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Abstract. When a natural hazard event like an earthquake affects a region and generates a natural catastrophe (NatCat), the 5 

following questions arise: How often does such an event occursoccur? What is theirits return period (RP)? We derive the 

combined return period (CRP) from a concept of extreme value statistics and theory - —the pseudo-polar coordinates. A CRP 

is the (weighted) average of the local RP of local event intensities. Since CRP’s reciprocal is its expected exceedance 

frequency, which applies to any RP per stochastic definition, the concept is testable. As we show, the CRP is related to the 

spatial characteristic of the NatCat generating hazard event and theirthe spatial dependence of corresponding local block 10 

maxima (e.g., annual wind speed maximum). For this purpose, we extend previous construction for max-stable random fields 

from extreme value theory and consider athe recent concept of area function from NatCat research. Based on the CRP, we also 

develop a new method to estimate the NatCat risk of a region via stochastic scaling of historical fields of local event intensities 

(represented by records of measuring stations) and averaging corresponding risk parameters such as the computed event loss 

with afor defined RP. 15 

CRP or the computed CRP (or its reciprocal) for defined event loss. Our application example is winter storm (extratropical 

cyclones) over Germany. We analyze wind station data and estimate local hazard, CRP of historical events, and the risk curve 

of insured event losses. The most destructive storm of our observation period of 20 years is Kyrill 2002, with weighted CRP 

16.97±1.75. The CRPs could be successfully tested statistically. We also state that our risk estimate is higher for the max-

stable case than for the non-max-stable. Max-stable means that the dependence measure (e.g., Kendall’s ) for annual wind 20 

speed maxima of two wind stations has the same value as for maxima of higherlarger block size, such as 10 or 100 years since 

the copula (the dependence structure) remains the same. However, the spatial dependence decreases with increasing block 

size; a new statistical indicator confirms this. Such control of spatial characteristic and dependence is not realized by the 

previous risk models in science and industry. We compare our risk estimates to these. 

1 Introduction 25 

After a natural hazard event such as a large windstorm or an earthquake has occurred in a defined region (e.g., in a country) 

and results in a natural catastrophe (NatCat), the question arises, how often does such random event appearoccurs? What is the 

corresponding return period (RP, also called recurrence interval)? Before discussing this issue, we underline that the extension 

of river flood events or windstorms in time and space depend on the scientific and socio-economic event definition. The 
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definitionsThis definition may vary by peril and is not our topic even though they influence our research object –— the RP of 30 

a hazard and NatCat event. 

The RP of an event magnitude or index is so far frequently used as a stochastic measure of a catastrophe. For example, 

there are different magnitudes scales for earthquakes (Bormann and Saul, 2009). ButHowever, their RP may not correspond 

well with the local consequences since the hypocenter position also determines local event intensities and effects. For floods, 

regional or global magnitude scales are not in use (Guse et al., 2020). For hurricanes, the Saffir–Simpson scale (National 35 

Hurricane Centre, 2020) is a magnitude measure; buthowever, the random storm track also influences the extent of destruction. 

Extratropical cyclones hitting Europe, called winter storms, are measured by a storm severity index (SSI;, Roberts et al., 2014) 

or extreme wind index (EWI;, Della-Marta et al., 2009). Their different definitions result in quite different RP for the same 

events. In rare scientific publications about risk modelling for the insurance industry, such as by Mitchell-Wallace et al. (2017), 

better and universal approaches for the RP are not offered. In sum, previous approaches are not very successfulsatisfactory 40 

regarding the stochastic quantification of a hazard or NatCat event what. This is our motivation is to develop a new approach. 

Building on results of extreme value theory and statistics, we mathematically derive the concept of combined return period 

(CRP) being), which is the average of RPs of local event intensities from an approach of extreme value theory and statistics.. 

As we will show by a combination of previousexisting and new approaches from stochastic and NatCat research, the concept 

of CRP is strongly related to the spatial association/dependence between the local event intensities, their RPs, and 45 

corresponding block maxima, such as annual maxima. 

This Spatial dependence is less or inappropriatelynot suitably considered in previous research about NatCat. The issue is 

only a marginal topic in the book about NatCat modelling for insurance industry by Mitchell-Wallace et al. (2017, Section 

5.4.2.5). Jongman’s) about NatCat modelling for insurance industry. Jongman et al.’s (2014) model for European flood risk 

considers such dependence explicitly. However, their assumptions and estimates are not appropriate according to Raschke 50 

(20152015b). In statistical journals, max-stable dependence models have been applied to natural hazards without a systematic 

test of the stability assumption, such as. Examples are the snow depth model by Blanchet and Davison (2011) for Switzerland 

and the river flood model by Asadi et al. (2015) for the Upper Danube River system. Max-stable dependence means that the 

copula (the dependence structure of a bi- or multivariate distribution) and corresponding value of dependence measures are 

the same for annual maxima as for ten-year maxima or these of a century (Dey et al., 2016). Raschke’sAlso, Raschke et al. 55 

(2011) proposed a winter storm risk model for a power transmission grid in Switzerland also implies thiswithout validation of 

stability assumption without a validation. The sophisticated model for spatial dependence between local river floods by Keef 

et al. (2009) is very flexible. However, it needs a high number of parameters, and the spatial dependence cannot be simply 

interpolated as it is possible with covariance and correlation functions (Schabenberger and Gotway, 2005, Section 2.4). 

Youngman and Stephenson (2016) suggested a statistical modelling and simulation formodel to simulate hazard events. As far 60 

as we understand, they generate wind fields by a Monte Carlo simulation of a complex random field. However, the random 

occurrence of a hazard event is more like a point event of a Poisson process than the draw/realization of a random variable. 

An example illustratesThe draw of the difference; the annual random variable local annual loss from catastrophes is realized 
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everyis sure; the occurrence of a Poisson point event in this year even thoughis not one catastrophe and loss event need to be 

occurred.sure but random. The same concern applies to the idea by Papalexiou et al. (2021) for storm simulation. 65 

In the research of spatial dependence by Bonazzi et al. (2012) and Dawkins and Stephenson (2018), the local extremes of 

European winter storms are sampled by a pre-defined list of significant events. Such sampling is not foreseen in (multivariate) 

extreme value statistics; block maxima and (declustered) POT are the established sampling methods (Coles, 2010, Section 3.4 

and 4.4; Beirlant et al., 2004, Section 9.3, and 9.4). Event-wise spatial sampling is a critical task; the variable time lag between 

the occurrences at different measuring station, such as river gauging stations, makes it confusing. The corresponding 70 

assignment of AsadiJongman et al. (20152014) of one local/regional flood peak to peaks at other sites doesis not convince us 

completely. The same appliesconvincing, according to Jongman et al. (2014;the comments by Raschke,  (2015b). The sampling 

of multivariate block maxima is simpler. However, the univariate sampling and analysis isare also not trivial as interpretations 

of . An example is the trend over decades in the time series of a wind station in Potsdam (Germany) over several decades 

shows.). Wichura (2009) assumes changed local roughness condition over the time as reason,; Mudelsee (2020) thecites 75 

climate change as reason. 

The research of spatial dependence of natural hazards is not an end in itself,; the final goal is an answer to the question 

about the NatCat risk. What is the RP of events with aggregate damage or losses in a region equal to or higher tothan a defined 

level? By using CRP, we quantify the risk via stochastic scaling of fields of local intensities of historical events and averaging 

corresponding risk measures. This new approach significantly extends the methods to calculate a NatCat risk curve. Previous 80 

opportunities and approaches for a risk estimate are the conventional statistical models that are fitted to observed or re-analyzed 

aggregated losses (also called as-if losses; ) of historical events, as used by Donat et al. (2011) and by Pfeifer (2010) for annual 

sums. The advantages of such simple models are the controlled stochastic assumptions and the small number of parameters; 

the disadvantages are high uncertainty for widely extrapolated values and limited opportunitiespossibilities to consider further 

knowledge. The NatCat models in (re)insurance industry combine different components/sub-models for hazard, exposure 85 

(building stock or insured portfolio)), and corresponding vulnerability (Mitchell-Wallace et al. 2017, Section 1.8; Raschke, 

2018) and offers); additionally, they offer better opportunities for knowledge transfer such as the differentiated projection of 

a market model on a single insurer. However, the corresponding standard error of the risk estimates is frequently not quantified 

(and cannot be quantified). The numerical burden of such complex models is high. Tens of thousands of NatCat events must 

be simulated (Mitchell-Wallace eta al., 2017, Chapter 1). Thus, the question arises, what is the stochastic criterion for the 90 

simulation of a reasonable event set in NatCat modelling? As far as we know, scientific NatCat models for European winter 

storms (extratropical cyclones) are based on numerical simulations (Della-Marta et al., 2010; Osinski et al., 2016; Schwierz et 

al., 2010; Osinski et al., 2016) and are not intensively validated regarding spatial dependence. 

To answer our questions, we start with topics of extreme value statistics in the 2nd Section and illuminate 2, where we recall 

the concept of max-stability in the univariate sense, for the single random variables, bivariate dependence structure (copula) 95 

of the bivariate case and max-stablestructures (copulas), and random fields. We also extend Schlather’s (2002) 1st theorem 

with focus on spatial dependence. The more recent approaches of hazard event related area functions (Raschke, 2013) and 
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survival functions (Jung and Schindler, 2019) of local event intensities within a region are implemented therein to characterize 

spatiality.. In the 3rd Section 3, we derive the CRP from the concept of pseudo polar coordinates of extreme value statistics and 

explain its testability and, possibility of scaling opportunity, and corresponding risk estimate. Subsequently, in Section 4, we 100 

apply the new approaches to winter storms (extratropical cyclones) over Germany to demonstrate their potentials. This 

application implies several elements of conventional statistics, which are explained in Section 5. Finally, we summarize and 

discuss our results and giveprovide an outlook in Section 6. Some stochastic and statistical details are presented in the 

Supplementary and Supplementary data to remain clarity of the main paper and limit its extent.. In the entire paper, we must 

consider several stochastic relations. Therefore, the same mathematical symbol can have different meanings in different 105 

subsections. We also expect that the reader is more familiar with statisticsstatistical and stochastic than only with basics about 

random variables.concepts such as statistical significance, goodness-of-fit tests, random fields, or aand Poisson (point) 

processprocesses (Upton and Cook, 2008) should be familiar terms.). 

