
Response to the Reviewer #1 

Dear Manuel López-Vicente, 

Thank you very much for your comments and suggestions to our paper. We answer your comments 

below.  

- Abstract. Include the method/s used to generate the DSM and the DEM, e.g. LiDAR, SfM. The 

type of method influences the point density, and thus, the ability of the obtained models to 

accurately capture macro-, meso- and micro-features of the landscape. 

We will add the following information to the abstract (new information in bold). 

 “... we tested seven roughness algorithms using photogrammetric digital surface models (DSM) with 

different resolutions …” 

“We simulated avalanches on different elevation models (LiDAR-based) to observe a potential 

influence of a DSM and a digital terrain model (DTM).“ 

- Abstract. Authors compare the results of "surface roughness" based on DSM vs. those obtained 

from DTM. I have serious doubts that this is correct. In a DSM, all landscape features are 

included, and thus, the corresponding values of surface roughness are associated to those 

features. However, the information captured in a DTM is mainly controlled by the ground 

elevation, without most of the features included in the DSM. From a strict point of view, a DTM 

is the sum of the DEM and the main landscape geomorphic features like rivers, cliffs, crests, 

and breaking points. Therefore, the surface roughness derived from a DSM and a DTM of the 

same site is always qualitatively different. Besides, the digital height model (DHM=DSM-DTM) 

obtained in different land uses is different because of the distinct features that characterise each 

land use. All these aspects should be clarified in a revised version. 

Thank you for this valuable point. We showcase the differences between the DSM and DTM in order to 

emphasize the importance of surface roughness in the avalanche simulation. Above treeline, the DSM 

is very similar to the DTM except for small bushes, young trees and man-made structures. As soon as 

we get into forested terrain, the differences are becoming greater. Forests are already implemented 

within the RAMMS simulations. However, the sparse vegetation or other surface roughness features 

above the treeline are not represented within the simulations, since the DTM is used. As surface features 

like sparse vegetation are removed from the DTM, we believe that there may be an overestimation of 

the simulated runout. When we simulate the snow avalanche on the DSM, it interacts with the surface 

features included in the model and therefore better represents the reality. In fact, hazard processes show 

different behaviours when they interact with surface features. Based on our study, we do thus not 

propose to simulate hazard processes using a DSM instead of the DTM, but we stress the importance of 

surface roughness on different simulations. For this reason, we propose to accurately select the adequate 

surface representation (DSM, DTM or a combination of them) for the calculation of surface roughness, 

which should be included in modelling of hazard processes.  

- Abstract. What is the novel aspect of this study? I suggest highlighting the actual contribution 

of this study based on the available literature. To clearly present these aspects will make the 

article more attractive for potential readers. 

As stated above, the importance of surface roughness for natural hazard modelling is great (shown on 

the example of a snow avalanche). We found that some widely used surface roughness algorithms based 

on the DSM could be used to assess the roughness in alpine terrain. Together with the directional 

roughness this is a promising approach for achieving better assessments of surface roughness, which 

should be included in the hazard modelling in the future. 

In order to make this point clearer in the abstract, we rephrased the end of the abstract: 



“We simulated avalanches on different elevation models (LiDAR-based) to observe a potential 

influence of a DSM and a digital terrain model (DTM) using simulation tool RAMMS. In this way, 

we accounted for the surface roughness based on a DSM instead of a DTM, which resulted in 

shorter simulated avalanche runouts by 16–27% in the two study areas. Surface roughness above 

a treeline, which in comparison to the forest is not represented within the RAMMS, is therefore 

underestimated. We conclude that using DSM- in combination with DTM-based surface 

roughness and considering the directional roughness is promising for achieving better assessment 

of terrain in alpine landscape, which might improve the natural hazard modelling.“ 

- L.33-34. Please, provide more information of the six cited studies or choose the three most 

relevant studies. In my opinion, it is not necessary to include six articles to support one 

statement. Do the same in L.42-43 with the 5 references: include more information of the 

modelling approaches 

We kept the following cited studies as they represent the wide field of possible applications of surface 

roughness. 

