
1 

 

Using high-resolution regional climate models to estimate return 

levels of daily extreme precipitation over Bavaria 

Benjamin Poschlod1  

1Department of Geography, Ludwig-Maximilians-Universität München, Munich, 80333, Germany 

Correspondence to: Benjamin Poschlod (Benjamin.Poschlod@lmu.de) 5 

Abstract. Extreme daily rainfall is an important trigger for floods in Bavaria. The dimensioning of water management 

structures as well as building codes are based on observational rainfall return levels. In this study, three high-resolution regional 

climate models (RCMs) are employed to produce 10-year daily rainfall return levels and their performance is evaluated by 

comparison to observational return levels. The study area is governed by different types of precipitation (stratiform, orographic, 

convectional) and a complex terrain, with convective precipitation also contributing to daily rainfall levels. The Canadian 10 

Regional Climate Model version 5 (CRCM5) at 12 km spatial resolution and the Weather and Forecasting Research model 

(WRF) at 5 km resolution both driven by ERA-Interim reanalysis data use parametrization schemes to simulate convection. 

The WRF at 1.5 km resolution driven by ERA5 reanalysis data explicitly resolves convectional processes. Applying the 

Generalized Extreme Value (GEV) distribution, all three model setups can reproduce the observational return levels with an 

areal average bias of +6.6 % or less and a spatial Spearman rank correlation of ρ > 0.72. The increase of spatial resolution 15 

between the 12 km CRCM5 and the 5 km WRF setup is found to improve the performance in terms of bias (+6.6 % and +3.2 

%) and spatial correlation (ρ = 0.72 and ρ = 0.82). However, the finer topographic details of the WRF-ERA5 return levels 

cannot be evaluated with the observation data because their spatial resolution is too low. Hence, this comparison shows no 

great further improvement (bias = +1.1 %, ρ = 0.82) of the overall performance compared to the 5 km resolution setup. 

Uncertainties due to extreme value theory are explored by employing three different approaches for the highest-resolution 20 

WRF-ERA5 setup. The GEV distribution with fixed shape parameter (bias = +0.9 %, ρ = 0.79) and the Generalized Pareto 

(GP: bias = +1.3 %, ρ = 0.81) show almost equivalent results for the 10-year return period, whereas the Metastatistical Extreme 

Value (MEV) distribution leads to a slight underestimation (bias = -6.2 %, ρ = 0.86). 

From these results, it follows that high-resolution regional climate models are suitable for generating spatially homogeneous 

rainfall return level products. In regions with a sparse rain gauge density or low spatial representativeness of the stations due 25 

to complex topography, RCMs can support the observational data. Further, RCMs driven by global climate models with 

emission scenarios can project climate change-induced alterations in rainfall return levels at regional to local scales. This 

would allow adjustment of structural design and, therefore, adaption to future precipitation conditions. 
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1 Introduction 

Extreme rainfall is an important driver for different kinds of hydrometeorological hazards, such as flooding and mass 30 

movements. The state of Bavaria is exposed to the highest daily rainfall intensities in Germany. Due to the complex topography 

and a dense river network the area is prone to riverine flooding and landslides (Grieser et al., 2006; Wiedenmann et al., 2016). 

Furthermore, urban areas are at risk of urban flooding due to the dense population and a large fraction of impervious areas 

(Chen and Leandro, 2019). To assess the risk of heavy precipitation events and to dimension adaptation measures, engineers 

and public authorities often use the concept of rainfall return levels. In Germany, a rainfall return level database (“Coordinated 35 

heavy precipitation regionalization evaluation”; KOSTRA; Junghänel et al., 2017; Malitz and Ertel, 2015) is supplied by the 

German weather service, which is based on rain gauge observations. A similar product is available for Austria (Kainz et al., 

2007). MeteoSwiss provides mapped return levels and pointwise data (MeteoSwiss, 2021). These products are included in 

building standards and are, therefore, widely used. Even though the coverage of rain gauges in Germany, Austria, and 

Switzerland is relatively high, there are uncertainties due to the spatial representativeness of the measuring stations to generate 40 

an area-wide rainfall return level product. This problem applies even more on a continental scale as the rain gauge density is 

distributed heterogeneously over different European countries, where the available time series might be too short to capture a 

sufficient number of extreme events (Lewis et al., 2019).  

Instead of using point-wise measurements, areal precipitation products (e.g. radar, satellite, or reanalysis products) could be 

used as the basis for return level calculations. However, each of these areal precipitation products shows different limitations, 45 

which lead to uncertain or unrealistic return level estimations. Radar data (RADOLAN for Germany; Kreklow et al., 2020) 

and satellite products (e.g. CMORPH; Joyce et al., 2004 or PERSIANN; Hong et al., 2004) would provide the necessary 

temporal and spatial resolutions to capture extreme rainfall events. Yet, the temporal coverage of these products extends only 

to the early 2000s, which is why the sampling of extreme rainfall events is not sufficient for extreme value analysis. 

Furthermore, radar estimates (Goudenhoofdt and Delobbe, 2016; Kreklow et al., 2020) as well as satellite products (Stampoulis 50 

and Anagnostou, 2012) reveal biases compared to rain gauges. Reanalysis data (e.g. E-OBS; Haylock et al., 2008; ERA-

Interim; Dee et al., 2011; ERA5; Hersbach et al., 2020) would have the necessary temporal coverage, but they show systematic 

underestimation of the intensity of extreme precipitation events (Hu and Franzke, 2020; own calculations, not shown).  

Since the frequency and intensity of heavy precipitation will change due to climate change (Myhre et al., 2019; Westra et al., 

2014), the use of climate models would provide the advantage of being able to estimate climate change-induced alterations in 55 

rainfall return levels on a physical basis. However, this application requires careful validation of climate model results for 

historical conditions. 

Regional climate models (RCMs) at 12 km spatial resolution have proven to deliver appropriate rainfall return level estimations 

for 3-hourly to daily duration (Berg et al., 2019; Poschlod et al., 2021; Ulbrich and Nissen, 2017). Although the results show 

a high spatial correlation to observational products and a low bias averaged over the area, local deviations are evident, 60 
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especially in regions with complex topography (Poschlod et al., 2021). Also, the intensity of short-duration hourly rainfall 

extremes could not be reproduced at 12 km spatial resolution. 