2 Max-stability in statistics and stochastic 

2.1 The univariate case 110 

Before we formulate the introducing CRP and its properties, we discuss their opportunities, we must present, discuss, and 

extend a corresponding topic –the concept of max-stability in extreme value statistics especial of, with focus on random 

processprocesses and fields. Max-stability has its origin in univariate statistics. The cumulative distribution functions (CDF) 

𝐹𝑛(𝑥) of maximum 𝑋𝑛 = 𝑀𝑎𝑥(𝑋1, … , 𝑋𝑛) of 𝑛 identical and independently distributed (iid) random variables 𝑋𝑖 with CDF 

𝐹(𝑥) (for the non-exceedance probability 𝑃𝑟(𝑋 ≤ 𝑥)) is 115 

𝐹𝑛(𝑥) = 𝐹(𝑥)𝑛.   (1) 

A CDF 𝐹(𝑥) is max-stable if the linear transformed maximum (with parameters 𝑎𝑛 and 𝑏𝑛) has the same distribution (Coles, 

2001, Def. 3.1) 

𝐹𝑛(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐹(𝑎𝑛𝑥 + 𝑏𝑛)𝑛 = 𝐹(𝑥)).   (2) 

The Fréchet distribution (Beirlant et al., 2004, Tab. 2.1) is such a max-stable distribution, also called extreme value distribution, 120 

with CDF 

𝐺(𝑥) = exp (−
1

𝑥𝛼) , 𝑥 ≥ 0, 𝛼 > 0 .   (3) 

For the unit Fréchet distribution, the parameter is 𝛼 = 1 and the transformation parameters are 𝑏𝑛 = 0 and 𝑎𝑛 = 𝑛. The most 

distribution types are not max-stable, but their distribution of maxima (1) converges to an extreme value distribution by 

increasing sample size 𝑛, called the block size in this context (Beirlant et al., 2004, Chapter 3). These are well-known facts, 125 

and We can only refer to some of a very high number of corresponding publications (e.g., de Haan and Ferrira, 2007; Falk et 

al. 2011). Coles (2001) gives a good overview for practitioners. 
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2.2 Max-stable copulas 

It is also well-known that a bivariate CDF 𝐹(𝑥, 𝑦) can replacebe replaced by a copula 𝐶(𝑢, 𝑣)  and the marginal CDFs 

𝐹𝑥(𝑥) and 𝐹𝑦(𝑦) ): 130 

𝐹(𝑥, 𝑦) = 𝐶 (𝐹𝑥(𝑥), 𝐹𝑦(𝑦)) = 𝑃𝑟(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦).   (4) 

The copula approach represents a universalbasic distinction between the marginal distributions and the dependence 

structure and; it was introduced by Sklar (1959). As there are different univariate distributions (types)), there are different 

copulas (types). Mari and Kotz (2001) presentspresent a good overview about copulas, their construction principalsprinciples, 

and different views on dependence. Max-stability is also a property of some copulas, called max-stable copula or extreme 135 

copula. A max-stable copula remains the same for pairs of component wisecomponentwise maxima (𝑋𝑛 , 𝑌𝑛) as it was already 

for the underlying pairs (𝑋, 𝑌); the copula parameters including dependence measure such as Kendall’s (1938) rank correlation 

are equal. The formal definition is (Dey et al., 2016, (2.3)) 

𝐶𝑛(𝑢 , 𝑣) = 𝐶(𝑢 1/𝑛, 𝑣 1/𝑛)𝑛.   (5) 

2.3 Max-stability of stochastic processes 140 

The spatial extension of the bivariate situation and corresponding distribution is the random field 𝑍(𝑥) at points 𝑥 in the space 

ℝ𝑑  with 𝑑 dimensions (e.g., Schlather, 2001). In our application, ℝ2 is the geographical space and 𝑥 is the corresponding 

coordinate vector. At one point/site, 𝑥 in ℝ𝑑 , 𝐹𝑥(𝑧) is the marginal distribution of the local random variable 𝑍. There are 

various differentiations and variants such as (non)stationarity or (non)homogeneity. A max-stable random field has max-stable 

marginal distributions and the copulas between totwo margins are also max-stable. Schlather (2002) has formulated and 145 

proofed a construction of a max-stable random field (we cite his 1st theorem with the same notation) 

Theorem 1: Let Y be a measurable random function and 𝜇 = 𝔼 ∫ 𝑚𝑎𝑥{0, 𝑌(𝑥)}
ℝ𝑑 𝑑𝑥 ∈  (0, ∞). Let 𝛱 be a Poisson process 

on ℝ𝑑 × (0, ∞) with intensity measure 𝑑𝛬(𝑦, 𝑠) = 𝜇−1𝑑𝑦𝑠−2𝑑𝑠, and 𝑌𝑦,𝑠 i.i.d. copies of Y; then 

𝑍(𝑥) = 𝑠𝑢𝑝
(𝑦,𝑠) ∈ 𝛱

𝑠𝑌𝑦,𝑠(𝑥 − 𝑦) = 𝑠𝑢𝑝
(𝑦,𝑠) ∈ 𝛱

𝑠 𝑚𝑎𝑥{𝑌𝑦,𝑠(𝑥 − 𝑦), 0},   (6) 

is a stationary max-stable process with unit Fréchet margins. 150 

Extreme value statistics is interested in the max-stable dependence structure (copula) between the margins, the unit Fréchet 

distributed random variables 𝑍 at fixed points 𝑥 in space ℝ𝑑. From perspective of NatCat modelling in the geographical space 

ℝ2 and with 𝑌(𝑥) ≥ 0, the entire generating process is interesting. The Poisson (point) process 𝛱 represents all hazard events 

(e.g., storms) of a unit period such as a hazard season or a year and; it has two parts, 𝑠 and 𝑦. The point events 𝑠 on (0, ∞) are 

a stochastic event magnitude and scale the field of local eventsevent intensity 𝑠𝑥(𝑥), short called intensity): 155 

𝑠𝑥(𝑥) = 𝑠𝑌𝑦,𝑠(𝑥 − 𝑦)),   (7) 

which represents all point events 𝑠𝑥(𝑥) at sites 𝑥. The random coordinate 𝑦 is a kind of epicenter in the meaning of NatCat 

with the (tendentiously) highest local event intensity such as maximum wind speed, maximum hail stone diameter, or peaks 
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of earthquake ground accelerations. The copied random function 𝑌(𝑥) determines the pattern of a single random event in the 

space ℝ𝑑. 𝑌(𝑥) or its local expectation converges to 0 or is 0 if the magnitude ‖𝑥‖ of coordinate vector converges to infinity 160 

due to the measurability condition in Theorem 1. This also applies to NatCat events with limited geographical extend. 

Schlather (2002) has demonstrated the flexibility of his construction by presenting realizations of maximum fields for 

different variants of 𝑌(𝑥) . Its measurability condition is fulfilled by classical probability density functions (PDF, first 

derivative of the CDF, Coles, 2001, Section 2.2) of random variables. For instance, Smith (1990, an unpublished and frequently 

cited paper) used the PDF of the normal distribution. We present in the Supplementary, Section 4, some examples of the 165 

random function 𝑌(𝑥) in the Supplementary, Section 4, to illustrate the universality of the approach. 𝑌(𝑥) can also imply 

random parameters such as veritiesvariants of standard deviation of applied PDF or is, and it can be combined with a random 

field. 

Both, 𝑠 and 𝑠𝑥(𝑥) with fixed 𝑥, are point events of Poisson processes with intensity 𝑠−2𝑑𝑠. This is the expected point 

density and determines the exceedance frequency. The latter is the expected number of point events 𝑠𝑥(𝑥) > 𝑧 and 𝑠 > 𝑧: 170 

Λ𝛬(𝑧) = ∫ 𝑠−2𝑑𝑠
∞

𝑧
= 1/𝑧.   (8) 

The entire construction of Theorem 1 is also a kind of shot noise field according to the definitions of Dombry (2012); and). 

Furthermore, Schlather (2002) has also published a construction of max-stable random field without a random function but 

with a stationary random field. The logarithmic variant of Theorem 1 (logarithm of (6,7)) also results in a max-stable random 

field,; however, the marginal maxima are unit Gumbel distributed and (8) would be an exponential function. The Brown-175 

Resnick process - —well-known in stochasticextreme value statistics (e.g., Engelke et al., 2011) - determines)—generates a 

max-stable random field with such unit Gumbel distributions and use a nonstationary as result of random field.walk processes 

(Pearson, 190). It is implicitly a construction according to Theorem 1 since, as for exponential transformation (inverse of 

logarithmic transformation)), the nonstationary random fieldwalk with drift is the random function of Theorem 1. The origin 

of a Brown-Resnick process in ℝ𝑑 can be fixed but can also be a random coordinate as 𝑦 is in Theorem 1. 180 

The construction of Theorem 1 is already used to model natural hazards in the geographical space. Smith (1990) has applied 

the bivariate normal distribution as 𝑌(𝑥) in a rainstorm modelling. The Brown-Resnick Process has been already been applied 

to river flood (Asadi et al., 2015). Blanchet and DavisonDavison’s (2011) have applied a max-stable model for snow depth, 

and Raschke et al.’s (2011) model for winter stormstorms, both in Switzerland. And there, are also max-stable. There are also 

similarities to conventional hazard models. Punge’sPunge et al.’s (2014) hail simulation includes maximum hail stone diameter 185 

that acts like ln (𝑙𝑛(𝑠) in (6,7). Raschke (2013) already stated similarity between earthquake ground motion models and 

Schlather’s construction. However, the earthquake magnitude can have a wider influence on the geographical event pattern 

than a simple scaling. This was one of theour motivations to extend and generalize the Schlather’s construction (7) with 

dimension 𝑑 of ℝ𝑑: 

𝑠𝑥(𝑥) = 𝑠1+𝛽𝑌𝑦,𝑠 (((1 + 𝛽)𝑠−𝛽)
−

1

𝑑
(𝑥 − 𝑦)) , 𝛽 > −1,   (9) 190 
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and for the corresponding field of maxima (6)), we write 

𝑍(𝑥) = 𝑠𝑢𝑝
(𝑦,𝑠) ∈ 𝛱

𝑠1+𝛽𝑌𝑦,𝑠 (((1 + 𝛽)𝑠−𝛽)
−

1

𝑑
(𝑥 − 𝑦)) , 𝛽 > −1.   (10) 

As we show in the Supplementary, Section 2, the marginal Poisson processes 𝑠𝑥(𝑥) in (9) have the same exceedance 

frequency (8) as (7). Correspondingly, 𝑍(𝑥) in (10) is also unit Fréchet distributed as in (6). Schlather’s construction is a 

special case of (9,10) with 𝛽 = 0; (9,10) only implies max stability of spatial dependence in this case, what we discuss in the 195 

following section. 

