1.0162 

(0.1083)*** 

M4 Earthquake 
–3.3328 

(0.2308)*** 

0.4484 

(0.0361)*** 

1.2464 

(0.0246)*** 

M5 Extra-tropical storm 
–12.2505 

(6.6008) 

2.2827 

(1.2965) 

1.3672 

(0.1973)*** 

M6 Flash flood 
–1.0275 

(0.2244)*** 

0.0701 

(0.0238)* 

0.9417 

(0.0392)*** 

M7 Forest fire 
–1.6116 

(0.2221)*** 

0.1131 

(0.0355)* 

0.8147 

(0.0568)*** 

M8 Heat wave 
–0.9524 

(1.3678) 

0.0243 

(0.0310) 

1.3297 

(0.1002)*** 

M9 Riverine flood 
–1.5284 

(0.1349)*** 

0.1226 

(0.0133)*** 

1.0140 

(0.0209)*** 

M10 Tornado 
–1.7272 

(1.5488) 

0.1683 

(0.2920) 

0.8511 

(0.0784)*** 

M11 Tropical cyclone 
–4.2569 

(0.6510)*** 

0.8016 

(0.1273)*** 

1.1719 

(0.0326)*** 

M12 Tsunami 
–7.0781 

(2.0108)* 

0.9681 

(0.2528)** 

1.2054 

(0.1484)*** 

aThis table corresponds to supplementary material Data S4; R2s are included in Fig. 3; standard errors are in the parentheses. 

*p < 10–2; **p < 10–3; ***p < 10–5.  
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3.5 Equivalent Hazard Magnitude Formula 

To present equivalent hazard magnitude roughly within the range of [0, 10], we applied a linear transformation to the point 225 

estimate of impact metric 

EM = Ê(IM) × 2 + 5 ,           (6) 

where EM refers to the equivalent hazard magnitude and Ê(∙) denotes the point estimate of expectation. The derived equivalent 

hazard magnitudes for all data points are recorded in supplementary material Data S6. 

4 Results 230 

4.1 Model Calibration 

Visualization of the distribution of data points with respect to impact variables and impact metric (Figs. 2a, 2d, 2h, and 2m) 

shows that the empirical marginal distributions of the logarithmically transformed and standardized impact variables and the 

impact metric are approximately Gaussian. The standardized natural logarithms of impact variables are positively correlated 

with each other (Figs. 2c, 2f, and 2g). Results of the bivariate linear regression modelling indicate that each of the standardized 235 

natural logarithms of impact variables is positively associated with the other two logarithmically transformed and standardized 

impact variables with a relatively medium R2 (Figs. 2b, 2e, and 2i). These results provide justifications for leveraging data on 

some impact variables to interpolate missing values of other impact variables. Meanwhile, Figs. 2j–2l show that there are 

positive correlations between the impact metric and each of the standardized natural logarithms of impact variables with a 

relatively large R2. This result suggests the appropriateness of using as the impact metric the principal component of the three 240 

logarithmically transformed and standardized impact variables.  
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Figure 2: Impact variables and impact metric. (a) Histogram of impact variable fatality. (b) Fatality regressed on total affected population 

and total damage in 2019 USD with a multiple linear regression. (c) Total affected population regressed on fatality with a simple linear 

regression. (d) Histogram of impact variable total affected population. (e) Total affected population regressed on fatality and total damage 245 
in 2019 USD with a multiple linear regression. (f) Total damage in 2019 USD regressed on fatality with a simple linear regression. (g) Total 

damage in 2019 USD regressed on total affected population with a simple linear regression. (h) Histogram of impact variable total damage 

in 2019 USD. (i) Total damage in 2019 USD regressed on fatality and total affected population with a multiple linear regression. (j) Impact 

metric regressed on fatality with a simple linear regression. (k) Impact metric regressed on total affected population with a simple linear 

regression. (l) Impact metric regressed on total damage in 2019 USD with a simple linear regression. (m) Histogram of impact metric.  250 
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Results of calibration of linear regression models for 12 individual hazards (Fig. 3 and Table 4) show that the direction of 

coefficient of hazard magnitude indicator in each model is consistent with expectation. Unlike usual regression models that 