When communicating the results of climate model projections to local or regional stakeholders, insurance companies, and 

governmental authorities in the field of flood prevention, hydrological modelling, dimensioning of reservoirs, buildings, and 

water infrastructure, these aforementioned biases may prevent the results from being accepted and implemented (Benjamin 65 

and Budescu, 2018). 

For shorter durations, many studies have shown that higher-resolution RCMs, so-called convection-permitting models (CPMs), 

improve the reproduction of high-intensity short-duration convectional precipitation events (Brisson et al., 2016; Coppola et 

al., 2018; Fosser et al., 2014; Kendon et al., 2014). A spatial resolution of a few kilometres is considered necessary by the 

RCM community to explicitly resolve convection (Langhans et al., 2012, Panosetti et al., 2020; Prein et al., 2015), whereas at 70 

broader-resolutions parametrization schemes are applied to represent convection. However, also long-duration rainfall return 

levels can be influenced by convectional precipitation. In Germany, convectional rainfall contributes to the 24-hourly return 

level for roughly 50 % of the area (Malitz and Ertel, 2015). Therefore, CPMs are expected to improve the estimations of these 

return levels as well. Additionally, the higher spatial resolution enhances the representation of complex terrain (Karki et al., 

2017; Langhans et al., 2012; Poschlod et al., 2018).  75 

Hence, in this study, three different high-resolution RCMs featuring 12 km, 5 km, and 1.5 km spatial resolution and driven by 

30-year reanalysis data are applied to reproduce daily 10-year rainfall return levels over the complex terrain of the northern 

Pre-Alps and Alps. Based on interviews with stakeholders from the infrastructure sector and on legislative guidelines, Nissen 

and Ulbrich (2017) identified the 10-year return level as relevant threshold. Following this recommendation but also to avoid 

large extreme value statistical uncertainties based on the 30-year time series the 10-year return level is chosen in this study as 80 

well representing “moderate extremes”. The daily duration is relevant for the generation of riverine floods in the study area 

(Berghuijs et al., 2019; Keller et al., 2017; Merz and Blöschl, 2003), such as the two extreme flooding events in May 1999 and 

August 2005 in southern Bavaria, Austria, and Switzerland (BLFW, 2003; Grieser et al., 2006; LfU, 2007; Stucki et al., 2020) 

induced by high daily precipitation sums. The daily 10-year return levels based on the three RCM setups are evaluated by 

means of an observational return level product using national datasets from Germany, Austria, and Switzerland. In a second 85 

step, different extreme value distributions and sampling strategies are applied to the highest-resolution climate model dataset 

to explore uncertainties due to extreme value theory and to investigate possible improvements.  

It is studied if RCMs can bridge the data gap of spatial homogeneous rainfall return levels and if higher spatial resolution can 

decrease the biases over areas with complex topography. Therefore, the study aims to evaluate the added value due to higher 

spatial resolution in terms of biases and spatial correlation between the climate model products and the observational product.  90 
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2 Study area and data 

2.1 Description of the study area 

The area of investigation is given by the domain of the highest-resolution RCM, which is centred over the state of Bavaria, 

and the available observational rainfall return level data (see Fig. 1). It covers south-eastern Germany, north-western Austria, 

north-eastern Switzerland and Liechtenstein. The area shows altitude levels below 100 m in the northwest in the Rhine plain 95 

up to altitudes above 2500 m in the Alps. It covers various low mountain ranges, including the Ore Mountains, Odenwald, 

Swabian Jura and Bavarian Forest. The patterns of annual mean precipitation are governed by the complex topography (see 

Fig. 2). Different rainfall types (convectional, orographic, stratiform) contribute to this precipitation climatology (Malitz and 

Ertel, 2015). The lowest annual precipitation sums amount to 500 – 700 mm in the north of the study area. The low mountain 

ranges induce orographic lifting leading to precipitation sums of 1000 to 1500 mm per year. The highest precipitation sums of 100 

more than 2000 mm are found in the Alps, with dry valleys, such as the Inn valley having totals below 1000 mm. Annual 

average temperatures range from less than 0°C in the Alps to 10°C in northern Bavaria (DWD 2021, ZAMG 2021).  
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Figure 1: Topography of the investigated area. The elevation is based on the SRTM at 90 m resolution (Jarvis et al., 2008).  105 
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Figure 2: Annual mean precipitation for the period 1980 – 2009 from the RCM setup of Warscher et al. (2019).  

 

2.2 Observational rainfall return level data 

To evaluate the RCMs, an observation-based product is generated from the three national datasets described below. As these 110 

datasets extend to the national borders and a little beyond, the arithmetic mean is calculated in the overlapping areas. To 

compare gridded precipitation from the RCMs and point measurements from the observations, Breinl et al. (2020) suggest an 

areal reduction of 5 % for pointwise 24-hourly 10-year return levels in Austria. However, to be consistent over the study area, 

no areal reduction factor is applied for the daily duration following Berg et al. (2019) and Poschlod et al. (2021).  
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2.2.1 Germany 115 

The German weather service offers gridded return level data derived from rain gauge measurements (Malitz and Ertel, 2015). 

The observations cover a period of maximum 1951 – 2010, where only May – September are analysed as the highest rainfall 

amounts occur during these months. A peak-over threshold (POT) sampling strategy was applied for 2231 rain gauges, where 

the threshold corresponds to the available time period. A maximum of 2.718 events per year on average was considered. For 

these samples, an exponential distribution was fitted. The resulting rainfall return levels were spatially interpolated over 120 

Germany at roughly 8 x 8 km² resolution. An uncertainty range of 15 % is assumed for the 10-year return levels, which is 

induced by measurement errors, uncertainties of the extreme value statistics and regionalization, and the internal variability of 

the climate system (Junghänel et al., 2017). Data are accessed from DWD (2020). As running window 24-hourly return periods 

are provided, the rainfall intensities are reduced by 14 % to transfer them to daily estimates. This relation between daily fixed 

windows and 24-hourly moving windows has been applied by Poschlod et al. (2021) following Barbero et al. (2019) and 125 

Boughton and Jakob (2008). 