“Quantifying surface roughness is thus central for the estimation of various biophysical characteristics 

and ecosystem services (Grohmann et al., 2011; Koponen et al., 2004; Munsamy, 2017; Shepard et al., 

2001; Wiernga, 1993; Wu et al., 2018). “ 

We kept the following studies to support the statement since they represents two advanced model to 

simulate flow propagation. Furthermore, we included more information involving modelling 

approaches. 

“Approaches to modelling flow propagation are numerous (Armanini et al., 2009; Frank et al., 2017; 

Hutter et al., 1996; O’Brien et al., 1993; Pudasaini and Mergili, 2019). They can represent the flow as 

a single-phase or a multi-phase consisting of solid and water component propagating through a 

given topography (Christen et al., 2010; Rosatti and Begnudelli, 2013). Some of them include a 

spatial variability of the friction parameters and can even simulate erosion processes (Hungr and 

McDougall, 2009; Mergili et al., 2017).” 

- L.102-104. These two sentences are very interesting. I suggest authors extend the explanation 

of this approach. 

We include the following paragraph in the revised manuscript: 

“However, the investigated natural hazards have a predominant diffusion direction identified as the 

combination of terrain slope and curvature. Some studies implemented the surface roughness along a 

predefined direction (Michelini, 2016; Trevisani and Rocca, 2015). The direction for which roughness 

has been computed, usually derived through GIS algorithm (D8 or D-infinity), applied to the 

original or smoothed digital models. However, the direction derived through neighbourhood cells 

analysis could not be the same of the mass flow propagation. Such behaviours may be observed 

when the routing volumes are extreme and therefore in some particular situations the propagation 

direction may be defined by its inertia rather than the topography (Guo et al., 2020). In other 

cases, the particular mountain topography may force mass flows to affect the opposite hillside of 

the valley through a runup mechanism (Iverson et al., 2016). Furthermore, the flow direction of 

banks and channel sides features computed with GIS algorithms do not usually correspond to the 

mass flow direction. In this situation bank direction can be improved through a smoothing process 

of the DTM in order to remove gullies and channel from the basal topography. This technique can 

be easily applicable in case of regular channels but it could become more complex when the 

channel morphology is irregular, since it could oversimplify the basal topography. For such 

reasons in this study, we propose a novel approach to calculate surface roughness along user 

defined lines.” 



- L.134: Which features were included in the DTM? I assume that all landscape features were 

represented in the DSM. However, it is not clear which features were included in the DTM, 

apart from the DEM. This is an important aspect, because the derived products from the DSM 

and DTM -as the surface roughness and terrain roughness- are qualitatively different, and thus, 

it has no sense to compare them in a direct way. 

As answered already in the second comment (related to the comment on the abstract), we compare the 

DTM and DSM in order to stress the importance of surface roughness and different manifestations of 

surface roughness in DTM and DSM for natural hazard modelling. The DSM represents all landscape 

features, while in the DTM the vegetation cover (represented by trees, deadwood and shrubs) and man-

made structures are removed. By using these two surface models, we show how is the avalanche flow 

influenced by the surface features. The DSM derived roughness adequately captures such features which 

are filtered out and missing in the DTM. 

- Section 2.1 and Figure 1. What is the criteria followed and the method used to draw the 

boundaries of the two study areas? 

The boundaries depend on the availability on high quality drone data in the two study areas.  

- L.156. Add the country of the SenseFly company, as you did it in line 171 with DJI. 

The area of almost 1 km-2 was surveyed on 17 June 2019 using a senseFly eBee+ drone (Lausanne, 

Switzerland) equipped with an RTK GNSS system for accurate georeferencing (better than 5 cm). 

- Discussion. I would like to know the average size of the landscape features included in the 

analysis of this study. Besides, authors should evaluate the relationship between the size of the 

features and the extension of each window area. Maybe, if some features are much smaller than 

the window area, the information of those features is blurred. Maybe, the suitable window area 

may depends on the average dimensions of the features. This idea should be discussed. 