pursue precision, it is also expected that, in this study, the results of the regression models for individual hazards will show a 

wide spread of data points with respect to hazard magnitude indicator with a relatively small R2 as in Fig. 3. This is because 

the objective of this study is not to model or predict hazard impacts of an event, but to quantify the agential-durational hazard 255 

strength of the event. As suggested in Fig. 1, exposed value and susceptibility of exposed entities are two other main drivers 

of hazard impacts. The variations of data points with respect to hazard magnitude indicators in Fig. 3 indicate the significance 

of studying exposed value and susceptibility for disaster risk reduction. In the meantime, however, Fig. 3 also shows that the 

proposed methodology for deriving an equivalent hazard magnitude of an event is functional and effective in separating the 

natural force, manifested in hazard strength, from other factors of impacts of natural hazard events to support studies on 260 

exposed value and susceptibility. In particular, the estimates of coefficients of hazard magnitude indicators for convective 

storm (Fig. 3b), drought (Fig. 3c), earthquake (Fig. 3d), flash flood (Fig. 3f), forest fire (Fig. 3g), riverine flood (Fig. 3i), 

tropical cyclone (Fig. 3k), and tsunami (Fig. 3l) are all statistically significant at p < 10–2 (Table 4). This suggests that the 

derived equivalent hazard magnitudes on the Gardoni Scale for these hazard types are highly reliable. With the proposed 

methodology, as a result, we can plot all data points onto one figure (Fig. 4) to compare equivalent hazard magnitudes of 265 

events across different hazard types on the Gardoni Scale.  
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Figure 3: Simple linear regressions on impact metric against magnitude indicators. Impact metric is regressed on (a) minimum 

temperature of cold wave; (b) peak gust wind speed of convective storm; (c) total affected area of drought; (d) Richter magnitude of 

earthquake; (e) peak gust wind speed of extra-tropical storm; (f) total flooded area of flash flood; (g) total burnt area of forest fire; (h) 270 
maximum temperature of heat wave; (i) total flooded area of riverine flood; (j) peak gust wind speed of tornado; (k) maximum sustained 

wind speed of tropical cyclone; (l) earthquake Richter magnitude of tsunami. Solid lines are regression lines. Shaded areas are the 95% 

confidence intervals of the corresponding regression lines.  
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Figure 4: Impact metric versus equivalent hazard magnitude on the Gardoni Scale. The expectation line shows values of the expected 275 
impact metric with respect to equivalent hazard magnitude.  
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4.2 Comparisons of Hazard Magnitudes 

As each data point on Fig. 4 corresponds to a record of hazard event in the EM-DAT database, all plotted data points are 

associated with impacts beyond a certain threshold defined by the database (Guha-Sapir et al. 2021). Therefore, a large quantity 

of hazard events with small or zero impacts are excluded. Although a few of these excluded hazard events may have a large 280 

hazard magnitude, it is rational to assume that most of the excluded data points are with a small hazard magnitude. Accordingly, 

it is meaningless to compare the minimum hazard magnitudes across hazard types based on the data points plotted on Fig. 4. 

Considering this, we only focus on comparisons of events with large hazard magnitudes. 

Within the datasets for this study, all 37 events with the largest equivalent hazard magnitudes are either a tsunami or a drought, 

with their equivalent hazard magnitudes ranging [6.50, 10.21]. The event with the largest equivalent hazard magnitude is the 285 

1960 Chilean tsunami that killed 6 thousand and affected over 2 million population in Chile as well as resulted in 61 fatalities 

in Hawaii, USA. The well-known 2004 Indian Ocean tsunami that killed more than 2 million people ranks 10th among all 

events, with its equivalent hazard magnitude at 8.27. The drought event with the largest equivalent hazard magnitude (9.07) is 

the 2002 Indian monsoon drought that affected a total of about 300 million people. The largest earthquake events, with 

equivalent hazard magnitude at 6.41, include the 1920 Haiyuan earthquake in mainland China that resulted in at least 180 290 

thousand fatalities. Among the considered 12 hazard types, the natural hazard with the lowest maximum equivalent hazard 

magnitude is tornado. The tornado event with the largest equivalent hazard magnitude (3.62) is the 2013 El Reno tornado in 

Oklahoma, USA. This tornado event led to a total damage of about 3.4 billion 2019 USD (Guha-Sapir et al. 2021). 

