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Abstract. Extreme daily rainfall is an important trigger for floods in Bavaria. The dimensioning of water management 

structures as well as building codes are based on observational rainfall return levels. In this study, three high-resolution regional 

climate models (RCMs) are employed to produce 10-year and 100-year daily rainfall return levels and their performance is 10 

evaluated by comparison to observational return levels. The study area is governed by different types of precipitation 

(stratiform, orographic, convectional) and a complex terrain, with convective precipitation also contributing to daily rainfall 

levels. The Canadian Regional Climate Model version 5 (CRCM5) at 12 km spatial resolution and the Weather and Forecasting 

Research model (WRF) at 5 km resolution both driven by ERA-Interim reanalysis data use parametrization schemes to simulate 

convection. The WRF at 1.5 km resolution driven by ERA5 reanalysis data explicitly resolves convectional processes. 15 

Applying the Generalized Extreme Value (GEV) distribution, all three modelthe CRCM5 setups can reproduce the 

observational 10-year return levels with an areal average bias of +6.6 % or less and a spatial Spearman rank correlation of ρ 

>= 0.72. The increase of spatial resolution between the 12 km CRCM5 and thehigher-resolution 5 km WRF setup is found to 

improve the performance in terms of bias (+6.6 % and +3.2+4.7 %) and spatial correlation (ρ = 0.72 and ρ = 0.82). However, 

the finer topographic details of the WRF-ERA5 return levels cannot be evaluated with the observation data because their spatial 20 

resolution is too low. Hence, this comparison shows no great further improvement of the spatial correlation (bias = +1.1 %, ρ 

= 0.82) but a small improvement of the bias (2.7 %) of the overall performance compared to the 5 km resolution setup. 

Uncertainties due to extreme value theory are explored by employing three different further approaches for the highest-

resolution WRF-ERA5 setup. Applied on the WRF-ERA5 data, Tthe GEV distribution with fixed shape parameter (bias = 

+0.92.5 %, ρ = 0.79) and the Generalized Pareto (GP: bias = +1.32.9 %, ρ = 0.81) show almost equivalent results for the 10-25 

year return period, whereas the Metastatistical Extreme Value (MEV) distribution leads to a slight underestimation (bias = -

67.28 %, ρ = 0.846). For the 100-year return level, however, the MEV distribution (bias = +2.7 %, ρ = 0.73) outperforms the 

GEV distribution (bias = +13.3 %, ρ = 0.66), the GEV distribution with fixed shape parameter (bias = +12.9 %, ρ = 0.70), and 

the GP distribution (bias = +11.9 %, ρ = 0.63). Hence, for applications, where the return period is extrapolated, the MEV 

framework is recommended. 30 
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From these results, it follows that high-resolution regional climate models are suitable for generating spatially homogeneous 

rainfall return level products. In regions with a sparse rain gauge density or low spatial representativeness of the stations due 

to complex topography, RCMs can support the observational data. Further, RCMs driven by global climate models with 

emission scenarios can project climate change-induced alterations in rainfall return levels at regional to local scales. This 

would allow adjustment of structural design and, therefore, adaption to future precipitation conditions. 35 

1 Introduction 

Extreme rainfall is an important driver for different kinds of hydrometeorological hazards, such as flooding and mass 

movements. The state of Bavaria is exposed to the highest daily rainfall intensities in Germany. Due to the complex topography 

and a dense river network the area is prone to riverine flooding and landslides (Grieser et al., 2006; Wiedenmann et al., 2016). 

Furthermore, urban areas are at risk of urban flooding due to the dense population and a large fraction of impervious areas 40 

(Chen and Leandro, 2019). To assess the risk of heavy precipitation events and to dimension adaptation measures, engineers 

and public authorities often use the concept of rainfall return levels. In Germany, a rainfall return level database (“Coordinated 

heavy precipitation regionalization evaluation”; KOSTRA; Junghänel et al., 2017; Malitz and Ertel, 2015) is supplied by the 

German weather service, which is based on rain gauge observations. A similar product is available for Austria (Kainz et al., 

2007). MeteoSwiss provides mapped return levels and pointwise data (MeteoSwiss, 2021). These products are included in 45 

building standards and are, therefore, widely used. Even though the coverage of rain gauges in Germany, Austria, and 

Switzerland is relatively high, there are uncertainties due to the spatial representativeness of the measuring stations to generate 

an area-wide rainfall return level product. This problem applies even more on a continental scale as the rain gauge density is 

distributed heterogeneously over different European countries, where the available time series might be too short to capture a 

sufficient number of extreme events (Lewis et al., 2019).  50 

Instead of using point-wise measurements, areal precipitation products (e.g. radar, satellite, or reanalysis products) could be 

used as the basis for return level calculations. However, each of these areal precipitation products shows different limitations, 

which lead to uncertain or unrealistic return level estimations. Radar data (RADOLAN for Germany; Kreklow et al., 2020) 

and satellite products (e.g. CMORPH; Joyce et al., 2004 or PERSIANN; Hong et al., 2004) would provide the necessary 

temporal and spatial resolutions to capture extreme rainfall events. Yet, the temporal coverage of these products extends only 55 

to the early 2000s, which is why the sampling of extreme rainfall events is not sufficient for extreme value analysis. 

Furthermore, radar estimates (Goudenhoofdt and Delobbe, 2016; Kreklow et al., 2020) as well as satellite products (Stampoulis 

and Anagnostou, 2012) reveal biases compared to rain gauges. Reanalysis data (e.g. E-OBS; Haylock et al., 2008; ERA-

Interim; Dee et al., 2011; ERA5; Hersbach et al., 2020) would have the necessary temporal coverage, but they show systematic 

underestimation of the intensity of extreme precipitation events (Hu and Franzke, 2020; own calculations, not shown). Ehmele 60 

and Kunz (2019) apply a semi-physical two-dimensional stochastic precipitation model to calculate spatial homogeneous 
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return levels over Baden-Württemberg (Germany). However, the model needs to be calibrated with observational data and 

therefore relies on the high rain gauge density in the area.  

Since the frequency and intensity of heavy precipitation will change due to climate change (Myhre et al., 2019; Poschlod and 

Ludwig, 2021; Westra et al., 2014), the use of climate models would provide the advantage of being able to estimate climate 65 

change-induced alterations in rainfall return levels on a physical basis. However, this application requires careful validation of 

climate model results for historical conditions. 

Regional climate models (RCMs) at 12 km spatial resolution have proven to deliver appropriate rainfall return level estimations 

for 3-hourly to daily duration (Berg et al., 2019; Poschlod et al., 2021; Ulbrich and Nissen, 2017). Although the results show 

a high spatial correlation to observational products and a low bias averaged over the area, local deviations are evident, 70 

especially in regions with complex topography (Poschlod et al., 2021). Also, the intensity of short-duration hourly rainfall 

extremes could not be reproduced at 12 km spatial resolution. 

When communicating the results of climate model projections to local or regional stakeholders, insurance companies, and 

governmental authorities in the field of flood prevention, hydrological modelling, dimensioning of reservoirs, buildings, and 

water infrastructure, these aforementioned local biases may prevent the results from being accepted and implemented 75 

(Benjamin and Budescu, 2018). When presenting the study results (Poschlod et al., 2021; Poschlod and Ludwig, 2021) to a 

selection of representatives of the Bavarian Environmental Agency, local deviations in the climate model data stood in the 

way of further use or even implementation of the study results for adaptation measures to intensifying extreme precipitation 

events. Such discussion events at the interface between climate science and local experts with practical relevance provide 

valuable insight for practitioner demands. Therefore, one of the objectives of this study is to investigate whether higher-80 

resolution climate models can reduce local biases in extreme precipitation. This could lead to a higher acceptance of extreme 

precipitation data based on climate models by government institutions, which would also support the implementation of 

adaptation measures. 

For shorter rainfall durations, many studies have shown that higher-resolution RCMs, so-called convection-permitting models 

(CPMs), improve the reproduction of high-intensity short-duration convectional precipitation events (Brisson et al., 2016; 85 

Coppola et al., 2018; Fosser et al., 2014; Kendon et al., 2014). A spatial resolution of a few kilometres is considered necessary 

by the RCM community to explicitly resolve convection (Langhans et al., 2012, Panosetti et al., 2020; Prein et al., 2015), 

whereas at broader-resolutions parametrization schemes are applied to represent convection. However, also long-duration 

rainfall return levels can be influenced by convectional precipitation. In Germany, convectional rainfall contributes to the 24-

hourly return level for roughly 50 % of the area (Malitz and Ertel, 2015). Therefore, CPMs are expected to improve the 90 

estimations of these return levels as well. Additionally, the higher spatial resolution enhances the representation of complex 

terrain (Karki et al., 2017; Langhans et al., 2012; Poschlod et al., 2018).  

