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Abstract. This study presents a framework for rapid tsunami force predictions by the application of mode decomposition-

based surrogate modelling with 2D-3D coupled numerical simulations. A limited number of large-scale numerical analyses

are performed for selection scenarios with variations in fault parameters to capture the distribution tendencies of the target

risk indicators. Then, the proper orthogonal decomposition (POD) is applied to the analysis results to extract the principal

modes that represent the temporal and spatial characteristics of tsunami forces. A surrogate model is then constructed by a5

linear combination of these modes, whose coefficients are defined as functions of the selected input parameters. A numerical

example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during

the Great East Japan Earthquake of 2011. Combining 2D and 3D versions of the stabilized finite element method, we carry

out a series of high precision numerical analyses with different input parameters to obtain a set of time history data of the

tsunami forces acting on buildings and the inundation depths. POD is applied to the data set to construct the surrogate model10

that is capable of providing the predictions equivalent to the simulation results almost instantaneously. Based on the acceptable

accuracy of the obtained results, it was confirmed that the proposed framework is a useful tool for evaluating time series data

of hydrodynamic force acting on buildings.

1 Introduction

In order to estimate the potential damage due to a tsunami, predictions need to consider both the global aspect, such as the scale15

of the inundation areas, and also the local hydrodynamic forces acting on individual houses and each type of infrastructure. In
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fact, the potential effects of the tsunami force have been implemented in recent design standards (ASCE, 2017; Nakano, 2017).

In addition, thanks to the extensive efforts made in recent years to develop numerical analysis techniques, maturity can be seen

especially in the numerical analysis techniques applied to coastal engineering which provide highly accurate evaluations and

predictions of tsunami forces (e.g., Qin et al., 2018; Xiong et al., 2019).20

It is also extremely important for adequate disaster responses, such as evacuation actions, that information about the extent

of damage can be quickly ascertained. In response to this demand, numerous studies have been made on instantaneous tsunami

predictions. For example, NOAA (National Oceanic and Atmospheric Administration) constructed a real-time prediction sys-

tem for tsunamis based on a long-term observation database (e.g., Titov et al., 2005; Tang et al., 2008; Wei et al., 2008; Tang

et al., 2009). In addition, there have been many studies focused on the development of techniques for making real-time dam-25

age predictions based on numerical simulations. The studies can be classified into two types. In the first approach, the source

and seismic waveform data are obtained from real-time observation systems, and then the tsunami propagation is calculated

using input data estimated from the observed data. There have been a number of studies related to this approach; one on data

assimilation-based tsunami forecasting (Maeda et al., 2015), another on tsunami forecasting based on inversion for initial sea

surface height (Tsushima et al., 2014), another to predict tsunami waveform using extreme learning machine (Mulia et al.,30

2016) and another using a real-time inundation simulation with supercomputers (e.g., Oishi et al., 2015; Musa et al., 2018).

The second approach is based on the use of precomputed simulation data. Numerical simulations with multiple scenarios are

carried out and a tsunami database is numerically created to output prediction results immediately after an earthquake occurs.

This approach is also widely accepted and several studies have been reported. Among these is a study on making real-time

predictions using source information and precomputed tsunami waveform and inundation databases (Gusman et al., 2014),35

another uses a combination of precomputed tsunami databases and the neural networks (Fauzi and Mizutani, 2019; Liu et al.,

2021), and another features the surrogate modeling of numerical simulation results (e.g., Fukutani et al., 2019; Kotani et al.,

2020).

The objective of this study is to evaluate the time-series of the spatial distribution of tsunami forces acting on buildings in

real-time. Because a very high computational cost is required to evaluate the tsunami force over a wide area, it is generally40

difficult to perform such simulations in real-time. Therefore, a surrogate modeling-based prediction method is employed in

this study. Surrogate modeling has been widely accepted for uncertainty quantification and probabilistic risk assessment, such

as studies using Response Surface (e.g., Fukutani et al., 2019; Kotani et al., 2020), Gaussian Process (e.g., Sarri et al., 2012;

Salmanidou et al., 2017, 2021), Polynomial Chaos Expansion (e.g., Denamiel et al., 2019; Giraldi et al., 2017; Sraj et al.,

2017), and Multifidelity Sparse Grids (e.g., de Baar and Roberts, 2017). These works demonstrate the potential of the Surrogate45

modeling-based approach, while the surrogate model considering spatio-temporal variation has not been well studied. Since

this study considers time variation of spatial distribution of tsunami risk, a mode decomposition technique is efficiently used

to construct a surrogate model. Spatial modes and their equivalent principal components have been successfully utilized to

construct surrogate models in the research fields of earthquake engineering and tsunami engineering. My Ha et al. (2008)

proposed a surrogate model of a tsunami simulation by means of Proper Orthogonal Decomposition (POD) for the purpose of50

reducing the dimensionality or, equivalently, the computational costs. In the fields of earthquake and structural engineering,
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there have been similar studies. Nojima et al. (2018) proposed to combine numerical simulations and a mode decomposition

technique that is based on the singular value decomposition for predicting the distribution of strong ground motions. Bamer

and Bucher (2012) also used POD to construct a surrogate model to predict structural behavior using a non-linear finite element

analysis method. Since POD enables us to systematically extract the feature quantities of the temporal and spatial distributions55

of risk indicators, it is considered suitable for surrogate modelling for evaluating all kinds of disaster risks. Although some

studies using mode decomposition techniques have been reported in the research field of disaster science, the time-space

surrogate modeling of tsunami force based on a high precision 3D tsunami simulation has not been extensively studied.