2.4 Spatial characteristics and dependence 

We now illustrate spatial max-stability and its absence by examples of (9,10) with standard normal PDF as random function 

𝑌(𝑥) in a one-dimensional parameter space ℝ𝑑=1. For this purpose, we apply the simulation approach of Schlather (2002) and 

generate random events within a range (-10,10) for local event intensities within the region/range (-4,4) in ℝ1 by a Monte 200 

Carlo simulation. According to Schlather’s procedure that, which processes a series of random numbers from a (pseudo) 

random generator, only the events for the large 𝑠 are simulated which; this implies incompleteness for smaller events. This 

does not significantly affect the simulated field 𝑍(𝑥) of maxima. However, we can only consider this simulation for 𝛽 ≥ 0 in 

(9,10) since the edge effects increase for increasing 𝑠 if 𝛽 < 0. In Figure 1a, we show fields for one realization 𝛱 of Schlater’s 

theorem (𝑛 = 1, equivalent to one year or one season in NatCat modelling) for the max-stable case with 𝛽 = 0 in (9,10). With 205 

the same series of random numbers, we generate fields of 𝑛 = 100 realizations of 𝛱 in Figure 1b. It has the same pattern 𝑛 =

1 and is the same when we linear transform the local intensities 𝑠𝑥, with division by 𝑛 = 100. The entire generating processes 

are max-stable, just as the resulting marginals and dependence and association/dependence between marginals are. In contrast 

to this total max-stability, the example with 𝛽 = 0.1 results in different patternpatterns for 𝑛 = 1 and 𝑛 = 100 in Figure 1 c 

and d. The shape of the event fields gets sharper for larger 𝑠,; only the marginals are max-stable, not their spatial relations. 210 

To illustratesillustrate the effect on spatial dependence quantitatively, we have generated local maxima 𝑍(𝑥) from (10) by 

Monte Carlo simulation with 100,000 repetitions and computed corresponding dependence measure Kendall’s 𝜏 (Kendall, 

1938; Mari and Kotz  Section 6.2.6). As depicted in Figure 2a and b, the functions are the same if 𝛽 = 0 and differs if 

𝛽 = 0.1,; the dependence is decreasing by increasing 𝑛 if 𝛽 > 0. In Figure 2c, the functions are shown for the limit cases full 

dependence with the same value of 𝑠𝑥(𝑥) at each point 𝑥 and full independence with 𝑠𝑥(𝑥) = 0 everywhere except one point. 215 
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Figure 1: Examples of simulated fields of local event intensities and enveloping field of maxima (bold green line) generated with 

standard normal PDF as Y(x) in (6,7,9,10) and the same series of numbers from pseudo-random generator: a) max-stable and n=1, 

b) max-stable and n=100, c) non max-stable and n=1, d) non max-stable and n=100. The strongest event has a broken red line. 

   220 
Figure 2: Spatial dependence in relation to the distance measured by Kendall’s : a) max-stable fields of Figure 1, b) non-max-stable 

fields of Figure 1, c) limit cases. 

Beside our extension of Schlather’s theorem, we also consider a more recent approach from NatCat research to understand 

the spatial characteristic. Raschke (2013) described an earthquake event by its area function for the peak ground accelerations. 

This is a cumulative function and measures the set of points in the geographical space (the area) with an event intensity higher 225 

than the argument of the function. The area function is limited here to a region and is normalized (𝑢 and 𝑙 symbolises the 

region’s bounds, the integral in the denominator is the area of the region in ℝ2, 𝟏 is an indicator function)): 

𝐴(𝑧) =
∫ 𝟏(𝑠𝑥(𝑥)>𝑧 )𝑑𝑥

𝑢
𝑙

∫ 𝑑𝑥
𝑢

𝑙

.   (11) 

andIt is now like a survival function of a random variable (decreasing with the value of functions between 0 and 1)), which 

describes the exceedance probability in contrast to a CDF for non-exceedance probability (Upton and Cook, 2008). Jung and 230 

Schindler (2019) have already applied such aggregating functions to German winter storm events and call them explicitly 

survival function. However, not every normalized aggregating decreasing function is based on an actual random variable. 

AndMoreover, survival functions are not used in statistics to describe regions of random fields or random function as far as 

we know. Nonetheless, we use the area function (11) to characterize and research the spatiality of the event field 𝑠𝑥(𝑥) in a 

defined region. As an example, the area function for the strongest events in Figure 1 is shown in Figure 3a. The differences 235 

between the variants 𝑛 = 1 versus 𝑛 = 100 and 𝛽 = 0 versus 𝛽 = 0.1 correspondscorrespond with the differences between 
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these events in Figure 1. In Figure 3b, the limit cases of Figure c are depicted to illustrate the underlying link between area 

function and spatial dependence. 

We also use the parameters of a random variable 𝑋𝑍 with PDF 𝑓(𝑥) and CDF 𝐹(𝑥)𝑧), and survival function �̅�(𝑥)(𝑧) =

1 − 𝐹(𝑥𝑧)  to characterize our area function. These parameters are exceptionexpectation 𝔼[𝑋][𝑍]  (estimated by sample 240 

mean/average), variance Var[𝑋][𝑍], standard deviation Sd[𝑋][𝑍] (the square root of variance), and a coefficient of variation 

(CV) Cv[𝑋] with[𝑍] (Coles, 2001, Section 2.2,; Upton and Cook, 2008) with 

𝔼[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
[𝑍] = ∫ 𝑧𝑓(𝑧)𝑑𝑧

∞

−∞
= ∫ 𝑥𝑑�̅�(𝑥)

0

1
∫ 𝑧𝑑�̅�(𝑧)

0

1
, Var[𝑋][𝑍] = ∫ (𝑥 − 𝔼[𝑋])2𝑑�̅�(𝑥)

0

1
∫ (𝑧 −

0

1

𝔼[𝑍])2𝑑�̅�(𝑧) , Sd[𝑋][𝑍] = √Var[𝑋]√Var[𝑍], Cv =
Sd[𝑋]

𝔼[𝑋]

Sd[𝑍]

𝔼[𝑍]
.   (12) 

According to (12), any scaling of 𝑋𝑍 by a factor 𝑆 > 0 results in proportional scaling of expectation and standard deviation 245 

in (12), and the CV remains constant. Correspondingly, random magnitude 𝑠 in (9,10) only scales the field 𝑠𝑥(𝑥) in the max-

stable case with 𝛽 = 0 and influences the expectation of 𝐴(𝑧) but not the CV. Thus, the CV is independent on the expectation. 

This does not apply to the non-max-stable case with 𝛽 ≠ 0 in (9,10). These different behaviors are detectable for the examples 

of Figure 1b and d in Figure 3c and d. For the max-stable case, the scale/slope parameter of the linearized regression function 

does not differ significantly from 0 according to the t-test (Fahrmeir et al., 2013, Section 3.3). For the max-stable case, the 250 

regression function is statistically significant with a p-value of 0.00. Linearization is provided by the logarithm of CV and 

expectation/average. For completeness, the full dependence case of Figure 3b corresponds with ana CV of 0. 

In sum ofAs per Section 2, Schlather’s 1st Theorem has parallels to NatCat models, is used already in hazard models, and 

was extended here to the non-max-stable case regarding spatial dependence and characteristic. Statistical indication for max-

stability is the independence of the spatial dependence measure from the block size (e.g., one versus ten years) and 255 

independence between CV and expectation of the area function (11). Otherwise, non-max-stability is indicated. 
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Figure 3: The area function and corresponding characteristics: a) area function of the biggest event of Figure 1, b) area functions 

for the limit cases (examples), c) relation CV to average for the max-stable case of Figure 1b, d) for the non-max-stable case of Figure 260 
1d (events with average >1, the distance between the support points is 0.1 for the computation of the average in the region (-[-4,4)).]). 

3 The combined return period (CRP) 

3.1 The stochastic derivation 

Let the point event 𝑠𝑥,𝑖𝑌𝑥,𝑖 be the local intensity at site 𝑥 of a hazard event and 𝑖 as a member of the set of all events of a defined 

unit period such as a year, hazard season, or half season. This local event intensity might be the maximum river discharge of 265 

a flood, the peak ground acceleration of an earthquake, or the maximum wind gust of a windstorm event. The entire number 

of events with 𝑠𝑥,𝑖𝑌𝑥,𝑖 > 𝑧𝑦 during the unit period is 𝐾 = ∑ 𝟏(𝑠𝑥,𝑖 > 𝑧)∞
𝑖=1 ∑ 𝟏(𝑌𝑥,𝑖 > 𝑦)∞

𝑖=1 . 𝐾 is (at least approximately) a 

Poisson distributed (Upton and Cook, 2008) discrete random variable with an expectation - —the expected exceedance 

frequency, that is the local hazard function in a NatCat model (this is not the hazard function/hazard rate of statistical survival 

analysis, Upton and Cook, 2008).) 270 

𝛬(𝑧)𝛬𝑦(𝑦) = 𝔼[𝐾].   (13) 

This is the bijective frequency function and the local hazard curve. Its reciprocal determines the hazard curve for the RP 

𝑇(𝑧)𝑇𝑦(𝑦) =
1

𝛬(𝑧)

1

𝛬𝑦(𝑦)
=

1

𝔼[𝐾]
.   (14) 

As 𝑠𝑥𝑌𝑥 is a point event it’s, its RP 𝑇(𝑠𝑥) = 𝑇𝑦(𝑌𝑥) is also a point event of a point process with frequency function according 

to (14) but now with the argument/threshold variable 𝑧, since the scale unit is changed: 275 

𝛬𝑇(𝑧) = 1/𝑧.   (15) 

Since (15) is the same as (8), Schlather’s theorem and our extensions directly apply to RP. with 𝑇 = 𝑠𝑥  in (7,9). For 

completeness, the marginal maxima have a CDF for 𝑛 unit periods (a unit Fréchet distribution for 𝑛 = 1 according to (3)) 

𝐺𝑛(𝑧) = 𝑒𝑥𝑝 (−𝑛𝛬𝑇(𝑧))  = (−𝑛𝛬𝑇(𝑧)) = 𝑒𝑥𝑝 (−𝑛/𝑧).   (16) 

This is applicable because the probability of non-exceedance for level 𝑧 of the block maxima is the same probability thatas per 280 

which no events occur with 𝑠𝑥,𝑖 > 𝑇 > 𝑧, which is determined by the Poisson distribution; (6,8) also implyimplies this link, 

and Coles (2002, p. 249 “yp”) has also mentioned this. The same applies to the relation between frequency and maxima of 

locale event intensity. 

