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Abstract. The flood-pedestrian simulator uses a parallel approach to couple a hydrodynamic model to a pedestrian model in a 

single agent-based modelling (ABM) framework on Graphics Processing Units (GPU), allowing dynamic exchange and 

processing of multiple agent information across the two models. The simulator is enhanced with more realistic human-body 

characteristics and in-model behavioural rules. The new features are implemented in the pedestrian model to factor in age- and 

gender-related walking speeds for the pedestrians in dry zones around the floodwater and to include a maximum excitement 

condition. It is also adapted to use age-related moving speeds for pedestrians inside the floodwater, with either a walking 

condition or a running condition. The walking and running conditions are applicable without and with an existing two-way 

interaction condition that considers the effects of pedestrian congestion on the floodwater spreading. A new autonomous 

change of direction condition is proposed to make pedestrian agents autonomous in way-finding decisions driven by their 

individual perceptions of the flood risk or the dominant choice made by the others. The relevance of the newly added 

characteristics and rules is demonstrated by applying the augmented simulator to reproduce a synthetic test case of a flood 

evacuation in a shopping centre, to then contrast its outcomes against the version of the simulator that does not consider age 

and gender in the agent characteristics. The enhanced simulator is demonstrated for a real-world case study of a mass 

evacuation from the Hillsborough football stadium, showing usefulness for flood emergency evacuation planning in outdoor 

spaces where destination choice and individual risk perception have great influence on the simulation outcomes.  

1 Introduction 

Flooding can disturb local communities such as in and around urban hubs, putting people at risk (Flood and coastal erosion 

risk management policy statement, 2020). In the lead-up to, and during, urban flooding, a number of underlying factors play a 

key role in determining flood risk to people, including human’s physical, social and mental factors and flood-related factors, 

i.e. floodwater extent, depth and velocity (Ramsbottom et al. 2006; Milanesi et al., 2015; Arrighi et al., 2017; Musolino et al., 

2020; Moftakhari et al. 2018; Rufat et al., 2020; Hamilton et al., 2020; Bernardini et al., 2021). Understanding and quantifying 
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how the interplay between people- and flood-related factors affect the flood risk to people is a desired way forward (Aerts et 

al., 2018). In the context of flood risk management, there is a strategic need to develop methods and computational models to 

incorporate a combination of two or more of these factors (Priest, 2021). This is particularly required to make analysis of 

spatial and temporal changes in flood risk to people when they are directly exposed to floodwater, especially under immediate 

evacuation conditions (Bernardini et al., 2021). With the advances in computers, evacuation simulation models have been 

developed and calibrated to evaluate evacuation strategies according to the variability in the flood risk state of people. These 

models serve various purposes, such as finding the lowest-risk evacuation strategies by pinpointing bottlenecks, pathways and 

safe areas, estimating the time required to evacuate people and the time window for issuing an early evacuation warning 

(Aboelata and Bowloes, 2008; Lumbroso et al., 2011; Dawson et al., 2011; Mas et al., 2015; Liu and Lim, 2016; Bernardini et 

al., 2017; Zhu et al., 2019; Alonso Vicario et al., 2020).  

Most of the existing evacuation models are built upon the soft agent-based modelling (ABM) paradigm for the 

representation of space-time distribution of a flooded population. ABM offers the flexibility needed to incorporate people-

related factors to study their associated interactive and collective responses, either considered as moving individuals, groups 

of individuals in a vehicle, or household units (Zhuo and Han, 2020; Aerts, 2020). ABM-based tools are usually calibrated 

with evacuation behavioural rules to achieve more informed predictions for flood adaptation planning and extraction of 

decision-relevant indicators related to the dynamics of people’s responses (Aerts et al., 2018; McClymont et al., 2019; Zhu et 

al., 2019). To account for flood-related factors, a two-dimensional hydrodynamic model is often used to feed information on 

the extent, depth and velocity magnitude of the floodwater as inputs into ABM-based evacuation models, from which the 

interactions across and between the people- and flood-related factors could be modelled (Dawson et al., 2011; Bernardini et 

al., 2017; Aerts, 2020). These interactions are organised to influence the evacuation behaviour of pedestrians, or agents, such 

as moving speed and stability states of people in and around the floodwater as they respond to an emergency warning while 

interacting with the features of an urban layout (Shirvani et al. 2020; Bernardini et al., 2021). Depending on the purpose of the 

model design and the targeted scale of application, the representation of the interactions across and between the people- and 

flood-related factors seem to require different levels of sophistication for the agent characterisation and evacuation behavioural 

rules.  

For macroscale evacuation modelling, ABM-based models were developed to simulate immediate crowd evacuation 

from a city, focusing on moving groups of individuals or household units using cars within a city road network to analyse 

response time of aware and unaware people to the immediate evacuation warning (Dawson et al., 2011; Mas et al., 2015; Liu 

and Lim, 2016; Zhu et al., 2019; Alonso Vicario et al., 2020). These simulation models only consider vehicular emergency 

evacuation, which makes them not suited to simulate the interactive and the collective responses of moving individuals, or 

pedestrians, in and around small hubs (< 0.5 km × 0.5 km in size), such as shopping centres or sports venues. For microscale 

evacuation modelling, where pedestrians need to be individually modelled, only a few ABM-based evacuation models were 

reported. One of these models is the Life Safety Model (www.lifesafetymodel.net) developed by BC Hydro and HR 

Wallingford, which allows to analyse evacuation patterns of pedestrians along streetscapes and crossings (Lumbroso and Di 
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Mauro, 2008; Lumbroso and Davison, 2018). Another model is LifeSIM (www.hec.usace.army.mil/software/hec-lifesim), 

developed by the US Army Corps of Engineers, which is capable of simulating individuals’ responses to an emergency warning 

with the floodwater propagation, as they interact with the features of an urban layout, e.g. streetscapes and buildings (Aboelata 

and Bowles, 2008). These ABM-based evacuation simulation tools were developed to inform emergency plans for severe flood 

types, such as in the immediate aftermath of a dam-break or a tsunami wave (e.g. Lumbroso et al., 2021). The focus of these 

tools is mainly on estimating the loss of life, pinpointing bottlenecks and high-risk areas, and assessing how flood warnings of 

an impending flash flood could reduce the number of casualties and injuries. For this type of risk analysis, individuals’ 

microscopic decisions and actions are considered insignificant in influencing the overall simulation outcomes due to the scale 

and speed of floodwater flow. However, for the most common flood types in urban areas, e.g. surface water due to extreme 

rainfall, less attention has been given to model the microscopic responses, down to the scale of the moving individuals, in and 

around flooded urban hubs (Ramsbottom et al. 2006). In this context, Bernardini et al. (2021) imported outputs of a flood 

model into a commercially available evacuation modelling tool, called MassMotion, to analyse flood risk differences in 

microscale and macroscale modelling with and without including pedestrians’ microscopic evacuation behaviour. They 

concluded that incorporating pedestrians’ microscopic evacuation behaviour in microscale modelling could significantly 

influence the spatial and temporal changes in flood risk to people, i.e. up to 15 % in absolute terms, when compared to 

macroscale modelling. Their findings also suggest the need to further incorporate non-homogeneous characteristics of people 

in a more flexible microscale modelling framework, which may result in additional differences to the analysis of flood risk to 

people.  

One first effort in designing an ABM-based evacuation simulator capable of capturing microscopic responses at a 

small urban scale was taken by Bernardini et al. (2017). They developed FlooPEDS by incorporating the standard social force 

model for pedestrian dynamics (Helbing and Molnar, 1995), which was adapted to further model individuals’ moving speed 

and stability states in floodwater. These states were implemented based on the experimental data and recommendations in 

Ishigaki et al. (2009), Chanson et al. (2014) and Matsuo et al. (2011), though individuals’ way-finding decisions were solely 

influenced by behavioural rules of the social force model. The coupling with the hydrodynamic model was used to receive 

information on the changes in the floodwater conditions within the urban environment. However, FlooPEDS was reported to 

adopt a serial approach, by running one of the social force model and hydrodynamic model at a time, and a number of 

simplifications to alleviate runtime and dynamic memory costs, i.e. using uniform floodwater conditions on coarse 

subdomains, limiting the number of pedestrians up to 300 with uniform characteristics and the simulation time to less than 600 

s (Bernardini et al., 2017). Given its serial approach to the coupling, FlooPEDS is not ideally suited to incorporate the dynamic 

feedback from the moving pedestrians onto the floodwater flow. Shirvani et al. (2021) developed a flood-pedestrian simulator 

by taking a parallel approach to achieve the dynamic coupling between the hydrodynamic model and the social force model, 

both being ABM-based and running from a single ABM framework, Flexible Large-scale Agent-based Modelling Environment 

for the GPU (FLAMEGPU). The flood-pedestrian simulator on the FLAMEGPU framework benefits from the computational 

speed-up and high dynamic memory capacity of the Graphics Processing Unit (GPU). The latter property allows it to employ 
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as fine resolution and as large population size as needed with the hydrodynamic and pedestrian models, respectively (within 

the capacity of available GPU memory). This simulator is therefore supported with a two-way interaction condition to 

dynamically exchange agent information as they get updated across both the social force model and the hydrodynamic model. 

The two-way interaction condition allows to capture both the response of moving pedestrians to the floodwater and the back 

interaction of pedestrians’ presence on the floodwater flow. Enabling the two-way interaction condition was found to 

significantly affect the model outcomes in and around congested areas: predict reduced flood risk for the pedestrians in low-

to-medium risk areas and increased risk for those around high risk areas (Shirvani et al., 2021). In Shirvani et al. (2020), the 

social force model of the same simulator was further augmented with empirical datasets and experimentally derived formulas 

to incorporate non-uniform body characteristics and more variable moving speed and stability states of pedestrian agents in 

floodwater. The simulator was found to predict significantly prolonged evacuation times and higher number of at-risk 

pedestrians in low to medium risk areas in line with an increased sophistication in the pedestrian agent characteristics and 

behavioural rules (Shirvani et al., 2020), even without enabling the two-way interaction condition. In the latter version of the 

simulator, pedestrian agents were initialised to store body height and mass information, which were key human body factors 

considered to influence the determination of their stability states in the floodwater; and, were assigned variable moving speeds 

that are solely based on the mechanics of the floodwater. Also, the latter version of the simulator was only applied to a synthetic 

test case and it was limited to a simplified way-finding decision rule for directing pedestrian agents to one fixed emergency 

exit destination (specified in advance). This means that the influence of the interplay between the two-way interaction condition 

and the pedestrian agent characteristics and rules on the simulation outcomes remained unexplored for real-world scenarios.  