We add the following sentences in the revised manuscript: 

“However, the performance did not increase with higher resolution. This is probably due to the scale of 

our features of interest. Features in our study areas like shrubs, rocks, standing or laying trees, but 

also gullies are usually in the scale of meters. These features are not that detailed as the higher 

resolutions of 0.1–0.5 m would be able to distinguish.” 

“In our study, we could not find a relationship between the size of the roughness features (in meter 

scale) and the size of the moving window area. The best performing moving window area was 

analysed as the largest tested – 49 m-2, in combination with the 1 m resolution.” 

- Discussion. Did you establish the thresholds for distinguishing between the roughness 

categories before running the algorithms or after obtaining the results? This aspect has to be 

clearly explained, and the numerical criteria to propose those thresholds too. 

Thank you for your observation, we have this information in the methods part and will point it out in 

the discussion as well. 

We rephrased this in the methods part 2.3 Design and statistical analysis of roughness categories, line 

250: 

 “In order to obtain a classification based on threshold values for a technical purpose, we analysed the 

kernel density distribution between the roughness categories (Table 2), after evaluating the best-

performing algorithm, to determine the point of minimum overlap. We used the overlap function 

(overlapping package; Pastore, 2018; Pastore and Calcagnì, 2019) implemented in R (R Core Team, 

2021). This intersection is the threshold between two roughness categories (xpoints).” 



We also rephrased this in the discussion part, line 424: 

“After finding the best-performing algorithm (vector ruggedness measure), we calculated thresholds 

for distinguishing between the roughness categories, which may be further used in roughness 

classifications of other areas. These categories are a novelty in the literature and they can be considered 

a preliminary proposal. However, these values must be applied carefully, as they were assigned 

using the vector ruggedness algorithm based on the 1 m-resolution DSM and moving window area 

of 49 m-2. One should be as well cautious when defining the roughness categories as e.g. the surface 

of snow can be highly variable (Bühler et al., 2016). In our study, the snow surface consisted of 

remaining snow patches in summer and was very smooth, as shown with the lowest distribution of 

roughness values (Fig. 4). We therefore propose further validation of such values over larger areas 

and different landscapes.” 

 

Response to the Reviewer #2 

Dear Referee 2, 

Thank you very much for your comments and suggestions to our paper. We answer your comments and 

questions below. New parts added to the manuscript are in bold and erased sentences in strikethrough. 

 

1- Now that the author has realized that the spacing of DSM will affect the results of terrain 

analysis, especially the primary terrain attributes: local slope gradient, roughness, curvature. 

In fact, the relevant study has existed in this field for decades. Therefore, why didn’t the author 

use the Root mean square slope (Hutchinson, 1996) to find the optimal resolution at the 

beginning? In this way, a lot of calculation costs can be saved, and different land uses and 

topography should be suitable for different resolutions. Plus, a fine spatial resolution of DSMs 

is no longer an issue, as the author mentioned in the introduction. 

One of the aims of our study is to test the use of high-resolution DSMs for the calculation of terrain 

roughness indices. For this purpose, we selected three spatial resolutions. For our study we did not use 

the Root Mean Square Slope reported in Hutchinson (1996), since the surface roughness indices that we 

analysed are directly influenced by the DEM resolution. In fact, lower DEM resolution (equal to higher 

accuracy) resulted in a better representation of surface features (Glenn et al., 2006). Different studies 

indicated that an accurate evaluation of DEM resolution is necessary to correctly identify the features 

or processes of interests (Deng et al., 2007; Grohmann et al., 2011; Habtezion et al., 2016; Keijsers et 

al., 2011; Tarolli and Tarboton, 2006). Since the features of interest of our study have different sizes 

(trees, rocks, deadwood, disturbed forests, shrubs) we tested seven roughness algorithms looking for the 

best combination of DEM resolution and moving window size to be used in natural hazard modelling to 

better differentiate terrain classes that affect simulation of hazard processes.  

2- I have a high interest in directional roughness, and I would be happy to see related calculation 

methods and literature reviews. 