Hence, in this study, three different high-resolution RCMs featuring 12 km, 5 km, and 1.5 km spatial resolution and driven by 

30-year reanalysis data are applied to reproduce daily 10-year and 100-year rainfall return levels over the complex terrain of 

the northern Pre-Alps and Alps. Based on interviews with stakeholders from the infrastructure sector and on legislative 95 
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guidelines, Nissen and Ulbrich (2017) identified the 10-year return level as relevant threshold. Following this recommendation,  

but also to avoid large extreme value statistical uncertainties based on the 30-year time series the 10-year return level is chosen 

in this study as well representing “moderate extremes”. However, since the insurance industry (Ehmele and Kunz, 2019) and 

flood protection (Schmitt and Scheid, 2020) are interested in longer return periods, 100-year return levels are calculated despite 

the higher extreme value statistical uncertainties. The daily duration is relevant for the generation of riverine floods in the 100 

study area (Berghuijs et al., 2019; Keller et al., 2017; Merz and Blöschl, 2003), such as the two extreme flooding events in 

May 1999 and August 2005 in southern Bavaria, Austria, and Switzerland (BLFW, 2003; Grieser et al., 2006; LfU, 2007; 

Stucki et al., 2020) induced by high daily precipitation sums. However, the antecedent wetness state of the catchment also 

plays a major role in the transition of heavy precipitation to floods (Schröter et al., 2015).  

The daily 10-year and 100-year return levels based on the three RCM setups are evaluated by means of an observational return 105 

level product using national datasets from Germany, Austria, and Switzerland. In a second step, different extreme value 

distributions and sampling strategies are applied to the highest-resolutionall climate model datasets to explore uncertainties 

due to extreme value theory and to investigate possible improvements.  

It is studied if RCMs can bridge the data gap of spatial homogeneous rainfall return levels and if higher spatial resolution can 

decrease the biases over areas with complex topography. Therefore, tThe study tries to answer two main research questions: 110 

(1)aims to evaluate the added value due to  Can existing RCM setups at higher spatial resolution reduce local biases in terms 

of biases and improve spatial correlation between the climate model products and the observational product.? (2) How large 

are the differences due to the application of different state-of-the-art extreme value statistical approaches, and which approach 

is recommended?  

2 Study area and dataData and study area 115 

2.1 Description of the study area 

The area of investigation is given by the domain of the highest-resolution RCM, which is centred over the state of Bavaria, 

and the available observational rainfall return level data (see Fig. 1). It covers south-eastern Germany, north-western Austria, 

north-eastern Switzerland and Liechtenstein. The area shows altitude levels below 100 m in the northwest in the Rhine plain 

up to altitudes above 2500 m in the Alps. It covers various low mountain ranges, including the Ore Mountains, Odenwald, 120 

Swabian Jura and Bavarian Forest. The patterns of annual mean precipitation are governed by the complex topography (see 

Fig. 2). Different rainfall types (convectional, orographic, stratiform) contribute to this precipitation climatology (Malitz and 

Ertel, 2015). The lowest annual precipitation sums amount to 500 – 700 mm in the north of the study area. The low mountain 

ranges induce orographic lifting leading to precipitation sums of 1000 to 1500 mm per year. The highest precipitation sums of 

more than 2000 mm are found in the Alps, with dry valleys, such as the Inn valley having totals below 1000 mm. Annual 125 

average temperatures range from less than 0°C in the Alps to 10°C in northern Bavaria (DWD 2021, ZAMG 2021).  
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Figure 1: Topography of the investigated area. The elevation is based on the SRTM at 90 m resolution (Jarvis et al., 2008).  
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Figure 2: Annual mean precipitation for the period 1980 – 2009 from the RCM setup of Warscher et al. (2019).  

 

2.2 1 Observational rainfall return level data 

To evaluate the RCMs, an observation-based product is generated from the three national datasets described below. As these 

datasets extend to the national borders and a little beyond, the arithmetic mean is calculated in the overlapping areas. To 135 

compare gridded precipitation from the RCMs and point measurements from the observations, Breinl et al. (2020) suggest an 

areal reduction of 5 % for pointwise 24-hourly 10-year return levels in Austria. However, to be consistent over the study area, 

no areal reduction factor is applied for the daily duration following Berg et al. (2019) and Poschlod et al. (2021).  
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2.21.1 Germany 

The German weather service offers gridded return level data derived from daily rain gauge measurements (Malitz and Ertel, 140 

2015). The observations cover a period of maximum 1951 – 2010, where only May – September are analysed as the highest 

rainfall amounts occur during these months. A peak -over threshold (POT) sampling strategy was applied for 2231 rain gauges, 

where the threshold corresponds to the available time period. A maximum of 2.718 events per year on average was considered. 

For these samples, an exponential distribution was fitted. The resulting daily return levels are increased by 14 % to provide 

24-hourly moving window estimates (Malitz and Ertel, 2015). The resulting rainfall return levels were spatially interpolated 145 

over Germany at roughly 8 x 8 km² resolution. An uncertainty range of 15 % (20 %) is assumed for the 10-year (100-year) 

return levels, which is induced by measurement errors, uncertainties of the extreme value statistics and regionalization, and 

the internal variability of the climate system (Junghänel et al., 2017). Data are accessed from DWD (2020). As running window 

24-hourly return periods are provided, the rainfall intensities are reduced by 14 % to transfer them to daily estimates.the daily 

return levels were beforehand transferred to 24-hourly moving window estimates, I reduce these values by 14 % to obtain daily 150 

estimates. This relation between daily fixed windows and 24-hourly moving windows has also been applied by Poschlod et al. 

(2021) following Barbero et al. (2019) and Boughton and Jakob (2008). 

2.21.2 Austria 

The Austrian dataset follows a similar approach as the German dataset also applying POT sampling at 141 ombrographs and 

843 ombrometers spatially interpolated to gridded return levels at 6 x 6 km² resolution (BMLRT, 2018). As the rain gauges 155 

are distributed inhomogeneously yielding too low return level estimations, the “orographic convective model” OKM (Lorenz 

and Skoda, 2001) was employed to support the observations (Kainz et al., 2007). The resulting design rainfall is based on a 

combination of the observational data and the weather model simulations. Further details can be found in Kainz et al. (2007) 

and BMLRT (2006; 2018). Data are accessed from BMLRT (2020). Again, this data product provides moving window 24-

hourly estimates, which is why Tthe 24-hourly return levels are adjusted to daily values using applying a the reduction of 14 160 

% (see Sect. 2.1.1).  

2.21.3 Switzerland  

 MeteoSwiss (2021) provides pointwise daily rainfall return levels at 336 rain gauges. The observations cover the time period 

from 1966 to 2015. To increase the sample size, seasonal maxima were extracted and assumed to follow a Generalized Extreme 

Value (GEV) distribution. The GEV distribution is fitted via Bayesian estimation and the according return levels are generated 165 

(Fukutome et al., 2015). Since an areal comparison product is to be produced in this study, these point return levels are 

regionalised by means of ordinary kriging. 
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2.32 Climate model data 

Three different RCM setups are used. The Canadian Regional Climate Model version 5 (CRCM5) driven by ERA-Interim, the 

Weather and Research Forecasting Model (WRF; Skamarock et al., 2008) driven by ERA-Interim, and the WRF driven by 170 

ERA-5. The selection of these three different setups was based on the following considerations: The CRCM5 driven by a 

global climate model has proven to reproduce rainfall return levels over Europe with good skill (Poschlod et al., 2021). As 

described in Section 1, the resulting return levels of this RCM driven by a global climate model were presented to local 

authorities, but local biases prevented further implementation of the results. Therefore, this setup serves as a benchmark. The 

WRF ERA-INTERIM at 5 km resolution represents a setup optimised for the study area with higher spatial resolution but 175 

parameterisation of convection. The WRF ERA5 is the highest resolution setup available with 1.5 km resolution and calculates 

convection explicitly. All three climate model rainfall data sets are openly available. 