The present study proposes a framework for rapid tsunami force predictions by the application of the POD-based surrogate

modelling of numerical simulations. Only a limited number of large-scale numerical analyses are performed for a selection60

of scenarios with various fault parameters to capture the distribution tendencies of the target risk indicators. After 2D shallow

water simulations are performed, the results are used as input data for 3D flow simulations to evaluate the time histories of

forces acting on buildings. Then, POD is applied to the evaluation results to extract the principal modes that represent the

temporal and spatial characteristics of the forces caused by a target tsunami. A surrogate model can then be constructed by a

linear combination of spatial modes whose coefficients are determined by means of the regression analysis and interpolation65

techniques. To demonstrate the applicability of the proposed framework, one of the tsunami-affected areas during the Great

East Japan Earthquake of 2011 is targeted. Using the 2D simulation and the results are obtained for different input parameters,

we carry out a series of 3D numerical analyses to obtain a set of time history data of the spatial distributions of tsunami force

and then construct a surrogate model capable of predicting the time variations of the spatial distributions of tsunami forces

almost instantaneously. A surrogate model of the inundation depth is also constructed and compared with that of tsunami70

force.

The structure of this paper is as follows. Section 2 explains the flow and specific procedures of the proposed framework. In

Section 3, the proposed framework is applied to a target city to construct the surrogate model that enables rapid predictions of

tsunami forces equivalent to the 3D tsunami runup simulations.

2 A proposed framework for the rapid tsunami force prediction75

This section describes the flow and methodologies of the proposed framework. In the framework proposed in this study,

we carry out a series of 2D-3D coupled tsunami analyses with selected sets of fault parameters corresponding to expected

scenarios beforehand to obtain a limited number of scenario-specific simulation results. Then, the principal spatial modes of

tsunami forces are extracted from the precomputed simulation data to construct the surrogate model for the rapid tsunami force

prediction. It is to be noted that the coefficients of the modes are interpolated in the parameter space so as to be functions80

of fault parameters. Thus, because this study stands on the assumption that the fault parameters are given when an actual

tsunami event occurs, the tsunami force prediction is made immediately using the constructed surrogate model. Fig.1 shows

the flowchart of the proposed method. Each part of the proposed method, such as tsunami analyses, mode decomposition, and

surrogate modeling, is explained in detail in the following subsections.
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Figure 1. Flowchart of the rapid tsunami force prediction by mode decomposition-based surrogate model.

2.1 2D-3D coupled tsunami analyses85

To collect the data necessary for the surrogate modelling explained in the previous section, a set of two sequential numerical

analyses is carried out for each case with a selected set of fault parameters. A 2D tsunami analysis is first carried out to obtain

the information about the tsunami wave caused by the offshore fault. Then, the time histories of the tsunami height and flow

velocity on the specified boundary of the target urban area are extracted for use as input data for a 3D tsunami runup simulation.

A 3D numerical analysis is performed to elaborately evaluate the spatial and temporal distributions of risk indicators within the90

target area. Since the risk indicators in this study include not only the inundation depth but also the force acting on buildings,
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the 3D calculation requires a high-fidelity numerical analysis. In this section, only the governing equations for 2D and 3D

tsunami simulations are outlined. For the details of their connection, Takase et al. (2016) can be referenced.

To numerically analyze tsunami wave propagation over a wide area, 2D shallow water simulations are commonly performed.

TUNAMI-N2 (Imamura (1995); Goto et al. (1997)), one of the most well-known simulation codes based, is based on the95

concept of the shallow water theory. In this study, we employ the TUNAMI-N2 to represent wave propagation in the offshore

area. The following formats of continuity and nonlinear long wave equations are solved in the 2D analysis:
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where M and N are the flow rates in the x and y directions, η is the water level, D is the total water depth, g is gravitational

acceleration and n is the Manning roughness coefficient. To evaluate the force acting on buildings, we employ the following

set of 3D Navier-Stokes and continuity equations in the analysis domain Ωns ∈R3105

ρ
(∂u
∂t

+u · ∇u−f
)
−∇ ·σ = 0 (4)

∇ ·u= 0 (5)

where ρ is the mass density, u is the velocity vector, σ is the stress tensor, and f is the body force vector. Also, assuming a

Newtonian fluid, the stress is calculated as110

σ =−pI + 2µε(u) (6)

where p is the pressure, µ is the coefficient of viscosity, and ε(u) is the velocity gradient tensor defined as

ε(u) =
1

2

(
∇u+ (∇u)T

)
(7)

To solve the governing equations of the 3D analysis, the stabilized finite element method(SFEM) is employed in this study.