4.2.1 Earthquake, Tornado, Forest Fire, and Tropical Cyclone 

Figure 5 compares hazard magnitudes of events of four hazard types, i.e., earthquake, tornado, forest fire, and tropical cyclone, 295 

with ranges of hazard magnitudes adjusted according to the earthquake Richter magnitude scale. The figure shows that 

tornadoes tend to have a smaller hazard magnitude than large earthquakes and tropical cyclones. Most of the recorded tornadoes 

have a hazard magnitude equivalent to an earthquake Richter magnitude between 5 and 6. Compared with tropical cyclones in 

terms of peak sustained wind speed on the Saffir–Simpson hurricane wind scale, these tornadoes only have the size of a tropical 

storm. This result indicates that hazard strength of an entire tornado event may be much smaller than the one for a large 300 

earthquake or tropical cyclone, even though tornadoes can still cause significant damage locally as in the case of the 2013 El 

Reno tornado. Meanwhile, the wide spread of data points of tornadoes with respect to hazard magnitude on Fig. 5a suggests 

that exposed value and susceptibility of exposed entities may be much stronger predictors of hazard impacts than hazard 

magnitude for tornado events.  
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 305 

Figure 5: Comparisons of hazard magnitudes of four hazard types. (a) Earthquake Richter magnitude versus tornado enhanced Fujita 

scale. EF0, EF1, EF2, EF3, EF4, and EF5: enhanced Fujita scale 0, 1, 2, 3, 4, and 5 with gust wind speed at 104–137, 138–177, 178–217, 

218–266, 267–322, and over 322 km h-1, respectively. (b) Forest fire burnt area versus tropical cyclone Saffir–Simpson wind scale. TD and 

TS: tropical depression and tropical storm with sustained wind speed below 63 km h-1 and at 63–118 km h-1, respectively; SSC1, SSC2, 

SSC3, SSC4, and SSC5: Saffir–Simpson category 1, 2, 3, 4, and 5 with sustained wind speed at 119–153, 154–177, 178–208, 209–251, and 310 
over 251 km h-1, respectively; TC: tropical cyclone. (a) and (b) are plotted with the same range and scale with respect to the earthquake 

Richter magnitude.  
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Compared to earthquakes, tropical cyclones that reach a hurricane level on the Saffir–Simpson scale are equivalent in hazard 

magnitude to an earthquake with a Richter magnitude greater than 6.5. A magnitude 8 earthquake on the Richter scale has a 

similar size in hazard magnitude as a tropical cyclone labelled with a peak category 5 on the Saffir–Simpson scale. Within the 315 

datasets for this study, Typhoon Meranti is the tropical cyclone with the largest equivalent hazard magnitude at 5.66. Although 

the typhoon was strong and affected the Philippines, Taiwan, mainland China, and South Korea in September 2016, it only 

resulted in a total economic loss of around 70 million 2019 USD, according to the EM-DAT database (Guha-Sapir et al. 2021). 

In addition to earthquake and tropical cyclone, forest fire is another hazard type with a statistically significant estimate of 

coefficient of hazard magnitude indicator (Table 4). However, forest fires tend to have smaller equivalent magnitudes than 320 

large earthquakes and tropical cyclones (Fig. 4b). The two largest forest fires within the dataset had an equivalent hazard 

magnitude of 4.33. They occurred in Russia and Mongolia in 1996, resulting in 19 and 25 fatalities, respectively (Guha-Sapir 

et al. 2021). Both forest fires are equivalent to a tropical cyclone with its peak sustained wind speed reaching category 1 on 

the Saffir–Simpson scale. They are also equivalent in hazard magnitude to an earthquake with a Richter magnitude between 

6.5 and 7. 325 

4.2.2 Cold Wave and Heat Wave 

With Fig. 6, we can compare the hazard magnitudes of cold wave and heat wave events. Both hazard types have a narrow 

range of equivalent hazard magnitude of hazard events, with [4.54, 5.79] for cold wave and [4.79, 5.67] for heat wave (also 

see supplementary material Data S5). This is also consistent with the statistically insignificant estimates of their corresponding 

coefficients of hazard magnitude indicators (Table 4). Despite the narrow ranges of equivalent hazard magnitude, the range of 330 

minimum temperature of cold wave events from 0 °C to –55 °C is approximately equivalent to the range of maximum 

temperature of heat wave events from 30 °C to 55 °C (Fig. 6). The strongest cold wave event recorded in the data occurred in 