 This paper presents new developments in the flood-pedestrian simulator for incorporating a higher level of 

heterogeneity in pedestrian agent characterisation and more realistic behavioural rules than its previous version. The simulator 

is now augmented for real-world applications with new capabilities to account for: 

● age, gender, body height and mass distribution of a subject population; 

● age- and gender-related variable moving speeds of individuals in both dry and flooded zones based on real-world 

datasets and experimental information; and 

● autonomous decision making of individuals in choosing one of multiple emergency exit destinations influenced by 

their personal perception of the risk from the floodwater or by the most popular destination selected by others.  

These new developments are evaluated by analysing the associated changes induced in the simulated outcomes, by first 

contrasting them against the outcomes of the previous version of the simulator for a synthetic case study of a during-flood 

evacuation in a shopping centre; then, through a new real-world case study of a mass evacuation from the Hillsborough football 

stadium in response to a flood emergency replicating the conditions of November 2019 Sheffield floods.  

This study is one step forward to developing an evacuation simulation tool, which intertwines an enhanced level of 

heterogeneity in agent characterisation and experimentally formulated behavioural rules for temporal and spatial microscopic 

flood risk analysis at individuals’ level. The datasets of the simulated case studies and a video supplement that visualises 

https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
https://iwaponline.com/jh/article/22/5/1078/75432/Agent-based-modelling-of-pedestrian-responses
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5 

 

 

simulations in real time are openly accessible (Shirvani and Kesserwani, 2021b, Shirvani, 2021), as well as the source code of 

the latest version of simulator on FLAMEGPU (Shirvani and Kesserwani, 2021a) including a detailed user guide. 

2 Material and methods 

2.1 Overview of the flood-pedestrian simulator 

The flood-pedestrian simulator dynamically couples a hydrodynamic model to a pedestrian model within the same ABM 

framework, FLAMEGPU (Shirvani et al., 2020; Shirvani et al., 2021). The pedestrian model adopts a standard social force 

model that accounts for the dynamic interactions occurring between moving pedestrians in a built environment (Li et al., 2019; 

Jiang et al., 2020). The pedestrians are represented by continuous space agents, each of which autonomously move in space 

and over time. The movement pattern of each pedestrian agent is derived by forces for avoiding collisions with their 

neighbouring pedestrian agents and with the key features within the environment layout, such as boundaries of the walkable 

area, terrain blocks and solid walls. The environment layout encodes force vector fields providing navigation to key 

destinations. These fields are stored within a grid of fixed discrete agents, forming a navigation map (Karmakharm et al., 

2010). The navigation map is necessary for pedestrians’ way-finding decisions while they are directed to reach their key 

destinations.  

The hydrodynamic model is formulated based on a non-sequential implementation of a finite volume solver of the 

depth-averaged shallow water equations on a two-dimensional grid on FLAMEGPU, which was validated previously in 

Shirvani et al. (2021). The hydrodynamic model was applied on another fixed grid of discrete agents, flood agents, which is 

coincident with the grid of navigation agents. A flood agent stores information of the terrain properties in terms of height (z) 

and Manning’s roughness parameter (nM); and the state of floodwater variables in terms of depth (h) and velocity components 

(u and v). The state of floodwater variables is updated over time at each simulation iteration using the hydrodynamic model 

that operates for all the flood agents at the same time. Each navigation agent is set to store the updated state of floodwater 

variables from the coincident flood agent and subsequently provide this information to the pedestrian agent(s) at their location. 

The recipient pedestrian agents use the flood information to change their states based on a self-evaluative assessment of two 

criteria: Hazard Rating (HR) quantity of floodwater and human-body stability limits.  

The HR quantity in pluvial or fluvial flooding with low probability of debris could be estimated as HR = (V + 0.5) × 

h where V stands for the velocity magnitude estimated as V = √𝑢2 + 𝑣2 (Ramsbottom et al. 2006, Kvočka et al., 2016). 

Depending on the categorisation of the HR by the UK Environment Agency (EA), pedestrian agents are set to autonomously 

flag themselves with one of the four flood risk states: ‘low’ (0.0 < HR < 0.75), ‘medium’ (0.75 < HR < 1.5), ‘high’ (1.5 < HR 

< 2.5) and ‘highest’ (2.5 < HR < 20). In a similar way, the pedestrian agents are assigned a stability state which is also indicative 

of their mobility or immobility inside the floodwater. The stability state of pedestrian agents is estimated based on two 

experimentally derived formulas reported in Xia et al. 2014. These formulas evaluate the incipient velocity limits (Uc) for 

https://zenodo.org/record/4576906#.YD-utGj7S70
https://av.tib.eu/media/51547
https://zenodo.org/record/4564288#.YD-r3mj7S70
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toppling and/or sliding conditions of human subjects in the floodwater by weighing the body height and mass information of 

each pedestrian agent as well as the states of floodwater variables. Depending on the evaluated Uc and the magnitude of the 

floodwater velocity (V), the pedestrian agents are assigned one of four stability states: ‘stable condition’ where they carry on 

moving, or otherwise immobilised under ‘toppling-only condition’, ‘sliding-only condition’ or ‘toppling-and-sliding 

condition’ (see Shirvani et al. 2020 for more information).  

The simulator is also supported with a functionality to enable a ‘two-way interaction condition’ to consider the effects 

that pedestrians’ congestion would have on altering the floodwater hydrodynamics, which can be significant as shown in 

Arrighi et al. (2017) and Shirvani et al. (2021). Hence, this condition incorporates any local and temporal changes in the state 

of the floodwater variables in a flood agent as a result of increased accumulation of pedestrian agents over the navigation agent 

at its coincident location. By enabling this functionality, the navigation agent is set to count the number of pedestrian agents 

(Np) that occupy its area at each time step. Then, the navigation agent uses Np to alter local energy loss by locally updating nM 

and passing it back to the coincident flood agent. The updated nM is applied as nM
updated = nM + (Np × nM). The initial nM 

parameter is set to be equal to 0.01 s.m−1/3, representative of clear cement, and no more than 20 pedestrian agents are allowed 

to simultaneously occupy the area of a navigation agent, meaning that any local update in nM cannot exceed 0.2 s.m−1/3.  

2.2 New characteristics and rules for pedestrian agents 

2.2.1 Age, gender, and body mass characterisation 

Each pedestrian agent is set to hold information of age, gender, and body mass at the time of its generation. To randomly 

assign an age, gender and body mass based on realistic distributions to each pedestrian, the UK national survey dataset (UK 

population by ethnicity, 2018) was used. As shown in Fig. 1, each pedestrian agent can have an age randomly selected from a 

range between 10 and 79 years old, and with a probability to keep the percentage of distribution of seven age groups. The 

excluded age groups, younger than 10 and older than 79 years old, make up 16 % of the UK population and represent children 

and elderly. To compensate for their exclusion, the percentage distribution of the other age groups was increased by around 

2.3 %. Each pedestrian agent is also generated with a random ‘male’ or ‘female’ gender, each with equal chance of selection.  

https://iwaponline.com/jh/article/22/5/1078/75432/Agent-based-modelling-of-pedestrian-responses
https://hess.copernicus.org/articles/21/515/2017/
https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity
https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity
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Figure 1: Age distribution assigned for the pedestrian agents in the flood-pedestrian simulator based on the UK’s national survey (UK 

population by ethnicity, 2018). 

Based on the age and gender of a pedestrian agent, its body mass, denoted by mp (kg), is evaluated using the following 

formula (Disabled World, 2019): 

𝑚𝑝 = 𝑙𝑝
 2 𝐵𝑀𝐼,            (1) 

where lp (m) stands for the body height of a pedestrian agent, which had already been incorporated within the previous version 

of the simulator (Shirvani et al., 2020). Here, the BMI (kg / m2) was randomly selected based on the ranges of age and gender 

listed in Table 1. For the age group between 10 and 17 years old, the BMI range was defined based on a standard for children 

(Prentice, 1998) and, based on samples of men and women who participated in the laboratory experiments reported in 

Bernardini et al. (2020) for the other age groups. 

Table 1: Ranges of BMI used according to gender and age of individuals (details in Prentice (1998) and Bernardini et al. (2020)). 

Age groups Gender BMI (kg / m2) 

10 to 17 Both Between 18.5 and 24.9 

18 to 29 

30 to 39 

40 to 49 

50 to 59 

60 to 69 

70 to 79 

Male Between 18.21 and 32.10 

Female Between 16.01 and 32.03 

2.2.2 Variable moving speeds 

Each pedestrian agent is enabled to autonomously evaluate their variable moving speed according to their assigned age- and 

gender and the dynamic changes in the state of floodwater flow at their location. This was achieved by introducing two new 

sets of behavioural rules for all the pedestrian agents, governing the motion of the pedestrian agent in dry zones (around the 

https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity/demographics/age-groups/latest#main-facts-and-figures
https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity/demographics/age-groups/latest#main-facts-and-figures
https://www.disabled-world.com/calculators-charts/bmi.php
https://iwaponline.com/jh/article/22/5/1078/75432/Agent-based-modelling-of-pedestrian-responses
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1114291/
https://www.sciencedirect.com/science/article/pii/S0925753519321745
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1114291/
https://www.sciencedirect.com/science/article/pii/S0925753519321745
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floodwater) and in flooded zones (inside the floodwater), respectively. To enable a pedestrian agent to discern between dry 

zone and flooded zone, it resorts to the state of the floodwater’s depth accessible from the navigation agent at its specific 

location and time.  

A pedestrian agent that identifies a zero depth of floodwater is automatically flagged to be in a dry zone. These 

pedestrian agents are set to operate based on a ‘dry-zone’ moving speed rule under a walking condition. This rule assigns a 

randomly selected walking speed to a pedestrian agent from a set of predefined ranges that are classified according to different 

age and gender groups outlined in Table 2. The walking speed range of the 10 to 19 age group is defined according to the 

human's average walking speed and is the same for both male and female (Mohler et al., 2007; Toor et al., 2001). For pedestrian 

agents with 20 years of age and more, the ranges of their walking speed varies across different gender groups and are derived 

from an empirically identified standard proposed by Bohannon and Andrews (2011). As people are expected to move faster 

under evacuation conditions (Bernardini et al., 2020), pedestrian agents are applied an additional rule to increase their walking 

speed based on the ‘maximum excitement condition’ identified in the experiments of Bernardini and Qualiarimi (2020). This 

condition enables ‘male’ pedestrian agents to increase their walking speed by 60 % and ‘female’ agents to increase their 

walking speed by 76 %. The experimental findings of Lee et al. (2019) also suggest a faster maximum excitement condition 

for women, which may be associated with the fact that women have less tendency to be around floodwater compared to men 

(Becker et al., 2015; Hamilton et al., 2020). 

 

Table 2: Ranges of walking speeds for the pedestrian agents located in dry zones according to their age and gender (Toor et al., 2001; Mohler 

et al., 2007; Bohannon and Andrews, 2011). 