Details of the method are explained in the appendix(see Appendix A).115

2.2 Mode Decomposition

Proper orthogonal decomposition (POD) (Liang et al. (2002)) is well known as a technique to extract the principal direction

along which the variance of the collected data is maximized. In other words, POD is capable of grasping the characteristics of
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data and expressing data in a lower dimension. When applying POD to data, we prepare a matrix storing the data arranged in

accordance with a certain rule (hereafter, referred to as the “data matrix”). When n data are obtained for scenario case i, they120

are stored into a column vector denoted by xi, which has n components. Here, n is the number of evaluation points for risk

indicators, namely the tsunami force and inundation depth in this study. When the scenario ranges from 1 to N , the data matrix

can be defined as

X =


| |
x1 · · · xN

| |

 (8)

Here, a vertical line is added to each column vector to implicate that the component alignment follows the specified rule.125

In POD, the data matrix is generally constructed with the mean subtraction, but in this study, the procedure was not applied

because the accuracy of the constructed surrogate model with subtraction was almost the same as the one without subtraction.

In the case of time-space mode decomposition, a data matrix is defined by storing the data for each time in the column direction.

The covariance matrix of the data matrix is defined as

C =XXT (9)130

The eigenvectors are the principal directions, and the corresponding eigenvalue represents the variance in each principal direc-

tion. Also, larger eigenvalues have more major contributions to the data.

Let λj be the j-th eigenvalue of C, and uj be the j-th eigenvector (j = 1, ...,n). Since each eigenvalue corresponds to the

variance in the corresponding principal direction or mode, those with small eigenvalues have almost no significant values and

provide little meaningful information, and therefore can be omitted in the sequel. To omit unnecessary modes, the contribu-135

tion rate is generally introduced as an indicator to compare the magnitude of each eigenvalue with others. Specifically, the

contribution rate dj of a particular mode j is defined as a percentage of each eigenvalue against the sum of all eigenvalues as

dj =
λj∑n
k=1λk

(10)

When this rate is arranged in descending order, the threshold for the omission is determined according to the profile of its

decreasing curve. It should be noted that the information about the omitted mode is lost and is a source of error.140

Also, based on the theory of singular value decomposition, data matrixX can be expressed as

X =


| |
x1 · · · xN

| |

=UΣV T =


| |
u1 · · · up

| |



√
λ1

. . . √
λp



− v1 −

...

− vp −

 (11)

whereU is a matrix lining up the eigenvector uj of C in the column direction and V is the matrix lining up the eigenvector vj

and matrix C ′ =XTX in the column direction. Also, Σ is the matrix having the square roots of eigenvalues in the diagonal

components, which are referred to as singular values. Here, p is the number of singular values that must be greater than zero.145
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Equation (11) can be substituted for C and C ′ to have their eigenvalue decomposition as

C =XXT = (UΣV T )(V ΣUT ) =UΣ2UT (12)

C ′ =XTX = (V ΣUT )(UΣV T ) = V Σ2V T (13)

It follows that the C and C ′ have common non-zero eigenvalues, each of which is equal to the squared singular value of X ,150

and that U and V in Eqn. (11) correspond to the eigenvectors of C and C ′ , respectively.

Additionally, from the relational expression of the singular value decomposition, data vector xi for case i is expressed as the

linear combination of the eigenvectors of the covariance matrix as

xi =

p∑
k=1

(
√
λkvik)uk =

p∑
k=1

αikuk = αi1u1 + · · ·+αipup (14)

where vij are components of V with i and j indicating row and column numbers, respectively. Here, the modes are arranged in155

accordance with the descending order of the corresponding eigenvalues and αik is the coefficient of the k-th mode associated

with the i-th case. Once modes to be omitted are determined according to the magnitude relationships of the contribution

rates, etc., the number of modes r used to approximate the data is determined, so that the equation above yields the following

reduced-order expression:

x̂i =

r∑
k=1

αikuk = αi1u1 + · · ·+αirur (15)160

where x̂i is expected to be a close approximation of the original data xi for the i-th case. In this manner, data for a certain case

can be expressed as a linear combination of major modes expressing the fundamental features. Remember that each of these

selected modes corresponds to the eigenvector of the covariance matrix whose associated eigenvalue has relatively larger then

others. As acknowledged above, errors may occur in Eqn. (15) due to the truncation or mode omission.

2.3 Construction of the surrogate model165

Once the reduced-order expressions of all the data vectors are obtained, a surrogate model can be obtained straightforwardly.

We begin with identifying the relationship between the coefficient for each mode and the set of input parameters β , each

of which corresponds to a selected scenario or case. That is, coefficients αik (k = 1, ..., r) are approximated as functions of

parameters β by interpolation or regression, which are denoted by fk(β) (k = 1, ..., r). Then, the surrogate model can be

expressed in the following equation whose independent variables are input parameters β:170

x̂(β) =

r∑
k=1

fk(β)uk (16)

In this study, fk(β) is determined by the interpolation with radial basis functions (RBF) interpolation (Buhmann, 1990) which

is regarded as a Gaussian Process (GP) regression. The GP regression is applicable even if the parameters are not distributed

in equidistant intervals and even if some defects and high non-linearity are present in the data.
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RBF interpolation for fk(β) can be expressed by the following equation:175

fk(β) =

N∑
i=1

wiφ(β,βi) =

N∑
i=1

wi exp(−γ||β−βi||2) (k = 1, ..., r) (17)

where βi contains the set of parameters for case i, wi is the weight, and φ(β,βi)≡ exp(−γ||β−βi||2) are RBF. Here, γ is

the parameter controlling the smoothness of the function. Because fk(β) which is a coefficient of mode k shown in Eq. (17) is

individually interpolated, wi and γ have different values for each mode. By substituting the set of actual the input parameters

in Eq. (17), we obtain the following simultaneous equations to determine the set of weights wi:180 
α1k

...