2.23.1 CRCM5 ERA-INTERIM 

The CRCM5 at 0.11° resolution equalling roughly 12 km is driven by ERA-Interim reanalysis data (Leduc et al., 2019). 

Convectional processes are parametrized due to the spatial resolution. Processes related to deep convection are calculated with 180 

the parametrization scheme by Kain and Fritsch (1990). The Kuo transient scheme (Bélair et al., 2005; Kuo, 1965) is applied 

to represent shallow convection. A more detailed documentation of the model setup and options used is given by Hernández-

Díaz et al. (2012) and Martynov et al. (2012). Daily rainfall sums of 30-year time period of 1980 – 2009 are extracted for this 

study. 

2.23.2 WRF ERA-INTERIM 185 

The WRF version 3.6.1 is set up in nested domains of 45 x 45 km², 15 x 15 km² and 5 x 5 km² spatial resolution in its non-

hydrostatic mode and driven by ERA-Interim reanalysis data at 75 x 75 km² spatial resolution and 6-hourly temporal resolution 

(Warscher et al., 2019). Spectral nudging is applied to reduce deviations from the large-scale forcing patterns in the reanalysis 

data (Wagner et al., 2018). Convection is parametrized with the Grell-Freitas scheme (Grell and Freitas, 2014). The detailed 

model setup as well as an evaluation of different climate variables is given in Warscher et al. (2019). Here, daily rainfall data 190 

of the highest-resolution domain are used for the time period of 1980 – 2009. Data are accessed from Warscher (2019). 

2.23.3 WRF ERA5 

The WRF model version 4.1 is configured with two one-way nested domains of 7.5 x 7.5 km² and 1.5 x 1.5 km² grid spacing 

centred over Bavaria (Collier and Mölg, 2020). The model is forced at the outer lateral boundaries by ERA5 reanalysis data at 

30 x 30 km² spatial resolution and 3-hourly temporal resolution applying spectral nudging. The higher-resolution 1.5 km setup 195 

is assumed to explicitly resolve convection, and therefore no parametrization scheme is applied. The 30-year simulation was 

divided into 30 annual slices starting at 1 September of each year. As the model is forced by the lateral boundary conditions 
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at 3-hourly resolution, slicing the simulation period is not assumed to have a systematic impact on the magnitude of rainfall 

return levels. A detailed description of the model setup and evaluation of various climate variables is provided in Collier and 

Mölg (2020). However, the authors emphasize that the applied schemes and the model configuration has not been optimized 200 

for the study area due to the high computational expenses of the high-resolution run. The physics and dynamics options used 

in the simulations are based on former convection-permitting WRF applications (e.g. Collier et al., 2019). In this study, daily 

rainfall sums from 1988 – 2017 are extracted from the climate model data accessed from Collier (2020). The 1.5 km domain 

covers 351 × 351 grid cells, whereby the outer 40 cells are discarded on all sides to exclude boundary effects (Collier and 

Mölg, 2020).   205 

 

2.13 Description of the study area 

The area of investigation is given by the analysis domain of the highest-resolution RCM, which is centred over the state of 

Bavaria, and the available observational rainfall return level data (see Fig. 1). It covers south-eastern Germany, north-western 

Austria, north-eastern Switzerland and Liechtenstein. The area shows altitude levels below 100 m in the northwest in the Rhine 210 

plain up to altitudes above 2500 m in the Alps. It covers various low mountain ranges, including the Ore Mountains, Odenwald, 

Swabian Jura and Bavarian Forest. The patterns of annual mean precipitation are governed by the complex topography (see 

Fig. 2; Haylock et al., 2008). Different rainfall types (convectional, orographic, stratiform) contribute to this precipitation 

climatology (Malitz and Ertel, 2015). The lowest annual precipitation sums amount to 500 – 700 mm in the north of the study 

area. The low mountain ranges induce orographic lifting leading to precipitation sums of 1000 to 1500 mm per year. The 215 

highest precipitation sums of more than 2000 mm are found in the Alps, with dry valleys, such as the Inn valley having totals 

below 1000 mm. Annual average temperatures range from less than 0°C in the Alps to 10°C in northern Bavaria (DWD 2021, 

ZAMG 2021).  
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Figure 1: Topography of the investigated area. The elevation is based on the SRTM at 90 m resolution (Jarvis et al., 2008).  
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Figure 2: Annual mean precipitation for the period 1980 – 2009 from the RCM setup of Warscher et al. (2019) based on E-OBS 

(Haylock et al., 2008).  

 225 

3 Extreme value approaches 

3.1 Sampling strategies 

Extreme value theory (EVT) is applied to quantify the stochastic behaviour of a process at unusually large or small values. It 

is commonly used to calculate return levels for different rainfall durations (Coles, 2001)..  

 230 
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3.1 Sampling strategiesBlock maxima 

There, twoA classical approaches exist to sample these unusual (“extreme”) rainfall intensities is given by the block maxima 

(BM) approach (Coles, 2001). For the block maxima (BM) approachTherefore, a single value is extracted from a typically 

seasonal or annual block. This strategy ensures that the samples are distant from each other leading to very low serial 

dependence. However, not all sampled values might be extreme. Also, the information of more than one extreme value per 235 

block is lost as these values are discarded.  

The Fisher-Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943) states that the distribution of the block 

maxima samples tends to follow the GEV distribution, where the cumulative density function (CDF) G is given with the sample 

size n → ∞: 

 240 

 

𝐺(𝑥;  𝜉) = {
exp(− [1 + 𝜉 (

𝑥−𝜇

𝜎
)]

−1
𝜉⁄

) , 𝜉 ≠ 0

exp(− exp(−
𝑥−𝜇

𝜎
)) , 𝜉 = 0

     (1) 

 

The location parameter µ governs the center, and the scale parameter σ governs the spread of the GEV distribution. The tail 

behaviour of G is defined by the shape parameter ξ determining whether the GEV follows the Weibull (ξ < 0), Gumbel (ξ = 245 

0), or Fréchet (ξ > 0) distribution (Gilleland et al., 2017).  Hence, the GEV is a very flexible distribution. The drawback of this 

flexibility shows up in a high estimation variance of ξ resulting in an unstable quantile estimate (Bücher et al., 2020).  

For all three RCM setups, annual maxima of daily precipitation are extracted. Then for all grid cells trends were detected 

applying the Mann-Kendall test at the significance level of α = 0.05. The significance level describes the probability rejecting 

the null hypothesis H0, given that H0 is true. As the statistical test is carried out at n grid cells, H0 would be erroneously rejected 250 

at n⋅α grid cells on average by design of the test setup (Ventura et al., 2004). The rate of these errors is referred to as false 

discovery rate (FDR; Benjamini and Hochberg, 1995). To control the FDR There, the critical p-value is adjusted for multiple 

testing using the approach from Benjamini and Hochberg (1995) following Wilks (2016). H0 is rejected at each grid cell g if 

the p-value of the test pg ≤ pFDR, where  

𝑝𝐹𝐷𝑅 = max
𝑔=1,…,𝑛

{𝑔: 𝑝(𝑔) ≤ α𝐹𝐷𝑅 ∙ (
𝑔

𝑛
)}    (2) 255 

p(g) with g = 1,…,n are the sorted p-values of the statistical test for all grid cells g of the study area. For αFDR the value of 2 ∙ α 

is recommended (Wilks, 2016).  

No significant trends are found for the 30 sampled values at each grid cell of every RCM setup. The parameters of the GEV 

distribution G are optimized to the BM samples by estimating the L-moments (Hosking et al., 1985). This is carried out 

applying the R package “extRemes” by Gilleland and Katz (2016). Delicado and Goria (2008) recommend the method of L-260 

moments for sample sizes of n ≤ 50 as it is robust to outliers in the data. The Anderson-Darling test at the significance level of 
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α = 0.05 is applied to ensure the goodness of fit of the estimated GEV distribution at each grid cell (see Fig. S7).  Again, the 

critical p-value is adjusted for multiple testing. Less than 0.15 % of all fits for all three climate model setups are rejected. 

Based on these fits, the 10-year and 100-year return levels are derived. The spatial distributions of the GEV parameters are 

mapped in Figure 3. 265 

There, the location and scale parameters are is governed by the topography (see Figs. 1 and 3a, d, g), where the spatial 

distribution of these parameters is similar for all three RCM setups. The spatial distribution of the scale parameter also 

corresponds to the topography but shows more noise. The spatial distribution of the WRF-ERA-I and WRF-ERA5 are similar 

and show the highest values of the scale parameter at the northern slopes of the Alps. The orography of the low mountain 

ranges of the Swabian Jura, Odenwald, Ore Mountains and Bavarian Forest also impacts the spatial pattern of the scale 270 

parameter (Figs. 3e and 3h). Lower values are found at the leesides of the low mountain ranges and the inner-alpine dry valleys. 