Age range 

(years) 

Walking speed range (m/s) 

Female Male 

10 to 19 1.39 to 1.47 1.39 to 1.47 

20 to 29 1.270 to 1.447 1.239 to 1.443 

30 to 39 1.316 to 1.550 1.193 to 1.482 

40 to 49 1.353 to 1.514 1.339 to 1.411 

50 to 59 1.379 to 1.488 1.222 to 1.405 

60 to 69 1.266 to 1.412 1.183 to 1.300 

70 to 79 1.210 to 1.322 1.072 to 1.192 

 

A pedestrian agent that identifies a non-zero depth of floodwater is automatically flagged to be in a flooded zone. 

These pedestrian agents are set to operate upon a ‘flooded-zone’ moving speed rule under either ‘walking’ or ‘running’ 

conditions. With this rule, each pedestrian is assigned a moving speed that is evaluated by an empirical formula extracted from 

the experiments in Bernardini et al. (2020). Denoting the moving speed of each individual by Vp (m/s), the formula reads 

𝑉𝑝 = 𝑎. 𝑀𝑏,            (2) 

https://link.springer.com/article/10.1007/s00221-007-0917-0
https://www.jstor.org/stable/44730963?read-now=1&seq=1#page_scan_tab_contents
https://www.sciencedirect.com/science/article/pii/S0031940611000307?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925753519321745
https://www.mdpi.com/2073-4441/12/5/1316
https://www.sciencedirect.com/science/article/pii/S2212420918301894
https://journals.ametsoc.org/view/journals/wcas/7/4/wcas-d-14-00030_1.xml
https://www.sciencedirect.com/science/article/pii/S2212420918308604#bib96
https://www.jstor.org/stable/44730963?read-now=1&seq=1#page_scan_tab_contents
https://link.springer.com/article/10.1007/s00221-007-0917-0
https://link.springer.com/article/10.1007/s00221-007-0917-0
https://www.sciencedirect.com/science/article/pii/S0031940611000307?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925753519321745


9 

 

 

where M is a function of specific force per unit width calculated by M = 
𝑉2 ℎ

𝑔
+

ℎ2

𝑔
 with h and V being the depth and the velocity 

magnitude of floodwater respectively, g is the gravitational constant and a and b are age-related parameters defining each of 

the ‘walking’ and ‘running’ conditions, which are listed in Table 3. M is estimated at the navigation agent, where the pedestrian 

agent is present, from copies of h and V obtained from the flood agent at the coincident location. The validity of Eq. (2) is 

limited to subjects under the age of 68 and only applicable to floodwater depths between 0.2 m to 0.7 m (Bernardini et al., 

2020). In reality, floodwater depth can be outside these limits and it may happen that an elderly beyond 68 years of age is 

present in a flooded area. Therefore, extra rules were applied to extend the variety of moving speed of pedestrian agents in 

flooded zones beyond the aforementioned age and floodwater depth limits for Eq. (2):  

- the moving speed of pedestrian agents with an age greater than 68 is evaluated by decreasing Vp of the 61 to 68 age 

group by 1.6 % per year, following the experimental findings of Dobbs et al. (1993), 

- pedestrian agents encountering a depth of floodwater shallower than 0.2 m are set to maintain dry-zone walking speed 

rule as they are not expected to experience significant interference from the floodwater on their walking speed (Lee 

et al., 2019), and 

- pedestrian agents encountering floodwater greater than 0.7 m are given a moving speed informed by the stability 

limits reported in the UK’s Flood Risks to People method (Ramsbottom et al. 2006). Namely, these pedestrian agents 

are only set to have a moving speed when velocity magnitude V is less than 1.5 m/s, or otherwise, they remain 

immobile.  

 

Table 3: The values of age-related parameters, a and b, identified by Bernardini et al. (2020) for evaluation of the moving speed of each 

individual under ‘walking’ and ‘running’ conditions via Eq. (2). 

Age ranges 

(years) 

Walking Running 

a b a b 

5 to 12 0.82 0.18 0.41 -0.21 

13 to 20 0.54 -0.07 0.81 -0.19 

21 to 28 0.36 -0.13 0.48 -0.19 

29 to 36 0.35 -0.19 0.53 -0.23 

37 to 44 0.43 -0.13 0.62 -0.20 

45 to 52 0.57 -0.03 0.61 -0.17 

53 to 60 0.32 -0.17 0.62 -0.20 

61 to 68 0.16 -0.43 0.61 -0.17 

2.2.3 Autonomous change of direction condition 

Each pedestrian agent is also featured with two extra rules to enable it to autonomously navigate into new pathways while 

moving within a flooded zone, where it encounters a non-zero floodwater depth from the navigation agent at its specific time 

and location. The first rule makes a pedestrian agent detect and choose another destination if the floodwater depth along its 

https://www.sciencedirect.com/science/article/pii/S0925753519321745
https://www.sciencedirect.com/science/article/pii/S0925753519321745
https://academic.oup.com/ageing/article/22/1/27/14913
https://www.sciencedirect.com/science/article/pii/S2212420918301894
https://www.sciencedirect.com/science/article/pii/S2212420918301894
http://randd.defra.gov.uk/Document.aspx?Document=FD2321_3437_TRP.pdf
https://www.sciencedirect.com/science/article/pii/S0925753519321745
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way becomes higher than a threshold of a floodwater depth to body height. The choice for the threshold is case-dependent and 

exploring different thresholds may be necessary (Sect. 4.2.2) as an individual’s flood risk perception is dependent on different 

factors, including past flooding experiences (Hamilton et., 2020; Abebe et al., 2020). This affects the modelling of decisions, 

i.e. when and where people enter the floodwater or make a move into another destination (Becker et al., 2015; Netzel et al., 

2021). Applying this rule enables the pedestrian agents to make decisions on which pathway to take within an environment 

layout where there is no specific emergency exit at time of evacuation. The second rule applies to those pedestrian agents 

which remain undecided about selecting a pathway after a period of time (user-selected, Sect. 4.2.2). Such pedestrian agents 

are then set to detect the most popular destination chosen by the pedestrian agents within its surroundings. This rule is applied 

on the basis that group decisions have significant influence on the path finding decision of an individual in and around the 

floodwater (Becker et al., 2015; Lin et al., 2020).  

3 Evaluation of the newly added characteristics and rules  

The new characteristics and rules for pedestrian agents in the present version of the simulator were evaluated with a focus to 

assess their relevance for the analysis of pedestrian evacuation dynamics during a flood emergency (Sect. 3.3). Direct 

validation of agent-based models is a grand challenge as such models are aimed to study non-observable scenarios, where 

there is uncertainties associated with the emergent nature of behaviours and where validation datasets of such type are not 

available (An et al., 2020; Zhuo and Han, 2020; Aerts 2020). One alternative approach is a component-wise validation (Bert 

et al., 2014). This approach was used at the development stage of the dynamically coupled hydrodynamic and pedestrian 

models within the simulator (Shirvani et al., 2021).  

To validate the relevance of in-model behavioural rules, one suitable strategy is to Take A Previous Model and Add 

Something (TAPAS) (Polhill et al., 2010; Abebe et al. 2020). This strategy was previously applied by systematically increasing 

the level of sophistication of agent characteristics and rules, and running the simulator progressively to identify their relevance 

by analysing the respective changes to the simulation outcomes (Shirvani et al., 2020). The TAPAS approach is also applied 

here to evaluate the new characteristics and rules added to the present version of the simulator, by setting it up and running it 

for the same test case used in Shirvani et al. (2020), Sect. 3.1, for five different configuration modes that are summarised in 

Table 4.   

https://www.sciencedirect.com/science/article/pii/S2212420918308604#bib96
https://hess.copernicus.org/articles/24/5329/2020/
https://hess.copernicus.org/articles/24/5329/2020/
https://www.jstor.org/stable/24907472?seq=1
https://onlinelibrary.wiley.com/doi/10.1111/jfr3.12688
https://onlinelibrary.wiley.com/doi/10.1111/jfr3.12688
https://www.jstor.org/stable/24907472?seq=1
https://www.sciencedirect.com/science/article/abs/pii/S1474034620300094
http://jasss.soc.surrey.ac.uk/23/1/13.html
https://www.sciencedirect.com/science/article/pii/S0022169420310611?via%3Dihub
https://reader.elsevier.com/reader/sd/pii/S246831242030016X?token=275DD7F79088967650709E567F5C322F519291898BF7D1CD260AA30779328AFCE0EBB4EA4B1BAD5631BA098DDCA742BA
https://www.sciencedirect.com/science/article/pii/S0304380013005723?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0304380013005723?via%3Dihub
https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
http://jasss.soc.surrey.ac.uk/13/2/10.html
https://hess.copernicus.org/articles/24/5329/2020/
https://iwaponline.com/jh/article/22/5/1078/75432
https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
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Table 4: Configuration modes used to set up and run the simulator to evaluate the newly added characteristics and rules. 

Modes 

Pedestrian behavioural rules 

Two-way 

interaction 

Moving speed in dry zones Moving speed in flooded zone (Eq. (2)) 

Walking 

condition 

Maximum 

excitement 

condition 

Walking condition Running condition 

Mode 0 Disabled  Constant Disabled  Age independent Not applicable 

Mode 1 Disabled  
Age- and 

gender-related 

(Table 2) 

Enabled (Sect. 

2.2.2) 

Age-related Not applicable 
Mode 2 Enabled 

Mode 3 Disabled  
Not applicable Age-related 

Mode 4 Enabled 

 

3.1 Overview of the flood evacuation in a shopping centre test case 

This test case was explored with the previous version of the flood-pedestrian simulator (Shirvani et al., 2020, Shirvani et al., 

2021). It is reconsidered to assess the relevance of the new characteristics and rules added to the pedestrian agents within the 

present version of the simulator.  

 The test case considers a 332 × 332 m2 hypothetical shopping centre that includes stores along its west and east sides, 

corridors and seven entrance/exit doors to the open space area (Fig. 2). The total walkable area of the shopping centre, including 

the open area and the corridors, is equal to 70,350.8 m2, and 1000 pedestrian agents are generated to randomly occupy this 

space before the floodwater starts to propagate. The floodwater propagation was assumed to breach from the southern side 

along a 100 m opening (Fig. 2). When the floodwater starts to propagate, no more pedestrian agents are generated  and the 

remaining ones are set to autonomously move to the emergency exit located at the northern side (Fig. 2), which is the only 

door open during the evacuation process. 

https://iwaponline.com/jh/article/22/5/1078/75432
https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
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Figure 2: Sketch of the shopping centre: the meshed area in blue indicates the open area and corridors where pedestrians can walk to the 

entrance doors (coloured in yellow). Once the flood starts, evacuating pedestrians will go to the emergency exit (on the north side). The 

blocks in brown indicate terrain features assuming they are stores and the blue-shaded area in the southern part of the figure shows the 

location where the floodwater started to propagate.  