2.2.2 Austria 

The Austrian dataset follows a similar approach as the German dataset also applying POT sampling at 141 ombrographs and 

843 ombrometers spatially interpolated to gridded return levels at 6 x 6 km² resolution (BMLRT, 2018). As the rain gauges 

are distributed inhomogeneously yielding too low return level estimations, the “orographic convective model” OKM (Lorenz 130 

and Skoda, 2001) was employed to support the observations (Kainz et al., 2007). The resulting design rainfall is based on a 

combination of the observational data and the weather model simulations. Further details can be found in Kainz et al. (2007) 

and BMLRT (2006; 2018). Data are accessed from BMLRT (2020). The 24-hourly return levels are adjusted to daily values 

using the reduction of 14 %.  

2.2.3 Switzerland  135 

 MeteoSwiss (2021) provides pointwise daily rainfall return levels at 336 rain gauges. The observations cover the time period 

from 1966 to 2015. To increase the sample size, seasonal maxima were extracted and assumed to follow a Generalized Extreme 

Value (GEV) distribution. The GEV distribution is fitted via Bayesian estimation and the according return levels are generated 

(Fukutome et al., 2015). Since an areal comparison product is to be produced in this study, these point return levels are 

regionalised by means of ordinary kriging. 140 

2.3 Climate model data 

Three different RCM setups are used. The Canadian Regional Climate Model version 5 (CRCM5) driven by ERA-Interim, the 

Weather and Research Forecasting Model (WRF; Skamarock et al., 2008) driven by ERA-Interim, and the WRF driven by 

ERA-5.  
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2.3.1 CRCM5 ERA-INTERIM 145 

The CRCM5 at 0.11° resolution equalling roughly 12 km is driven by ERA-Interim reanalysis data. Convectional processes 

are parametrized due to the spatial resolution. Processes related to deep convection are calculated with the parametrization 

scheme by Kain and Fritsch (1990). The Kuo transient scheme (Bélair et al., 2005; Kuo, 1965) is applied to represent shallow 

convection. A more detailed documentation of the model setup and options used is given by Hernández-Díaz et al. (2012) and 

Martynov et al. (2012). Daily rainfall sums of 30-year time period of 1980 – 2009 are extracted for this study. 150 

2.3.2 WRF ERA-INTERIM 

The WRF version 3.6.1 is set up in nested domains of 45 x 45 km², 15 x 15 km² and 5 x 5 km² spatial resolution in its non-

hydrostatic mode and driven by ERA-Interim reanalysis data at 75 x 75 km² spatial resolution and 6-hourly temporal resolution 

(Warscher et al., 2019). Spectral nudging is applied to reduce deviations from the large-scale forcing patterns in the reanalysis 

data (Wagner et al., 2018). Convection is parametrized with the Grell-Freitas scheme (Grell and Freitas, 2014). The detailed 155 

model setup as well as an evaluation of different climate variables is given in Warscher et al. (2019). Here, daily rainfall data 

of the highest-resolution domain are used for the time period of 1980 – 2009. Data are accessed from Warscher (2019). 

2.3.3 WRF ERA5 

The WRF model version 4.1 is configured with two one-way nested domains of 7.5 x 7.5 km² and 1.5 x 1.5 km² grid spacing 

centred over Bavaria (Collier and Mölg, 2020). The model is forced at the outer lateral boundaries by ERA5 reanalysis data at 160 

30 x 30 km² spatial resolution and 3-hourly temporal resolution applying spectral nudging. The higher-resolution 1.5 km setup 

is assumed to explicitly resolve convection, and therefore no parametrization scheme is applied. The 30-year simulation was 

divided into 30 annual slices starting at 1 September of each year. A detailed description of the model setup and evaluation of 

various climate variables is provided in Collier and Mölg (2020). However, the authors emphasize that the applied schemes 

and the model configuration has not been optimized for the study area due to the high computational expenses of the high-165 

resolution run. The physics and dynamics options used in the simulations are based on former convection-permitting WRF 

applications (e.g. Collier et al., 2019). In this study, daily rainfall sums from 1988 – 2017 are extracted from the climate model 

data accessed from Collier (2020).  

3 Extreme value approach 

3.1 Sampling strategies 170 

Extreme value theory (EVT) is applied to quantify the stochastic behaviour of a process at unusually large or small values. It 

is commonly used to calculate return levels for different rainfall durations. There, two classical approaches exist to sample 

these unusual (“extreme”) rainfall intensities (Coles, 2001). For the block maxima (BM) approach, a single value is extracted 
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from a typically seasonal or annual block. This strategy ensures that the samples are distant from each other leading to very 

low serial dependence. However, not all sampled values might be extreme. Also, the information of more than one extreme 175 

value per block is lost as these values are discarded.  

The second approach peak-over threshold (POT) tries to overcome these drawbacks as all values s above a threshold u are 

sampled as extreme values (Balkema and de Haan, 1974; Picklands, 1975). Therefore, multiple values per block are allowed. 

However, additional restrictions have to be introduced to ensure approximately independent samples. To prevent successive 

data points from being sampled that originate from one persistent rainfall event, the time series has to be de-clustered. 180 

Therefore, a temporal threshold tdecluster is chosen and all values within the duration of tdecluster around the sampled extreme 

value are discarded (Coles, 2001). 

For both classical approaches only a limited number of samples contributes to the database of extreme values. A newer 

approach by Marani and Ignaccolo (2015) samples all “wet” events assuming that the information of these “ordinary” values 

can be used to estimate the distribution of extreme values. Thereby, wet events are defined by a threshold twet. It has been 185 

successfully applied for extreme daily precipitation by Zorzetto et al. (2016).  

 

3.2 Extreme value distributions 

According to the sampling strategy, different theoretical extreme value distributions (EVDs) are typically found to represent 

the distributions of the samples.  190 

The Fisher-Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943) states that the distribution of the block 

maxima samples tends to follow the GEV distribution G with the sample size n → ∞: 

 

𝐺(𝑥;  𝜉) = {
exp(− [1 + 𝜉 (

𝑥−𝜇

𝜎
)]

−1
𝜉⁄

) , 𝜉 ≠ 0

exp(− exp(−
𝑥−𝜇

𝜎
)) , 𝜉 = 0

     (1) 

 195 

The location parameter µ governs the center, and the scale parameter σ governs the spread of the GEV distribution. The tail 

behaviour of G is defined by the shape parameter ξ determining whether the GEV follows the Weibull (ξ < 0), Gumbel (ξ = 

0), or Fréchet (ξ > 0) distribution (Gilleland et al., 2017).  Hence, the GEV is a very flexible distribution. The drawback of this 

flexibility shows up in a high estimation variance of ξ resulting in an unstable quantile estimate (Bücher et al., 2020).  