Russia in 2001, with its minimum temperature at –57 °C. This cold wave event killed 145 people, affected 6 120 more, and 

led to an economic loss of 100 thousand 2019 USD. On the other hand, the heat wave event with the largest hazard magnitude 

had a maximum temperature at 53 °C. It struck Pakistan in June 1991, resulting in 523 human fatalities (Guha-Sapir et al., 335 

2021).  
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Figure 6: Cold wave minimum temperature versus heat wave maximum temperature.  
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4.2.3 Riverine Flood and Drought 

Another comparison of hazard magnitude can be conducted between riverine flood and drought events (Fig. 7). Among hazard 340 

events included in the datasets for this study, drought has a large range of equivalent hazard magnitude of [3.23, 9.07], while 

riverine flood has a relatively small range of [2.11, 5.59]. A riverine flood event with a flooded area of 100 km2 is equivalent 

in hazard magnitude to a drought event with an affected area of about 1 km2. Meanwhile, a drought event with an affected area 

of 100 km2 has the similar hazard magnitude as a riverine flood with a flooded area of 1 million km2. Here, because the 

magnitude indicators of riverine flood and drought are defined by the EM-DAT database without strong justifications (Guha-345 

Sapir et al. 2021), the meanings and modelling of the presented magnitude indicators of these two hazard types may deserve 

further investigation. Nevertheless, large drought events seem to be much larger in hazard magnitude than large riverine floods, 

even though some riverine floods may lead to more severe impacts. For example, the riverine flood event in mainland China 

in 1998 has an equivalent hazard magnitude of 4.99. But the event resulted in over 3 600 fatalities, more than 238 million 

affected population, and an economic loss of 30 billion 2019 USD (Guha-Sapir et al. 2021). 350 

 

Figure 7: Riverine flood area versus drought area.  

https://doi.org/10.5194/nhess-2021-87
Preprint. Discussion started: 7 May 2021
c© Author(s) 2021. CC BY 4.0 License.



21 

 

4.3 Sensitivity Analysis 

In this study, the impact metric was constructed as the principal component of three transformed impact variables. The sum of 

squares of weights of transformed impact variables within the impact metric equals one. We conducted a visual sensitivity 355 

analysis to examine if alterations of weights of transformed impact variables within the impact metric can significantly affect 

the relative comparison of hazard magnitudes across hazard types. For this sensitivity analysis, we first kept the sum of squares 

of all weights of transformed impact variables equal to one. Second, we maintained an equal ratio of squares of weights 

between two transformed impact variables. Third, we changed the weight of the third transformed impact variable and adjusted 

the weights of the other two transformed impact variables according to the first two rules. 360 

Figure 8 shows the result of a sensitivity analysis with data points of tsunami and flash flood as a demonstrative example. Data 

points are plotted based on their equivalent hazard magnitudes with a fixed scale of the hazard magnitude indicator of tsunami. 

When the weight of each of the transformed impact variables of fatality (Figs. 8a–8d), total affected population (Figs. 8e–8h), 

and total economic damage (Figs. 8i–8l) is shifted from zero to one, there are identifiable increasing or decreasing trends of 

alterations of the distributions of data points as well as the deviations between clusters of data points of the two different hazard 365 

types. However, when weights of transformed impact variables are far away from the extreme value of zero or one, there is no 

significant change regarding the distribution of data points with respect to equivalent hazard magnitude (see Figs. 6b, 6c, 6f, 

6g, 6j, and 6k). This result indicates desirable performance of the proposed methodology for deriving equivalent hazard 

magnitude of an event on the Gardoni Scale.  
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 370 