In the reviewed version of the manuscript we incorporate the following paragraph (new parts are 

reported in bold). 

Line 102 “number of neighbourhood cells. In such sense, most of the roughness indices reported in 

literature considered the DEM as an isotropic surface. However, the concept of surface anisotropy 

is of fundamental importance for the investigation of geomorphological features and channelized 

or dispersed flows (Busse and Jelly, 2020; Insua-Arévalo et al., 2021; Middleton et al., 2020). If 

the surface shows an anisotropic texture the flow resistance is directly influenced by obstacles 

disposed along the flow direction. Since, the investigated natural hazards show a predominant 



diffusion direction identified as the combination of terrain slope and curvature, texture anisotropy has 

to be taken in account when simulating mass flows (Roy et al., 2016; Viero and Valipour, 2017).”  

Here we would continue with the reply of the comment raised by reviewer 1. We report the paragraph 

below. 

“However, the investigated natural hazards have a predominant diffusion direction identified as the 

combination of terrain slope and curvature. Some studies implemented the surface roughness along 

a predefined direction (Michelini, 2016; Trevisani and Rocca, 2015). The direction for which 

roughness has been computed, usually derived through GIS algorithm (D8 or D-infinity), applied 

to the original or smoothed digital models. However, the direction derived through neighbourhood 

cells analysis could not be the same of the mass flow propagation. Such behaviours may be 

observed when the routing volumes are extreme and therefore in some particular situations the 

propagation direction may be defined by its inertia rather than the topography (Guo et al., 2020). 

In other cases, the particular mountain topography may force mass flows to affect the opposite 

hillside of the valley through a runup mechanism (Iverson et al., 2016). Furthermore, the flow 

direction of banks and channel sides features computed with GIS algorithms do not usually 

correspond to the mass flow direction. In this situation bank direction can be improved through 

a smoothing process of the DTM in order to remove gullies and channel from the basal 

topography. This technique can be easily applicable in case of regular channels but it could 

become more complex when the channel morphology is irregular, since it could oversimplify the 

basal topography. For such reasons in this study, we propose a novel approach to calculate surface 

roughness along user defined lines.” 

3- From figure 5, there seem to be two clusters of results, one group consisting of area ratio, SD 

of residual topography, terrain ruggedness index, and vector dispersion. This group has lost a 

lot of details, especially in the lower-left corner of the image. I would like to see the explanations 

of the results (difference) of these seven algorithms firstly. 

In the lower left corner we see avalanche barriers, which are man-made structures for protecting against 

avalanche release. They are usually up to 5 m high and from above (from the orthophoto) with less than 

1 m width. We believe, that this might be the reason for wrong interpretation by some of the algorithms. 

We present these results in the section 3.1 Roughness classification and algorithm evaluation and we 

add these lines to the first paragraph of the 4 Discussion (new phrases in bold): 

3.1 Roughness classification and algorithm evaluation 

“Surface roughness calculated with the seven different algorithms and normalized using the same colour 

range (Fig. 5 and Fig. A1 in Appendix, for the Braema and Franza study areas) revealed important 

differences in the ability to identify specific terrain and vegetation types. As visible for the overall best 

performing combination of resolution and moving window (1 m and 49 m-2) in Fig. 5, all algorithms 

distinguished accurately between high vegetation (forest) and other vegetation types. Nevertheless, 

some of the algorithms (vector dispersion, SD of residual topography, terrain ruggedness index and 

area ratio) failed to detect the avalanche barriers correctly and falsely identified them as rather smooth. 

Also, small gullies were not clearly separated with some of the algorithms and were particularly poorly 

visible with the algorithms SD of profile curvature and SD of slope, whereas they were successfully 

identified with moderate roughness values by the other algorithms. Smooth surfaces were visualized 

with lower roughness values (darker blue in Fig. 5) by algorithms like vector ruggedness measure, SD 

of residual topography and vector dispersion [Fig. 5 (2, 4 and 7)]. Other algorithms [Fig. 5 (1, 3, 5 and 

6)] assigned these smooth surfaces rather high roughness values (lighter blue to cyan blue in Fig. 5).” 