The flooding inflow was generated based on an inflow hydrograph of a discharge, Q (m3/s) propagating over a 

duration of 7.5 min, and peaking to 160 m3/s at 3.75 min (Fig. 3). The hydrograph was produced based on the Norwich 

inundation case study, and because it results in a range for the HR that is inclusive of all the ranges based on the EA 

categorisation, i.e. HR < 7 (Shirvani et al., 2021). Deploying a hydrograph with shorter duration or a bigger peak would lead 

to significantly bigger HR, which is indicative of potential loss of life or injury where a person can take very limited actions 

to carry on moving to the emergency exit (hence is outside the scope of this study). When the floodwater starts to propagate 

over the walkable area, simulation time (t) of 0 min, the pedestrian agents start the evacuation and the simulation terminates 

when all the pedestrian agents have evacuated the walkable area.  

 

Figure 3: Inflow hydrograph that is used to generate the floodwater propagation from the southern side of the shopping centre. 

https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
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3.2 Simulation runs  

The simulator was executed at a resolution of 2.59 m × 2.59 m for each of the grids of navigation and flood agents. The time-

step was taken to be the minimum between the adaptive time-step of the hydrodynamic model and the 1.0 s time-step of the 

pedestrian model (a visualisation of a simulation run can be found in the video supplement in Shirvani (2021)). In each run, 

the simulator is set to record the information stored in the flood agents and the pedestrian agents at each time-step. Recorded 

outputs from a simulation run include the positions of the pedestrian agents, their flood risk states (HR-related) and or their 

stability states (including toppling-only, toppling-and-sliding and sliding-only1 conditions). As the motion of each pedestrian 

agent is governed by a stochastic (space-time) process, series of 10 and 20 simulation runs were conducted to average out a 

plausible outcome for each of the configuration Modes. The plausibility of the average outputs from both series of runs is 

evaluated, by estimating the margin of error (MOE) assuming confidence levels ranging between 90% and 99.9%. The 

following formula is used to evaluate the MOE:  

𝑀𝑂𝐸 = 𝑍𝑠𝑐𝑜𝑟𝑒  × √
𝜎2

𝑛
 ,          (3) 

where, Zscore is the critical value, which is equal to 1.65, 1.96, 2.17, 2.58 and 3.29, for confidence levels of 90 %, 95 %, 97 %, 

99 % and 99.9 %, respectively (Hazra, 2017); σ is the standard deviation from the sample of outputs of size n = {10, 20}; and 

𝜎 = √
∑(𝑥𝑖−�̅�)2

𝑛
, with xi representing the number of pedestrians with a particular HR-related flood risk or stability state extracted 

from the recorded outputs, and �̅� is the averaged value. Table 5 lists the maximum MOE evaluated for the different confidence 

levels, with respect to the average number of pedestrian agents under different HR-related flood risk and stability states for 

configuration Mode 0 to Mode 4. 

 

Table 5: Maximum margin of error (MOE) for the average number of pedestrian agents with different HR-related flood risk or stability 

states that are extracted from the recorded outputs of all the configuration modes (Table 4) and across different confidence levels ranging 

from 90 % to 99.9%. Different ranges of the evaluated maximum MOE are highlighted with different colour shades: green, orange and red 

to indicate MOE ≤ ± 5, 6 ≤ MOE ≤ 9 and MOE ≥ 10, respectively.  

Mode 
HR-related flood risk and 

stability states 

Maximum MOE  

n = 10  n = 20  

90 %  95 %  97 %  99 %  99.9 %  90 %  95 %  97 %  99 %  99.9 %  

0 

HR < 0.75 ± 5 ± 6 ± 6 ± 8 ± 10 ± 3 ± 4 ± 4 ± 5 ± 6 

0.75 < HR <1.5 ± 4 ± 5 ± 6 ± 7 ± 9 ± 3 ± 3 ± 4 ± 4 ± 5 

1.5 < HR <2.5 ± 3 ± 3 ± 4 ± 5 ± 6 ± 2 ± 3 ± 3 ± 4 ± 5 

HR > 2.5 ± 1 ± 1 ± 1 ± 2 ± 2 ± 1 ± 1 ± 1 ± 1 ± 1 

Toppling-only ± 5 ± 6 ± 7 ± 8 ± 10 ± 4 ± 4 ± 5 ± 6 ± 8 

Toppling-and-sliding ± 4 ± 5 ± 5 ± 6 ± 8 ± 3 ± 4 ± 4 ± 5 ± 9 

1 HR < 0.75 ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 4 ± 5 ± 6 ± 7 

                                                           
1 Although the sliding-only is implemented in the simulator, it is not expected to predict pedestrians under this stability state 

for the type of fluvial or pluvial floods investigated in this paper. This stability state would occur when pedestrians respond to 

raging and shallowly propagating floodwaters such as the case of a flash flood.  

https://av.tib.eu/media/51547
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723800/
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0.75 < HR <1.5 ± 6 ± 7 ± 8 ± 10 ± 12 ± 4 ± 4 ± 5 ± 6 ± 7 

1.5 < HR <2.5 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 

HR > 2.5 ± 0 ± 0 ± 0 ± 0 ± 1 ± 0 ± 0 ± 0 ± 0 ± 0 

Toppling-only ± 6 ± 8 ± 8 ± 10 ± 13 ± 4 ± 4 ± 5 ± 6 ± 7 

Toppling-and-sliding ± 5 ± 6 ± 7 ± 8 ± 10 ± 3 ± 4 ± 5 ± 5 ± 7 

2 

HR < 0.75 ± 6 ± 7 ± 7 ± 9 ± 11 ± 4 ± 5 ± 5 ± 6 ± 8 

0.75 < HR <1.5 ± 7 ± 8 ± 9 ± 10 ± 13 ± 5 ± 6 ± 6 ± 7 ± 9 

1.5 < HR <2.5 ± 1 ± 1 ± 1 ± 2 ± 2 ± 1 ± 1 ± 1 ± 1 ± 1 

HR > 2.5 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 

Toppling-only ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 4 ± 5 ± 6 ± 7 

Toppling-and-sliding ± 6 ± 7 ± 7 ± 9 ± 11 ± 4 ± 5 ± 5 ± 6 ± 8 

3 

HR < 0.75 ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 4 ± 5 ± 6 ± 7 

0.75 < HR <1.5 ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 5 ± 5 ± 6 ± 8 

1.5 < HR <2.5 ± 1 ± 1 ± 1 ± 1 ± 1 ± 0 ± 1 ± 1 ± 1 ± 1 

HR > 2.5 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 

Toppling-only ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 5 ± 5 ± 6 ± 8 

Toppling-and-sliding ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 4 ± 5 ± 6 ± 7 

4 

HR < 0.75 ± 5 ± 6 ± 7 ± 9 ± 11 ± 4 ± 4 ± 5 ± 6 ± 7 

0.75 < HR <1.5 ± 7 ± 9 ± 10 ± 12 ± 15 ± 5 ± 6 ± 6 ± 7 ± 10 

1.5 < HR <2.5 ± 1 ± 1 ± 1 ± 1 ± 2 ± 1 ± 1 ± 1 ± 1 ± 1 

HR > 2.5 ± 1 ± 1 ± 1 ± 1 ± 1 ± 0 ± 0 ± 1 ± 1 ± 1 

Toppling-only ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 4 ± 5 ± 6 ± 7 

Toppling-and-sliding ± 6 ± 7 ± 8 ± 9 ± 12 ± 4 ± 5 ± 5 ± 6 ± 7 

 

For n = 10, there is a considerable increase in the maximum MOE with Mode 1 to Mode 4 compared to Mode 0. This is 

particularly seen for the number of pedestrian agents in low and medium flood risk states (HR < 0.75 and 0.75 < HR <1.5, 

respectively) and with toppling-only and toppling-and-sliding stability states. This suggests that the more sophisticated the 

pedestrian agent characteristics and rules, more discrepancies would appear in the simulator’s outcomes. The maximum MOE 

identified suggests a deviation of around ± 15 from the averaged outcomes. However, when the sample size is increased to n 

= 20, the maximum margin of error does not exceed ± 10 for all the modes and confidence levels. Therefore, the simulation 

results analysed next are averaged out from a sample of 20 simulation runs, subject to ± 10 maximum MOE for a population 

of 1000 pedestrians in the flooded walkable area, which corresponds to a variance of 1 %. 

3.3 Analysis of flood risks to people 

Figure 4 shows the trends in the number of evacuating pedestrians with different HR-related flood risk states predicted by the 

simulator after 20 runs using all the configuration modes (Table 4). Figure 4a represents how the number of pedestrians with 

a low flood risk state (HR < 0.75) change during 20 minutes of flood time. Figure 4a-left includes the trends predicted after 

enabling the walking condition for the age-related moving speeds (Mode 1) versus those predicted by further enabling the two-

way interaction condition (Mode 2). In Mode 1, the trend is in good agreement with the baseline predictions (Mode 0, with 

non-age related moving speeds) at flooding times when there are less than 100 pedestrians in the walkable area with a low 

flood risk state, during 3.5 min to 7 min. A considerable difference among the predictions starts to appear when more than 150 
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pedestrians are present, around 2.5 min and 8.5 min. This difference seems to impact the overall trend, suggesting a 6 min 

longer duration with a higher number of pedestrians being predicted to be under this flood risk state, during 8 min to 18 min. 

In Mode 2, compared to Mode 1, the number of evacuating pedestrians is seen to reduce further at flooding times involving 

more than 150 pedestrians, around 2.5 min and 10 min. This is expected as crowding of pedestrians in low risk floodwaters 

would disperse the floodwater dynamics, which in turn help pedestrians evacuating ahead to pick up a faster moving speed 

(Shirvani et al., 2021). This does not seem to influence the collective moving speed of pedestrians, for example by generating 

additional congestions (as shown later in Fig. 6), as the overall trends with Mode 1 and Mode 2 are very close. Figure 4a-right 

contrasts the trends predicted after activating the running condition for the age-related moving speeds (Mode 3) to those 

predicted by also enabling the two-way interaction condition (Mode 4). In Mode 3 and Mode 4, the trends show a considerably 

faster moving speed of pedestrians (than with Mode 1 and Mode 2), significantly reducing the duration when pedestrians fall 

under a low risk state, suggesting outputs that are close to the baseline predictions (Mode 0). With Mode 3, discrepancies 

(compared with Mode 0) only occur between 2.5 and 3.5 min and after 8 min of flooding, when there are more than 150 

pedestrians moving under the running condition. In Mode 4, with further enabling the two-way interaction condition, the trends 

remain close to those predicted under Mode 3, except at 2.5 min flooding time that involves more than 200 pedestrians under 

a low flood risk state. This suggests that activating the two-way interaction condition with the running condition may only 

temporarily influence the pedestrians’ collective moving speed, namely when more than 200 pedestrians are caught under a 

low flood risk state. Overall, there is a major difference in the collective moving speeds of pedestrians when age-related 

walking vs. running speeds are deployed, leading to prolonged vs. shortened evacuation times compared to the baseline 

predictions (Mode 0), respectively. Also, using the two-way interaction condition seems to be a sensible choice for simulating 

mass pedestrian evacuations in low risk floodwater. 