Schlather’s theorem is also based on and implies the concept of pseudo polar coordinates. According to de Haan (1984) 

and well explained by Coles (2001, Section 8.3.2), two max-stable linked point processes with expected exceedance frequency 285 

(15) and point events 𝑇1 and 𝑇2 are also represented by pseudo polar coordinates with radius 𝑅 and angle 𝑉: 

{𝑅 = 𝑇1 + 𝑇2, 𝑉 =
𝑇1

𝑇1+𝑇2
} ⟺ {𝑇1 = 𝑅𝑉, 𝑇2 = 𝑅(1 − 𝑉) = 𝑇1

1−𝑉

𝑉
}.   (17) 

As we describe in the Supplementary, Section 1, the expectation of (1 − 𝑉)/𝑉 is 1 and for the conditional expectation of 

unknown RP 𝑇2 with known 𝑇1applies (association is provided)): 
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𝐸𝔼[𝑇2|𝑇1] = 𝑇1.   (18) 290 

The interest in extreme value theory and statistics (Coles, 2001, Section 3.8; Beirlant et al., 2004, Section 8.2.3; Falk et al. 

2011, Section 4.2) is focused on the distribution of pseudo angle 𝑉 with CDF 𝐻(𝑧). As Coles (2001) writewrites “the angular 

spread of points of N [the entire point processes] is determined by H, and is independent of radial distance [𝑅]”, angle and 

radius occursoccur independently to each other, and 𝐻 determinedetermines the copula between two marginal maxima 𝑍(𝑥) 

in Theorem 1. 295 

According to Coles (2001, Section 3.8), the pseudo radius 𝑅 in (17) is a point event of a Poisson process with frequency 

𝛬(𝑧) = 2/𝑥𝑧 - the double of (15). This means the average of two RPRPs, 𝑇1 and 𝑇2, results in a combined return period (CRP) 

𝑇𝑐  

𝑇𝑐 =
𝑇1+𝑇2

2
.   (19) 

with exceedance frequency function (8,15). We do not have a mathematical proof that (18,19) also applies for non-max-stable 300 

associated point processes. However, max-stable and non-max-stable cases have the same limits: full dependence (𝑇1 = 𝑇2) 

and no dependence/full independence (𝑇1 = 0 if 𝑇2 > 0 and vice versa, 𝑇 = 0 represents the lack of a local event). Therefore, 

(19) should also apply to the non-max-stable case between these limits. This can be validated heuristically validated as we 

demonstrate by an example in the Supplementary, Section 3. 

More than one RP can be averaged since the averaging of two RPs can be done in serial (and the pseudo polar coordinates 305 

are also applied to more than two marginal processes). Serial averaging (averaging the last result with a further RP) also implies 

a weighting; the first considered RPs would be smaller weighted than the last in the final CRP. The general formulation of 

averaging of RP with weight 𝑤 is 

𝑇𝑐 =
∑ 𝑇𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

.   (20) 

The corresponding continuous version within the region’s bounds 𝑢 and 𝑙 in space ℝ𝑑 is 310 

𝑇𝑐 =
∫ 𝑇(𝑥)𝑤(𝑥)𝑑𝑥

𝑢
𝑙

∫ 𝑤(𝑥)𝑑𝑥
𝑢

𝑙

.   (21) 

If 𝑤(𝑥) = 1 applies in (21)), then the denominator is the area of the region and. Furthermore, the CRP 𝑇𝐶  is the expectation 

of the area function (11). This also applies for other weightings if we consider it in the area function, here written for RP 𝑇(𝑥)), 

𝐴(𝑧) =
∫ 𝑤(𝑥)𝟏(𝑇(𝑥)≥𝑧)𝑑𝑥

𝑢
𝑙

∫ 𝑤(𝑥)𝑑𝑥
𝑢

𝑙

 ,   (22) 

with empirical version for 𝑛 measuring station 𝑖 in the analyzed region: 315 

𝐴(𝑧) =
∑ 𝑤𝑖

𝑛
𝑖=1 𝟏(𝑇𝑖≥𝑧)

∑ 𝑤𝑖
𝑛
𝑖=1

.   (23) 

The weighting, especially the empirical one, can be used in hazard research to compensate an inhomogeneous geographical 

distribution of measurement stations or a different focus than the covered geographical area such as the inhomogeneous 

distribution of exposed values or facilities in NatCat research. It has the same effect on the area function as a distortion of the 

geographical space as used by Papalexiou et al. (2021). Weighted or not, CRP and CV are parameters of the area function. 320 
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3.2 Testability 

Before the CRP is applied in stochastic NatCat modelling, it should be tested statistically to validate the appropriateness. A 

sample of CRPs can be tested by a comparison of its exceedance frequency function (15) and their empirical variant. Therein 

the empirical EFexceedance frequency of the largest CRP in the sample is the reciprocal of the length of the observation period. 

The 2nd largest CRP is hence associated to twice the exceedance frequency of the largest CRP and so on. It is the same as for 325 

empirical exceedance frequency for EQ (e.g., the well-known Gutenberg-Richter relation in Seismology, Gutenberg-Richter, 

1956). However, not all small events are recorded; the sample is thinned and incomplete. This completeness issue is well 

known for earthquakes and is here less important here if only the distribution (16) of maximum CRPs is tested. There are a 

numberseveral goodness-of-fit tests (Stephens, 1986, Section 4.4) for the case of known distribution model. The Kolmogorov-

Smirnov test is a popular variant. 330 

3.23 The scaling opportunityproperty of CRP 

The CRP also offers the opportunity of stochastic scaling. The CRP 𝑇𝑐 and all 𝑛 local RPs 𝑇𝑖  in (20) (and 𝑇(𝑧) in (21)) are 

scaled by a factor 𝑆 > 0: 

𝑇𝑐𝑠 = 𝑇𝑐𝑆 =
∑ 𝑆𝑇𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑗=1

𝑇𝑐 =
∑ 𝑆𝑇𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑗=1

, 𝑇𝑠,𝑖 = 𝑇𝑖𝑆, 𝑇𝑖.   (24) 

This means for the pseudo polar coordinates in (17), which applies to the max-stable case,: 335 

𝑅𝑠 = 𝑆𝑇1 + 𝑆𝑇2 = 𝑆𝑅, 𝑉𝑠 =
𝑇𝑠,1

𝑇𝑠,1+𝑇𝑠,2
=

𝑆𝑇1

𝑆(𝑇1+𝑇2)
= 𝑉.   (25) 

The pseudo angle 𝑉 is not changed as expected since pseudo radius and pseudo angle are independent in the pseudo polar 

coordinate for the max-stable case (Section 3.1). This also means that a scaling must be more complex if there is non-max-

stability. We cannot offer a general scaling method for this situation; however, it must consider/reproduce the pattern of the 

relation CV versus CRP (example in Figure 3d) adequately. Irrespective of this, the corresponding event field of local 340 

intensities (e.g., maximum wind gust speed) can be computed for the scaled local RPs via the inverse of the local hazard 

function: 𝑇(𝑧) in (14) or 𝛬(𝑧) in (13). 

3.4 Risk estimates by scaling and averaging 

The main goal of a NatCat risk analysis is the estimate of a risk curve (Mitchell-Wallace et al., 2017, Section 1), the bijective 

functional of event loss in a region, and corresponding RP, which is called herethe event loss return period (ELRP) 𝑇𝐸 . As 345 

aforementioned, there are two approaches for such estimates with corresponding pros and cons.  

We introduce an alternative method. Under the assumption of max-stability between ELRP 𝑇𝐸  and CRP 𝑇𝐶 , according to (18),) 

with 𝑇1  =  𝑇𝐶  and 𝑇2  =  𝑇𝐸 , the expectation of an unknown ELRP 𝑇𝐸  is the CRP 𝑇𝑐𝑇𝐶  of the local event intensities;. This 

means that the CRP is an estimate of the ELRP (max-stability between ELRP and CRP provided). To get a good estimate of 

ELRP, we must ELRP. We can average the 𝑇𝑐CRP of many events with the same event loss. We cannot observe such, but we 350 
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can stochastically scale historical events respectively their to get a good estimate of ELRP. However, observations of events 

with the same loss are not available. Nonetheless, we can exploit the stochastic scaling property of CRP to rescale the local 

intensity observations of historical events to get the required information. The modelled event loss 𝐿𝐸 is the sum of the product 

of local loss ratio 𝐿𝑅 , determined by local event intensity 𝑠𝑥,𝑖𝑦𝑥,𝑖  and local exposure value 𝐸𝑖  over all sites 𝑖 (Klawa and 

Ulbrich, 2003; Della-Marta et al. 2010)): 355 

𝐿𝐸 = ∑ 𝐿𝑅,𝑖(𝑠𝑥,𝑖)𝐸𝑖
𝑛
𝑖=1 ∑ 𝐿𝑅,𝑖(𝑦𝑥,𝑖)𝐸𝑖

𝑛
𝑖=1    (26) 

with the local vulnerability function 𝐿𝑅,𝑖(𝑠𝑥,𝑖𝑦𝑥,𝑖). To get the event loss for the scaled event, the observed 𝑠𝑥,𝑖𝑦𝑥,𝑖 is replaced 

by 

𝑠𝑥𝑠,𝑖 = 𝛬𝑖
−1 (

𝛬𝑖(𝑠𝑥,𝑖)

𝑆
)   (27) 

𝑦𝑥𝑠,𝑖 = 𝛬𝑦,𝑖
−1 (

𝛬𝑦,𝑖(𝑦𝑥,𝑖)

𝑆
)=𝑇𝑦,𝑖

−1(𝑆𝑇𝑦,𝑖(𝑦𝑥,𝑖)).   (27) 360 

with local hazard function 𝛬(𝑧)  (13) for exceedance frequency ,14) and its invers function 𝛬−1(𝑧). The formulation with RP 

(14) is equivalent.. The scaling factor 𝑆 in (27) is the same for all sites/locations 𝑖, respectively, as it is in (24) for the CRP 

and. This factor 𝑆 must be adjusted in an iterationiteratively until the defined event loss is the result of (26).) converges to the 

desired event loss. The scheme in Figure 4a includes all elements and relations of the scaling approach. Therein, the numerical 

determination in the scaling scheme has only one direction, from scaled CRP to the event loss. The idea of CRP averaging is 365 

also illustrated by Figure 4b. The standard error of the averaging is the same as for the estimates of an expectation by the 

sample mean (Upton and Cook, 2008, catchwordkeyword central limit theorem). 
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Figure 4: Schemes of the scaling approach: a) elements and relations, b) schematic example for estimation RP of event loss by 370 
averaging of CRP. 