αNk

=


φ(β1,β1) · · · φ(β1,βN )

...
...

φ(βN ,β1) · · · φ(βN ,βN )




w1

...

wN

 (k = 1, ..., r) (18)

In this study, ridge regression (Hoerl and Kennard, 1970) is used to compute weights for Eq. (18). The weights are obtained

by solving the following optimization problem:

arg min
wk

(||αk −Φwk||22 +λ||wk||22) (k = 1, ..., r) (19)

Where λ is the regularization parameter, αk is the vector of coefficients for the k-th mode, wk is the vector of weights185

for the k-th mode, and Φ is the coefficient matrix in equation (18). By introducing the ridge regression, it is possible to

prevent the overfitting problem. Since the accuracy of the interpolation depends on the regularization parameter λ and the

smoothness parameter γ of the RBF interpolation, these values are determined by the application of a certain cross-validation

technique (Stone, 1974). In this study, 4-folded cross-validation is applied to determine the parameters γ and λ, and the

Bayesian optimization (Močkus, 1975) is used to efficiently search for the optimal values γ and λ in the parameter space.190

3 Application to a real disaster case

In this section, the proposed method is applied to tsunamis that have occurred. The simulation and the construction of the

surrogate model are based on the tsunami induced by the 2011 earthquake that occurred off the Pacific coast of Tohoku.

3.1 Tsunami simulation

In this study, as previously mentioned, the calculation was performed in two steps, including a numerical analysis based on195

the 2011 earthquake that occurred off the Pacific coast of Tohoku using 2D analysis over a wide area and 3D runup analysis

for the target region. To construct a surrogate model that considers uncertainty, it is first necessary to decide what uncertainty

should be considered. Next, we considered the dominant factors from the occurrence of the tsunami to its runup. For example,

the epicenter position and magnitude are factors that need to be considered during the earthquake. During tsunami propagation,

the fault model that controls the initial waveform of the tsunami and the submarine topography data need to be included. In this200
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study, the 2011 earthquake that occurred off the Pacific coast of Tohoku was used as a basis. That is, the relevant factors in the

process of the earthquake itself can be found in the accomplishments of research conducted up to this point. In specific terms,

in our study, we used a fault model (Fujii-Satake model Ver. 8.0) (Satake et al. (2013)) composed of the 55 small faults shown

in Fig.2. By considering uncertainty in terms of the two parameters of slip and rake in Fig.3, which are thought to have a deep

relationship with the characteristics of fault stagger, we conducted a numerical analysis of multiple scenarios using different205

values of these parameters. The cases that were analyzed and the names of the cases are shown in Table 2. For the slip of each

small fault, there were five patterns from 0.7 to 1.4, and for the rake, there were 10 patterns with −20◦ and +25◦ changes in

the angle, making a total of 50 cases.

Figure 2. Fujii-Satake model Ver. 8.0. (adapted from Kotani et al. (2020)).
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Figure 3. Illustration of the fault parameters. (adapted from Kotani et al. (2020)).

Table 1. Calculation cases.
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Mesh Size : 2430m

810m

270m
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Figure 4. Nested analysis regions. (adapted from Kotani et al. (2020)).

3.1.1 Wide-area 2D tsunami analysis

To obtain the information about the tsunami wave usable for the 3D analysis, a tsunami analysis is carried out utilizing the210

2D shallow water flow model. First, a wide-area 2D analysis was performed to obtain time history data for the tsunami height

and flow velocity observed within the bay of the target region. Regarding the initial waveform of the tsunami, Okada (1992)

was employed. The fluctuation vertical component close to the seabed was calculated based on the fault model and the initial

water level fluctuation was determined. Additionally, an analysis mesh was created with intervals of 2430 [m], 810 [m], 270

[m], and 90 [m], and nesting was performed to subdivide this mesh in relation to the target based on the tsunami wave source.215

An image of this nesting is shown in Fig. 4. To confirm the reasonableness of the obtained 2D analysis, we compared the

results to the actual measured values of the fluctuation in the tsunami water level in the 2011 earthquake that occurred off the

Pacific coast of Tohoku. As a point of comparison, we used the GPS wave meter observation data of the Nationwide Ocean

Wave information network for Ports and Harbours (NOWPHAS) provided by the Port Bureau, Ministry of Land Infrastructure

Transport and Tourism. The observation positions were offshore to the north of Iwate Prefecture (No. 1), offshore to the center220

of Iwate Prefecture (No. 2), offshore to the south of Iwate Prefecture (No. 3), offshore to the north of Miyagi Prefecture (No.

4) and offshore to the center of Miyagi Prefecture (No. 5), and a comparison of these is shown in Fig. 5. The result is that the

actual measured values were sufficiently reproduced, and a 3D tsunami analysis was performed using these results as input

values.
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Figure 5. Comparison of tsunami height between observational data and simulation results. (borrowed from Kotani et al. (2020)).