4 Discussion 

Grohmann et al. (2011) also found that area ratio showed higher values for the smooth slope of a scarp, 

highlighting a major disadvantage of this algorithm in that smooth steep slopes can be classified as 



rough. The algorithms vector dispersion, SD of residual topography, terrain ruggedness index and 

area ratio could not detect the avalanche barriers in the study site Braema. This might be due to 

small width (less than 1 m) of these objects together in combination with the relatively large 

moving window area (49m-2). Such issues might play an important role This might be an important 

point for choosing the right algorithm in natural hazard mapping. 

4- In the 4.3 Application, I read it several times. It is really difficult to follow the author's logic. I 

still don't know how the author wants to apply the results. I can vaguely know that the author 

wants to apply to the ecosystem, but how? 

The study highlights the importance of surface roughness in the simulation of natural hazards. The study 

evaluated the best performing algorithms for land cover classification. The identified classes represent 

ground features influencing the mass flows. Applications of the study can be straight applied to improve 

the reliability of model outcomes. Furthermore, we emphasize the fact to adequately represent land cover 

characterized by disturbed forests as they usually are not correctly implemented. 

We changed the title of the section 4.4 Applications for natural hazard assessment to state the focus 

of the possible application. We further modified this section to make it more comprehensible. Below we 

report the section and in bold the part we add to the revised version. 

“In our study we addressed classified relevant land-cover types in of mountain forests and treeline 

ecotones of the southern and central Alps. The classes represent land cover characterized by features 

that influence mass flows propagation in different ways. The derived roughness maps or classes 

could be straight used in order to improve the reliability of simulation models. Since we analysed 

two alpine areas, While we expect we can assume that our results are also relevant for similar 

ecosystems characterized by coniferous forests, However, comparable analysis and a verification of the 

classification would be necessary in order to further generalize our results. Similarly, this would also be 

required for the classification of other disturbed forest stands (e.g. after a bark beetle outbreaks or wild 

fires), since different disturbances with different intensities create particular structures with expected 

diverse surface roughness (Franklin et al., 2002; Hansen et al., 2016; Waldron et al., 2013). 

Moreover, the surface roughness classification and the selected roughness algorithm included the 

identification and analysis of a forest damaged by a wind storm: Franza case study. We selected 

the Franza study area in order to analyse a disturbed forest immediately after a windthrow. In cases 

comparable to this, the forest protection function is altered, when a forest is disturbed. Therefore, there 

is a need for practitioners to assess the protection capacity of the remaining structures on the ground for 

natural hazard mapping. In the case of snow avalanches, analysis of field data as well as the very low 

number of avalanches observed after these disturbances indicate that lying logs contribute to increased 

terrain roughness and thus to a conservation of a considerable protective function against avalanches at 

least for the first two decades after the disturbance event as windthrow (Wohlgemuth et al., 2017). In 

the same way, also early successional stages of post-disturbance development can provide a good 

protection in avalanche release zones. However, these structures are usually not classified as forest 

stands, since in most of the cases, they do not match the minimum criteria defined by the authorities (i.e. 

density, mean height; (Brändli and Speich, 2007; FAO, 2015; INFC, 2005) so these structures might not 

be included for the definition of avalanche potential release areas. The lying deadwood can also still 

provide a residual protective function for rockfall. Thanks to the higher impact probability compared to 

standing trees, the flexibility of the logs on the ground, disturbed forest areas can reduce the rock velocity 

and absorb kinetic energy (Bourrier et al., 2012; Ringenbach et al., 2021). Especially as in the first phase, 

when the decaying processes have not reduced the wood strength (Amman, 2006). Therefore, in this 

study we included in the surface roughness analysis and classification these land cover types 

(disturbed forests, young forests and shrubs) that are usually not adequately evaluated for natural 

hazard modelling. 