According to the well-known Delta method, well explained by  (Coles (2001, Section 2.6.4), statistical estimates and their 

standard error can be approximately transferred in otheranother parameter estimation and corresponding standard error by the 

determined transfer function and its derivates. In its meaning, we can also average the event loss for a fixed/determined CRP 

respectively its scaled variant. This also applies to derivatives. Condition of this linear error transfer is a relatively small 375 

standard error of the original estimates. The Delta method could be used to compute the reciprocal of ELRP—the exceedance 

frequency, the reciprocal of RP, for a determined/fixed event loss and corresponding standard error, or the exceedance 

frequency is computed directly by averaging the reciprocal of scaled CRPs, and the transfer proxy acts implicitly. We also 

apply the idea of linear transfer proxy when we average the modelled event loss for the historical events being scaled to the 

same defined CRP. The unknown sample of ELRPs, which represents the ELRP’s distribution for a fixed CRP, is implicitly 380 

transferred to a sample of event loss. If the proxies perform well, the difference to the risk estimates via CRP averaging should 

be small. 

There is a further chain of thoughts as argument for the different variants of averaging the exceedance frequency.. The 

scaledscaling implies subsets of intensity fields are like sub-sets in the set of all possible eventintensity fields. Each of these 
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subsets implies a relation exceedance frequency to event loss – a risk curve. Furthermore, we assume an The links between 385 

the fields of a subset are determined by the scaling of their CRPs. Correspondingly, every subset generates a risk curve with 

CRP (now also an ELRP) versus event loss. We also assume a certain unknown probability per subset that this sub-set generates 

a part of is applied if all these subsets generate the entire risk curve. The latter is for a fixed event loss the aggregation of subset 

exceedance frequency multiplied with their probability. This is basically the same as the definition of  via an integral like the 

expectation of a random variable (12). Therefore, we can apply The corresponding empirical variant (estimator of the 390 

expectation in the estimation of a risk curve and ) is the averaging. However, we can average thethree values: CRP, exceedance 

frequencies of risk curves of the subsets – the scaledfrequency, or event fieldsloss. 

All mentioned estimators for risk curve via scaling and averaging over 𝑛 events are 

�̂�𝐸(𝐿𝐸) =
1

𝑛
∑ 𝑇𝐶𝑆,𝑖(𝐿𝐸)𝑛

𝑖=1 , Λ̂𝐸(𝐿𝐸) =
1

𝑛
∑ 1/𝑇𝐶𝑆,𝑖(𝐿𝐸)𝑛

𝑖=1 , �̂�𝐸(𝑇𝐸) =
1

𝑛
∑  𝐿𝐸,𝑖(𝑇𝐶𝑆 = 𝑇𝐸)𝑛

𝑖=1 .   (28) 

The right side of the equations in (28) implies actual values which can be and are bebeing replaced by estimates. Corresponding 395 

uncertainties must be considered in the final error quantification. 

We draw attention to the fact that the explained scaling does not change the CV of (23) which); this implies independence 

between CRP and CV (Section 2.4). Therefore, the presented scaling only applies to the max-stable case of local hazard. For 

the non-max-stable case, the scaling factor 𝑆 in (27) must be replaced event wise by 𝑆𝑖 , which reproducereproduces the 

observed relation between CRP and CV. An example without max-stability was already shown in Figure 3d. 400 

4 Application to German winter storms 

4.1 Overview about data and analysis 

We have selected the peril winter storms (also called extratropical cyclones or wind winter windstorms) over Germany to 

demonstrate the opportunities of the CRP because of good data access and since we are familiar with this peril (Raschke et al., 

2011; Raschke, 2015). Our analysis follows the scheme in Figure 4a, important results are presented in the subsequent sections, 405 

and the technical details are explained in Section 5. At first, we giveprovide an overview. 

We analyzed 57 winter storms over 20 years, from autumn 1999 to spring 2019 (Supplementary data, Table 1 and 2) to 

validate the CRP approach. Different references (Klawa and Ulbrich, 2003; Gesamtverband Deutscher Versicherer [GDV], 

2019; Deutsche Rück, 2020) have been considered to select the time window per event. In our definition of a, the winter storm 

season is from September to April of the subsequent year and accept. It accepts a certain opportunity of contamination of the 410 

sample of block maxima by extremes from convective windstorm events and a certain opportunity of incompleteness sincefrom 

extratropical cyclones can also be observed outside our season definition (Deutsche Rück, 2020).. The term winter storm is 

only based on the high frequency of extratropical cyclones during the winter. The seasonal maximum is also the annual 

maximum of this peril. 
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The maxima per half season (bisected by the turn of the year) are analyzed to double the sample size and to increase 415 

estimation precision. The appropriateness of this sampling is discussed in Section 5.1. We considered records of wind stations 

in Germany of DWD (2020; FX_MN003, a daily maximum of wind peaks [m/s], usually wind guestgust speed) that include 

minimum record completeness of 90% for analyzed storms, at least 90% completeness for the entire observation period, and 

minimum 55% completeness per half season. Therefore, we only consider 141 of 338 DWD wind stations (Supplementary 

data, Table 3). We think this is a good balance between large sample size and high level of record completeness. 420 

The intensity field per event is represented by the maximum wind gust for the corresponding time window of the event at 

each considered wind station. The local RP per event is computed by a hazard model per wind station. This is an implicit part 

of the estimated extreme value distribution per station, as explained in Section 5.1. The resulting CRPs per event and 

corresponding statistical tests are presented in the following Section 4.2. We have considered two weightings per station, 

capital, and area. Both are computed per wind station by assigning the grid cells with capital data of the Global Assessment 425 

Report (GAR data; UNISDR, 2015) via the smallest distance to a wind station. We also use this capital data to spatially 

distribute our assumed total insured sum 15.23 Trillion € for property exposure (residential building, content, commercial, 

industrial, agriculture, and business interruption) in Germany in 2018. This is based on Waisman’s (2015) assumption for 

property insurance in Germany and is scaled to exposure year 2018 under consideration of inflation in the building industry 

(Statistisches Bundsamt, 2020) and increasing building stock according to the German insurance union (GDV, 2020). It is 430 

confirmed by the assumptions of the Perils AG (2021),); however, their data product is not public. We also used loss data of 

the GDV (2019) for property insurance, when we fitted the vulnerability parameters for the NatCat model. These event loss 

data of 16 stormstorms during a period of 17 years are already scaled by GDV to exposure year 2018. 

The spatial characteristic is analyzed in Section 4.3 according to the aspects of Section 2.4 with focus, focusing on the 

question if there is max-stability or not in spatial dependence and characteristic. Finally, we present the estimated the risk 435 

curve for the portfolio of the German insurance market in Section 4.4 including a comparison with previous estimates. Details 

of the vulnerability model are documented in Section 5.2. The concrete numerical steps, the applied methods to quantify the 

standard error of estimates, and the consideration of the results from vendor models are explained in SectionSections 5.3, 5.4, 

and 5.5, respectively. 

4.2 The CRP of past events and validation 440 

As announced, we have computed the CRP according to (20) with the wind gust peaks listed in the Supplementary data, Table 

2, and local hazard models according to (30). Our local hazard models are discussed in Section 5.1 and parameters are presented 

in the Supplementary data, Table 4. An example for a complete CRP calculation is also provided therein (Table 8). We have 

considered two weightings for the CRP, a simple area weighting and a capital weighting (Supplementary data, Table 3). In 

Figure 5a, we compare the estimates which do not differ so much; the approach is robust in the example. The most significant 445 

winter storm of the observation period is Kyrill that occurred in 2007. It has CRPs of 16.97±1.75 and 17.64±1.81 years (area 
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and capital). Both are around the middle of the estimated range of 15 to 20 years by (Donat et al. (., 2011). Further estimates 

are listed in Supplementary data, Table 1. 

In Figure 5b, the results are validated according to Section 3.2. The empirical exceedance frequency matches well with the 

theoretical one for 𝑇𝑐 ≥ 1.65. Small CRPs are affected by the incompleteness of our record list. In the medium range, the 450 

differences between the model and empiricism are not statistically significant. In detail, we observe 27 storms with 𝑇𝑐 ≥ 1 

within 20 years; 20 storms were expected were 20. According to the Poisson distribution, the probability of 27 exceedances or 

more is 7.8%. A two-sided test with 𝛼 = 5% would reject the model if this exceedance probability would bewere 2.5% or 

smaller. 

The seasonal/annual maxima of CRP must follow a uniformunit Fréchet distribution (𝛼 = 1 in (3)) according to (16). We 455 

plot this and the empirical distribution in Figure 5c. The Kolmogorov-Smirnov (KS) test (Stephens, 1986, Section 4.4) for the 

fully specified distribution model acceptsdoes not reject our model at the very high significance level of 25% for the capital-

weighted variant. Usually, only level 5% is considered. This result should not be affected seriously by the absence of one 

(probably the smallest) maximum due to incompleteness issueissues. In summary, we state that the CRP offers a stable, 

testable, and robust method, to stochastically quantify winter storms over Germany. 460 

   

   

Figure 5: Results of the analysis: a) comparison of area and capital weighted CRPs, b) comparison of theoretical and observed 

exceedance frequency of capital weighted CRP, c) test of distribution of seasonal maxima of CRP. 