For the POT approach, the exceedances y = s – u are sampled for the threshold u and samples s > u. Thereby, the number of 200 

exceedances per year is assumed to follow a Poisson distribution (Davison & Smith, 1990). The exceedances y of the POT 

threshold u are described by the two-parameter Generalized Pareto (GP) distribution (Davison and Smith, 1990, Martins and 

Stedinger, 2001). The corresponding cumulative density function (CDF) is given by  
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𝐻(𝑦;  𝜉) = {
1 − (1 +

𝜉𝑦

𝛽
)

−1
𝜉⁄

, 𝜉 ≠ 0, 𝛽 >  0, y > 0

1 − exp (
−𝑦

𝛽
) , 𝜉 = 0, 𝛽 >  0, y > 0

 ,   (2) 205 

where y defines the precipitation excess over the threshold u of the POT sampling. The scale parameter β and shape parameter 

ξ describe the spread and tail behaviour of the GP distribution (Coles, 2001).  

Both statistical frameworks can be expressed by the other one as the GP distribution corresponds to the tail distribution of the 

GEV (Coles, 2001; Goda, 2011; Serinaldi and Kilsby, 2014). 

The newer approach by Marani and Ignaccolo (2015) features the Metastatistical Extreme Value (MEV) distribution. They 210 

propose a framework supposing that the “meta-statistic” of the rainfall sums of wet events per year contains information about 

the intensity of extreme events. They assume the sampled wet days > twet to be independent following that the probability 

distribution of maxima ζm can be expressed as 𝜁𝑚(𝑥) = 𝐹(𝑥)𝑛𝑗, where nj is the number of wet events in a year and F(x) is a 

distribution describing the rainfall sums of these events. Based on the results of Wilson and Toumi (2005), the distribution of 

rainfall sums during wet days per year is found to follow a distribution with an exponential tail. They expressed precipitation 215 

as the product of mass flux, specific humidity and precipitation efficiency. Following statistical relationships, they concluded 

that the tail of the distribution of the product of these three random variables is given by a stretched exponential form. Marani 

and Ignaccolo (2015) and Zorzetto et al. (2016) apply a Weibull distribution to describe this relationship. Hence, Weibull 

parameters have to be estimated for each year based on all wet events of a year. The MEV-Weibull CDF is given by 

𝜁𝑚(𝑥) =
1

𝑀
∑ {1 − exp [− (

𝑥

𝐶𝑗
)

𝑤𝑗

]}
𝑛𝑗

𝑀
𝑗=1 , 𝐶𝑗  >  0, 𝑤𝑗  >  0 ,  (3) 220 

 

where j is the year (j = 1, 2, …, M), and nj is the number of wet events in year j. Cj and wj describe the scale and shape of the 

Weibull distribution (Marani and Ignaccolo, 2015). 

 

3.3 Applied approaches 225 

For all three RCM setups, annual maxima of daily precipitation are extracted. Then for all grid cells trends were detected 

applying the Mann-Kendall test at the significance level of α = 0.05. There, the critical p-value is adjusted for multiple testing 

following Wilks (2016). No significant trends are found for the 30 sampled values at each grid cell of every RCM setup. The 

parameters of the GEV distribution G are optimized to the BM samples by estimating the L-moments (Hosking et al., 1985). 

This is carried out applying the R package “extRemes” by Gilleland and Katz (2016). Delicado and Goria (2008) recommend 230 

the method of L-moments for sample sizes of n ≤ 50 as it is robust to outliers in the data. The Anderson-Darling test at the 

significance level of α = 0.05 is applied to ensure the goodness of fit of the estimated GEV distribution at each grid cell.  Again, 

the critical p-value is adjusted for multiple testing. Based on these fits, the 10-year return levels are derived. The spatial 
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distributions of the GEV parameters are mapped in Figure 3. 

 235 

Figure 3: Location, scale, and shape parameters of the GEV-LMOM approach based on the CRCM5-ERA-Interim (a-c), WRF-

ERA-Interim (d-f), and WRF-ERA5 (g-i).  
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There, the location and scale parameters are governed by the topography, where the spatial distribution of these parameters is 

similar for all three RCM setups. The fitted shape parameter reveals a chaotic pattern with small patches of positive and 240 

negative values differing for the three RCM setups.  

The histograms of the parameters are given in the Supplementary Materials (Fig. S1). An exemplary fit for the grid cell of 

Munich is shown in Figure S2 for all three RCM setups. This EVT approach is referred to as GEV-LMOM. 

To assess uncertainties due to the different EVT approaches described in sections 3.1 and 3.2, a modified GEV approach as 

well as the POT and MEV approaches are explored for the WRF-ERA5 data. As small samples lead to high uncertainties 245 

estimating the shape parameter of the GEV distribution, Papalexiou and Koutsoyiannis (2013) recommend using a fixed value 

of ξ = 0.114. This approach is referred to as GEV-FIX. 

 For the POT approach, the daily rainfall time series is de-clustered applying a conservative threshold tdecluster of 5 days. Typical 

continental cyclones are found to last up to 2.25 days in Bavaria, whereas van Bebber type Vb cyclones can last up to 3 days 

(Hofstätter et al., 2018; Mittermeier et al., 2019). Hence, the threshold of 5 days ensures independent samples. Precipitation 250 

intensities are assumed to be extreme when exceeding the threshold given by 90 events per 30-year period. This threshold has 

also been selected by Berg et al. (2019). It amounts to 23.4 mm as spatial average for the whole study area, where the lowest 

threshold is 12.7 mm. Trends are excluded in the same way as for the GEV-LMOM approach. For sample sizes of n > 50, 

Delicado and Goria (2008) and Madsen et al. (1997) recommend Maximum Likelihood Estimation (MLE) as optimization 

algorithm to fit an extreme value distribution. Following this recommendation, MLE is applied to fit the GP distribution to the 255 

90 samples per grid cell using the software package by Gilleland and Katz (2016). The goodness-of-fit is assessed in the same 

way as for the GEV-LMOM approach. An exemplary fit for the grid cell of Munich is shown in Figure S3. This approach is 

referred to as GP-MLE. 