Figure 8: Results of visual sensitivity analysis regarding effects of altering weight of one transformed impact variable within impact 

metric on equivalent magnitudes of tsunami and flash flood events. (a) Fatality weight equals zero. (b) Fatality weight equals √wF
2/2, 

where wF is the weight regarding fatality. (c) Fatality weight equals √(wF
2  + 1)/2. (d) Fatality weight equals one. (e) Total affected population 

weight equals zero. (f) Total affected population weight equals √wTA
2 /2, where wTA is the weight regarding total affected population. (g) 
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Total affected population weight equals √(wTA
2  + 1)/2. (h) Total affected population weight equals one. (i) Total damage weight equals zero. 375 

(j) Total damage weight equals √wTD
2 /2, where wTD is the weight regarding total damage. (k) Total damage weight equals √(wTD

2  + 1)/2. (l) 

Total damage weight equals one. In (a)–(l), sum of squared weights of three transformed impact variables equals one and the ratio of squares 

of the other two variable weights were kept constant.  
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5 Discussion 

5.1 Contributions 380 

To our knowledge, this study represents the first attempt to produce an equivalent hazard magnitude scale, i.e., the Gardoni 

Scale, to quantify agential-durational hazard strengths for hazard events across multiple hazard types. The proposed scale has 

several merits. First, professionals in natural hazard and emergency management could use equivalent hazard magnitudes on 

the Gardoni Scale to facilitate hazard communication among various stakeholders. Similarly, journalists and news media could 

adopt the Gardoni Scale for news reporting on natural disasters to the public. When events of different hazard types are 385 

described as equivalent to each other in terms of their natural forces, we can use the proposed methodology to compute the 

equivalent hazard magnitudes of these events on the Gardoni Scale to confirm such equivalency. For example, if we adopt the 

minimum temperature of –26 °C at Oklahoma City as the hazard magnitude indicator of the February 2021 cold wave event 

that severely affected the southern states of USA (Doss-Gollin et al., 2021), we find that the event has an equivalent hazard 

magnitude of 5.10 on the Gardoni Scale. This is equivalent to the hazard magnitude of Hurricane Harvey (2017), which had a 390 

peak sustained wind speed of 215 km h-1, and a Richter magnitude slightly larger than 7.5. Given such information on 

equivalency of hazard magnitudes across historical events, individuals or decision makers that may have previously 

experienced one event may be provided with a better understanding of the human, financial, and material resources that are 

needed to prepare for a predicted hazard event of similar magnitude. 

Beside its utility for emergency management of a hazard event, computation of equivalent hazard strengths of events can 395 

enhance hazard profiling and risk analysis within a multi-hazard context. When hazard strengths can be evaluated 

comparatively across hazard types, we can model hazard frequency and exposure regarding multiple types of hazards 

simultaneously and create multi-hazard hazard maps. With quantified hazard equivalency, we may also derive loss ratio curves 

with respect to a uniform equivalent hazard strength measure to indicate the differences in vulnerability and resilience of 

individuals, communities, and infrastructures facing hazards across different hazard types. Such multi-hazard quantification 400 

of hazard, exposure, vulnerability, and resilience can be integrated to facilitate risk analysis to predict future losses and loss 

ratios without having to resort to lengthy efforts to develop sophisticated models for each individual hazard types. Thus, 

management of perceived and engineered risks due to natural hazard events could become much easier by using a hazard 

equivalency methodology. To achieve such multi-hazard quantifications of risks of natural hazard events, more research is 

needed not only to improve the proposed Gardoni Scale for equivalent agential-durational hazard strengths, but also to explore 405 

the modelling of hazard equivalency of other types of hazard strengths, in particular, the locational hazard strengths for hazard 

management at the local level. 

5.2 Limitations and Future Work 

As shown in the previous section, data points in this study can be visualized as centred along the expectation line, albeit with 

a large variation (Fig. 4). This implies that the derived equivalent hazard magnitudes may correspond well to the expectation 410 
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of hazard impacts but without precision. Such a lack of precision is expected for this study because impacts of hazard events 

are not only the result of hazard strength but also correlated with environmental, societal, and infrastructural factors that affect 

the exposed value and susceptibility of exposed entities within a natural hazard context (Fig. 1). Because of the effect of these 

factors other than hazard strength, however, the mere inclusion of, or the complete exclusion of, data points with a unique bias 

toward one direction of these factors will result in biased derivation of equivalent hazard strength metric. To reduce such a 415 

bias, in this study, we included all available data points of hazard events throughout the world and from a long period of 1900–

2020. However, there may still be bias due to spatial or temporal concentrations of data points regarding certain hazard types. 