3.1.2 Connecting the 2D and 3D analyses225

Using the results of the 2D tsunami analysis over a wide area as the input conditions, a 3D tsunami analysis was performed to

represent the tsunami runup in the target region. As mentioned before, the method used in Takase et al. (2016) was employed

to couple the 2D and 3D models together. An image of the location of the 2D-3D boundary is shown in Fig. 6. The time-series

data of the wave height and flow velocity obtained from the 2D wide-area analysis are stored and transferred to the three-

dimensional numerical analysis by linear interpolation in space. Also, since the time interval in the 2D calculation differs from230

that in the 3D one, the 2D results are linearly interpolated in the time domain, and the interpolated values are given to the

3D analysis as input data. The reason why the 2D-3D boundary is placed at the mouth of the bay is that the boundary can be

defined by a straight line.

12



3.1.3 3D runup analyses

Tsunami runup was represented by the 3D analysis using SFEM on the 2145 [m]×2600 [m] field shown in Fig. 8. Images of the235

FE mesh used in this analysis are described in Fig. 7. A fine mesh with a minimum mesh size of 1.5m is used around buildings

and a coarse mesh with a maximum mesh size of 10 m is used for mountainous areas. The non-slip boundary condition is used

on building surfaces and ground surfaces. Fig. 8 shows snapshots of the tsunami runup obtained in the 3D simulation. A very

complex 3D flow that cannot be represented in 2D simulations is seen in the simulated results. As mentioned in subsection 4.1,

the calculation condition of Case S3R5 corresponds to the real tsunami induced by the 2011 earthquake that occurred off the240

Pacific coast of Tohoku. Therefore, we checked the accuracy of the simulated result obtained in Case S3R5 by comparing with

survey results. Data of the maximum inundation heights are provided by the 2011 Tohoku Earthquake Tsunami Joint Survey

Group (2012). Fig. 9 indicates a comparison between simulated maximum inundation heights and survey data. The evaluation

points are shown in Fig. 6. The comparison shows that the simulated inundation heights near the coastline (points A, B, C, and

E) well represent the real inundation heights, while there are big gaps at other points. The reason for this big gaps are that the245

buildings are assumed to be rigid bodies and the buildings are not washed away in the 3D analysis. Although most of buildings

were washed away due to the tsunami, buildings suppress tsunami runup in the analysis. While this suggests it is better to

consider the effect of washing away buildings, modeling this effect is difficult. Furthermore, the main objective of this study is

to construct a surrogate model of tsunami force and discuss its performance. We therefore conclude that the simulated results

roughly express the real tsunami, that use the simulated results in this study.250

In order to construct a surrogate model of tsunami force, we can use the hydrodynamic force acting on buildings calculated

in the 3D simulation. It is however difficult to quantify pointwise tsunami force because the force is strongly affected by the

direction of building surfaces. To avoid this problem, we consider a 2D mesh with a grid size of 10m for evaluating the tsunami

force. The tsunami force is evaluated by averaging in each of these sub-domains but not for each building in this study. An

image of the mesh is shown in Fig. 10. The force acting on the building surface is integrated in each mesh and quantified as a255

scalar value. The spatial distribution of the tsunami force was obtained in this manner.

3.2 Application of proper orthogonal decomposition

3.2.1 Definition of the target risk indicators and data matrix

In this study, the tsunami force acting on the buildings and the inundation depth are used as the target risk indicators, and the

values integrated or averaged in the 10m mesh are used as the mean values. As the field is 2145 [m]×2600[m], the number260

of evaluated points is n= 214× 260 = 55640. The impact force is calculated by using the pressure and the surface affected

by the pressure in a 10-meter square. Additionally, 20 seconds is used for the time interval for the use data and 150 steps

of data are used in accordance with the time for the tsunami runup. In this application example, in addition to the two input

parameters, time is introduced as another parameter because when predicting damage rapidly, it is necessary to evaluate the

state of time-related developments in addition to spatial distribution.265
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Figure 6. Boundary between the 2D analysis and 3D analysis areas. Points A to H are used to compare the inundation depths between

observational data and simulation results. (© Google Maps)

50 m50 m

20 m
20 m

Figure 7. Bird view of FE meshes at two different rates of magnification.
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Figure 8. Snapshots of tsunami runup obtained in 3D analysis. The white-colored area represents the inundation area.
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Figure 9. Comparison of inundation heights between observational data and simulation results. (Observation data are provided by the 2011

Tohoku Earthquake Tsunami Joint Survey Group (2012)).
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Figure 10. An Image of mesh for evaluating tsunami force.

Proper orthogonal decomposition is applied to construct a surrogate model for the results of 40 of the 50 cases shown in Table

1, excluding the 10 cases where the rake is ±10◦. The reason that these 10 cases are not used for surrogate model construction

is that their associated data are later used to verify the reasonableness of the created surrogate model. Additionally, as 40 cases

secured a sufficient number of analysis cases for the two variables in this study, verification is not performed, but it is desirable

to assess how many cases are required when constructing the surrogate model.270

Next, the data matrix is defined. First, the time-series data for a particular scenario can be defined as follows as matrixXi.