For the MEV approach, I follow the procedure applied by Zorzetto et al. (2016). The Weibull distribution is fitted to the annual 

wet events by means of the probability weighted moments method (PWM, Greenwood et al., 1979). Wet days are defined by 260 

exceedance of the threshold twet = 1 mm d-1 in accordance to WMO guidelines (Klein-Tank et al., 2009). This also accounts 

for the behaviour of RCMs to produce too many very low-intensity precipitation days (“drizzle-effect”; Gutowski et al., 2003). 

The MEV fitting procedure and the calculation of return levels is carried out using the Python software package mevpy 

(Zorzetto, 2021). This approach is referred to as MEV-PWM.  

4 Evaluation of 10-year return levels 265 

4.1 Results 

All approaches and their performance metrics are summarized in Table 1. A mapped comparison of the 10-year return levels 

calculated via GEV-LMOM based on the three different RCM setups is given in Figure 4. For a better visualization, the 

observational product is bilinearly interpolated to the respective RCM grid. The following metrics are calculated for the 
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original data (see Fig. S4 for the natively resolved observational product). The observational product shows the rainfall highest 270 

intensities above 100 mm d-1 at the northern slopes of the Alps. The low mountain ranges of the Bavarian Forest, Swabian 

Jura, Odenwald and Ore Mountains also induce enhanced intensities between 70 mm d-1 and 100 mm d-1. The lowest return 

levels are observed in the north of the study area amounting to intensities below 50 mm d-1 (Fig. 4b, e, h). The 12-km resolution 

CRCM5-ERA-I can reproduce the general spatial pattern with a Spearman rank correlation of ρ = 0.72 (Fig. 4a). The return 

levels are generally overestimated north of 48° N and underestimated south of 48° N as well as in the Ore Mountains (Fig. 4c). 275 

The spatially averaged bias amounts to +6.6 %. The range of simulated rainfall return level intensities is similar to the 

observations for the whole study area (Fig. 5a) as well as for the southern alpine part (Fig. 5b). However, the histogram also 

reveals that the bias stems from simulating too few grid cells with return level intensities between 50 mm d-1 to 60 mm d-1 and 

too many grid cells with return levels at intensities of 70 mm d-1 to 90 mm d-1 (Fig. 5a). 

 280 

Table 1: Summary of the applied RCM setups and EVT approaches. Performance metrics of the comparison to observational return 

levels are given in terms of spatially averaged bias and spatial correlation (Spearman). 

RCM Reanalysis 

data 

Spatial 

resolution 

Convection Sampling EVD EVD 

parameter 

optimization 

Bias Spatial 

correlation 

CRCM5 ERA-

Interim 

12 km Parametrized Block 

maxima 

GEV L-Moments +6.6 % 0.72 

WRF ERA-

Interim 

5 km Parametrized Block 

maxima 

GEV L-Moments +3.2 % 0.82 

WRF ERA5 1.5 km Explicitely 

calculated 

Block 

maxima 

GEV L-Moments +1.1 % 0.82 

WRF ERA5 1.5 km Explicitely 

calculated 

Block 

maxima 

GEV Maximum 

likelihood 

estimation, 

fixed shape 

parameter 

+ 0.8 % 0.79 

WRF ERA5 1.5 km Explicitely 

calculated 

Peak-over-

threshold 

GP Maximum 

likelihood 

estimation 

+1.3 % 0.81 

WRF ERA5 1.5 km Explicitely 

calculated 

All wet 

events 

MEV Probability 

weighted 

moments 

- 6.2 % 0.86 
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Figure 4: 10-year rainfall return levels applying GEV-LMOM based on the CRCM5-ERA-Interim (a), WRF-ERA-Interim (d), 285 
WRF-ERA5 (g). The middle column (b, e, h) shows the observational product bilinearly interpolated to the respective climate model 

grid. The right column (c, f, i) provides the difference calculated as climate model return level minus observational return level.  
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The 10-year return levels based on the WRF-ERA-I at 5 km resolution can recreate the spatial pattern of the observations with 

a Spearman correlation of ρ = 0.82 (Fig. 4d). The higher intensities due to the orographic precipitation at the lower mountain 290 

ranges and their spatial patterns are reproduced, though the intensity around the Bavarian Forest is underestimated. In the 

alpine area, the WRF-ERA-I simulates higher intensities than observed, especially in the Alps southeast of the Inn valley. The 

overall bias amounts to +3.2 %. The histogram of simulated return levels is similar to the observed histogram (Fig. 5a), 

however, the very-high intensities above 110 mm d-1 in the alpine area are overrepresented. Also the range of simulated return 

levels extends to over 140 mm d-1 (Fig. 5b).  295 

 

Figure 5: Histograms of the resulting 10-year return levels in the whole study area (a-c) and the alpine area south of 48° N (d-f). 

Gaussian kernel density estimates are plotted to enhance the readability.  

 

The 10-year return levels based on the WRF-ERA5 show a generally similar spatial pattern to the WRF-ERA-I (Figs. 4g and 300 

3d). The spatial pattern of orographic precipitation around the low mountain ranges is recreated, whereby the intensities at the 

Bavarian Forest and the Odenwald are underestimated. The return levels in south-eastern Bavaria are underestimated as well. 

As the WRF-ERA-I, also the WRF-ERA5 simulates high return levels above 100 mm d-1 in the Alps southeast of the Inn 

valley. This results in a Spearman correlation of ρ = 0.82. The spatial average of the bias amounts to +1.1 %. The range and 

distribution of the simulated return levels is very close to the observations for the whole study area (Fig. 5a) as well as south 305 

of 48° N (Fig. 5b).  
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Figure 6: 10-year rainfall return levels based on the WRF-ERA5 featuring GEV-FIX (a), GP- MLE (d), and featuring MEV-PWM 

(g). The middle column (b, e, h) shows the observational product interpolated to the WRF-ERA5 grid. The right column (c, f, i) 

provides the difference calculated as climate model return level minus observational return level.  310 
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Figure 6 compares the three different EVT approaches GEV-FIX, GP-MLE, and MEV-PWM. The intensities as well as the 

resulting spatial distribution of the GEV-FIX and the GP-MLE are very similar to the GEV-LMOM (Fig 4a, 6a and 6d). The 

spatial correlation between GEV-FIX and the observations amounts to ρ = 0.79 and the overall bias to +0.8 %. For the GP-

MLE, the spatial correlation is ρ = 0.81 and the overall bias is +1.3 %. The MEV-PWM method also shows a similar spatial 

pattern (Fig. 6g), which is slightly more homogeneous than the GEV-LMOM or GP-MLE. The 10-year return levels based on 315 

the MEV-PWM are estimated generally lower than by the classical approaches. The spatial correlation between MEV-PWM 

and the observations amounts to ρ = 0.86 and the overall bias to -6.2 %.  