The spatial distribution of the scale parameter based on the CRCM5-ERA-I follows the topography less closely and shows an 

even noisier pattern (Fig. 3b). Some topographical features can nevertheless be recognised, such as the Odenwald and higher 

values in the Pre-Alps and northern slopes of the Alps. The fitted shape parameter reveals a chaotic pattern with small patches 

of positive and negative values differing for the three RCM setups. This chaotic pattern corresponds to the high estimation 275 

variance of the shape parameter based on the limited available sample size of 30 annual maxima.  

The histograms of the parameters are given in the Supplementary Materials (Fig. S1). An exemplary fit for the grid cell of 

Munich is shown in Figure S2 for all three RCM setups. This EVT approach is referred to as GEV-LMOM. 

To assess uncertainties due to the different EVT approaches described in sections 3.1 and 3.2, a modified GEV approach as 

well as the POT and MEV approaches are explored for the WRF-ERA5 data. As small samples lead to high uncertainties 280 

estimating the shape parameter of the GEV distribution, Papalexiou and Koutsoyiannis (2013) recommend using a fixed value 

of ξ = 0.114. This approach is referred to as GEV-FIX. The Anderson-Darling test at the significance level of α = 0.05 is 

carried out in the same way as for GEV-LMOM (see Fig. S7). Less than 0.01 % of all fits are rejected. Figure S3 provides an 

exemplary fit for the grid cell of Munich. 

 285 
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Figure 3: Location, scale, and shape parameters of the GEV-LMOM approach based on the CRCM5-ERA-Interim (a-c), WRF-

ERA-Interim (d-f), and WRF-ERA5 (g-i).  
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The second approach peak-over threshold (POT) tries to overcome these drawbacks as all values s above a threshold u are 

sampled as extreme values (Balkema and de Haan, 1974; Picklands, 1975). Therefore, multiple values per block are allowed. 

However, additional restrictions have to be introduced to ensure approximately independent samples. To prevent successive 

data points from being sampled that originate from one persistent rainfall event, the time series has to be de-clustered. 

Therefore, a temporal threshold tdecluster is chosen and all values within the duration of tdecluster around the sampled extreme 295 

value are discarded (Coles, 2001). 

For both classical approaches only a limited number of samples contributes to the database of extreme values. A newer 

approach by Marani and Ignaccolo (2015) samples all “wet” events assuming that the information of these “ordinary” values 

can be used to estimate the distribution of extreme values. Thereby, wet events are defined by a threshold twet. It has been 

successfully applied for extreme daily precipitation by Zorzetto et al. (2016).  300 

 

3.2 Extreme value distributionsPeak over threshold 

The second classical approach peak -over threshold (POT) tries to overcome these drawbacks of the BM sampling as all values 

s above a threshold u are sampled as extreme values (Balkema and de Haan, 1974; Picklands, 1975). Therefore, multiple values 

per block are allowed. However, additional restrictions have to be introduced to ensure approximately independent samples. 305 

To prevent successive data points from being sampled that originate from one persistent rainfall event, the time series has to 

be de-clustered. Therefore, a temporal threshold tdecluster is chosen and all values within the duration of tdecluster around the 

sampled extreme value are discarded (Coles, 2001). 

 

According to the sampling strategy, different theoretical extreme value distributions (EVDs) are typically found to represent 310 

the distributions of the samples.  

The Fisher-Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943) states that the distribution of the block 

maxima samples tends to follow the GEV distribution G with the sample size n → ∞: 

 

𝐺(𝑥;  𝜉) = {
exp(− [1 + 𝜉 (

𝑥−𝜇

𝜎
)]

−1
𝜉⁄

) , 𝜉 ≠ 0

exp(− exp(−
𝑥−𝜇

𝜎
)) , 𝜉 = 0

     (1) 315 

 

The location parameter µ governs the center, and the scale parameter σ governs the spread of the GEV distribution. The tail 

behaviour of G is defined by the shape parameter ξ determining whether the GEV follows the Weibull (ξ < 0), Gumbel (ξ = 
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0), or Fréchet (ξ > 0) distribution (Gilleland et al., 2017).  Hence, the GEV is a very flexible distribution. The drawback of this 

flexibility shows up in a high estimation variance of ξ resulting in an unstable quantile estimate (Bücher et al., 2020).  320 

For the POT approach, the exceedances y = s – u are sampled for the threshold u and samples s > u. Thereby, the number of 

exceedances per year is assumed to follow a Poisson distribution (Davison & Smith, 1990). The exceedances y of the POT 

threshold u are described by the two-parameter Generalized Pareto (GP) distribution (Davison and Smith, 1990, Martins and 

Stedinger, 2001). The corresponding cumulative density function (CDF) is given by  

 325 

𝐻(𝑦;  𝜉) = {
1 − (1 +

𝜉𝑦

𝛽
)

−1
𝜉⁄

, 𝜉 ≠ 0, 𝛽 >  0, y > 0

1 − exp (
−𝑦

𝛽
) , 𝜉 = 0, 𝛽 >  0, y > 0

 ,   (23) 

where y defines the precipitation excess over the threshold u of the POT sampling. The scale parameter β and shape parameter 

ξ describe the spread and tail behaviour of the GP distribution (Coles, 2001).  

The GEV and the GPBoth statistical frameworks can be expressed by the other one as the GP distribution corresponds to the 

tail distribution of the GEV (Coles, 2001; Goda, 2011; Serinaldi and Kilsby, 2014). 330 

For the POT approach, the daily rainfall time series is de-clustered applying a conservative threshold tdecluster of 5 days. Typical 

continental cyclones are found to last up to 2.25 days in Bavaria, whereas van Bebber type Vb cyclones can last up to 3 days 

(Hofstätter et al., 2018; Mittermeier et al., 2019). Hence, the threshold of 5 days ensures approximately independent samples. 

Precipitation intensities are assumed to be extreme when exceeding the threshold given by 90 events per 30-year period. This 

threshold has also been selected by Berg et al. (2019). It amounts to 23.4 mm d-1 mm as spatial average for the whole study 335 

area, where the lowest threshold is 12.7 mm d-1mm. Trends are excluded in the same way as for the GEV-LMOM approach. 

For sample sizes of n > 50, Delicado and Goria (2008) and Madsen et al. (1997) recommend Maximum Likelihood Estimation 

(MLE) as optimization algorithm to fit an extreme value distribution. Following this recommendation, MLE is applied to fit 

the GP distribution to the 90 samples per grid cell using the software package by Gilleland and Katz (2016). The goodness of 

fit is assessed in the same way as for the GEV-LMOM approach (see Fig. S7) leading to a rejection of 0.15 % of all fits. An 340 

exemplary fit for the grid cell of Munich is shown in Figure S34. This approach is referred to as GP-MLE. 

The newer approach by Marani and Ignaccolo (2015) features the Metastatistical Extreme Value (MEV) distribution. They 

propose a framework supposing that the “meta-statistic” of the rainfall sums of wet events per year contains information about 

the intensity of extreme events. They assume the sampled wet days > twet to be independent following that the probability 

distribution of maxima ζm can be expressed as 𝜁𝑚(𝑥) = 𝐹(𝑥)𝑛𝑗, where nj is the number of wet events in a year and F(x) is a 345 

distribution describing the rainfall sums of these events. Based on the results of Wilson and Toumi (2005), the distribution of 

rainfall sums during wet days per year is found to follow a distribution with an exponential tail. They expressed precipitation 

as the product of mass flux, specific humidity and precipitation efficiency. Following statistical relationships, they concluded 

that the tail of the distribution of the product of these three random variables is given by a stretched exponential form. Marani 
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and Ignaccolo (2015) and Zorzetto et al. (2016) apply a Weibull distribution to describe this relationship. Hence, Weibull 350 

parameters have to be estimated for each year based on all wet events of a year. The MEV-Weibull CDF is given by 

𝜁𝑚(𝑥) =
1

𝑀
∑ {1 − exp [− (

𝑥

𝐶𝑗
)

𝑤𝑗

]}
𝑛𝑗

𝑀
𝑗=1 , 𝐶𝑗  >  0, 𝑤𝑗  >  0 ,  (3) 

 

where j is the year (j = 1, 2, …, M), and nj is the number of wet events in year j. Cj and wj describe the scale and shape of the 

Weibull distribution (Marani and Ignaccolo, 2015). 355 

 

3.3 Applied approachesMetastatistical extreme value framework 

For both classical approaches only a limited number of samples contributes to the database of extreme values. A newer 

approach by Marani and Ignaccolo (2015) samples all “wet” events assuming that the information of these “ordinary” values 

can be used to estimate the distribution of extreme values. Thereby, wet events are defined by a threshold twet. It has been 360 

successfully applied for extreme daily precipitation by Zorzetto et al. (2016).  