Xi =


| |

x(Ui,λi, t1) · · · x(Ui,λi, tm)

| |

 (20)

Here, x(U,λ,t) is a vector containing the spatial distribution of a risk indicator in relation to time. Specifically, in this study,

the tsunami force and inundation depth at each grid point are selected for the indicators and their time-series data are stored

in separate data matrices, each of which consists of the data vectors at each time. Additionally, as a specific parameter, Ui275

expresses slip in relation to scenario (slip), and λi expresses rake in relation to scenario i. Additionally, m expresses the

maximum number of output steps in the numerical analysis, and in the example in this study, this is m= 150. Data matrix X
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is defined as follows, as laid out in the column direction.

X = (X1 · · ·XN ) (21)

In this study, because time-space mode decomposition is performed, the data for each calculation case and each time are aligned280

in the column direction of the data matrix. The previously described proper orthogonal decomposition was carried out for this

data matrix. By applying proper orthogonal decomposition to this matrix, it is possible to extract a common temporal mode for

data including time. Temporal effects are expressed by the coefficients of the modes, and it is possible to construct a surrogate

model including the time direction.

3.2.2 Extracted spatial modes and construction of a surrogate model285

Here, we show the results of applying proper orthogonal decomposition in relation to impact force and inundation data.

First, in relation to the extracted spatial mode, the impact force and water depth for the first mode to the third mode are as

shown in Fig. 11.

The values in Fig. 11 show the normalized ones for each mode. From these figures, it can be confirmed that the impact force

distribution and inundation depth distribution both have roughly the same spatial distribution characteristics. If we examine290

the characteristics in more detail, in the case of the first mode, we can see the tendency for the coastal side to be most strongly

impacted. Naturally, since the points close to the coast are most affected by the tsunami, this is a mode that best expresses

this kind of impact. The second mode expresses opposite tendencies for the section close to the coast and the section behind

it, and the third mode expresses opposite tendencies for the eastern and western coastal areas. In general, the lower-order

modes have higher contributions with respect to the original data, while the higher-order modes represent local effects and295

their contributions are relatively small.

The contribution rates of the impact force and water depth are shown in Fig. 12. The contribution in the first mode is

extremely high for both impact force and inundation depth. In this study, as an indicator of the number of modes, the error and

the contribution rate were investigated. In this example, for the 10 cases of data kept aside as verification data, the root mean

squared error for the results obtained from the numerical analysis and the results obtained from the surrogate model for each300

mode are calculated. The error of case ei is calculated using the following equation.

ei =

√
1

nm
||Xi− X̂i||2F (22)

Here, n is the number of evaluation points and m is the number of time step. Additionally,Xj is time series data of numerical

simulation results for i-th case and X̂j is results obtained from a surrogate model with r modes. the relations between the

number of modes and the error for each risk index are shown in Fig. 13. From Fig. 13, it can be seen that the error decreases305

as the number of modes used in the surrogate model increases, and as the number of modes increases, the error rates decrease,

thus gradually converging. In this study, 20 modes are used to construct the surrogate models, because the error has been

sufficiently reduced.
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Figure 11. Spatial modes of (a) impact force and (b) inundation depth extracted by POD. (© Google Maps)
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Next, by interpolating the proper orthogonal decomposition coefficient as a parameter function, the surrogate models are

created. As shown in Eq. 21, as the data matrix contains the slip U , rake λ, and time t, which are parameters for numerical310

analysis in the column direction, the proper orthogonal decomposition coefficient is also expressed as a function of slip, rake,

and time. In specific terms, this coefficient can be expressed as fk(U,λ,t) as in the following equation.

x̂(U,λ,t) =

r∑
k=1

fk(U,λ,t)uk (23)

3.2.3 Reconstructing the numerical simulation results

Here, we compare the results obtained from the numerical analysis and the results from reconstructing the original data using315

the constructed surrogate models. First, when comparing the time-series data, several evaluation points are set. In this study,

the 10 points shown in Fig. 14 are set as evaluation points. Next, for the average case scenario S3R5, a comparison of the

numerical analysis results and the results when reconstructing data using the surrogate models are shown. Snapshots of the

impact force and water depth are shown in Fig. 15, and the time-series data for each physical quantity at points 2 and 3 in

Fig. 14 are shown in Fig. 16. Although only the time-series data obtained at the three points are shown in the figure, the same320

tendency is confirmed at other points. The black line indicates the results obtained from the actual numerical analysis, and the

red line shows the results from reconstructing data using the surrogate models. Using the time-series data of the impact forces

shown in Fig. 16 (a), it is possible to calculate the impulse acting on the buildings. The impulse can be obtained by integrating

the force in time. Values of the impulse calculated by the numerical simulation and calculated by the surrogate models for the

10 evaluation points are shown in Fig. 17.325

Based on these results, it can be summarised that whereas errors partially occur based on the impact of mode reduction, in

general, the original data are being reproduced, and it is possible to express the data as a linear combination of modes. It should

also be noted that there are different tendencies between spatial distributions of tsunami force and those of inundation depth.