4.3 Spatial characteristic and dependence 465 

As discussed in Section 2.4, the spatial characteristic is an important aspect from a stochastic perspective. Therefore, we have 

analyzed the relation between distance and dependence measure. Here We have applied Kendall’s  (Kendall, 1938; Mari and 
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Kotz, 2001, Section 6.2.6) and show the dependence between the maxima of the half- of a season maxima and two season 

maxima of two seasons for 9,870 pairs of stations in Figure 6a. Since the sample sizessize is relatively small, the spreading is 

strong that; it is caused by estimation error. Furthermore, the differences between the estimates for one hazard season maxima 470 

and two hazard seasons maxima are almost perfectly normal distributed and should be centered to 0 in case of max-stability 

(CDF in Figure 6 b). This does not apply with expectation 0.051 and standard deviation 0.182. According to a normally 

distributed confidence range for the estimated expectation with standard deviation 0.002, the probability, that the actual value 

is <0, is smaller than 0.00. This is in line with the differences of the non-max-stable example in Figure 2 b. 

Furthermore, the differences between the estimates of Kendall’s  for maxima of one and two hazard seasons are almost 475 

perfectly normally distributed (CDF in Figure 6b) and should be centered to 0 in case of max stability (Figure 2b). This does 

not apply with sample mean 0.051 and standard deviation 0.182. The corresponding normally distributed confidence range for 

the expectation has a standard deviation 0.002 and a probability of 0.00 that the actual expectation is 0 or smaller. 

For completeness, we compare the current estimates of Kendall’s  with thesethose for Switzerland from Raschke et al. 

(2011) in Figure 6c. The spatial dependence is higher for Germany. A reason might be differences in the topology. 480 

We have also computed the area functions and show examples in Figure 6d for winter storm Kyrill. The different weightings 

result in similar area functions. The CRP and CV of all events are plotted in Figure 6e. plots the CRP and CV of all events. 

The regression analysis result inreveals the statistical dependence between CRP and CV. For the linearized regression function, 

the p-value is 0.002 (t-test, Fahrmeir et al., 2013, Section 3.3). BecauseDue to two statistical indications of non-max-stability, 

we develop for every event with loss information a local scaling that considerconsiders the global scaling factor and the ratio 485 

between local RP and CRP. for every event with loss information. In this way, we could reproduce the observed pattern (Figure 

6f). Details of this workaround are presented in the Supplementary data, Section 7. The differences between the scaling variants 

(max-stable or not) for storm Kyrill do not seem to be strong (Figure 6d). 
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   490 

   

   

Figure 6: Spatial characteristics of winter storms over Germany: a) estimated Kendall’s  versus distance, b) differences between 

Kendall’s  for different block sizes, c) estimated Kendall’s  versus distance for seasonal maxima in Germany and Switzerland 

(Raschke et al., 2011), d) area functions for the storm Kyrill with scaling to CRP 100 years, e) relation CV to CRP of capital weighted 495 
area functions, and f) approximation of this relation by special stochastic scaling. 

4.4 The risk estimates 

Before we estimated risk curves according to the approach of Section 3.4, we must estimate a vulnerability function (31)), 

which determines the local loss ratio LR in the event loss aggregation (26). First, we fit the scaling parameter on the event loss 

data of the General Association of German InsurerInsurers (GDV, 2019) for 16 historical events from 2002 to 2018, as plotted 500 

in Figure 7a. The details of the vulnerability function and its parameter fit are explained in Section 5.2. Then, we use the 

vulnerability function in the three variants of risk curve estimates of Section 3.4 – —averaging of event loss, ELRPCRP, or its 
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reciprocal, the exceedance frequency. Details of the numerical procedure are explained in Section 5.3, which corresponds with 

the scheme in Figure 4a. 

In Figure 7b, the three estimated risk curves according to the three estimators in (28) are presented for max-stable scaling 505 

and differ less to each other what, which indicates the robustness of our approach. The empiricism is presented by the historical 

event losses and their empirical RP (observation period 17 years of GDV loss data) and capital-weighted CRP. In addition, we 

present the range of two standard errors of the estimates of loss averaging which implies the simplest numerical procedure. 

Details of uncertainty quantification are explained in Section 5.4. 

The differences between max-stable and non-max-stable scaling in the risk estimates are demonstrated in Figure 7c. For 510 

smaller RP, no significant difference can be stated in contrast to higher RP. This corresponds with the differences between the 

CV in relation to the CRP for max-stable and non-max-stable casecases in Figure 6f. These are also higher for higher CRP. 

We also compare our results with previous estimates in Figure 7c. For this purpose, we must scale these to provide 

comparability as goodwell as possible. The relative risk curve of Donat et al. (2011) is scaled simply by our TSI assumption 

for the total sum insured (TSI) for the exposure year 2018. The vendor models of Waisman (2015) are scaled by the average 515 

of ratios between modelled and observed event losses from Storm Kyrill since a scaling via TSI was not possible (uncertain 

market share and split between residential, commercial, and industry exposure). The result of the standard model of European 

Union (EU) regulations (European Commission, 2014), also known as Solvency II requirements, is also based on our TSI 

assumption, split into the Cresta zones by the GAR data. The Cresta zones (www.cresta.org) are an international standard in 

insurance industry and corresponds to the two-digit postcode zones in Germany. 520 

The risk estimate of Donat et al. (2011) is based on a combination of frequency estimation and event loss distribution by 

the generalized Pareto distribution, which is fitted on a sample of modelled event losses for historical storms. The 

corresponding risk curve differs very much from other estimates and obviously overestimateoverestimates the risk of winter 

storms over Germany. The standard model of EU only estimates the maximum event loss for RP 200 years,; the estimated 

event loss is very high. The vendor models vary but have a similar course as our risk curves. The non-max-stable scaling is in 525 

the lower range of the vendor models, whereas the unrealistic max-stable scaling is more in the middle. The concrete names 

of the vendors can be found in Waisman’s (2015) publication. The reader should be aware that the vendors might have updated 

their winter storm model for Germany in the meantime. 

The major result of Section 5 is the successfullysuccessful demonstration that the CRP can be applied to estimate reasonable 

risk curves under controlled stochastic conditions. In addition, we have also discovered the highstrong influence of the 530 

underlying dependence model (max-stable or not) and corresponding spatial characteristiccharacteristics to loss estimates for 

higher ELRP. 

http://www.cresta.org/
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Figure 7: Estimates for insured losses from winter storms in Germany: a) reported versus modelled event losses, b) current risk 

curves and observations, c) influence max-stable and non-max-stable scaling and comparison to scaled, previous estimates (Donat 535 
et al., 2011; Waisman, 2015, European Commission, 2014). 

5 Technical details of the application example 

5.1 Modelling and estimation of local hazard 

As aforementioned, the maximum wind gusts of half seasons of winter storms (extratropical cyclones), the )—block maxima, 

have been analyzed. Therein, the generalized extreme value distribution (Beirlant, et al., 2004, (5.1)) is applied: 540 

𝐺(𝑥) =
𝑒𝑥𝑝 (−𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
)) , 𝑖𝑓 𝛾 = 0                                               

𝑒𝑥𝑝 (− (1 + 𝛾
𝑥−𝜇

𝜎
)

−1/𝛾

) , 𝑖𝑓 𝛾 ≠ 0, 𝑤𝑖𝑡ℎ 𝑥 > 𝜇 −
𝜎

𝛾
 𝑖𝑓 𝛾 > 0 𝑎𝑛𝑑 𝑥 < 𝜇 −

𝜎

𝛾
 𝑖𝑓 𝛾 < 0

𝐺(𝑦) =

𝑒𝑥𝑝 (−𝑒𝑥𝑝 (
𝑦−𝜇

𝜎
)) , 𝑖𝑓 𝛾 = 0                                                                                                          

𝑒𝑥𝑝 (− (1 + 𝛾
𝑦−𝜇

𝜎
)

−1/𝛾

) , 𝑖𝑓 𝛾 ≠ 0, 𝑤𝑖𝑡ℎ 𝑦 > 𝜇 −
𝜎

𝛾
 𝑖𝑓 𝛾 > 0, 𝑎𝑛𝑑 𝑦 < 𝜇 −

𝜎

𝛾
 𝑖𝑓 𝛾 < 0

.   (29) 

As discussed below, the Gumbel distribution (Gumbel, 1935, 1941), as a special case in (29) with extreme value 𝛾 = 0, is 

an appropriate model. The scale parameter is 𝜎, and the location parameter is 𝜇. The local hazard function (13,14) can be 

derived directly from the estimated variant of (29) according to the link between extreme value distribution and exceedance 545 

frequency (16); ) (the accent symbolizes the point estimation)): 

�̂�(𝑥)�̂�𝑦(𝑦) = 1/�̂�(𝑥)�̂�𝑦(𝑦) = 𝑒𝑥𝑝 (
𝑥−�̂�

�̂�𝑐𝑜𝑟
) (

𝑦−�̂�

�̂�𝑐𝑜𝑟
).   (30) 

We apply the maximum likelihood (ML) method for the parameter estimation (Clarke, 1973, Coles, 2001, Section 2.6.3). 

The wind records’ incompleteness of wind records per half season have been considered in the ML estimates by a modification 

ofmodifying the procedure as explained in the Supplementary data, Section 5. A Monte Carlo simulation confirms the good 550 

performance of our modification. The biased estimate of 𝜎 for our sample size 𝑛 = 40 was also detected which, where we 

considered �̂�𝑐𝑜𝑟 = �̂�/0.98 as corrected estimation. Landwehr et al. (1979) have already stated such bias. A further bias was 

discoveredIn addition, the EFexceedance frequency is well estimated by (30) in contrast to the RP �̂�, this. The latter is strongly 
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biased. We also corrected this as documented in the Supplementary data, Section 6. The analyzed half-season maxima, record 

completeness, and parameter estimates are listed in Supplementary data, TableTables 4, 5 ad, and 6. 555 

We have validated the sampling of block maxima per half season. The opportunity of correlation between the first and 

second half-season maxima has been tested, for significant level  = 5%%, and hypothesis H0: uncorrelated samples. Around 

6% failsfail the test with Fisher'sFisher’s z-transformation (Upton and Cook, 2008). This corresponds to the error of the first 

kind and is interpreted as (Type I error, e.g., Lindsey, 1996, Section 7.2.3), the falsely rejected correct models. Therefore, we 

interpret the correlation not being significant.as statistical insignificant. Similarly, the Kolmogorov-Smirnov homogeneity test 560 

rejects 4% of the sample pairs for period September to December and January to April (first half to second season to subsequent 

second half season) for a significant level of 5%. This 5%There are the expected share of falsely rejected correct models – the 

first kind of error (type I error, e.g. Lindsey, 1996, Section 7.2.3).no significant differences between the samples. 