The newer approach by Marani and Ignaccolo (2015) features the Metastatistical Extreme Value (MEV) distribution. They 

propose a framework supposing that the “meta-statistic” of the rainfall sums of wet events per year contains information about 

the intensity of extreme events. They assume the sampled wet days > twet to be independent following that the probability 

distribution of maxima ζm can be expressed as 𝜁𝑚(𝑥) = 𝐹(𝑥)𝑛𝑗, where nj is the number of wet events in a year and F(x) is a 365 

distribution describing the rainfall sums of these events. Based on the results of Wilson and Toumi (2005), the distribution of 

rainfall sums during wet days per year is found to follow a distribution with an exponential tail. They expressed precipitation 

as the product of mass flux, specific humidity and precipitation efficiency. Following statistical relationships, they concluded 

that the tail of the distribution of the product of these three random variables is given by a stretched exponential form. Marani 

and Ignaccolo (2015) and Zorzetto et al. (2016) apply a Weibull distribution to describe this relationship. Hence, Weibull 370 

parameters have to be estimated for each year based on all wet events of a year. The MEV-Weibull CDF is given by 

𝜁𝑚(𝑥) =
1

𝑀
∑ {1 − exp [− (

𝑥

𝐶𝑗
)

𝑤𝑗

]}
𝑛𝑗

𝑀
𝑗=1 , 𝐶𝑗  >  0, 𝑤𝑗  >  0 ,  (34) 

 

where j is the year (j = 1, 2, …, M), and nj is the number of wet events in year j. Cj and wj describe the scale and shape of the 

Weibull distribution (Marani and Ignaccolo, 2015). 375 

For all three RCM setups, annual maxima of daily precipitation are extracted. Then for all grid cells trends were detected 

applying the Mann-Kendall test at the significance level of α = 0.05. There, the critical p-value is adjusted for multiple testing 

following Wilks (2016). No significant trends are found for the 30 sampled values at each grid cell of every RCM setup. The 

parameters of the GEV distribution G are optimized to the BM samples by estimating the L-moments (Hosking et al., 1985). 
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This is carried out applying the R package “extRemes” by Gilleland and Katz (2016). Delicado and Goria (2008) recommend 380 

the method of L-moments for sample sizes of n ≤ 50 as it is robust to outliers in the data. The Anderson-Darling test at the 

significance level of α = 0.05 is applied to ensure the goodness of fit of the estimated GEV distribution at each grid cell.  Again, 

the critical p-value is adjusted for multiple testing. Based on these fits, the 10-year return levels are derived. The spatial 
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distributions of the GEV parameters are mapped in Figure 3. 

 385 
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Figure 3: Location, scale, and shape parameters of the GEV-LMOM approach based on the CRCM5-ERA-Interim (a-c), WRF-

ERA-Interim (d-f), and WRF-ERA5 (g-i).  

 

There, the location and scale parameters are governed by the topography, where the spatial distribution of these parameters is 

similar for all three RCM setups. The fitted shape parameter reveals a chaotic pattern with small patches of positive and 390 

negative values differing for the three RCM setups.  

The histograms of the parameters are given in the Supplementary Materials (Fig. S1). An exemplary fit for the grid cell of 

Munich is shown in Figure S2 for all three RCM setups. This EVT approach is referred to as GEV-LMOM. 

To assess uncertainties due to the different EVT approaches described in sections 3.1 and 3.2, a modified GEV approach as 

well as the POT and MEV approaches are explored for the WRF-ERA5 data. As small samples lead to high uncertainties 395 

estimating the shape parameter of the GEV distribution, Papalexiou and Koutsoyiannis (2013) recommend using a fixed value 

of ξ = 0.114. This approach is referred to as GEV-FIX. 

 For the POT approach, the daily rainfall time series is de-clustered applying a conservative threshold tdecluster of 5 days. Typical 

continental cyclones are found to last up to 2.25 days in Bavaria, whereas van Bebber type Vb cyclones can last up to 3 days 

(Hofstätter et al., 2018; Mittermeier et al., 2019). Hence, the threshold of 5 days ensures independent samples. Precipitation 400 

intensities are assumed to be extreme when exceeding the threshold given by 90 events per 30-year period. This threshold has 

also been selected by Berg et al. (2019). It amounts to 23.4 mm as spatial average for the whole study area, where the lowest 

threshold is 12.7 mm. Trends are excluded in the same way as for the GEV-LMOM approach. For sample sizes of n > 50, 

Delicado and Goria (2008) and Madsen et al. (1997) recommend Maximum Likelihood Estimation (MLE) as optimization 

algorithm to fit an extreme value distribution. Following this recommendation, MLE is applied to fit the GP distribution to the 405 

90 samples per grid cell using the software package by Gilleland and Katz (2016). The goodness-of-fit is assessed in the same 

way as for the GEV-LMOM approach. An exemplary fit for the grid cell of Munich is shown in Figure S3. This approach is 

referred to as GP-MLE. 

For the MEV approach, I follow the procedure applied by Zorzetto et al. (2016). The Weibull distribution is fitted to the annual 

wet events by means of the probability weighted moments method (PWM, Greenwood et al., 1979). Wet days are defined by 410 

exceedance of the threshold twet = 1 mm d-1 in accordance towith WMO guidelines (Klein-Tank et al., 2009). This also accounts 

for the behaviour of RCMs to produce too many very low-intensity precipitation days (“drizzle-effect”; Gutowski et al., 2003). 

As the MEV framework requires the ordinary wet events to be independent (Miniussi et al., 2020) and temporal autocorrelation 

of rainfall over mountainous areas tends to be higher (Marra et al. 2021), the autocorrelation of daily rainfall is analysed 

following Marra et al. (2018; see Fig. S5). In the study area, multi-day precipitation events are common especially at the 415 

mountain slopes (Kunz and Kottmeier, 2006; Pöschmann et al., 2021). Therefore, the temporal autocorrelation is calculated 

for lag times up to 30 days. The autocorrelation between 10 and 30 days drops to very low values and can be assumed to 

represent noise without any statistical or meteorological correlation (Marra et al., 2018). The 75th quantile of this long-lag 

noise is chosen as “noise threshold”. The minimum distance allowed between ordinary events equals the time lag when the 
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autocorrelation first drops below the noise threshold. Hence, the minimum time interval between ordinary wet events may vary 420 

within the grid cells, but the independence of the events is ensured by this methodology. The Weibull distribution is fitted to 

the annual wet events by means of the probability weighted moments method (PWM, Greenwood et al., 1979) following 

Zorzetto et al. (2016). Here, the MLE is not used as estimation method, as the number of wet events per year amounts to 40 

events on average due to the de-clustering to remove the temporal autocorrelation. For small sample sizes, the MLE estimator 

for Weibull parameters is known to be biased (Ross, 1996), whereas the PWM delivers unbiased estimations (Heo et al., 2001).  425 

The MEV fitting procedure and the calculation of return levels is carried out using the Python software package mevpy 

(Zorzetto, 2021). The goodness of fit of the annual wet events applying the Weibull distribution is tested with a Kolmogorov-

Smirnov test at the significance level of α = 0.05, where the p-value is adjusted for multiple testing. Less than 0.06 % of all 30 

annual fits per grid cell are rejected for all climate models. This approach is referred to as MEV-PWM. An exemplary 

comparison of the resulting return level curve to the empirical annual maxima is shown in Figure S6 for the grid cell of Munich. 430 