The analysis of surface roughness could therefore serve as a useful good proxy to evaluate some of the 

hazard temporal evolution for assessing the hazard risk in disturbed forests, but it has some limitations 

as well. By analysing surface roughness over time, we could also observe landscape transformations and 

change in vegetation (natural or anthropological) that affect surface roughness and consequently natural 

hazards processes. In particular, calculating surface roughness for different vegetation types, snow 

gliding could be easily modelled and predicted for different land-use scenarios. This could improve the 

identification of natural hazards exposed areas and further implementation of protective measures 

(Leitinger et al., 2008). In the case of old disturbed forest, the roughness time series analysis might not 

distinguish between roughness of the old lying logs, lower vegetation and tree regeneration. After years 

of decomposition, the lying logs become less supportive, decrease in height and they even displace (Bebi 

et al., 2015; Wohlgemuth et al., 2017). A comprehensive overview of the decay process in longer period 

after a disturbance (more than 20 years) would be helpful to understand the function of time and the 

remaining protection capacity after a disturbance such as windthrow. However, a great variability across 

different environmental gradients may occur, therefore every example should be handled individually, 

especially if elements of risk exist. Thus, a combination of calculated surface roughness with field 

investigations may be necessary in such areas (e.g. windthrown forest or large landslides), where an 

accurate evaluation of the ground features cannot be performed by a DEM survey only.  

Surface roughness further influences for the estimation of avalanche release areas and avalanche 

propagation. Even a small-scale topographic roughness may have an influence on the runout distance of 

ground-releasing processes as the case of wet snow avalanches (Sovilla et al., 2012). This is also 

important for small avalanches with little release depths and shallower snowpack (McClung, 2001), 

since very high snow depths may burry the surface roughness and therefore smoothen the surface 

(Veitinger et al., 2014). Using DSMs for terrain representation in models could improve the surface 

roughness estimation as showed on the example of the Vector ruggedness measure in our study. It had 

no pairs of overlapping distribution for all the roughness categories and it assigned well the rough values 

for higher vegetation, avalanche barriers and other land cover categories; compared to the roughness 

calculated from a DTM, which have generally underestimated the surface roughness (Brožová et al., 

2020). The case study, applying numerical avalanche modelling on DSM and DTM, showed that surface 

roughness plays a decisive role for the avalanche runout distance and the flow path. However, In the 

case of high and dense forests, the surface roughness classification based on DSM is limited. The surface 

roughness values calculated from the DSM picture the tree crowns, which are classified as rough. But 

the crowns usually don’t interact with an avalanche flow (except powder snow avalanches). Therefore, 

within dense forests, DTM should be applied to calculated the surface roughness and DSM should only 

be applied for open areas, where roughness may still interact with the hazard process, but not being 

included in the forest classification. In this way areas with increased roughness outside of defined forest 

may be detected and included within the hazard modelling. In the case of avalanches, the RAMMS 

simulation tool (Christen et al., 2010) offers a possibility to add an area with increased friction 

parameters. A smart combination of DSM and DTM data may allow for better estimation of the surface 

roughness faced by the gravitational mass movement.”  

5- The author mentioned that a relatively low-resolution DSM (1 m) can achieve better surface 

roughness (although I don’t know how the author judged it). if the direction did so, has the 

author tested other lower-resolution data? For example, a global scale of 15m, 30m, etc. 

We did not test low-resolution data on global scale, since coarse resolutions do not capture small-scale 

surface roughness (Vanderhoof and Burt, 2018). Such roughness might be extremely important for the 

frequent avalanches, delineating the release areas (Veitinger et al., 2016).  

In the section 1 Introduction we also mention the importance of high-resolution data for distinguishing 

more detailed terrain: “Higher DEM resolutions (< 1 m) allow us to see more detailed terrain, but they 

are usually only available for smaller areas.” 



The resolution of 1 m performed overall better than the other studied resolutions (0.1 and 0.5 m) for all 

studied algorithms. For our analysis was important that the surface roughness algorithm could 

distinguish well between the selected roughness categories and we used the paired Wilcoxon test to 

detect the overlapping distribution of pairs. We determined as well the point of minimum overlap, which 

we proposed to be used as a threshold for distinguishing between these roughness categories using the 

vector ruggedness measure algorithm. 