 

4.2 Discussion 

Generally, the high values of the Spearman’s rank correlation as well as the visual comparison to the observational product 320 

(Fig. 4) prove that all three RCM setups are able to capture the topographic and climatic differences within the study area. 

Furthermore, the overall low bias of the return level indicates that the complex climate of heavy daily precipitation is 

reproduced by the climate models.  

Both, the overall bias, and the spatial correlation imply that the WRF setups at 5 km and 1.5 km spatial resolution can better 

reproduce the observed return levels than the broader-resolution CRCM5-ERA-I. There, both WRF setups show similar 325 

performance metrics. However, this equivalent performance may be caused by the spatial resolution and spatial 

representativeness of the observational data (see Fig. S4 for the native resolution). The German dataset is natively resolved at 

roughly 8 km, and the Austrian dataset at 6 km, whereas the Swiss data are given by single gauges interpolated via ordinary 

kriging. Hence, small-scale spatial features below such resolution cannot be evaluated by comparison to this observational 

product. Comparing the WRF-ERA-I and WRF-ERA5 (Figs. 4d and 4g) reveals a similar spatial pattern, where the higher-330 

resolved WRF-ERA5 can especially add more topographically driven spatial variability in the Alps.  

 

4.2.1 Uncertainties of the observational datasets  

As the German, Austrian, and Swiss data are based on rain gauge measurements, these data are subject to the usual 

measurement inaccuracies leading to an underestimation of rainfall (Westra et al., 2014). For flat areas in Germany, this 335 

deviation is estimated about 5 % during summer (Richter, 1995). In mountainous areas, this deviation is expected to increase 

due to higher wind speeds. According to Sevruk (1981) it amounts to 7 % for Switzerland during summer. In addition to these 

systematic underestimations, different rain gauge types yield varying rainfall measurements inducing additional uncertainty 

(Vuerich et al., 2009). This applies for the different meteorological networks in the study area (Kainz et al., 2007; Frei and 

Schär, 1998; Rauthe et al., 2013, Zolina et al., 2008).  340 

Apart from these measurement errors, the gridded return level products suffer from a limited number of rain gauges (see 

Section 2.2), which also differ within their temporal coverage (Isotta et al., 2014). However, not only the number of stations, 
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but also their spatial representativeness is important for an appropriate interpolation from point-wise measurements to gridded 

estimations (Ahrens, 2006). In mountainous areas, the spatial representativeness of a station is even more limited due to the 

heterogeneous topography. In addition, the station distribution with elevation is not representative as well. Due to easier 345 

maintenance conditions more stations are located in valleys than on the tops of the mountains (Ahrens, 2006; Sevruk, 1997) 

leading to an underestimation for spatially interpolated rainfall in these areas (Isotta et al., 2014). Although the monitoring 

network density in the Alps makes this one of the best-monitored regions with complex topography, Isotta et al. (2014) estimate 

the “real” spatial resolution of the observations to be 10 – 25 km. The regionalization of these point-wise measurements induces 

additional uncertainties. For the German dataset, the orography is employed as additional variable to interpolate the return 350 

levels (Malitz and Ertel, 2015 following Bartels, 1992). Due to the limited spatial representativeness of the rain gauges in the 

Alps, the weather model OKM at 1.5 km resolution (Lorenz and Skoda, 2001) was used to support the spatial interpolation of 

the Austrian return level data (BMLRT, 2018; Kainz et al., 2007). Thereby, not only the spatial distribution of return levels 

was supported by the weather model simulations, but also the intensity of the resulting design rainfall return levels. The return 

levels based on observations only are classified as “probably too low” due to the spatial distribution of the rain gauges, whereas 355 

the weather model return levels are estimated to be “probably too high” (BMLRT, 2006; 2018). Hence, the resulting design 

rainfall return level is a weighted averaging combination of the measured rainfall intensities and the intensities simulated by 

the weather model (BMLRT, 2006). This leads to the conclusion that the deviations of the 10-year return levels between the 

WRF setups (see Figs. 4f and 4i) and the observational data in the Austrian Alps may be caused by the limited spatial 

representativeness of the measurement stations.  360 

For the Swiss data, ordinary kriging is applied to regionalize the available pointwise 10-year return levels. As different 

interpolation methods yield differing results (Hu et al., 2019), this processing step induces additional uncertainty.  

In summary, it can be stated that the study area offers a good temporal and spatial coverage of measurements, especially 

compared to other regions in Europe (Poschlod et al., 2021), which are, however, subject to the uncertainties mentioned above. 

Additionally, uncertainties due to the application of different EVT approaches contribute to the overall uncertainty, which are 365 

discussed in Section 4.2.3 as they apply for both observations and climate model data. 

Hence, the 10-year return levels (Fig. 4b, e, h) provide the best guess based on observations, but are still matter to substantial 

uncertainties, especially in the Alps.  

