Supplementary - About the return period of a catastrophe
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The exceedance frequency (EF) function of a return period (RP) process (equation (2) in the main paper) is shown in Figure S1.
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[bookmark: _heading=h.1fob9te][bookmark: _Ref61851556]Figure S1: The RP of random events as Poisson point process: a) EF function, b) part of a realization for a unit period, c) part of a realization of two linked/associated RP processes for a unit period.
Expected return period
According to (4) of our paper, two point events  and  (both are RPs) of max-stable associated processes at the line of positive real numbers with EF
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can be presented by ( replace  in (4) in the main paper).
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We assume that the expectation of the random variable  is 1 and hence, the conditional expectation of  is  (provided, event  is known). There are the following reasons for these assumptions. The EF of points  can be understood as a mixture of EF of shifted sub processes with events . This means,  of  is a mixture of  by the probability density distribution of positive variable 
	
	(3)

	This can be transformed under consideration of the stochastic definition of an expectation  for a positive valued random variable
	

	
	(4)

	
	(5)


Since (1) and (2) apply, following also apply
	
	(6)
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We do not claim this would be a complete mathematical proof, but this is the idea of a proof. Condition for this idea of a proof is that the Poisson point processes are infinitely divisible. Furthermore, it is highly likely that this result is already explicitly or implicitly published in a statistical paper or a book about stochastic. The derivation applies for the instance of max-stable dependence. However, (7) should also apply to non-max-stable associated point processes for the following reason. The average (expected) number of events of the first process with  is . These events are linked with the same number of events of the second process (except the un-associated case). The same average (expected) number of events implies the same expected RP since (1) applies for both point processes.
Combined return period without max-stable dependence
For the dependence instance without max-stability, we can only validate reproductivity of two RP and corresponding generated combined return period (CRP) heuristically. The extremes of a random variable approximate a Poisson process (Coles, 2001). Therefore, we can use the bivariate situation for numerical validation and consider a non-max-stable copula for the dependence structure. These are all copulas that are not an extreme value copula (Marie and Kotz, 2001). In concrete, we apply the dependence structure of a bivariate Normal distribution, also known as Gaussian copula. The standard Pareto distribution is used for the marginals with survival function
	
	(8)


Its equivalence with exceedance frequency function (EF) of the RP (equation (2) in the main paper) is apparent. The Gaussian copula is parametrized with Kendall’s  of 0.6, which is equivalent to a correlation parameter of 0.809. Simulated samples are shown in Figure S2 a. The empirical distribution of simulated samples and the averages of the single realizations representing the return period is shown in Figure S2 b. The upper tail of the averages is the same as of the original variables.
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[bookmark: _heading=h.4d34og8][bookmark: _Ref61851893]Figure S2: The reproductivity of average of dependent standard Pareto distributed random variables in the tail: a) simulated sample of size 100 000, b) empirical upper 10% tail of survival functions.
Maximum likelihood method for Gumbel distribution
The well-known Gumbel distribution (Gumbel, 1935 and 1941) has the cumulative distribution function (CDF) with scale parameter  and shift (location) parameter 
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The following estimators (Clarke, 1973) for sample of observations  of random variable  with size 
	,
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Eq. (10) is solved iteratively before the shift parameter is estimated. To achieve more stability during estimation for the scale parameter we modify eq. (10) without changing the meaning
	,
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The Gumbel distribution applies for block maxima such as the maximum of all daily observations of a month or a year. Sometimes, the record is not complete, some of the daily records are missed for technical reasons. This affects the estimation for the annual maxima since the sample's block size is smaller than the modeled block maximum. This incompleteness of the records can be considered by replacing  by  in the iteration (12) with
	.
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The parameter  represents the record completeness of the block  ( for 100% completeness). The deviation is simple and follows the idea of max-stability of the Gumbel distribution (9) in the univariate sense. Here, only the performance study is presented for validation. The single observations should be based on more or less similar completeness of records to ensure numerical stability. The performance study also shows that the estimate of scale parameter  is biased for our sample size  and is corrected here with
	.
	[bookmark: _heading=h.35nkun2][bookmark: _Ref55116601](14)


In the performance study, a sample of size  is generated by a Monte Carlo simulation 100 000 times. The parameter has been estimated with eq.(S2-4) and the new samples of parameters are analysed. Sample mean and variance are listed in Table S1. The original parameterization is  and . Incompleteness is considered in the simulation with an example with 28 block maxima from blocks with 100% completeness, 6 block maxima from blocks with 90% completeness, and 6 block maxima from blocks with 70% completeness. The generated block maxima are equivalent to a maximum of a sample of Gumbel distributed random variable with  and . In the complete case, the maximum considers 10 observations. In the case of 70% completeness, the maximum only considers 7 observations. The variant with incomplete records for the block maxima and without correction results in a relevant bias of the location parameter. The performance of variants with correct records and variants with incomplete records and correction are remarkably similar.
[bookmark: _heading=h.1ksv4uv][bookmark: _Ref47708136]Table S1: Sample mean and variance of point estimates for a Gumbel distributed random variable.
	Variant
	Scale parameter 
	Location parameter 

	
	Sample mean
	Variance
	Sample mean
	Variance

	Complete record
	0.981
	0.015
	0.008
	0.029

	Incomplete record, uncorrected
	0.991
	0.016
	-0.064
	0.028

	Incomplete record, corrected by (13)
	0.981
	0.015
	0.010
	0.028


[bookmark: _heading=h.44sinio][bookmark: _Ref55116692]Bias reduction of local RP
From point estimates for the Gumbel distribution according to the previous section, the EF and RP according to equation (13) of the main paper can be estimated and compared with the actual values of fixed . Even though EF and RP are strongly linked via the reciprocal, the performance of their estimates differ considerably. For the study, we used the same samples as in the previous section. The bias and mean square error0 (MSE) of EF is relatively small and is only relevant for exceedingly small RP with high EF (Table S2). This is a range that is not important. In contrast, the bias and MSE of RP is large in the important range decades and centuries. We have developed the following correction function for the RP via an optimization
	.
	(15)