 

Response to the Community Comment #1 

Dear Sebastiano Trevisani, 

Thank you for your comments to our paper. Regarding the points you highlighted we addressed and 

discussed them below. 

 

- A first point is related to flow directional roughness, as expressed in these two sentences: 

Lines 103-104 : “Some attempts to calculate the roughness along a given direction have been made, 

but they have not yet been applied to large-scale hazard mapping (Michelini, 2016; Trevisani and 

Cavalli, 2016).” 

Lines 108-109: ” (3) Is it possible to improve the roughness calculation by introducing a directional 

roughness along the predominant mass flow direction?” 

Being one of the authors of the cited paper (i.e., Trevisani and Cavalli, 2016) and having worked 

directly to the implementation of the surface roughness algorithms, as for example the indices based 

on the median of absolute directional differences (MAD, Trevisani and Rocca, 2015), I feel useful 

to furnish some more information to the readers. 

The algorithm of flow-directional roughness presented in Trevisani and Cavalli 2016 

(https://esurf.copernicus.org/articles/4/343/2016/) is fully working, even if a prototype, and can be 

applied at any scale, any resolution and for any given task, including natural hazards. In the cited 

study, for example, the algorithm has been applied to an area of 500 km2 with a LiDAR derived 

DTM (2 m pixel size); in general, there are no limitations for the size of DEM (i.e., it depends on 

available computational resources and to the given implementation). In that paper, we applied it as 

a coefficient in the sediment connectivity evaluation (Cavalli et al., 2013) and as a geomorphic tool 

for distinguishing morphologies using differences between isotropic and flow-directional roughness 

(e.g., for individuating gullies, landslide scarps, etc.). Consequently, to your question “Is it possible 

to improve the roughness calculation by introducing a directional roughness along the predominant 

mass flow direction?” the reply is “yes”, as demonstrated in the cited paper. Clearly, that one is 

not the only possible approach and could be improved, but it seems to work well and put the basis 

for further developments. 

The algorithm used in the paper is based on the MAD algorithm implemented as ArcMap tool and 

available in Github (see Trevisani and Rocca, 2015). The implementation is straightforward and 

can be implemented in other environments working with kernel based approaches for image analysis 

(e.g., Envi, raster package in R, Surfer, google earth engine, etc.). 

Thanks to your comment and after a literature review involving the directional roughness we will 

rephrase the following sentence 

Lines 103-104 “Some studies implemented the surface roughness along a predefined direction. Some 

attempts to calculate the roughness along a given direction have been made, but they have not yet 



been applied to large-scale hazard mapping (Michelini, 2016; Trevisani and Rocca, 2015 Trevisani 

and Cavalli, 2016).” 

“However, the investigated natural hazards have a predominant diffusion direction identified as 

the combination of terrain slope and curvature. Some studies implemented the surface roughness 

along a predefined direction (Michelini, 2016; Trevisani and Rocca, 2015). The direction for which 

roughness has been computed, usually derived through GIS algorithm (D8 or D-infinity), applied 

to the original or smoothed elevation models. However, the direction derived through 

neighbourhood cells analysis is not always equal to the direction of the mass flow propagation. 

Such behaviours are sometimes observed when the routing volumes are extreme and therefore in 

some particular situations the propagation direction may be defined by its inertia rather than the 

topography (Guo et al., 2020). In other cases, the particular mountain topography may force mass 

flows to affect the opposite hillside of the valley through a runup mechanism (Iverson et al., 2016). 

Furthermore, the flow direction of banks and channel sides features computed with GIS 

algorithms do not usually correspond to the mass flow direction. In this situation bank direction 

can be improved through a smoothing process of the DTM in order to remove gullies and channel 

from the basal topography. This technique can be easily applicable in case of regular channels but 

it could become more complex when the channel morphology is irregular, since it could 

oversimplify the basal topography. For such reasons in this study, we propose a novel approach 

to calculate surface roughness along user defined lines.” 