4.2.2 Uncertainties of the RCM datasets  

Generally, climate model simulations of historical conditions are subject to two major uncertainty factors (Hawkins and Sutton, 370 

2009). Due to the chaotic nature of atmospheric processes the climate system is governed by internal variability. These non-

linear dynamics lead to the behaviour of the system that slightly differing starting conditions may result in significantly 

differing climate realizations (Deser et al., 2012).  However, in this study the degree of internal variability is constrained as 

the RCMs are forced by reanalysis data. The large-scale atmospheric flows are imposed by the lateral boundary conditions, 

and, therefore this source of internal variability is not present in these three RCM setups (Christensen et al., 2001). Still, RCMs 375 
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are governed by smaller-scale atmospheric variability. Alexandru et al. (2007) have shown that a 20-member RCM ensemble 

of the CRCM driven by the same lateral boundary conditions with slightly perturbed starting conditions leads to a reasonable 

spread of simulated precipitation. Even seasonal weather model forecast simulations, which are initialized every month, still 

show variability, especially for precipitation extremes (Kelder et al., 2020; Thompson et al., 2017). Hence, internal variability 

cannot be excluded as uncertainty source. 380 

Since models can only represent a simplified image of reality, the structure of climate models leads to the second major 

uncertainty factor. Even though mainly physically-based, RCMs make use of parametrizations with a differing degree of 

complexity (Jerez et al., 2013). Model uncertainty includes all limitations of the climate model setup such as model-inherent 

simplifications, parameterizations and schemes, the lateral boundary conditions, nesting, nudging, spin-up times, and spatial 

resolution.  385 

Multi-model experiments using the same boundary and starting conditions yield deviating simulations of the climate 

(Holtanová et al., 2019; Solman et al., 2013). Yet, also the same model applying differing physics options and parametrization 

schemes can lead to significant variability in the model results (Laux et al., 2019). Hence, climate model setups can be 

optimized by choosing different model options and schemes and comparing the simulations to observed climate conditions. 

For the WRF-ERA-I setup, this has been carried out for the whole domain covering central Europe following Wagner et al. 390 

(2018; Warscher et al., 2019). The CRCM5-ERA-I and the WRF-ERA5 setups are based on former applications of the 

respective climate model in different domains. Adapting the applied options to the study area could potentially improve the 

model performance (Collier and Mölg, 2020).  

Furthermore, two different reanalysis datasets at 75 km and 30 km spatial resolution covering differing time periods are used 

to drive the RCMs. Stucki et al. (2020) argue that the difference of the driving conditions regarding the spatial resolution can 395 

alter the simulation results, especially over complex terrain.  

The different time windows (1980 – 2009 and 1988 – 2017) of the three model setups lead to different events being sampled. 

Due to the small sample size, this variance can also lead to deviations in the resulting return levels. 

The overall differences between the three RCM setups indicating model uncertainty are less apparent in the resulting 10-year 

return levels than in the evaluation of individual extreme events. For the close reproduction of extreme rainfall events, Stucki 400 

et al. (2020) have shown that initialization of the RCM briefly before the respective events improves the performance at 

recreating rainfall intensities. Here, the RCMs are run in climate mode featuring transient 30-year simulations (CRCM5-ERA-

I, WRF-ERA-I) or annual initialization (WRF-ERA5). It cannot be expected that single extreme events are closely reproduced 

due to the internal variability. Hence, such comparison is not appropriate to evaluate the skill of the model, but to visualize the 

differences due to internal variability and model uncertainties. Therefore, the daily rainfall intensities of the two extreme events 405 

in May 1999 and August 2005 are given in the Supplementary Materials (Figs. S5 and S6). Furthermore, such a comparison 

makes it clear that the compared setups are climate model setups and not weather model setups, despite the high spatial 

resolution (Kelder et al., 2020). While the simulation of individual extremes can differ greatly, the 10-year return levels as a 

climatic indicator for extreme precipitation show a high degree of agreement (see Fig. 4). This suggests that despite all the 
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simplifications and differences leading to model uncertainty, the models can reproduce the climatic character of extreme 410 

precipitation in the study area.  

 

4.2.3 Uncertainties due to EVT  

The concept of classical EVT (see Sections 3.1 and 3.2) holds under rather restrictive assumptions (Papalexiou et al., 2013) 

and each step featuring the choice of the distribution and fitting the distribution parameters induces additional uncertainty 415 

(Miniussi and Marani, 2020). For the GEV approach, Eq. (1) holds for a large number of samples n (ideally the sample size n 

→ ∞). In practice, the limited available time series make it very difficult to determine whether the distribution of extreme 

samples is close to its asymptotic GEV limit (Cook and Harris, 2004; Koutsoyiannis, 2004; Miniussi and Marani, 2020).  

The POT approach partly overcomes the limitation of very low sample sizes by using the threshold u to define extreme events. 

However, the choice of this threshold is crucial as the assumptions of a Poisson arrival of exceedances y as well as the GP 420 

distribution of these exceedances only hold for a threshold u ensuring both the sampled events to be “extreme” and a large 

number of samples n (Picklands, 1975, Miniussi and Marani, 2020).  

Furthermore, uncertainty is induced by the parameter optimization of the respective EVD to adapt the theoretical EVD to the 

extreme precipitation samples, even though appropriate methods are chosen (see Section 3.3; Muller et al., 2009). Assessing 

the goodness of fit by quality measures or statistical testing (e.g. the Anderson-Darling test) can lower the uncertainty due to 425 

the aforementioned assumptions. However, the goodness of fit can only assess the quality of the fit between the theoretical 

EVD and the empirical distribution of the samples. It cannot evaluate if the samples are a “good representation” of possible 

extreme rainfall events within the boundaries of internal variability of the climate system. 

Uncertainty is therefore apparent as the different sampling approaches, EVDs, and fitting methods may lead to differing 

estimations of rainfall return levels (Lazoglou and Anagnostopoulou, 2017). For the GEV-LMOM (Fig. 4g) and GP-MLE 430 

(Fig. 6d) the mean absolute deviation (MAD) between the 10-year return levels based on both approaches amounts to a spatial 

average of 1.7 %. Hence, despite different sampling, distributions, and fitting methods, the results are almost equivalent.  