4 Evaluation of 10-year return levels Results 

4.1 ResultsEvaluation of 10-year return levels 

All approaches and their performance metrics are summarized in Table 1. A mapped comparison of the 10-year return levels 

calculated via GEV-LMOM based on the three different RCM setups is given in Figure 4. For a better visualization, the 

observational product is bilinearly interpolated to the respective RCM grid. The following metrics are calculated for the 435 

original data (see Fig. S14 for the natively resolved observational product). The observational product shows the rainfall 

highest rainfall intensities above 100 mm d-1 at the northern slopes of the Alps. The low mountain ranges of the Bavarian 

Forest, Swabian Jura, Odenwald and Ore Mountains also induce enhanced intensities between 70 mm d-1 and 100 mm d-1. The 

lowest return levels are observed in the north of the study area amounting to intensities below 50 mm d-1 (Fig. 4b, e, h). The 

12-km resolution CRCM5-ERA-I can reproduce the general spatial pattern with a Spearman rank correlation of ρ = 0.72 (Fig. 440 

4a). The return levels are generally overestimated north of 48° N and underestimated south of 48° N as well as in the Ore 

Mountains (Fig. 4c). The spatially averaged bias amounts to +6.6 %. The range of simulated rainfall return level intensities is 

similar to the observations for the whole study area (Fig. 5a) as well as for the southern alpine part (Fig. 5b5d). However, the 

histogram also reveals that the bias stems from simulating too few grid cells with return level intensities between 50 mm d-1 

to 60 mm d-1 and too many grid cells with return levels at intensities of 70 mm d-1 to 90 mm d-1 (Fig. 5a). 445 

 

Table 1: Summary of the applied RCM setups and EVT approaches. Performance metrics of the comparison to observational 10-

year return levels are given in terms of spatially averaged bias and spatial correlation (Spearman). 
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RCM Reanalysis 

data 

Spatial 

resolution 

Convection Sampling EVD EVD 

parameter 

optimization 

Bias Spatial 

correlation 

CRCM5 ERA-

Interim 

12 km Parametrized Block 

maxima 

GEV L-Moments +6.6 % 0.72 

WRF ERA-

Interim 

5 km Parametrized Block 

maxima 

GEV L-Moments +3.24.7 

% 

0.82 

WRF ERA5 1.5 km Explicitely 

calculated 

Block 

maxima 

GEV L-Moments +1.12.4 

% 

0.82 

CRCM5 ERA-

Interim 

12 km Parametrized Block 

maxima 

GEV Maximum 

likelihood 

estimation, 

fixed shape 

parameter 

+7.3 % 0.74 

WRF ERA-

Interim 

5 km Parametrized Block 

maxima 

GEV Maximum 

likelihood 

estimation, 

fixed shape 

parameter 

+4.1 % 0.84 

WRF ERA5 1.5 km Explicitely 

calculated 

Block 

maxima 

GEV Maximum 

likelihood 

estimation, 

fixed shape 

parameter 

+ 0.8 

2.5 % 

0.79 

CRCM5 ERA-

Interim 

12 km Parametrized Peak over 

threshold 

GP Maximum 

likelihood 

estimation 

+7.0 % 0.72 

WRF ERA-

Interim 

5 km Parametrized Peak over 

threshold 

GP Maximum 

likelihood 

estimation 

+5.4 % 0.81 

WRF ERA5 1.5 km Explicitely 

calculated 

Peak- over- 

threshold 

GP Maximum 

likelihood 

estimation 

+1.32.9 

% 

0.81 
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CRCM5 ERA-

Interim 

12 km Parametrized All wet 

events 

MEV Probability 

weighted 

moments 

-2.6 % 0.84 

WRF ERA-

Interim 

5 km Parametrized All wet 

events 

MEV Probability 

weighted 

moments 

-7.1 % 0.88 

WRF ERA5 1.5 km Explicitely 

calculated 

All wet 

events 

MEV Probability 

weighted 

moments 

- 5.86.2 

% 

0.846 
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 450 

Figure 4: 10-year rainfall return levels applying GEV-LMOM based on the CRCM5-ERA-Interim (a), WRF-ERA-Interim (d), 

WRF-ERA5 (g). The middle column (b, e, h) shows the observational product bilinearly interpolated to the respective climate model 

grid. The right column (c, f, i) provides the percentage difference calculated as climate model return level minus observational return 

level.  
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 455 

The 10-year return levels based on the WRF-ERA-I at 5 km resolution can recreate the spatial pattern of the observations with 

a Spearman correlation of ρ = 0.82 (Fig. 4d). The higher intensities due to the orographic precipitation at the lower mountain 

ranges and their spatial patterns are reproduced, though the intensity around the Bavarian Forest is underestimated. In the 

alpine area, the WRF-ERA-I simulates higher intensities than observed, especially in the Alps southeast of the Inn valley. 

However, the results also show a very pronounced orographic signal with low return levels in the major Alpine valleys, which 460 

has also been described by Warscher et al. (2019). The overall bias amounts to +3.24.7 %. The histogram of simulated return 

levels is similar to the observed histogram (Fig. 5a5b), however, the very-high intensities above 110 mm d-1 in the alpine area 

are overrepresented. AlsoAlso, the range of simulated return levels extends to over 140 mm d-1 (Fig. 5b5e).  

 

Figure 5: Histograms of the resulting 10-year return levels in the whole study area (a-c) and the alpine area south of 48° N (d-f). 465 
Gaussian kernel density estimates are plotted to enhance the readability.  

 

The 10-year return levels based on the WRF-ERA5 show a generally similar spatial pattern to the WRF-ERA-I (Figs. 4g and 

3d4d). The spatial pattern of orographic precipitation around the low mountain ranges is recreated, whereby the intensities at 

the Bavarian Forest and the Odenwald are underestimated. The return levels in south-eastern Bavaria are underestimated as 470 

well. As the WRF-ERA-I, also the WRF-ERA5 simulates high return levels above 100 mm d-1 in the Alps southeast of the Inn 

valley. This results in a Spearman correlation of ρ = 0.82. The spatial average of the bias amounts to +1.12.4 %. The range and 
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distribution of the simulated return levels is very close to the observations for the whole study area (Fig. 5a5c) as well as south 

of 48° N (Fig. 5b5f).  

 475 
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Figure 6: 10-year rainfall return levels based on the WRF-ERA5 featuring GEV-FIX (a), GP- MLE (d), and featuring MEV-PWM 

(g). The middle column (b, e, h) shows the observational product interpolated to the WRF-ERA5 grid. The right column (c, f, i) 

provides the percentage difference calculated as climate model return level minus observational return level.  

Figure 6 compares the three different EVT approaches GEV-FIX, GP-MLE, and MEV-PWM based on the WRF-ERA5. The 

intensities as well as the resulting spatial distribution of the GEV-FIX and the GP-MLE are very similar to the GEV-LMOM 480 

(Fig 4a4g, 6a and 6d). The spatial correlation between GEV-FIX and the observations amounts to ρ = 0.79 and the overall bias 

to +0.82.5 %. For the GP-MLE, the spatial correlation is ρ = 0.81 and the overall bias is +1.32.9 %. The MEV-PWM method 

also shows a similar spatial pattern (Fig. 6g), which is slightly more homogeneous than the GEV-LMOM or GP-MLE. The 

10-year return levels based on the MEV-PWM are estimated generally lower than by the classical approaches. The spatial 

correlation between MEV-PWM and the observations amounts to ρ = 0.864 and the overall bias to -67.28 %. The 10-year 485 

return levels of the other combinations of climate model and EVT approach that are not presented in the main article are 

provided in the Supplementary Materials (Figs. S8-S10). 

 

4.2 Evaluation of 100-year return levels 

The summary of the performance of all RCM setups and EVT approaches at the reproduction of the 100-year return level is 490 

given in Table 2. Figure 7 shows the 100-year return levels based on the GEV-LMOM approach compared to the observational 

product. The observational return levels reach values of 150 mm d-1 up to 200 mm d-1 at the northern slopes of the Alps. In the 

Bavarian Forest and Ore Mountains return levels of 100 mm d-1 up to 150 mm d-1 are observed. The low mountain ranges of 

the Swabian Jura and Odenwald show intensities between 90 mm d-1 and 120 mm d-1. The lowest return levels of 50 mm d-1 

to 60 mm d-1 are observed in the plains and leeward sides of the low mountain ranges (Fig. 7b, e, h). The 100-year return levels 495 

based on the CRCM5-ERA-I and the GEV-LMOM approach show a similar spatial pattern as the 10-year return levels, 

however, very high intensities over 180 mm d-1 are generated in the centre of the study area around 49° N. These values 

correspond to the high shape parameter values at these grid cells (see Fig. 3c). Apart from these areas, this approach produces 

too many grid cells in the range of 90 mm d-1 to 140 mm d-1 and too few in the range of 60 mm d-1 to 90 mm d-1 (see Fig. 8a). 