Figure 4b shows how the number of pedestrians with a medium flood risk state (0.75 < HR < 1.5) change during 20 

minutes of flood time. With Mode 1 (Fig. 4b-left), compared to Mode 0, less number of pedestrians is predicted until 6 min, 

just before the number of pedestrians under this flood risk state reaches 300. This suggests that pedestrians could pick up faster 

moving speeds during the first 6 min of flooding, allowing them to escape medium risk floodwaters earlier. After 6 min, the 

trend with Mode 1 is fairly similar to the one with Mode 0, suggesting more influence of medium risk floodwaters on the 

collective moving speed of pedestrians irrespective of their age and gender. This difference is also marginal in the trends 

predicted by the simulator with Mode 2 that further activates the two-way interaction condition. However, like the trends seen 

for the low flood risk state (Fig. 4a-left), the pedestrians under a medium flood risk state exhibit a slightly faster moving speed 

when their number is over 300. Again, this could be related to more dispersions in floodwater dynamics due to large crowding, 

allowing the pedestrians located ahead to maintain faster moving speeds. By using instead the age-related running condition 

under Mode 3 (Fig. 4b-right), the trend observed is pretty similar to that with Mode 0, with slight differences appearing after 

6 min of flooding. Further enabling the two-way interaction condition (Mode 4) induces more reduction in the predicted 

number of pedestrians during the time of the flood when the crowding is at its peak, between 6 and 8 min (Fig. 4b-right). Also, 

the collective moving speed of pedestrians under either Mode 3 or Mode 4 is predicted to be similar to those under Mode 1 

https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12695
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and Mode 2 for the pedestrians in a medium flood risk state. Hence, running the simulator with any of the configuration Mode 

1 to Mode 4 does not seem to make a major difference in the trends for the pedestrians with a medium flood risk state, all 

predicting considerably less numbers evacuating during early flood times before crowding occurs (compared to Mode 0). 

Figure 4c shows how the number of pedestrians with a high flood risk state (1.5 < HR < 2.5) change during 20 minutes 

of flood time. For pedestrians with this flood risk category, running the simulator with any of the Mode 1 to Mode 4 leads to 

major differences in the trends compared to those predicted under Mode 0. With Mode 1 to Mode 4, only a handful of 

pedestrians are predicted to have a high flood risk state, during 3 min to 5 min of the flooding, in contrast to what the simulator’s 

prediction with Mode 0 suggests: up to 140 pedestrians within a time window of 4 min. Hence, using the age-related moving 

speed, under either the walking condition or the running condition, seems to make a difference in the predicted trends in the 

number of pedestrians with a high flood risk state. The impact of the two-way interaction condition on the trends of such 

pedestrians can be detected by analysing the difference between the predictions made under Mode 1 vs. Mode 2, for the age-

related walking condition (Fig. 4c-left), and between Mode 3 vs. Mode 4, for the age-related running condition (Fig. 4c-right). 

As can be seen, only a slightly higher number of pedestrians with a high flood risk state are predicted when the two-way 

interaction condition is also enabled, suggesting that it does not lead to major differences.  

Figure 4d shows how the number of pedestrians with a highest flood risk state (2.5 < HR < 20) change during 20 

minutes of flood time. In this case, with any of the Mode 1 to Mode 4, the simulator predicts only one or two pedestrians that 

could fall into this flood risk state around similar flood times predicted under Mode 0, which predicts a couple of more 

pedestrians under this flood risk state. This implies that using the age-related moving speeds can potentially predict less 

pedestrians that would be at the highest flood risk state. The trends predicted by the simulator using Mode 1 and Mode 3 are 

similar, indicating that using any of the running or walking conditions would lead to similar outcomes to inform on evacuating 

pedestrians with a highest flood risk state. These conditions combined with the two-way interaction condition (Mode 2 and 

Mode 4) leads to a slightly higher number of pedestrians with this flood risk state, as these pedestrians would be more affected 

by the local changes induced in the local floodwater dynamics from those pedestrians with a low risk state crowding ahead. 

Hence, either Mode 2 or More 4 seems to be a sensible configuration for the simulator to plan evacuation case studies involving 

more severe flooding scenarios.  
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Walking condition  Running condition  

  
(a) Evacuating pedestrians with a low flood risk state (HR < 0.75)  

 

  

(b) Evacuating pedestrians with a medium flood risk state (0.75 < HR <1.5) 

 

  

(c) Evacuating pedestrians with a high flood risk state (1.5 < HR < 2.5) 
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(d) Evacuating pedestrians with a highest flood risk state (2.5 < HR < 20) 

 

Figure 4: Average number of evacuating pedestrians with different HR-related flood risk states predicted by the simulator after 20 runs 

under: Mode 0 (baseline outcomes from the previous version of the simulator, Shirvani et al., 2020); Mode 1 or Mode 2 (age-related walking 

condition for the moving speeds without or with the two-way interaction condition); and Mode 3 or Mode 4 (age-related running condition 

for the moving speeds without/with the two-way interaction condition). Analysis is presented in sub-figures (a)-(d), each considering a 

different flood risk state.   

Figure 5 shows the trends in the number of evacuating pedestrians with different stability states averegated from the 

simulator predictions after 20 runs for all the configuration modes (Table 4). Pedestrians seem to be only under either toppling-

only condition (Fig. 5a) or toppling-and-sliding condition (Fig. 5b), with no pedestrians spotted to be under a sliding-only 

condition. The trends predicted with the simulator under Mode 1 to Mode 4 lead to a similar timing, as the baseline prediction 

under Mode 0, when pedestrians potentially had toppling-only and toppling-and-sliding states: they show that these stability 

states could be detected during 2 min to 8 min, and during 2 min to 6 min, respectively. These flood times are found to contain 

a large number of pedestrians with low-to-medium risk states (Fig. 4a and b), suggesting that the majority of pedestrians within 

these flood risk states could be in toppling-only and toppling-and-sliding stability states. By also contrasting the outputs 

obtained from simulations under configuration Mode 1 and Mode 3, a very similar trend could be observed for the pedestrians 

with toppling-only (Fig. 5a) and toppling-and-sliding (Fig. 5b) stability states. This is also observed for the results with the 

simulator under Mode 2 and Mode 4, suggesting that age-related moving speeds lead to similar information on the stability 

states when the pedestrians have a low-to-medium flood risk state regardless of whether the two-way interaction condition is 

activated or not. Contrasting the trends without (Mode 1 and Mode 3) and with the two-way interaction condition (Mode 2 and 

Mode 4) shows notable reductions in the number of pedestrians at 6 min (Fig. 5a) and 4.6 min (Fig. 5b), during which large 

crowds (> 200 pedestrians) were caught with medium risk states (see Fig. 4b). This observation suggests that running the 

simulator with age-related moving speeds with the two-way interaction condition (Mode 2 or Mode 4) is a sensible choice to 

study the stability state of large crowds in floodwater imposing low-to-medium risks to pedestrians. The evacuation patterns 

of pedestrians are analysed next through comparing their spatial distribution at 6 min of flood time across all the simulation 

modes, where the highest number of pedestrians are predicted to be at a medium flood risk state and the largest discrepancy in 

the number of pedestrians with a toppling-only condition is observed (see Fig. 4b and Fig. 5a). 

 

https://iwaponline.com/jh/article/22/5/1078/75432
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Walking condition  Running condition  

  

(a) Evacuating pedestrians with a toppling-only condition 

 

  
(b) Evacuating pedestrians with a toppling-and-sliding condition 

 

Figure 5: Number of evacuating pedestrians with different stability states predicted by the simulator after averaging the results from 20 runs 

under: Mode 0 (baseline outcomes from the previous version of the simulator (Shirvani et al., 2020)); Mode 1 or Mode 2 (age-related walking 

condition for the moving speeds without or with the two-way interaction condition); and Mode 3 and Mode 4 (age-related running condition 

for the moving speeds without or with the two-way interaction condition). Sub-figures (a) and (b) include the stability states with a toppling-

only condition and a toppling-and-sliding condition, respectively, when immobilised in floodwater. 

Figure 6 compares the spatial distributions of the evacuating pedestrians over flood HR map at flood time 6 min, 

obtained from simulator runs under Mode 1 to Mode 4. In each of the sub-plots, the framed 50 × 50 m2 before the emergency 

exit includes the number of pedestrians in that area, where the congestion of pedestrians is assessed for the different modes. 

With all the modes, the simulator predicted a dominance of medium risk floodwaters (0.75 < HR < 1.5) over the walkable area, 

causing the majority of the pedestrians to fall into a toppling-only condition (purple dots) and a minority to have a stable 

condition (green dots) in front of the emergency exit and from the left side of the crowd. By contrasting the spatial distribution 

of pedestrians obtained from Mode 1 and Mode 2 (upper panels), there seems to be a considerable increase in the number of 

pedestrians with a stable condition when the two-way interaction condition is enabled with the walking condition (Mode 2). 

The same pattern is observed with Mode 3 and Mode 4 (lower panels), but this is accompanied by a shift in the position of 

pedestrians towards the front, as expected for the running condition. On the other hand, by contrasting the number of 

pedestrians in the small square obtained from Mode 1 and Mode 3 (left panels), it can be observed that enabling the running 

https://iwaponline.com/jh/article/22/5/1078/75432
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condition results in a decrease in the congestion of pedestrians in front of the emergency exit. The opposite pattern is observed 

when enabling the two-way interaction condition in Mode 2 and Mode 4, showing an increase in the congestion of pedestrians 

under a running condition compared to the walking condition. Hence, using the two-way interaction condition with the 

simulator may be useful to more realistically evaluate bottlenecking impacts of an evacuation process.  

 

⬤  Stable condition     ⬤  Toppling-only condition     

Mode 1 Mode 2 

  
Mode 3 Mode 4 

  

 

Figure 6: Spatial distribution of pedestrian agents, represented by coloured dots, predicted by the simulator under Mode 1 to Mode 4 at 6 

min after flooding. The grey colour represents the floodwater extent based on the flood HR quantity and the square before the emergency 

exit represents an area of 50 × 50 m2 with a number printed alongside it representing the number of pedestrians in that area.  
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In terms of total evacuation time for the 1,000 pedestrians, averaged results after 20 runs show that it takes 13.8 min 

with Mode 0, 18 min with Mode 1, 18.1 min with Mode 2, 12.5 min with Mode 3 and 12.3 min with Mode 4 to allow all the 

pedestrians to leave the walkable area. Contrasting the predicted times reinforces previous findings from Fig. 4: compared to 

Mode 0, the age-related walking speeds, either with or without the two-way interaction condition (Mode 1 and Mode 2, 

respectively), leads to slower evacuation speed predictions that become faster under the running condition.  