To optimize the intensity measure of the hazard model, we have considered the wind speed with power 1, 1.5, and 2 as the 

local event intensity in a first fit of the Gumbel distribution by the maximum likelihood method. According to these, power 565 

1.5 offers the best fit of wind gust data to the Gumbel distribution. Such wind measure variants were already suggested by 

Cook (1986) and Harris (1996). 

We do not apply the generalized extreme value distribution in (2429) with extreme value index 𝛾 ≠ 0 but the Gumbel case 

with 𝛾 = 0 for the following reasons. At first, an extensive physical explanation would be required if some Different stochastic 

regimes 𝛾<0 and 𝛾≥0 for different wind stations are concerned by aimply fundamental physical differences: finite and infinite 570 

upper bound for 𝛾 < 0 and other stations not with 𝛾 ≥ 0 according to (29). Why should be local bounds of wind hazard short 

tailed for some speed. Such fundamental differences between different wind stations and heavy tailed for others?would need 

reasonable explanations (especially for very low bounds versus infinite bounds). River discharges at different gauging stations 

could imply such physical differences since there are variants with laminar and turbulent stream (catchword Reynolds number) 

or very different retention/storage capacities of catchment areas (e.g., Salazar et al.., 2012). SuchSimilar significant physical 575 

differences do not exist for wind stations whichthat are placed and operated under consideration of rules of meteorology (World 

Meteorological Organization, 2008, Section 5.8.3) to provide homogeneous roughness condition due to generate comparable 

data.conditions. Besides, we also found several statistical indications for our modelling. Information criteria AIC and BIC 

(Lindsey, 1996; here over all stations) indicate that the Gumbel distribution is the better model than the variant with a higher 

degree of freedom. Furthermore, the share of rejected Gumbel distributions of the Goodness-of-fit test (Stephens, 1986, Section 580 

4.10) is with 6% around the defined significance level of 5% (the error of 1st kind – —falsely rejected correct models). We 

have also estimated 𝛾 for each station and got a sample of point estimates. The sample mean of is with 0.002, very close to 

𝛾 = 0 which; this confirms our assumption. Moreover, the sample variance is 0.018 which is around the same what as we get 

for a large sample of estimates 𝛾 for samples of Monte Carlo simulated and Gumbel distributed random variables (𝑛 = 40). 

All statistics validate the Gumbel distribution. 585 

To provide reproducible results, we also present a computational example for the CRP in Table 1 with reference to all 

needed equations and information. The entire calculation for Storm Kyrill is presented in the Supplementary data, Table 8. 
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Table 1: Example for the computation of a CRP - Station #303 (Baruth) for Storm Kyrill 

# Step Equation Supplementary data 

1 Event Definition: Kyrill, time window 18-19.01.2007 - Tab. 1 Considered storm events 

2 Wind speed maximum: Station #303 (Baruth) 34.7 m/s - Tab. 2 Event maxima 

3 Transformation to local intensity measure – the 1.5 power of wind speed: 

34.71.5m1.5/s1.5=204.4m1.5/s1.5 

- - 

4 Computation of local RP for the unit period: 58.07 half season (half of a year) (30) with �̂�𝑐𝑜𝑟 Tab. 4 Gumbel parameters 

5 Bias correction of RP for the unit period: 46.58 half season (half of a year) (16) in Supplementary - 

6 RP for unit period one year: 46.58/2= 23.29 season (year) - - 

7 Capital weighting: 23.29*0.0008988= 0.021 (20) Tab. 1 Considered storm events 

8 Aggregation over all stations: 17.65 year (20) Tab. 8 CRP example Kyrill 

9 Final capital weighted CRP for event Kyrill - Normalization by the sum of 

weighting: 17.65/1.0= 17.65 year 

(20) Tab. 8 CRP example Kyrill 

5.2 Modelling and estimation of vulnerability 

To quantify the loss ratio 𝐿𝑅 at location (wind station) 𝑗 and event 𝑖 in the loss aggregation (26), we use the approach of Klawa 

and Ulbrich (2003) for Germany. The difference to the origin is not significant. with a certain modification. The event intensity 595 

𝑥 is the maximum wind gust speed 𝑣. 𝑣98% is the upper 2% percentile from the empirical distribution of all local wind records. 

The relation with vulnerability parameter 𝑎𝐿 is 

𝐿𝑅,𝑖,𝑗 = 𝑎𝐿  𝑀𝑎𝑥{0, (𝑣𝑖,𝑗 − 𝑣98%)}
3
,.   (31) 

Donat et al. (2011) have used a similar formulation but with an additional location parameter. This is discarded here since the 

loss ratio must be 𝐿𝑅 = 0 for local wind speed 𝑣 < 𝑣98%. This is also a reason, why a simple regression analysis (Fahrmeir et 600 

al., 2013) is not applied to estimate 𝑎𝐿. We formulate and use the estimator 

�̂�𝐿 =
1

𝑛
∑

∑ 𝐸𝑗,𝑖 𝑀𝑎𝑥{0,(𝑥−𝑥98%)}3𝑛
𝑗=1

𝐿𝐸 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑,𝑖

𝑘
𝑖=1 ∑

∑ 𝐸𝑗,𝑖 𝑀𝑎𝑥{0,(𝑣−𝑣98%)}3𝑛
𝑗=1

𝐿𝐸 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑,𝑖

𝑘
𝑖=1 ,   (32) 

with 𝑘 historical storms, corresponding reported event losses 𝐿𝐸, 𝑛 wind stations, and local exposure value 𝐸𝑗,𝑖 being assigned 

to the wind station. 𝐸𝑗,𝑖  be fixed for every station 𝑗 if there were wind records for every storm 𝑖 at each station 𝑗. However, the 

wind records are incomplete and the assumed TSI must be split and assigned to the stations a bit differently for some storms. 605 

The exposure share of the remaining stations is simply adjusted so that the sum over all stations remains the TSI. 
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Our suggested estimator (32) has the advantage that it is less affected by the issue of incomplete data (smaller events with 

smaller losses are not listed in the data) than the ratio of sums over all events, and the corresponding standard error can be 

quantified (as for the estimation of an expectation). The current point estimate is �̂�𝐿 =9.59E-8±5.97E-9. 

An example of our vulnerability function (with the average of 𝑣98% over the wind stations) is depicted in Figure 8 and 610 

compared with previous estimates for Germany. It is in the range of previous models. Differences might be caused by different 

geographical resolutions of corresponding loss and exposure data. A power parameter of 2 in (31) might also be reasonable 

since the wind load of building design codes (European Union, 2005, Eurocode 1) is proportional to the squared wind speed. 

The influence of deductibles (Munich Re, 2002) per insured object is not explicitly considered but smoothed in our approach. 

 615 

Figure 8: Vulnerability functions, current estimate with the average of local parameters, previous estimates by Heneka and Ruck 

(2008) and Munich Re (2002) for residential buildings. 

5.3 Numerical procedure of scaling 

Here, we briefly explain here the numerical procedure to calculate a risk curve via averaging the event loss. For any supporting 

point of a risk curve during an event loss averaging, the ELRP 𝑇𝐸  is defined and determinedetermines the scaled CRP 𝑇𝑐𝑠 for 620 

all historical events. For each historical event, the scaling factor is 𝑆 = 𝑇𝐸/ 𝑇𝑐 according to (24) and is applied in (27) together 

with local hazard function (30) and its invers. The hazard parameters are listed in the Supplementary data, Table 4. For the 

scaled local intensity, the local loss ratio 𝐿𝑅,𝑖 is computed with vulnerability function (31). The corresponding parameter 𝑣98% 

is also listed in the Supplementary data, Table 2. The local loss ratio 𝐿𝑅,𝑖 and the local exposure value 𝐸𝑖 are used in (26) to 

compute the event loss. The considered values of 𝐸𝑖 per event are listed in Supplementary data, Table 7. The incompleteness 625 

of wind observation is considered therein. Finally, for the supporting point, the modelled event losses of all scaled historical 

events are averaged according to (28). 

The historical events are also scaled for a defined event loss and the corresponding scaled CRP is averaged. However, the 

‘Goal SeekSeek’ function in MS Excel is applied to find the correct scaled CRP 𝑇𝑠𝑐 and corresponding scaling factor 𝑆. For 

the averaging of the exceedance frequency, the reciprocal of 𝑇𝑠𝑐 is averaged. All these apply to max-stable scaling. For the 630 

non-max-stable scaling, the scaling factor 𝑆 is adjusted to a local variant according to the description in the Supplementary 

data, Section 7. Therein, the factor 𝑆 is adjusted for each station and depends on the relation of local RP to CRP of the historical 

event. This adjustment is made for each historical storm individually. 
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5.4 Error propagation and uncertainties 

The uncertainty of the local hazard models influences the accuracy of the CRP since the CRP is an average of estimates of 635 

local RP. The issue is that there is a certain correlation between the estimated hazard parameters of neighboring wind stations. 

We consider this by application of the Jack-knife method (Effron and Stein, 1986). According to these, the root of mean 

squared error (MSERMSE, which is the standard error if the estimate is bias free as we assume here) of the original estimated 

parameter �̂� is (accents symbolize estimations) 

𝑀𝑆𝐸𝑅𝑀𝑆𝐸(�̂�) = √
𝑛−1

𝑛
∑ (�̂�−𝑖 − �̂�)2𝑛

𝑖=1 ,   (33) 640 

with the estimates �̂�−𝑖  for the Jack-knife sample 𝑖  of observations, being the original sample but without one of the 

observations/realizations. Therefore, it is also called also called leave-one-out method. The estimator (33) implies a parameter 

sample of �̂�−𝑖 of size 𝑛, with one estimated parameter or parameter vector for each Jack-knife sample 𝑖 of observations. 

To consider any correlation in the error propagation of CRP estimate, the maximum of the same half-season 𝑖 is left out 

synchronously when the parameter sample is computed for each wind station. Without changing the order in the parameter 645 

sample of each wind station, the CRP �̂�𝑐−𝑖 of the concrete historical event is computed with the hazard parameters �̂�−𝑖 of each 

station. Finally, for this storm, the standard error of point estimate �̂�𝑐 is computed according to (33). 