In the Alps, the simulated 100-year return levels slightly underestimate the observations (Fig. 8d). Overall, this approach 500 

cannot well reproduce the general spatial pattern (ρ = 0.38). The spatial average of the bias amounts to +15.5 %. 

The GEV-LMOM based on the WRF-ERA-I also suffers from single grid cells with unrealistically high return levels (> 200 

mm d-1 north of the Alps) due to a high shape parameter (Fig. 3f). The return levels in the areas of all low mountain ranges 

except the Bavarian Forest are overestimated, especially in the Odenwald in the north-west of the study area (see Fig. 7f). This 

general overestimation is also visualized in the histogram of Figure 8b. In the Alps, the 100-year return levels also show the 505 

strong orographic signal of the WRF-ERA-I leading to a greater variance of return levels than observed (Fig. 8e). The spatial 

pattern is recreated with ρ = 0.55 and the overall bias amounts to 17.8 %.  
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Applying the GEV-LMOM on the WRF-ERA5 also leads to single grid cells with very high return levels scattered over the 

study area (Fig. 7g), where the shape parameter is greater than 0.5 (Fig. 3i). Apart from these locations, the spatial features of 

the observed 100-year return level are well reproduced (ρ = 0.66). On average, the intensities are overestimated (Fig. 8c) 510 

amounting to a bias of 13.3 %. In the Alpine area, the simulated rainfall return levels show a greater mean and variance (Fig. 

8f).       

The application of the further three EVT approaches is shown (Fig. 9) and discussed based on the WRF-ERA5. The full 

overview of all climate models and EVT approaches is provided by Figures 7, S11, S12, and S13. Fixing the shape parameter 

to ξ = 0.114 can eliminate the single grid cells with unrealistic return levels (compare Figs. 7g and 9a). The general spatial 515 

pattern is similar, however, the GEV-FIX leads to less variance over the whole study area, as the shape parameter is restricted 

to one value. Hence, areas with very low intensities based on GEV-LMOM are higher based on GEV-FIX, and high return 

levels of GEV-LMOM are reduced by GEV-FIX (Figs. 7g and 9a). The comparison to the observational product (Fig. 9c) 

results in a spatial correlation of ρ = 0.70 and an overall bias of 12.9 %.  

The GP-MLE approach also generates single scattered values with higher intensity, e.g., in the Swabian Jura and in the north-520 

west of the study area (Fig. 9d). These intensities are not as high as for the GEV-LMOM, but these cells differentiate 

inhomogeneously from their respective neighbouring cells. Generally, the spatial patterns and the range of return level values 

is similar to the GEV-LMOM. Hence, also the performance metrics in terms of spatial correlation (ρ = 0.63) and overall bias 

(11.9 %) are close to the metrics of GEV-LMOM.  

The 100-year return levels based on the MEV-PWM approach differ from the other EVT approaches in terms of the spatial 525 

pattern and rainfall intensities. The spatial pattern north of 48°N is very similar to the observations with slight underestimations 

around the Odenwald and the pre-alpine areas in south-eastern Bavaria. However, in the alpine foreland and norther slopes of 

the Alps, the rainfall intensities are underestimated. In sum, this results in a spatial correlation of ρ = 0.73 and an averaged 

bias of 2.7 %.  

       530 
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Figure 7: 100-year rainfall return levels applying GEV-LMOM based on the CRCM5-ERA-Interim (a), WRF-ERA-Interim (d), 

WRF-ERA5 (g). The middle column (b, e, h) shows the observational product bilinearly interpolated to the respective climate model 535 
grid. The right column (c, f, i) provides the percentage difference calculated as climate model return level minus observational return 

level.  
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Figure 8: Histograms of the resulting 100-year return levels in the whole study area (a-c) and the alpine area south of 48° N (d-f). 540 
Gaussian kernel density estimates are plotted to enhance the readability.  
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Figure 9: 100-year rainfall return levels based on the WRF-ERA5 featuring GEV-FIX (a), GP- MLE (d), and featuring MEV-PWM 

(g). The middle column (b, e, h) shows the observational product interpolated to the WRF-ERA5 grid. The right column (c, f, i) 545 
provides the percentage difference calculated as climate model return level minus observational return level.  
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Table 2: Summary of the applied RCM setups and EVT approaches. Performance metrics of the comparison to observational 100-

year return levels are given in terms of spatially averaged bias and spatial correlation (Spearman). 

RCM Reanalysis 

data 

Spatial 

resolution 

Convection Sampling EVD EVD 

parameter 

optimization 

Bias Spatial 

correlation 

CRCM5 ERA-

Interim 

12 km Parametrized Block 

maxima 

GEV L-Moments +15.5 

% 

0.38 

WRF ERA-

Interim 

5 km Parametrized Block 

maxima 

GEV L-Moments +17.8 

% 

0.55 

WRF ERA5 1.5 km Explicitely 

calculated 

Block 

maxima 

GEV L-Moments +13.3 

% 

0.66 

CRCM5 ERA-

Interim 

12 km Parametrized Block 

maxima 

GEV Maximum 

likelihood 

estimation, 

fixed shape 

parameter 

+17.7 

% 

0.62 

WRF ERA-

Interim 

5 km Parametrized Block 

maxima 

GEV Maximum 

likelihood 

estimation, 

fixed shape 

parameter 

+13.9 

% 

0.76 

WRF ERA5 1.5 km Explicitely 

calculated 

Block 

maxima 

GEV Maximum 

likelihood 

estimation, 

fixed shape 

parameter 

+ 12.9 

% 

0.70 

CRCM5 ERA-

Interim 

12 km Parametrized Peak over 

threshold 

GP Maximum 

likelihood 

estimation 

+12.6 

% 

0.37 

WRF ERA-

Interim 

5 km Parametrized Peak over 

threshold 

GP Maximum 

likelihood 

estimation 

+14.7 

% 

0.57 
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WRF ERA5 1.5 km Explicitely 

calculated 

Peak over 

threshold 

GP Maximum 

likelihood 

estimation 

+11.9 

% 

0.63 

CRCM5 ERA-

Interim 

12 km Parametrized All wet 

events 

MEV Probability 

weighted 

moments 

+4.2 % 0.72 

WRF ERA-

Interim 

5 km Parametrized All wet 

events 

MEV Probability 

weighted 

moments 

-1.3 % 0.72 

WRF ERA5 1.5 km Explicitely 

calculated 

All wet 

events 

MEV Probability 

weighted 

moments 

+ 2.7 % 0.73 

 550 

4.25 Discussion 

Generally, the high values of the Spearman’s rank correlation as well as the visual comparison to the observational product 

(Fig. 4) prove that all three RCM setups are able to capture the topographic and climatic differences within the study area. 

Furthermore, the overall low bias of the 10-year return levels indicates that the complex climate of heavy daily precipitation 

is reproduced by the climate models. For the 100-year return levels, the choice of the EVT approach has a greater impact on 555 

the performance metrics. 

Both, the overall bias, and the spatial correlation of 10-year and 100-year return levels imply that the WRF setups at 5 km and 

1.5 km spatial resolution can slightly better reproduce the observed return levels than the broader-resolution CRCM5-ERA-I 

(Tables 1 and 2). There, both WRF setups show similar performance metrics. However, this equivalent performance may be 

caused by the spatial resolution and spatial representativeness of the observational data (see Fig. S14 for the native resolution). 560 

The German dataset is natively resolved at roughly 8 km, and the Austrian dataset at 6 km, whereas the Swiss data are given 

by single gauges interpolated via ordinary kriging. Hence, small-scale spatial features below such resolution cannot be 

evaluated by comparison to this observational product. Comparing the WRF-ERA-I and WRF-ERA5 (Figs. 4d, and 4g, 7d, 

and 7g) reveals a similar spatial pattern, where the higher-resolved WRF-ERA5 can especially add more topographically driven 

spatial variability in the Alps.  565 
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4.25.1 Uncertainties of the observational datasets  

As the German, Austrian, and Swiss data are based on rain gauge measurements, these data are subject to the usual 

measurement inaccuracies leading to an underestimation of rainfall (Westra et al., 2014). For flat areas in Germany, this 

deviation is estimated about 5 % during summer (Richter, 1995). In mountainous areas, this deviation is expected to increase 570 

due to higher wind speeds. According to Sevruk (1981) it amounts to 7 % for Switzerland during summer. In addition to these 

systematic underestimations, different rain gauge types yield varying rainfall measurements inducing additional uncertainty 

(Vuerich et al., 2009). This applies for the different meteorological networks in the study area (Kainz et al., 2007; Frei and 

Schär, 1998; Rauthe et al., 2013, Zolina et al., 2008).  