Next, the simulator will be applied to analyse a scenario of mass evacuation of pedestrians during a pluvial flood 

leading to low-to-medium risk floodwaters in an urban neighbourhood. Supported by the analysis in Sect. 3.2 and Sect. 3.3, 

the simulator’s configuration will be based on Mode 2 to produce conservative estimations of the evacuation time for planning 

and decision making.  

4 Real-world case study 

4.1 Background and scenario description 

The case study consists of a site located outside of the main entrance of Hillsborough football stadium in Sheffield. The location 

of the site is framed with a dark red square in Fig. 7, including an area of 16,384 m2 that is adjacent to the eastern side of the 

stadium, where the main entrances are located (yellow line, Fig. 7). The stadium entrances are opened to a T-junction that 

constitutes the walkable area whose boundaries are indicated by solid red lines. This area includes the main roads, main 

stadium’s entrances, and pedestrian pathways to usual destinations to the south, east and north. These destinations, shown with 

the green lines in Fig. 7, are the most likely choices for a spectator leaving the stadium.  

 

Figure 7: The study site (red square) including the walkable area (red area within the red square) where people normally use to go to their 

different destinations located in the south, east and north sides of the walkable area (green lines) after they leave the stadium from the main 

entrances (yellow line), © Google. 
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The stadium can accommodate up to 39,732 spectators with an average attendance rate of 24,000 per home football 

match in normal weather conditions (Sheffield Wednesday, available at: www.footballwebpages.co.uk/sheffield-wednesday). 

This site would therefore encompass a large number of spectators before or after a match, even in the aftermath of a flood as, 

for example, observed during the 2007 Summer floods (The Sheffield Guide by DeeJayOne, 2007; Environment Agency, 

2007). The event suggests that rainfall runoff would cause floodwaters to spread from the east and north to accumulate in front 

of the main stadium’s entrances, where it could submerge walking pathways, parking lots and the stadium pitch (“Bring on the 

sub”, 2007). Worries of a similar event were expressed during the November 2019 floods driven by seven-day continuous 

rainfall of 63.8 mm over the city of Sheffield (Pugh, 2019), which led to cancelation of a football match as the flood defence 

protecting the stadium from River Don was about to be overtopped by the floodwater. The event, if happened during the 

football match, could put many in and around the stadium at a high risk.  

This site, being both adjacent to River Don and located down the hills where rainwater runoff accumulates, has been 

flagged to be prone to future pluvial or fluvial flood types according to the EA’s flood information service that is available 

online at https://flood-warning-information.service.gov.uk/long-term-flood-risk. This service provides flood maps for 

identifying long-term risks in parts of the UK towns based on a ‘low’, ‘medium’ and ‘high’ annual probability of occurrence. 

By entering the Hillsborough stadium postcode, S6 1SW, the flood maps showing the approximate ranges of the expected 

floodwater depth and velocity magnitude for the study site (Fig. 7) were obtained, as shown in the screenshots in Fig. 8. The 

floodwater depth map associated with a high annual probability (left panel, Fig. 8a) represents the least extreme scenario, 

where the range for the floodwater depth is likely to vary between 0.3 m and 0.9 m to potentially cover the northern branch of 

the walkable area with velocity magnitudes greater than 0.25 m/s. For a medium annual probability of occurrence (middle 

panel, Fig. 8a), the flooding extent could widen to potentially obstruct both northern and eastern branches with the range of 

floodwater depths reaching beyond 0.9 m and much wider extent for velocity magnitudes greater than 0.25 m/s mostly along 

the eastern branch (middle panel, Fig. 8b). For a low annual probability of occurrence (right panel, Fig. 8a), an even wider 

flood extent would be expected up to almost submerging the entire walkable area with dominance of deeper than 0.9 m 

floodwater depths along the northern branch and higher than 0.25 m/s velocities at the north, east and the sides of the southern 

branch. Even in the most optimistic flooding scenario, at least the northern branch near the stadium’s entrance would be 

affected, where an evacuating spectator during a flood has to wade through floodwaters at a depth that is between 0.3 m and 

0.9 m and velocities higher than 0.25 m/s. Therefore, investigating the dynamics of how people respond in a during-flood 

evacuation is of paramount importance for the selected study site.  

  

http://www.footballwebpages.co.uk/sheffield-wednesday
http://www.footballwebpages.co.uk/sheffield-wednesday
https://www.youtube.com/watch?v=dbkizUtNSqA
https://www.youtube.com/watch?v=dbkizUtNSqA
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/292924/geho1107bnmi-e-e.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/292924/geho1107bnmi-e-e.pdf
https://www.dailymail.co.uk/sport/football/article-464478/Bring-sub-Sheffield-Wednesdays-pitch-submerged-flood-water.html
https://www.dailymail.co.uk/sport/football/article-464478/Bring-sub-Sheffield-Wednesdays-pitch-submerged-flood-water.html
https://www.thesun.co.uk/sport/football/10303677/sheffield-flood-hillsborough-evacuated-severe-flooding-sheffield-wednesday-swansea/
https://flood-warning-information.service.gov.uk/long-term-flood-risk
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‘High’ annual probability of  

occurrence: greater than 3.3 % 

‘Medium’ annual probability of occurrence: 

1 % and 3.3 %  

‘Low’ annual probability of  

occurrence: 0.1 % to 1 %  

   

 

 

h greater than 0.9 m 

 

h between 0.3 m and 0.9 m 

 

h less than 0.3 m 

(a) 

 

   

 

 

v greater than 0.25 m/s 

 

v less than 0.25 m/s 
< 

Direction of water flow 

(b) 

Figure 8: Screenshots of EA’s flood risk maps of the study site showing the extent of flooding from surface water with ‘low’, ‘medium’ and 

‘high’ annual flooding probabilities featuring different floodwater ranges of: (a) depth and (b) velocity. These screenshots were retrieved 

from https://flood-warning-information.service.gov.uk/long-term-flood-risk (credit: © Crown and database rights under Open Government 

Licence v3.0).  

To do so, it was assumed that the site in Fig. 7 is hit by a flood during a football match where the spectators are caught 

unaware of the rainfall accumulation around the stadium, similar to the event that could have happened in 2019. As discussed 

before, the floodwater is likely to accumulate from the north and east sides to move downhill towards the main entrance of the 

stadium. Once the floodwater has reached the stadium’s main entrances, an emergency evacuation alarm is issued, urging 

people to start evacuating immediately. The spectators are then put into queues inside the stadium to be evacuated towards the 

walkable area. The evacuating spectators gradually enter the walkable area where they get in direct contact with flooded areas 
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along their ways to any of the south, east or north destinations. In this scenario, a population of 4,080 spectators was assumed, 

which is lower than normal due to the severe weather condition and flood warnings issued prior to the event. This population 

is around 20 % of the spectators expected, and represents the relative number of people who would ignore the warnings and 

attend the match (Fielding et al., 2007).  

For this case study, a dispatch measure was introduced to the simulator to release the evacuees into the walkable area 

during the flooding. The dispatch measure limits the influx rate to person-per-second per width unit to comply with guidance 

methods for controlling the density of large crowds outside the stadiums for safe evacuation (Minegishi and Takeichi, 2018; 

Still, 2019). For a gate that is around 4 m wide, four pedestrians per second are dispatched from the stadium to the walkable 

area. Using the simulator with this dispatch rate limits the overall number of pedestrians that would be present in the walkable 

area at a time. Therefore, running the simulator to analyse the evacuation of a larger number of spectators is expected to lead 

to similar risk trends based on pedestrians’ different HR-related flood risk and stability states, which would only be prolonged 

over a larger evacuation time.  

The flood-pedestrian simulator is applied to analyse how the number of pedestrians with different HR-related flood 

risk and stability states change under this scenario with a further focus on modelling their preference for the destination choice 

during the flood evacuation, by activating the ‘autonomous change of direction’ condition (Sect. 2.2.3).  

4.2 Simulator configuration 

4.2.1 Hydrodynamic model set-up 

The hydrodynamic model was set up to run on a grid of 128 × 128 flood agents. The grid of flood agents (equally for the grid 

of navigation agents) was set to store the terrain features of the study site, loaded from a digital elevation model (DEM) at 1 

m resolution, which is available online from the UK’s Department for Environment Food & Rural Affairs (DEFRA) LiDAR 

Survey at: https://environment.data.gov.uk. To the best of the authors’ knowledge, there is no record of any observed 

hydrograph sampled at a gauge point located in the selected study site. Therefore, the flooding flow was generated by 

formulating an inflow hydrograph based on the November 2019’s rainfall volume (Fig. 9). The hydrograph was set to replicate 

a total runoff volume accumulation of 1,045.3 m3 based on a 0.0638 m rainfall over the entire 16,384 m2 site. This volume was 

estimated using the direct runoff method: rainfall volume (m3) = rainfall height (m) × area (m2). The hydrograph was generated 

as:  

𝑄𝑡 = 𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + (𝑄𝑝𝑒𝑎𝑘 − 𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙) (
𝑡

𝑡𝑝𝑒𝑎𝑘
. 𝑒𝑥𝑝 (

1−𝑡

𝑡𝑝𝑒𝑎𝑘
))

𝛽

,       (4) 

where 𝑄𝑡 (m3/s) is the inflow discharge propagating along the north-east boundary intersecting the eastern branch; 𝑄𝑝𝑒𝑎𝑘  (m2/s) 

= 0.29 is the peak discharge, that was calculated by distributing the runoff volume (1,045.3 m3) per second over an hour of 

flooding; 𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (m
3/s) is the initial discharge, taken 0 m3/s; t (min) is the simulation time varying between 0 to 10 min;  𝛽 = 

https://assets.publishing.service.gov.uk/media/602d3a81d3bf7f721c13a3ba/Public_response_to_flood_warning_technical_report.pdf
https://onlinelibrary.wiley.com/doi/full/10.1002/2475-8876.12042
https://www.gkstill.com/Support/crowd-density/CrowdDensity-1.html
https://environment.data.gov.uk/
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10 is a constant to soften the shape of the hydrograph and 𝑡𝑝𝑒𝑎𝑘 (min) = 5 is the time of peak discharge. This choice, for 𝑡𝑝𝑒𝑎𝑘, 

considers the peak discharge has been reached halfway during the flooding to cause the propagating floodwater to reach to the 

main stadium’s entrances by 10 min leading to triggering the evacuation alarm. 

 

Figure 9: Inflow hydrograph produced by Eq. (4) used to generate the floodwater propagation occurring from the north-east side of the site. 

To ensure that the resulting ranges of floodwater depth and velocity magnitude generated by the hydrograph in Fig. 

9 fit the expected ranges of floodwater depth and velocity reported by the EA, a run was conducted without pedestrian 

consideration. Fig. 10a shows the map of the predicted floodwater depth after 10 min of flooding, while Fig. 10b and Fig. 10c 

includes the time series of the mean floodwater depth (ℎ̅) and velocity magnitude (�̅�) in the lead-up to 10 min, respectively. 