For instance, at time step 65, high values are locally seen in the inundation depth, while that tendency is not seen in the result of

tsunami force. This indicates that it’s difficult to predict damage of buildings based on only inundation depth, and information330

of tsunami force is also respired for an accurate damage prediction.
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Figure 14. Evaluation points for comparing results obtained from numerical simulation and those of the surrogate models. (© Google Maps)
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Figure 15. Snapshots of the results obtained from numerical analysis and those reconstructed by using spatial modes. (© Google Maps)
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Figure 17. Comparison of impulses calculated from the results of numerical analysis and the results reconstructed by using spatial modes.

3.2.4 Validation of the surrogate models

By comparing data that were not used for the construction of the surrogate models, it is possible to investigate whether the

surrogate models could reproduce the numerical analysis results. A comparison of the results obtained from the numerical

analysis and the surrogate models for the two scenarios of S2R3 and S5R7 is shown in Figs. 18-20. As in the previous section,335

for each physical quantity, a comparison by snapshots and time-series data at evaluation points 2 and 3 is shown.
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Figure 18. Snapshots of the results obtained from numerical analysis and those obtained from the surrogate models. (S2R3) (© Google

Maps)
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Figure 19. Snapshots of the results obtained from numerical analysis and those obtained from the surrogate models. (S5R7) (© Google

Maps)
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Figure 20. Comparison of time-series data obtained from the numerical analysis and the surrogate models.
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Here, it is confirmed that it is possible to represent the simulation results using arbitrary parameters with the surrogate

models. However, as shown in Figs. 18 and 19, it should be noted that the surrogate models do not fully represent the local

spatial distribution. More advanced mode decomposition techniques, such as the sparse modeling, are needed to improve the

accuracy.340

Next, the root-mean-squared error (RMSE) for the time-series data at all points are calculated for each of the physical

quantities by using Eq. 22. The relative errors to the mean value and the maximum value are presented in Table 2. Here, “Mean

value” is a root-mean-square of the corresponding quantity.

Table 2. Error between the results of the numerical analysis and the results obtained from the surrogate models.

Case name S2R3 S5R7

Impact force Inundation Impact force Inundation

Error (RMSE, Equation (22)) 6.69× 104 [N] 0.326 [m] 8.40× 104 [N] 0.404 [m]

Mean value 1.80× 105 [N] 0.722 [m] 2.59× 105 [N] 1.10 [m]

(RMSE)/(Mean value) 37.2 [%] 45.1 [%] 32.4 [%] 36.7 [%]

Maximum value 8.59× 106 [N] 15.1 [m] 1.08× 107 [N] 19.8 [m]

(RMSE)/(Maximum value) 0.78 [%] 2.15 [%] 0.78 [%] 2.04 [%]

With regard to Table 2, the relative error to the mean value of time series data for a specific scenario was 37.2% for the

impact force data and 45.1% for the water depth data in S2R3 and 32.4% for the impact force data and 36.7% for the water345

depth data in S5R7. It is acknowledged that these are very high values. This large error comes from inadequate representation

of local peaks and the phase shift. In addition, because the time-series data includes a large amount of data that would not be

affected by a tsunami, such as data from mountainous areas, the data include many values equal or close to zero: this would

result in extremely small mean values. That is, it is likely that the large error rate value in calculations is because of the small

mean values. Note that the relative error to the maximum value of time series data for a specific scenario is 0.78% for the350

impact force data and 2.15% for the water depth data for S2R3 and 0.78% for the impact force data and 2.04% for the water

depth data in the case of S5R7. In these cases, the error rate is low compared to the maximum value. In other words, because

the error in Table 2 is sufficiently small compared to the maximum value, the overall distribution and the general shape of the

time-series data can be roughly captured by the surrogate models.

Next, as in the previous section, the impulse is calculated using the time-series data of the impact forces, and a comparison355

of the impulse calculated from the numerical analysis results and the results obtained from the surrogate model for the 10

evaluation points is shown in Fig. 21.

Fig. 21 shows that the surrogate model can adequately represent the impulse calculated from the numerical simulation

results. Since the impulse can visualize the risk that cannot be seen by the maximum impact force alone, it can be fully utilized

for the tsunami risk assessment for buildings in the target area.360

27



Furthermore, the surrogate model has distinct advantages in terms of calculations costs. Four hours were required to complete

the numerical analysis of one case when using Intel(R) Xeon(R) CPU E5-2667 v4 (3.20 GHz) 16 parallel computing for the

2D calculation. In the case of the 3D analysis, using an Intel Xeon Phi KNL (1.4 GHz) 8 node 544 core, the calculation time

was approximately 96 hours. Once the model was constructed, however, the calculation using the surrogate model took only a

few seconds, and because it was possible to calculate the spatial-temporal distribution of the physical quantity using arbitrary365

parameters, it would be possible to apply the surrogate model using the spatial modes for rapid damage prediction.

4 Conclusions

This study presents the framework for predicting time series data of tsunami force based on the results of a high precision

numerical analysis at a low calculation cost. By performing proper orthogonal decomposition in relation to the numerical

analysis results while considering uncertainty, we could extract spatial modes and express the spatial distribution of the risk370

indicators as a linear distribution of the modes. Additionally, by expressing the coefficients as functions of analysis parameters

and time in the surrogate models, it was possible to calculate the distribution at extremely low calculation costs for certain cases

for which no numerical analysis has been performed. In this study, surrogate models of the impact force and inundation depth

of a tsunami running up to a target area were constructed, and it was shown that the results of the numerical analysis could be

roughly represented. It is also shown that the impulse calculated from the time-series data of the tsunami force obtained from375

the surrogate model can sufficiently represent the numerical simulation results. These results indicate that the surrogate models

can be efficiently utilized for tsunami risk assessments.