However, both classical approaches still suffer from drawbacks. Papalexiou and Koutsoyiannis (2013) as well as Serinaldi and 

Kilsby (2014) argue that producing stable fits of the shape parameter of the GEV and GP distributions needs larger sample 

sizes than typically available. They have shown that the estimation of the shape parameter of the GEV and GP distributions is 435 

dependent on the sample size, whereby it is also influenced by the geographical location. Papalexiou and Koutsoyiannis (2013) 

propose to restrict the shape parameter of the GEV to a window described by a normal distribution around the mean value of 

0.114 or to apply a fixed shape parameter of ξ = 0.114. Indeed, the shape parameter of GEV-LMOM shows a heterogeneous 

spatial distribution with small patches of positive and negative values for all three RCM setups (Fig. 3c, f, i). This spatial 

distribution can be interpreted as “noise” due to too low sample sizes, where the 30 annual maximum precipitation events do 440 

not fully represent the range of possible extreme precipitation within the boundaries of internal climate variability. The 

distribution of the shape parameter ξ based on all three RCM setups is centred around a value close to 0.114 (see Fig. S1c). 
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However, Papalexiou and Koutsoyiannis (2013) suggest that 99 % of the distribution should be between 0 and 0.225, whereas 

the distribution of all three RCM setups reveals a larger spread. When restricting the shape parameter to ξ = 0.114, however, 

the 10-year return levels only differ very slightly from the GEV-LMOM resulting in an average MAD of 3.4 % (see Fig. 6a). 445 

As ξ only defines the tail of the distribution it is more relevant for longer return periods.  

In addition to unstable parameters fits, the sampling strategies of both classical EVT approaches only use a small fraction of 

available data. In this study, only 0.3 % (GEV) and 0.8 % (GP) of the daily precipitation sums from the RCMs are sampled. 

Especially with respect to short available observation time series, but also with respect to the extensive computational power 

and related costs of such high-resolution climate models, this sampling is a waste of valuable information (Miniussi and 450 

Marani, 2020). The sampling of the MEV approach overcomes this limitation and uses the information of rainfall intensities 

of all wet days as well as the frequency of these days. This is found to result in more stable fits (Zorzetto et al., 2016). Zorzetto 

et al. (2016) concluded that the MEV outperforms the classical GEV approach due to the more stable parameter fits if the 

return period exceeds the length of the available samples. However, this is not the case for the 10-year return levels based on 

30 years of RCM data in this study. As also found by Zorzetto et al. (2016), the performance of the MEV-PWM at reproducing 455 

the return levels for such a combination of return period and available sample size is slightly worse than of the GEV-LMOM 

(see Figs. 4 and 6).  

5 Conclusion 

Various combinations of high-resolution regional climate models driven by reanalysis data and state-of-the-art EVT 

approaches have been explored to reproduce 10-year return levels or daily rainfall. The increase in spatial resolution comparing 460 

the 12 km CRCM5-ERA-I and the 5 km WRF-ERA-I setups to observations reveals added value in terms of spatial correlation 

and bias. The further increase in spatial resolution featuring the 1.5 km WRF-ERA5, accompanied by an explicit simulation 

of convective processes, cannot greatly improve the performance metrics. This is possibly since the observational product is 

resolved natively between 6 km and 8 km. Hence finer-scale spatial features cannot be evaluated by such comparison.  

The resulting 10-year return levels based on the different applied EVT approaches show good agreement to each other and to 465 

the observational product. This suggests that the methodological uncertainty for return levels of moderate extremes is relatively 

low. However, if return periods outside the sample size are to be extrapolated, the estimation uncertainty of the shape parameter 

governing the tail of the GEV and GP distributions becomes more important. Two approaches are studied to overcome this 

uncertainty. The GEV with fixed shape parameter shows 10-year return levels, which are almost equivalent to the three-

parameter GEV optimized via L-moments. The rather new EVT approach by Marani and Ignaccolo (2015) featuring the MEV 470 

distributions leads to a slight underestimation of 10-year return levels. Nevertheless, this methodology shows great potential 

for extrapolation of longer return periods due to the larger sampling and, therefore, increased stability of the fits (Zorzetto et 

al., 2016).  

The question remains to be answered as to what the findings of this study can contribute to in practice.  
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First, in regions with a low density of rain gauges, such RCM setups can contribute to a homogeneous spatial estimation of 475 

return levels. Even in regions, where the rain gauges cannot represent the spatial heterogeneity, RCMs can be applied to support 

observational products. This is already being done in Austria using a convective-permitting weather model, and the results of 

this study reinforce such use of regional climate models. It is also conceivable to use the high-resolution spatial patterns of 

CPMs as an auxiliary variable for the interpolation of the return levels based on measured data (e.g. via kriging with external 

drift; Haberlandt, 2007 or spatial GEV models; Davison et al., 2012). A visualization of a simple combination approach for 480 

such a subsequent enhancement is provided in Figure 7. Therefore, the differences at each grid cell between the observational 

product and the WRF-ERA5 GEV-LMOM are smoothed with a Gaussian filter and again added to the climate model return 

levels. However, this rather naive approach only serves to provide a visual impression of a possible enhancement.  

 

 485 

Figure 7: (a) Observational 10-year return levels based on the German (8 km), Austrian (6 km), and Swiss (interpolated via ordinary 

kriging) data at original resolution. (b) 10-year return levels based on the WRF-ERA5 applying the GEV-LMOM approach. (c) 

Combination of (a) and (b) by applying a Gaussian filter on the differences. 

 

Second, large ensembles of RCMs can be set up to increase the sample size within the boundaries of the internal climate 490 

variability. On the one hand, increased sample sizes lower the uncertainty related to EVT, on the other hand large ensembles 

enable to quantify uncertainties due to internal variability (Poschlod et al., 2021).  

Third, RCMs driven by global climate models following different emission scenarios allow to simulate climate change induced 

alterations of return levels (Ban et al., 2020). Even though an increase in extreme precipitation intensities is known for decades 

(Trenberth et al., 2003), there is a lack of operational implementation and adaptation. In 2004, a climate change surcharge of 495 

a flat +15 % on top of the 100-year flood return level was introduced in Bavaria for the planning of flood protection facilities 

(LfU, 2021). However, such an adaptation for extreme rainfall is missing so far.  
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Despite all model-specific uncertainties, the evaluation of RCMs in this study proved that they are suitable to reproduce daily 

extreme precipitation intensities over complex terrain. 

 500 

Data availability 

The observational rainfall return level data are available at the German weather service (DWD, 2020), the Federal Ministry of 

Agriculture, Regions and Tourism Austria (BMLRT, 2020), and MeteoSwiss (MeteoSwiss, 2021).  

The daily precipitation of the WRF-ERA-I and WRF-ERA5 are publicly available at Warscher (2019) and Collier (2020), 

which is cordially acknowledged. The CRCM5-ERA-I data are available on request from the author. 505 
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