From the floodwater depth map, it can be seen that the spatial distribution of floodwater depth varies between 0.3 m and 0.9 

m inside the walkable area at the time when pedestrians start to evacuate. By this time, Fig. 10b and Fig. 10c suggest that the 

mean floodwater depth is at its deepest level of 0.5 m and the velocity magnitude reduces to 1.5 m/s. Beside confirming that 

the generated hydrograph leads to a realistic flood event in line with the EA’s expectations, these results indicate that a 

pedestrian evacuating into the floodwaters shown in Fig. 10a would be under a low-to-medium flood risk state with an HR 

value estimated around 1 (can be extracted by the end of the time series in  Fig. 10b and Fig. 10c). 

 
  

(a) (b) (b) 

Figure 10: Outputs of the simulator generated after and during 10 min of a single hydrodynamic run without pedestrian consideration plotted 

in terms of: (a) floodwater depth map and temporal changes in the average floodwater in terms of (b) depth and (c) velocity. 
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4.2.2 Pedestrian model set-up 

The pedestrian model was also set up for a grid of 128 × 128 navigation agents encoding the topographic features of the site 

into the navigation map as well as the boundaries, location of entrances and destinations about which the pedestrian agents 

receive information. The pedestrian model was set to gradually generate 4,080 pedestrian agents with a rate of 4 pedestrian 

agents per second starting at simulation time t = 0 min. Once a pedestrian agent is generated, it is assigned a random (initial) 

destination between the south, east or north (Fig. 7) with an equal probability of selection.  

As the case study consists of an outdoor urban environment with multiple destination choices, the pedestrian agents 

are set to dynamically alter their initially assigned destination by activating the ‘autonomous change of direction’ condition 

(Sect. 2.2.3). This condition allows pedestrian agents to auto-select new pathways after analysing the state of the floodwater 

variables received from the navigation agent at their current location. As explained in Sect. 2.2.3, this condition requires 

specifying a threshold of floodwater depth to body height beyond which a pedestrian agent considers shifting their walking 

direction and looking for a new destination within 100 seconds. After this period, if the pedestrian agent remains undecided, 

it is set to pick the destination selected by the majority of its neighbouring pedestrian agents, on the basis that it was influenced 

by the choice of others around (Sect. 2.2.3).  

For the ‘autonomous change of direction’ condition, three thresholds of floodwater depth to the body height (Fig. 11) 

were selected, informed by the experiments in Dias et al. (2021). This was done to account for the uncertainty associated with 

individuals’ different risk perception. The ‘20 % threshold’ was defined to represent people with high-risk perception, such as 

those who previously experienced a critical flooding incident, and decide not to enter floodwater with a depth that is more than 

20 % of their body height. This threshold is estimated based on the ratio of the dominant minimum value for the depth of 

floodwater that can occur over the walkable area (0.3 m) to the height of the shortest pedestrian agent available (1.4 m). With 

this threshold, the likelihood of the entire population to be in a condition to change their direction is ensured. The ‘40 % 

threshold’ was defined to represent people with low-risk perception, such as those who have not yet experienced a flood 

incident, and decide to enter a floodwater with a depth that is even more than 40 % of their body height. This threshold is 

estimated based on the ratio of the dominant maximum depth of floodwater (0.9 m) to the height of the tallest population of 

pedestrian agents available (2.1 m). This threshold enables the entire population to have the freedom to keep moving even 

within the deepest floodwater in the walkable area (0.9 m). The ‘30 % threshold’ accounts for an average-risk perception, such 

as those who previously experienced a minor to moderate flooding incident. Pedestrians with average-risk perception would 

decide to enter floodwater up to their knees, which constitutes 30 % of the human body height (Teichtahl et al., 2012).  

https://www.sciencedirect.com/science/article/pii/S2212420921001588
https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/1471-2474-13-19
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Figure 11: Thresholds of floodwater depth to body height that are specified for pedestrian agents to accommodate uncertainty associated 

with different risk perception of people in the real-world case study. 

The characteristics of pedestrian agents were adapted to consider the age, gender and height distribution of football 

fans in the UK. Therefore, the randomised age distribution reported in Sect. 2.2.1 was increased by 5 %, 8 % and 4 % for the 

age groups of 30 to 39, 40 to 49, and 50 to 59 to replicate the higher attendance of these age groups to live sports events in 

England (Lange, 2020). Also, the randomised gender distribution was changed to 67 % males and 33 % females based on a 

survey on the gender distribution of football fans in the UK (Statista Research Department, 2016). In terms of body height, the 

pedestrian agents were based on the same UK body height distribution used previously (Shirvani et al., 2020). 

4.2.3 Simulation runs 

A series of 20 simulation runs was performed under configuration Mode 2 for each of the 20 %, 30 % and 40 % threshold for 

the ‘autonomous change of direction’ condition (visualisation of a simulation can be found in the video supplement in Shirvani 

(2021)). Each run was set to start at t = - 10 min to allow the floodwater to propagate during 10 min so that the evacuation 

process starts at t = 0 min. Outputs averaged from each series of simulation included spatial and temporal information, at each 

time step, about the pedestrian agents as they evacuate (t > 0 min). The averaged outputs include the position, HR-related flood 

risk state, stability state (with a toppling-only condition, toppling-and-sliding condition and sliding-only condition), and the 

choice for the destination selected by the pedestrian agents during the evacuation process. Considering the stochastic 

uncertainties associated with the motion of the pedestrian agents, the plausibility of the averaged outputs from the 20 runs was 

evaluated. The evaluation was based on the MOE, using Eq. (3), for 99.9 % confidence level only, informed by the results of 

the analysis in Sec. 3.2. Table 6 shows the maximum MOEs found for the number of pedestrians predicted to be in the 

considered HR-related flood risk and the stability states, obtained from the 20 runs using each of the 20 %, 30 % and 40 % 

threshold, respectively. It can be seen that the maximum MOE increases as the risk perception level decreases, suggesting a 

notable increase in the uncertainty after the incorporation of the risk perception component into the modelling of pedestrian 

behaviours.  

 

https://www.statista.com/statistics/783771/live-sports-events-spectators-england-by-by-age/
https://www.statista.com/statistics/658959/europe-football-fans-by-country-and-gender/
https://iwaponline.com/jh/article/22/5/1078/75432?casa_token=ZWtMwiUpAOEAAAAA:52ECbGdZg3s7mpJgGvWAIf2n_N4r56kWKfeUL9h7eWqcLrecGN1QcKDjWa8N-Q1JOUoRq7UT
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Table 6: Maximum margin of error (MOE) for the average number of pedestrian agents with different HR-related flood risk or stability 

states that are extracted from the recorded outputs throughout the simulations for each 20 %, 30 % and 40 % threshold. Different ranges of 

the evaluated maximum MOE are highlighted with different colour shades: green, orange and red to indicate MOE ≤ ± 5, 6 ≤ MOE ≤ 9 and 

MOE ≥ 10, respectively.  

HR-related flood risk 

and stability states 

Maximum MOE  

20 % threshold 30 % threshold 40 % threshold 

HR < 0.75 ± 16 ± 16 ± 19 

0.75 < HR <1.5 ± 2 ± 8 ± 15 

HR > 1.5  ± 0 ± 1 ± 2 

Toppling-only ± 2 ± 5 ± 13 

Toppling-and-sliding ± 1 ± 4 ± 7 

 

Next, the averaged outputs are analysed for each of the 20 %, 30 % and 40 % thresholds, considering the popularity of the 

destination selected by the pedestrian agents (among south, east and north) together with their HR-related flood risk and 

stability states. 

4.3 Analysis of the results 

Figure 12 shows the trends in total number of evacuating pedestrians in the walkable area, plotted according to the pedestrians’ 

choices among the south, east and north destinations, obtained from simulations with the 20 %, 30 % and 40 % threshold. All 

the simulated trends show a decrease in the total number of pedestrians after 25 min of flooding. This suggests that 25 min 

would be required for the 4,080 pedestrians to vacate the stadium, and that the choice for the threshold does not have any effect 

on the collective evacuation time. 

The simulated trends obtained with the 20 % threshold are shown in Fig. 12a, suggesting that most of the pedestrians 

evacuated the walkable area within almost 40 min. The majority of the evacuating pedestrians start favouring the south 

destination after 2.5 min, indicating that after this time pedestrians encounter floodwater depth beyond 20 % of their body 

height, which seems to be extending over the eastern and northern branches. After 2.5 min, the south destination remained the 

most popular destination, selected by more than 55 % of the pedestrians; whereas, the east and north destinations were less 

popular, selected by 25 % and 20 % of the pedestrians, respectively.  

With the simulated trends obtained with the 30 % threshold (Fig. 12b), a longer evacuation time is predicted for the 

majority of the evacuating pedestrians. Now it takes about 52 min for most of the pedestrians to leave the walkable area and 

the popularity of the east and north destinations increased, with slightly more evacuating pedestrians preferring them, about 

27 % and 23 %, respectively. This suggests that 5 % more of the pedestrians considered changing their destination to the north 

where the floodwater depth can only reach up to their knee height. Still, as with the 20 % threshold, the south destination was 

the most popular and started to be favoured after 5 min by 50 % of the pedestrians.  
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With the simulated trends obtained with the 40 % threshold (Fig. 12c), a significant change in the favoured destination 

is observed alongside a relatively more prolonged evacuation time. Now, it takes about 57 min for most of the pedestrians to 

evacuate the walkable area and the popularity of the south destination decreased significantly, compared to the predicted trends 

obtained with the lower thresholds. Here, the south destination was only picked up by 25 % of the pedestrians and the north 

destination was preferred instead (by around 50 % of the pedestrians) since the beginning of the evacuation. As for the east 

destination, it remained equally popular as with the trends obtained with the lower thresholds, and was selected by around 25 

% of the evacuating pedestrians. 

The simulated trends in Fig. 12 imply that the south destination would be preferred by people who are less likely to 

enter floodwater with a depth beyond their knee height, and that the north destination would be preferred by those willing to 

enter the deeper floodwater. The results also suggest longer evacuation times when people are willing to enter the floodwater 

at a depth beyond their knee height.  

 

   
(a) 20 % threshold (b) 30 % threshold (c) 40 % threshold 

 

Figure 12: Total number of evacuating pedestrians in the walkable area plotted according to their destination choices for the south, east and 

north during the evacuation time: (a) 20 % threshold, (b) 30 % threshold and (c) 40 % threshold. 