As reported in the method section (lines 264-274) we developed a new directional roughness algorithm 

where the flow direction is established by the user through geospatial polylines. We then calculated the 

roughness as the standard deviation of the residual topography for the cells identified by the flow 

direction in the 3x3 moving window. As reported in the sentences above the manually identified flow 

directions can be more reliable with respect to the direction derived from a neighbourhood cell analysis, 

in case of particular routing mass flow behaviours. However, the flow direction can also be computed 

through a GIS algorithm and then used in the directional roughness algorithm reported in our study. 

Furthermore, we increased the number of directional roughness computation to 16 in comparison to the 

commonly used eight directions (D8 algorithm). For the technical implementation of the algorithm, we 

refer to the script available at the following link:  

https://github.com/TommBagg/terrain_roughness_GRASS.  

- The second point is related to the calculation of roughness indices e.g. line 107: 

“(1) How well can different surface roughness categories be distinguished with the selected 

algorithms?” 

I think that in the paper it could be important to highlight further that you tested standard 

approaches for roughness calculation and others have not been considered. For example, the MAD 

algorithm (applicable both for roughness calculation as well as for image analysis) has been 

developed with 3 main ideas in mind. The first, as a development from variogram based approaches 

(and with analogies to Local binary pattern and gray-level co-occurrence matrices), is to accept 

the fact that the surface roughness (or the synonym: surface texture) is a complex entity and that 

there are multiple aspects of surface roughness/texture that can be computed at multiple scales (e.g. 

anisotropy, short-range roughness, relative roughness, etc.). The second was to overcome some of 

the issues inherent to roughness measures such as the variogram and the standard elevation of DEM 

derivatives (residual topography, slope, etc..) that are affected by nonstationarity in data and by the 

presence of outliers. The third, was to create indices easy to interpret according to studied 

processes. Accordingly, as reported in Trevisani and Rocca 2015, even the short-range isotropic 

roughness calculated with MAD works much better than the standard deviation of residual relief or 

the one estimated with a variogram-based approach. Finally, the basic idea of that algorithm could 

move on further with the development of more complex approaches such as the capability to adapt 

locally to the “wavelengths” of morphologies (with similar approaches to Lindsay et al., 2019) or 



detecting curvilinear structures via multipoint statistical indices (e.g., Mariethoz, G. & Lefebvre 

2014). 

In our study, we considered the most commonly used roughness indices for hazard modelling. We 

selected the roughness derived through standard deviation and vector dispersion approaches applied in 

a certain moving window. In this way, the roughness algorithms we analysed can be directly applied to 

available elevation models.  

We further integrate the paragraph involving the roughness algorithm selection. We therefore modified 

the 2.2 Surface roughness algorithms. 

“In order to describe the roughness, which consists of both geomorphological features and 

vegetation, we selected and tested seven algorithms using high-resolution DSMs. We selected 

widely used roughness algorithms already applied in the context of natural hazard modelling 

(Bühler et al., 2013; Crosta and Agliardi, 2004; Pfeiffer and Bowen, 1989; Veitinger and Sovilla, 

2016; Wang and Lee, 2010). They are based on standard deviation and vector dispersion 

approaches calculated in a certain moving window. We then tested them with different spatial 

resolutions (0.1 m, 0.5 m and 1 m) and moving window areas (9 m-2, 25 m-2 and 49 m-2) on both 

study areas. The selected algorithms are summarized in Table 1.” 

- In the paragraph “This approach is widely used because it can be applied to different data 

types, such as point clouds (Vetter et al., 2012), satellite imagery (Gille et al., 2000; Schumann 

et al., 2007) and DEMs (Glenn et al., 2006; Trevisani and Cavalli, 2016).” I suggest changing 

“Trevisani and Cavalli, 2016” with “Cavalli and Marchi, 2008”, because it is one of the first 

applications of standard deviation of residual DTM to LiDAR-based DTMs. 

Thanks for this observation. We will change the reference in line 204 from “Trevisani and Cavalli, 2016” 

to “Cavalli and Marchi, 2008” as you suggested. 
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