As listed in Table S2, the corresponding (absolute) bias and mean squared error (MSE) of the corrected RP are much smaller now. For the inverse computation, the larger solution of the quadratic equation is used. The correction applies to the unit period of the sample.
[bookmark: _heading=h.2jxsxqh][bookmark: _Ref47709775]Table S2: Bias and MSE of estimated EF and RP via ML method (original distribution of maxima according to standard Gumbel distribution with =0 and =1, sample size n=40, 100 000 repetitions in Monte Carlo simulation).
	Actual values
	Estimated EF uncorrected
	Estimated RP uncorrected
	Estimated RP corrected

	X
	EF
	RP
	Bias
	MSE
	Bias
	MSE
	Bias
	MSE

	7.60E+00
	5.00E-04
	2.00E+03
	1.21E-04
	4.34E-07
	3.84E+03
	2.72E+09
	-1.26E+01
	3.06E+07

	6.91E+00
	1.00E-03
	1.00E+03
	1.84E-04
	1.28E-06
	1.43E+03
	1.80E+08
	-3.11E+00
	4.52E+06

	6.21E+00
	2.00E-03
	5.00E+02
	2.67E-04
	3.78E-06
	5.34E+02
	1.27E+07
	-5.22E-01
	6.73E+05

	5.30E+00
	5.00E-03
	2.00E+02
	4.00E-04
	1.57E-05
	1.47E+02
	4.55E+05
	7.25E-02
	5.56E+04

	4.61E+00
	1.00E-02
	1.00E+02
	4.82E-04
	4.56E-05
	5.48E+01
	4.30E+04
	6.56E-02
	8.64E+03

	3.91E+00
	2.00E-02
	5.00E+01
	4.72E-04
	1.31E-04
	2.02E+01
	4.63E+03
	2.32E-02
	1.36E+03

	3.22E+00
	4.00E-02
	2.50E+01
	2.40E-04
	3.68E-04
	7.28E+00
	5.44E+02
	-1.72E-03
	2.14E+02

	2.30E+00
	1.00E-01
	1.00E+01
	-6.60E-04
	1.38E-03
	1.77E+00
	3.40E+01
	-1.06E-02
	1.79E+01

	1.61E+00
	2.00E-01
	5.00E+00
	-1.58E-03
	3.53E-03
	5.60E-01
	4.13E+00
	-9.24E-03
	2.61E+00

	0.00E+00
	1.00E+00
	1.00E+00
	1.86E-02
	3.18E-02
	1.18E-02
	3.19E-02
	-3.10E-03
	2.83E-02

	-6.93E-01
	2.00E+00
	5.00E-01
	8.87E-02
	1.47E-01
	-6.92E-03
	6.91E-03
	-1.56E-03
	6.61E-03

	-2.30E+00
	1.00E+01
	1.00E-01
	1.46E+00
	1.86E+01
	-4.14E-03
	7.68E-04
	-1.25E-04
	8.05E-04

	-3.69E+00
	4.00E+01
	2.50E-02
	1.19E+01
	1.22E+03
	-8.53E-04
	1.10E-04
	7.78E-05
	1.21E-04


Non max stable CRP scaling
The scaling of a combined return period (CRP) for European winter storms over Germany is realized by factor  in equation (8) of the main paper for the max stable case. This factor applies for the non max stable case only for the relation between   and . The scaling of local RP  is now approximately realized by factor  per station  being computed with parameters , , , and  per storm 
	,
	(16)

	,
	(17)

	.
	(18)


The parameters are listed in Table S3. The first three parameters have been estimated by a simple regression analysis after a heuristic estimate of parameter . The resulting relation between coefficient of variation (CV) and scaled RP match well with these from analysed observations (Figure 2 d and e of the main paper).
[bookmark: _heading=h.z337ya][bookmark: _Ref53484903]Table S3: Parameters for non max stable scaling of wind fields.
	Hist. Storm
	Parameters

	
	a
	b
	c
	d

	Jennifer
	-0.0065
	0.9056
	0.0012
	0.0189

	Anna
	-0.0034
	0.9512
	0.0025
	0.0134

	Jennifer
	-0.0031
	0.9126
	0.0022
	0.0466

	Nina & Oralie
	-0.0043
	0.9509
	0.0025
	0.0083

	Dorian (Cyrus)
	-0.0031
	0.9622
	0.0022
	0.0080

	Kyrill
	-0.007
	0.8779
	0.0022
	0.0300

	Emma
	-0.0071
	0.9216
	0.002
	0.0127

	Xynthia
	-0.0041
	0.9209
	0.0033
	0.0222

	Ulli/Andrea
	-0.0076
	0.851
	0.0012
	0.0790

	Christian
	-0.0044
	0.8304
	-0.0044
	0.0250

	Xaver
	-0.0043
	0.9188
	0.0027
	0.0335

	Elon und Felix
	-0.0044
	0.9386
	0.0025
	0.0200

	Niklas
	-0.0011
	0.9705
	0.001
	0.0170

	Xavier
	-0.0054
	0.9113
	0.0044
	0.0150

	Herwart
	-0.0052
	0.9413
	0.0026
	0.0100

	Friederike
	-0.0058
	0.8828
	0.0036
	0.0370


Input data and estimates
The considered wind stations of German meteorological service are listed in a sheet of the Supplementary-Excel file including considered weights of area and capital. The estimates of CRP are listed in a sheet of the Supplementary-Excel.
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