Future works need to study how to further reduce this potential bias caused by factors of exposed value and susceptibility of 

exposed entities. 

To demonstrate the implementation of the proposed methodology for deriving equivalent hazard magnitudes of events, we 420 

only considered one hazard magnitude indicator for each hazard type. For many hazard types, one indicator cannot represent 

the true hazard magnitude of an event. For example, both wind and precipitation contribute significantly to damages associated 

with tropical cyclone events (Mudd et al., 2017). Moreover, selection of hazard magnitude indicators in this study was also 

limited by the adopted datasets. As an example, the earthquake Richter magnitude (Richter, 1935) was the only recorded hazard 

magnitude indicator in the datasets of this study. However, because Richter magnitude is easily subject to saturation for large 425 

earthquakes, it has become less often referenced than moment magnitude (Kanamori, 1977) for indicating hazard magnitude 

of an earthquake event. For flood hazards, as another example, there is a lack of established methods to quantify the agential-

durational hazard strength metrics. In this study, we followed the EM-DAT database (Guha-Sapir et al. 2021) to use the flooded 

area as the hazard magnitude indicator for the flood hazards. However, the definition of such flooded area is still vague and 

deserves more research. An ideal agential-durational hazard strength metric for a flood event needs to integrate flood intensity 430 

measures, such as water depth, flood volume, and flow velocity, over the entire flooded area and duration of the event to 

correspond to the total energy released by the natural force of the event. More efforts, therefore, are needed to study, select, 

and quantify the appropriate hazard magnitude indicators for deriving equivalent hazard magnitudes of events on the Gardoni 

Scale. 

Beside hazard magnitude indicators, construction of the impact metric is pivotal to calibration of regression models for 435 

derivation of equivalent hazard magnitudes. In this study, we only leveraged three impact variables to apply PCA to derive the 

impact metric. However, impacts of a hazard event may affect a variety of realms including physical, social, economic, and 

environmental well-beings (Lindell and Prater, 2003; Gardoni and Murphy, 2010; Alexander, 2013a; Wang et al., 2016; 

2020a). To advance methodological development for the proposed Gardoni Scale and quantification of other equivalent hazard 

strength metrics, more studies are needed to scrutinize different indicators as hazard impact variables of hazard events and to 440 

seek the optimal models to combine hazard impact variables to inform the level of impacts of hazard events for different hazard 

types. 

To support modelling with consideration of hazard magnitude indicators and impact metric, more statistical, machine learning, 

and other quantitative models can be attempted to establish the mapping between an equivalent hazard magnitude and the 
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expectation of impacts of hazard events. When data on hazard events with little or zero impacts become available for modelling, 445 

we may apply zero-inflated techniques or other methods to consider the effect of data points with zero impacts to improve the 

derivation of equivalent hazard magnitudes of events within a multi-hazard context. 

6 Conclusion 

In this article, we proposed an equivalent hazard magnitude scale, called the Gardoni Scale, to measure the strength of natural 

force involved in the entirety of a natural hazard event for comparative analysis across different hazard types. A computational 450 

methodology based on PCA and regression modelling was introduced and implemented to demonstrate the methodological 

utility in derivation of the equivalent hazard magnitudes of events for 12 natural hazard types. The proposed equivalent hazard 

magnitudes of events on the Gardoni Scale are recommended to be adopted for hazard communication by various stakeholders 

including news media, decision makers, industry professionals, academic personnel, and the public. By applying the proposed 

Gardoni Scale, we can also help quantitatively separate the natural forces of hazard events from the environmental, societal, 455 

and infrastructural factors of hazard impacts to support social scientific and engineering research in natural hazard phenomena 

with a multi-hazard approach. We anticipate that this study on equivalent hazard magnitude will be extended to comparative 

modelling of other types of hazard strengths of events in a multi-hazard manner to consolidate the foundations for quantifying 

and studying hazard exposure, hazard vulnerability, hazard resilience, and other conditions for disaster risk reduction due to 

natural hazards at both local and global levels. 460 
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