In this study, for tsunami events, only the two fault parameters of slip and rake were considered as uncertainties. However,

as many uncertainties are at play in an actual tsunami event, it would be possible to integrate these parameters and perform

a numerical analysis and, in the same manner, create a surrogate model that incorporates a larger range of uncertainties in380

more detail. However, when increasing the types of input parameters, as the number of scenarios that need to be considered

becomes immense, it is pertinent to use efficient methods for parameter sampling such as Latin Hypercubes (McKay, 1979),

etc. Furthermore, it is very important to evaluate in advance the extent to which these uncertainty parameters will fluctuate.

In the surrogate model created in this study, a sufficient evaluation was performed with interpolation (within the scope of the

parameters for which numerical analysis was conducted). However, with extrapolation (outside the scope of the parameters for385

which numerical analysis was conducted), the possibility of reduced accuracy is high, so it is necessary to evaluate in advance

the extent to which the uncertainty parameters fluctuate and set scenarios that allow for this range of fluctuation.

While the mechanism shown in this paper was designed for use with tsunamis, it has potential for use in the rapid prediction

of various disasters. Since numerical simulations of disasters typically involve high computational costs, it is important to con-

sider uncertainty in advance and perform a numerical analysis before creating a surrogate model. That is, the rapid prediction390

developed by the surrogate model proposed in this work can be used as a tool to gauge the extent of disasters.
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Appendix A: Stabilized finite element method

With regard to Eqs. (4) and (5), we apply the stabilized finite element method equipped with the streamline-upwind/Petrov-

Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin(PSPG) (SUPG/PSPG method) (Tezduyar, 1991) to obtain the fol-

lowing finite element equation:395

ρ

∫
Ωns

wh · ρ
(
∂uh

∂t
+uh · ∇uh−f

)
dΩ +

∫
Ωns

ε(wh) : σ(uh,ph)dΩ +

∫
Ωns

qh∇ ·uhdΩ

+

nel∑
e=1

∫
Ωe

ns

{
τnssupgu

h · ∇wh + τns
pspg

1

ρ
∇q
}
·
{
ρ

(
∂uh

∂t
+uh · ∇uh−f

)
−∇ ·σ(uh,ph)

}
dΩ

+

nel∑
e=1

∫
Ωe

ns

τns
cont∇ ·whρ∇ ·uhdΩ = 0 (A1)

Here, Ωns ∈ R3 is the analysis domain, nel is the number of elements, uh and ph are the finite element approximations for

velocity and pressure, respectively, and wh and qh are the approximations of the weight functions for the equations of motion400

and continuity, respectively. Also, the fourth involve the SUPG term for stabilizing the advection process and the PSPG term

for avoiding pressure oscillation. In addition, the fifth term has the shock-capturing term (Aliabadi and Tezduyar, 2000) for

avoiding numerical instability on free surfaces, and τns
supgτ

ns
pspgand τns

cont are all stabilization parameters.

In this study, the phase-field approach is employed to capture the complex geometries of free surfaces, such as breaking

waves and flow around buildings. In this approach, the locations of free surfaces can be determined by solving the Allen-Cahn405

advection equation (Chiu and Lin, 2011; Takada et al., 2013), which was modified to the storage format as

∂φ

∂t
u · ∇φ=

ε

δ
∇ · (δ(∇φ)−Fa) ,Fa = φ(1−φ)

∇φ
|∇φ|

(A2)

where the phase-field function φ takes 1.0 or 0.0 to identify liquid (water) and gas (air) phases, and an intermediate value

represents the free surface. Here, ε is the mobility and δ is the representative width of the free surface. According to the phase

field function, the fluid density ρ and viscosity coefficient µ for each element were evaluated as410

ρ= ρlφ+ ρg(1−φ) (A3)

µ= µlφ+µg(1−φ) (A4)

where subscripts l and g indicate the quantities of the liquid and gas, respectively.

In this study, we also apply the stabilized finite element method with the SUPG method to the Allen-Cahn equation above,415

so that the resulting finite element equations are given as∫
ΩP

φh∗

(
∂φh

∂t
+uh · ∇φ

)
dΩ+

∫
ΩP

ε∇φh∗ · ∇φdΩ+

∫
ΩP

φh∗
ε

δ
∇FadΩ

+

nel∑
e=1

∫
ΩP

e

(
τφ u

h · ∇φh∗
)
·
(
∂φh

∂t
+uh · ∇φh− ε

δ
∇ · (δ(∇φ)−Fa)

)
dΩ = 0 (A5)
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where φh and φh∗ are finite element approximations for the phase-field function φ and its weight function, respectively. Here,

τφ is the stabilization parameter defined as420

τφ =

[(
2

∆t

)2

+

(
2||uh||
he

)2
]− 1

2

(A6)

where he is the characteristic length of an element.
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