We use the same approach to consider the error propagation from local hazard models to the risk estimate for the max-

stable case in Section 4.4. But the finally estimated parameter �̂� in (33) is the averaged event loss �̂�𝐸(𝑇𝐸) for scaled CRP. This 

only covers a part of uncertainties in risk estimate. We consider two further sources of uncertainty and assume that they 650 

influence the risk estimate independently to each other. The uncertainty of loss averaging is the same as during an estimation 

of an expectation from a sample mean and is determined by sample variance and sample size (number of scaled events). The 

propagation of the uncertainty of the vulnerability parameter is computed via the Delta method (Coles 2001, Section 2.6.4). 

The aggregated standard error is the square root of the sum of squared errors. This implies a simple variance aggregation 

according to the convolution of independent random variables (Upton and Cook, 2008). 655 

The computed standard errors in Figure 7b are in the range of 7.5 to 8.5% of estimated event loss per defined ELRP. The 

shares of uncertainty components on the error variance (squared SE) of our risk estimates depend on the RP. On average for 

our supporting point, these are 15% for the limited sample of scaled historical events, 24% for the uncertainty of local hazard 

parameters, and 61% by the vulnerability model'smodel’s parameter. Unfortunately, we do not know a published error 

estimation for a vendor model for risk from winter storm overrisk in Germany and. Therefore, we can only compare our 660 

estimates with these of Donat’sDonat et al..`s (2011). Their confidence range indicateindicates a smaller precision than ours. 

5.5 RP of vendor’s risk estimate 

We have compared our results with vendor models in Section 4.4. These have estimated the risk curve for the maximum event 

loss within a year. This is a random variable, and their pseudo-RP is the reciprocal of the exceedance probability and can never 
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be smaller than 1. Under the assumption of a Poisson process, We transform the pseudo RP of annual maxima to an actual and 665 

event related one with the relation between EF and CDF in (13,16) With increasingthe RP of event loss,  according to the 

relations in Section 3.1 and the difference between its pseudo RP and the actual ELRP converges to 0.explanations by Coles 

(2002, p. 249, with yp as exceedance frequency of events). The relative differences between the RPs are around 5% for ELRP 

10 years and 0.5% for 100 years. 

6 Conclusion, discussion, and outlook 670 

6.1 General 

In the beginning, we asked the questions about the RP of a hazard event in a region, the corresponding NatCat risk, and 

necessary conditions for a reasonable NatCat modelling. To answer our questions, we have mathematically derived the CRP 

of a NatCat generating hazard event from previous concepts of extreme value theory, the pseudo polar coordinates (17). This 

implies the important fact that the average of the RPs of random point events remains a RP with exceedance frequency (8,15). 675 

Furthermore, we extended Schlatter’s 1st theorem for max-stable random fields to non-max-stable spatial dependence and 

characteristic. We have also considered the normalized variant of the area function of all local RP of the hazard event in a 

region with parameters CRP and CV. The absence of max-stability in the spatial dependence results in a correlation between 

CRP and CV, which is a further indicator for non-max-stability beside changes of measures for spatial dependence by changed 

block size (e.g., annual maxima versus two years maxima). 680 

The derived CRP is a universal, simple, plausible, and testable stochastic measure for a hazard and NatCat event. The 

weighting of local RP in the computation of the CRP can be used to compensate an inhomogeneous distribution of 

corresponding measuring stations if the physical-geographical hazard component of a NatCat, the field of local event intensity 

field, is of interest. However, the concentration of human values in the geographical space could also be considered in the 

weighting to getobtain a higher association of the CRP with the ELRP of a risk curve. This link implies the conditional 685 

expectation (18) under the assumption of max-stable association between CRP and ELRP, and offers thea new opportunity to 

estimate risk curves, the bijective function event loses to ELRP, via a stochastic scaling of historical intensity fields and 

averaging of corresponding risk parametersparameter. The averaged parametersparameter can be the scaled CRP for a defined 

event loss, corresponding exceedance frequency, or the event loss for a defined/scaled CRP. 

The differences between the three estimators are small in our application example, insured losses from winter storm over 690 

Germany. In contrast to this, the influence of the stochastic assumptions regarding spatial dependence and characteristic (max-

stable or not) is significant in the range of higher ELRP. This highlights the importance of realistic consideration of spatial 

dependence and characteristic of the hazard in a NatCat model. Besides, our risk curves for Germany have a similar course as 

those derived by vendors (Figure 7d). The risk assumption by EU for Germany with RPELRP 200 years is significantly higher 

than ours. The estimate by Donat et al. (2011) differs significantly and seems to be implausible for higher RPELRP. A reason 695 

might be their statistical modelling by the generalized Pareto distribution as already applied for wind losses by Pfeifer (2001). 
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The tapered Pareto distribution (Schoenberg and Patel, 2012), also called tempered Pareto distribution (Albrecher et al., 2021), 

or a similar approach (Raschke, 2020) provide more appropriate proxies for our risk curve'scurve’s tail. 

According to our results, necessary conditions for an appropriate NatCat modelling are the realistic consideration of local 

hazard and their spatial dependence (max-stable or not?). Correspondingly, the spatial characteristic of NatCat events, 700 

described here by relation CRP to CV, must be reproduced. In addition, the CRPs of a simulated set of hazard events in a 

NatCat model should have an empirical exceedance frequency that follows the theory (15). ThatFinally, the standard error of 

an estimate should be quantified, the sampling should be appropriate, and; overfitting should be avoided (catchwords (over 

parametrization and parsimony),) should be avoided. This principle applies to all scientific models with a statistical component 

(e.g., Lindsey, 1996). 705 

The advantage of our approach over vendor models is the simplicity and clarity about the stochastic assumptions. The 

numerical simulations for models in the insurance industry (Mitchell-Wallace et al., 2017, Section 1.8) and science (e.g., Della-

Marta et al., 2010) need tens of thousands of simulated storms with unpublished or even unknown (implicit) stochastic 

assumptions. We have only scaled 16 event fields of historical storms with controlled stochastics and could even quantify the 

standard error.  710 

6.2 Requirements of the new approaches 

Our approach to CRP is based on two assumptions. At first, the local and global events occur as a Poisson process. This is a 

common assumption or approximation in applied extreme value statistics and its application (Coles, 2001, Chapter 7)), and 

the corresponding Poisson distribution of the number of events can be statistically tested (Stephens, 1986; Section 4.17). 

Moreover, the verified clustering (overdispersion) of winter storms over Germany (Karremann et al., 2014) is statistically not 715 

relevant for higher RP (Raschke, 2015). With increasing RP, the number of occurring winter storms converges to a Poisson 

distribution. Clustering is also influenced by the event definition, which is not the topic here (catchwordkeyword declustering; 

Coles, 2001). We also point out that the assumed Poisson process needs not be homogenous during a defined unit period (year, 

hazard season, or half-season). 

The second prerequisite is robust knowledge about the local RP by a local hazard curve. Unfortunately, there are no 720 

appropriate and comprehensive models for the local hazard of every peril and region., for example, hail in Europe,; we only 

know local hazard curves for Switzerland by Stucki et al. (2007)), and these were roughly estimated. For flood hazard, There 

are public hazard maps of flooding areas for defined RP; corresponding local hazard curves are rarer. 

Furthermore, existing models for local hazard are partly questionable according to our discussion about local modelling of 

wind hazard from winter storms in Section 5.1. We have assumed a Gumbel case of the generalized extreme value distribution 725 

for local block maxima with extreme value index 𝛾 = 0 for physical reasons and have validated this by several statistical 

indicators and physical consistency. Youngman’s and Stephenson’s (2016) modelling of winter storms over Europe implies 

an extreme value index 𝛾 < 0 for the region of Germany, which means a short tail with a finite upper bound. Unfortunately, 

They have not depicted the spatial distribution of the corresponding finite upper bounds and does not provide a physical 
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explanation for the spatial varying upper physical limit of wind speed maxima. The plausibility of such physical details in a 730 

NatCat model should be shown and discussed. 

6.3 Opportunities for future research 

Since the current model for the local hazard of winter storms over Germany results in considerable uncertainty, it should be 

improved in the future. This could be realized by a kind of regionalization of the hazard as already known in flood research 

(Merz and Blöschl, 2003; Hailegeorgis and Alfredsen, 2017) or by a spatial model as suggested by (Youngman and Stephenson 735 

(, 2016). Besides, more wind stations could be considered in the analysis with better consideration of incompleteness in the 

records. An extension of the observation period is conceivable if homogeneity of records and sampling is ensured. A more 

sophisticated approach might be used to discriminate the extremes of winter storms from other windstorm perils at the level 

of wind station records. The POT methods (Coles, 2001, Section 4.3; Beirlant et aal., 2004, Section 5.3) could then be used in 

the analysis even though the spatial sampling is complicated as stated in the introduction. 740 

Further opportunities for improvements in the winter storm modelling are conceivable. The event field might be more 

detailed reproduced/interpolated in more detail, as done by Jung and Schindler (2019). They have considered the roughness of 

land cover at a regional scale besides further attributes. However, they did not consider the local roughness of immediate 

surroundings, as discussed by Wichura (2009) discussed for a wind station. 

Besides, our approach could be used for further hazards such as earthquake, hail, or river flood. The reasonable weighing 745 

would not be trivial for river flood. May be, the local expected annual flood loss would be a reasonable weighting if the final 

goal is a risk estimate for a region. The numerical handling of the case that an event does not occur everywhere in the researched 

region but has also local RP 𝑇 = 0 must be discussed for some perils, such as hail or river flood. 

We also see research opportunities for the community of mathematical statistics, especially extreme value statistics. Does 

(18) for conditional expected RP also apply to the non-max-stable case? A deeper theoretical understanding of non-max-stable 750 

random fields with max stable margins is of great interest from practitioners’ perspectives. A Research about the link between 

normalized area functions (expectation versus CV) and spatial dependence could increase understanding of natural hazard and 

risk., and our construction for the non-max-stable scaling is just a workaround to illustrate the consequences of dependence 

characteristics; for risk models in practice, a transparent stochastic construction is needed. Furthermore, estimation methods 

could be extended and examined, such as the bias in estimates of local RP. 755 

7 Code and data availability 

A special code was not generated or used. M.S. Excel had carried out our computations had been simply caried out by MS 

Excel.. The wind data were downloaded from the server of the German meteorological service (Deutscher Wetter Dienst, 

2020).), and the exposure data were provided by UNISDR (2015). The loss data are part of the downloaded report of General 
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Association of German InsurerInsurers’ (Gesamtverband Deutscher Versicherer, 2019).) report. The here considered wind 760 

stations and storms considered in the paper are listed in Supplementary data. 
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