The trends for HR-related flood risk states and stability states averaged from simulations for each of the 20 %, 30 % 

and 40 % threshold are shown in Fig. 13. Fig. 13-left includes the HR-related flood risk states as well as the total number of 

evacuating pedestrians in the walkable area. As the threshold increases, the total number of pedestrians in the walkable area is 

seen to increase, leading to prolonged evacuation times. This observation is aligned with the trends in Fig. 12, suggesting that 

the evacuation process would be delayed as more evacuating pedestrians enter the deeper floodwater where their moving speed 

reduces. The number of pedestrians in dry zones remains constant, despite the choice for the threshold. This may be expected 

as these pedestrians represent those who initially decided to go to the south destination (one third of the pedestrians) and did 

not, therefore, find a need to alter their destination during the process given the dominance of dry areas over the southern 

branch (see Fig. 10a). For the three thresholds, the majority of the evacuating pedestrians were found to keep a low flood risk 

state (HR < 0.75). Up to around 70 and 240 evacuating pedestrians reached a medium flood risk state (0.75 < HR < 1.5) with 

the 30 % and 40 % thresholds, respectively, and no pedestrians were predicted to have the latter flood risk state with the 20 % 
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threshold. Up to only 5 pedestrians were detected at a high risk flood state (HR > 1.5), namely from those who entered the 

floodwater at a depth beyond 40 % of their body height. 

The number of evacuating pedestrians that could have a stability state with a toppling-only or toppling-and-sliding 

conditions are shown in Fig. 13-right. For the 20 % threshold, very few pedestrians were found to have these stability states, 

up to only 3 in number. Findings in Shirvani et al. (2020) suggest that these could be pedestrians with a low flood risk state 

(HR < 0.75) with a toppling-only condition or with a medium flood risk state (0.75 < HR < 1.5) with a toppling-and-sliding 

condition. The number of pedestrians with these stability states increased with the threshold of 30 %, which is expected given 

the increased number of pedestrians under low-to-medium flood risk states evacuating over a longer period. Up to 40 and 20 

more pedestrians were found in toppling-only and toppling-and-sliding conditions, respectively. With the 40 % threshold, 25 

more pedestrians were found to be in a toppling-and-sliding condition, and up to 100 more were found to be in a toppling-only 

condition. The significant increase in the number of pedestrians with a topping-only condition is expected with the 40 % 

threshold, for which more pedestrians would be entering the floodwater where its depth is beyond their knee height.  

The analysis of the HR-related flood risk and stability states suggests that the majority of people evacuating the 

stadium would take an evacuation route that is either dry or keeps them under a low flood risk state (HR < 0.75) with a toppling-

only condition during the evacuation. Less people would be entering deeper floodwaters and, when they do, they are expected 

to be in a medium flood risk state (0.75 < HR < 1.5) where they can have a toppling-and-sliding condition. 

 

HR-related flood risk state  Risk of stability state 

  

(a) 20 % threshold 

  

(b) 30 % threshold 

  
(c) 40 % threshold 

https://iwaponline.com/jh/article/22/5/1078/75432/Agent-based-modelling-of-pedestrian-responses
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Figure 13: Total number of evacuating pedestrians in the walkable area plotted according to their HR-related flood risk state (left panel) 

and stability state when they were immobilised in floodwater (right panel) during the evacuation time: (a) 20 % threshold, (b) 30 % threshold 

and (c) 40 % threshold. 

Figure 14 shows the 2D spatial distribution of the evacuating pedestrians over the HR flood map at 25 min when 

pedestrian presence in the walkable area is at its highest as soon as everyone vacates the stadium. The pedestrians are 

represented by dots with different colours representing their stability state based on the predictions made with the 20 %, 30 % 

and 40 % thresholds. The evacuation patterns in Figure 14, though retrieve the observations made before (through Fig. 12 and 

Fig. 13) demonstrate the simulator’s further ability to inform on the potential locations where the evacuating pedestrians are 

expected to be immobilised by the floodwater. With the 20 % threshold (Fig. 14a), most of the pedestrians remained mobile 

in the floodwater (stable condition) and preferred the south destination where low flood HR dominates. From the remaining 

pedestrians, who preferred the east or north destinations, a handful were at risk of immobilisation (toppling-only or toppling-

and-sliding conditions). These stability states are observed to occur particularly within northern and eastern branches where 

the flood HR varied from the upper low range to the medium range. The spatial distributions predicted with the 30 % threshold 

(Fig. 14b) also suggest a preference for the south destination by most of the pedestrians, and that many more pedestrians would 

be expected to be immobilised by the floodwater within the eastern and northern branches. There, at least a dozen would have 

a stability state with a toppling-and-sliding condition caused by the relatively higher number of pedestrians who kept moving 

to the north and east destinations. With the 40 % threshold (Fig. 14c), most of the pedestrians were still found to remain mobile 

in floodwater (stable condition) despite the fact that the (riskiest) north destination was the dominant choice. However, the 

spatial distributions predicted with this threshold point to a major increase in the number of immobilised pedestrians within 

the aforementioned vicinities.  

The analysis in Fig. 14 suggests that people who avoid entering a floodwater depth beyond their knee height are most 

likely to select the south destination, where their condition remains stable to keep evacuating with minimum risk of 

immobilisation. Those with a tendency to enter deeper floodwaters would go to the east or north destinations, towards which 

the majority would still be able to evacuate, but at a slower pace delayed by the risk of facing immobilisation as they move 

forward to their selected destination. Overall, the predictions produced by the simulator (Fig. 12 to Fig. 14) seem useful in 

planning evacuation in outdoor spaces where the behaviour of pedestrians could be influenced by their autonomous decision 

making on the safest destination driven by their personal risk perception of the local floodwater and body height.  
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⬤  Stable condition     ⬤  Toppling-only condition     ⬤  Toppling-and-sliding condition 

 

   

(a) 20 % threshold (b) 30 % threshold (c) 40 % threshold 

Figure 14: The spatial distribution of pedestrians over the walkable area under the predicted stability states (coloured dots) along with the 

HR flood map (grey shade) at simulation time t = 22 min, when the number of pedestrians over the walkable area is at highest after all of 

them had vacated the stadium: (a) 20 % threshold, (b) 30 % threshold and (c) 40 % threshold. 

5 Summary, discussions and limitations 

The flood-pedestrian simulator was augmented to incorporate an enhanced level of heterogeneity in the pedestrian agent 

characterisation and realistic in-model rules governing their response to the floodwater. Pedestrians can now be characterised 

by age, gender and body mass attributes based on real-world datasets. The present simulator was also supported by a set of 

empirically based age- and gender-related moving speeds driving the motion of pedestrian agents around and inside the 

floodwater, and with a maximum excitement condition to accelerate the walking speed of pedestrian agents around the 

floodwater. The moving speed could also be intertwined with a two-way interaction condition to model the influence of 

pedestrian congestion on flowing floodwater, and vice versa. A new autonomous change of direction condition was proposed 

to model the way-finding decisions of pedestrian agents based on their individual perception of the flood risk in relation to the 

local changes in floodwater dynamics or the choice of others. The added features have enabled applying the simulator for 

outdoor spaces including multiple potential destinations for the pedestrians to detect during a flood evacuation.  

The relevance of the added features were evaluated for a test case of a flood-induced evacuation in a shopping centre, 

which consists of an indoor space and was previously investigated for a basic version of the simulator with simpler pedestrian 

agent characterisation and behavioural rules. The evaluation procedure was based on systematically activating any of the added 

walking or running moving speeds with or without the two-way interaction condition in the simulator, and then analysing the 

changes induced in the simulation outcomes with reference to the baseline results. The analysis contrasted temporal and spatial 

changes in the number of pedestrians in relation to their HR-related flood risk and stability states, indicating major differences 

to the baseline results. The differences in the predicted number of pedestrians seems to vary considerably, up to hundreds, 

depending on the density of the crowd as the flood risk becomes low-to-medium. Also, the analysis suggests longer evacuation 
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times with the walking condition but using the running condition has led to the close evacuation times compared to baseline 

results.  

The utility of the simulator, with the new autonomous change of direction condition, was then demonstrated over a 

real-world case study of evacuation of spectators from Sheffield’s Hillsborough football stadium into a T-junction outdoor 

space leading to three ends towards the south, east and north destinations. The simulator was set up to replicate historical 

extents and depths of the floodwater that would inundate this study site. The autonomous change of direction condition was 

applied based on three thresholds of a floodwater depth to body height: 20% threshold, 30% threshold and 40% threshold, 

representative of a high, medium and low level of people’s risk perception, respectively. The simulation outputs suggest that 

when people exhibit high to medium risk perception by avoiding zones with floodwater depth beyond their knee height, the 

majority change direction to go to the south destination that has the highest portion of dry zones. Whereas, when people exhibit 

a low risk perception and enter floodwaters higher than their knee height, the majority would take the shallowest pathway 

leading to the north destination. As the risk perception level decreased, the simulation output showed an increase in the number 

of people in a medium risk state with an immobilised condition and longer evacuation time. The investigations over the real-

world case study demonstrates that the flood-pedestrian simulator can be used to analyse the dynamics of people's responses 

in and around the floodwater as part of the flood risk analysis; thus, it is a useful tool for planning evacuation of crowds to 

flood emergencies in small and potentially congested urban areas.  

However, the flood-pedestrian simulator has a number of considerations and limitations that are worth mentioning. 

Firstly, the simulator requires the accessibility to a Graphical Processing Unit (GPU) card and the generation of input files 

requires special .xml translation specific to FLAMEGPU and using the FGPUGridNavPlanEditor toolkit, which is also made 

available online at: https://github.com/RSE-Sheffield/FGPUGridNavPlanEditor. Secondly, the simulator can provide a live 

visualisation showing hydrodynamic and pedestrian information changing in real time, when run on windows using the console 

mode (Shirvani, 2021). Thirdly, in terms of pedestrian characteristics, the simulator does not incorporate the uncertainties 

associated with social and psychological characteristics of people, e.g. flood tourism, as well as their floating and sinking 

conditions. Lastly, but not least, the assumptions and thresholds used to implement the two-way interaction condition and the 

autonomous change of direction condition are both lacking any existing empirical evidence base supported by dedicated 

laboratory experiments.  

Code availability 

The flood-pedestrian simulator is accessible from Zenodo open-access repository at https://doi.org/10.5281/zenodo.4564288, 

with a link to the GitHub source codes of the latest release, including a detailed ‘run guide’ and input files to enable the users 

to run the flooded shopping centre and the Hillsborough stadium evacuation test cases on their own machine. The previous 

version of the simulator is also available on DAFNI, available at: https://dafni.ac.uk/project/flood-people-simulator/, where it 

can be run from a user-friendly graphical interface and supported by a run guide. 

https://github.com/RSE-Sheffield/FGPUGridNavPlanEditor
https://github.com/RSE-Sheffield/FGPUGridNavPlanEditor
https://av.tib.eu/media/51547
https://doi.org/10.5281/zenodo.4564288
https://dafni.ac.uk/project/flood-people-simulator/
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Data availability 

Outputs of the simulations are available in the Zenodo open-access repository at https://doi.org/10.5281/zenodo.4576906.  

Video supplement 

Demo videos of the test cases are available online in the TIB AV-Portal at https://doi.org/10.5446/51547. 
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