Apart from these measurement errors, the gridded return level products suffer from a limited number of rain gauges (see 575 

Section 2.2), which also differ within their temporal coverage (Isotta et al., 2014). However, not only the number of stations, 

but also their spatial representativeness is important for an appropriate interpolation from point-wise measurements to gridded 

estimations (Ahrens, 2006). In mountainous areas, the spatial representativeness of a station is even more limited due to the 

heterogeneous topography. In addition, the station distribution with elevation is not representative as well. Due to easier 

maintenance conditions more stations are located in valleys than on the tops of the mountains (Ahrens, 2006; Sevruk, 1997) 580 

leading to an underestimation for spatially interpolated rainfall in these areas (Isotta et al., 2014). Although the monitoring 

network density in the Alps makes this one of the best-monitored regions with complex topography, Isotta et al. (2014) estimate 

the “real” spatial resolution of the observations to be 10 – 25 km. The regionalization of these point-wise measurements induces 

additional uncertainties. For the German dataset, the orography is employed as additional variable to interpolate the return 

levels (Malitz and Ertel, 2015 following Bartels, 1992). Due to the limited spatial representativeness of the rain gauges in the 585 

Alps, the weather model OKM at 1.5 km resolution (Lorenz and Skoda, 2001) was used to support the spatial interpolation of 

the Austrian return level data (BMLRT, 2018; Kainz et al., 2007). Thereby, not only the spatial distribution of return levels 

was supported by the weather model simulations, but also the intensity of the resulting design rainfall return levels. The return 

levels based on observations only are classified as “probably too low” due to the spatial distribution of the rain gauges, whereas 

the weather model return levels are estimated to be “probably too high” (BMLRT, 2006; 2018). Hence, the resulting design 590 

rainfall return level is a weighted averaging combination of the measured rainfall intensities and the intensities simulated by 

the weather model (BMLRT, 2006). This leads to the conclusion that the deviations of the 10-year and 100-year return levels 

between the WRF setups (see Figs. 4f, and 4i, 7f, and 7i) and the observational data in the Austrian Alps may be caused by the 

limited spatial representativeness of the measurement stations.  

For the Swiss data, ordinary kriging is applied to regionalize the available pointwise 10-year return levels. As different 595 

interpolation methods yield differing results (Hu et al., 2019), this processing step induces additional uncertainty.  

In summary, it can be stated that the study area offers a good temporal and spatial coverage of measurements, especially 

compared to other regions in Europe (Poschlod et al., 2021), which are, however, subject to the uncertainties mentioned above. 
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Additionally, uncertainties due to the application of different EVT approaches contribute to the overall uncertainty, which are 

discussed in Section 4.25.3 as they apply for both observations and climate model data. 600 

Hence, the 10-year return levels (Fig. 4b, e, h) and 100-year return levels (Fig. 7b, e, h) provide the best guess based on 

observations, but are still matter to substantial uncertainties, especially in the Alps.  

4.25.2 Uncertainties of the RCM datasets  

Generally, climate model simulations of historical conditions are subject to two major uncertainty factors (Hawkins and Sutton, 

2009). Due to the chaotic nature of atmospheric processes the climate system is governed by internal variability. These non-605 

linear dynamics lead to the behaviour of the system that slightly differing starting conditions may result in significantly 

differing climate realizations (Deser et al., 2012).  However, in this study the degree of internal variability is constrained as 

the RCMs are forced by reanalysis data. The large-scale atmospheric flows are imposed by the lateral boundary conditions, 

and,and therefore this source of internal variability is not present in these three RCM setups (Christensen et al., 2001). Still, 

RCMs are governed by smaller-scale atmospheric variability. Alexandru et al. (2007) have shown that a 20-member RCM 610 

ensemble of the CRCM driven by the same lateral boundary conditions with slightly perturbed starting conditions leads to a 

reasonable spread of simulated precipitation. Even seasonal weather model forecast simulations, which are initialized every 

month, still show variability, especially for precipitation extremes (Kelder et al., 2020; Thompson et al., 2017). Hence, internal 

variability cannot be excluded as uncertainty source. 

Since models can only represent a simplified image of reality, the structure of climate models leads to the second major 615 

uncertainty factor. Even though mainly physically-based, RCMs make use of parametrizations with a differing degree of 

complexity (Jerez et al., 2013). Model uncertainty includes all limitations of the climate model setup such as model-inherent 

simplifications, parameterizations and schemes, the lateral boundary conditions, nesting, nudging, spin-up times, and spatial 

resolution.  

Multi-model experiments using the same boundary and starting conditions yield deviating simulations of the climate 620 

(Holtanová et al., 2019; Solman et al., 2013). Yet,Yet also the same model applying differing physics options and 

parametrization schemes can lead to significant variability in the model results (Laux et al., 2019). Hence, climate model setups 

can be optimized by choosing different model options and schemes and comparing the simulations to observed climate 

conditions. For the WRF-ERA-I setup, this has been carried out for the whole domain covering central Europe following 

Wagner et al. (2018; Warscher et al., 2019). The CRCM5-ERA-I and the WRF-ERA5 setups are based on former applications 625 

of the respective climate model in different domains. Adapting the applied options to the study area could potentially improve 

the model performance (Collier and Mölg, 2020).  

FurthermoreAdditional uncertainty is induced by the boundary conditions, as different reanalysis datasets show considerable 

deviations to each other (Keller and Wahl, 2021). Here, two different reanalysis datasets at 75 km (ERA-I) and 30 km spatial 

resolution (ERA5) covering differing time periods are used to drive the RCMs. Stucki et al. (2020) argue that the difference 630 

of the driving conditions regarding the spatial resolution can alter the simulation results, especially over complex terrain.  
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The different time windows (1980 – 2009 for ERA-I and 1988 – 2017 for ERA5)) of the three model setups lead to different 

events being sampled. Due to the small sample size, this variance can also lead to deviations in the resulting return levels. 

The overall differences between the three RCM setups indicating model uncertainty are less apparent in the resulting 10-year 

return levels than in the evaluation of individual extreme events. For the close reproduction of extreme rainfall events, Stucki 635 

et al. (2020) have shown that initialization of the RCM briefly before the respective events improves the performance at 

recreating rainfall intensities. Here, the RCMs are run in climate mode featuring transient 30-year simulations (CRCM5-ERA-

I, WRF-ERA-I) or annual initialization (WRF-ERA5). It cannot be expected that single extreme events are closely reproduced 

due to the internal variability. Hence, such comparison is not appropriate to evaluate the skill of the model, but to visualize the 

differences due to internal variability and model uncertainties. Therefore, the daily rainfall intensities of the two extreme events 640 

in May 1999 and August 2005 are given in the Supplementary Materials (Figs. S15 and S16). Furthermore, such a comparison 

makes it clear that the compared setups are climate model setups and not weather model setups, despite the high spatial 

resolution (Kelder et al., 2020). While the simulation of individual extremes can differ greatly, the 10-year and 100-year return 

levels as a climatic indicator for extreme precipitation show a high degree of agreement (see Figs. 4 and 7). This suggests that 

despite all the simplifications and differences leading to model uncertainty, the models can reproduce the climatic character of 645 

extreme precipitation in the study area.  

 

4.25.3 Uncertainties due to EVT  

The concept of classical EVT (see Sections 3.1 and 3.2) holds under rather restrictive assumptions (Papalexiou et al., 2013) 

and each step featuring the choice of the distribution and fitting the distribution parameters induces additional uncertainty 650 

(Miniussi and Marani, 2020). For the GEV approach, Eq. (1) holds for a large number of samples n (ideally the sample size n 

→ ∞). In practice, the limited available time series make it very difficult to determine whether the distribution of extreme 

samples is close to its asymptotic GEV limit (Cook and Harris, 2004; Koutsoyiannis, 2004; Miniussi and Marani, 2020).  

The POT approach partly overcomes the limitation of very low sample sizes by using the threshold u to define extreme events. 

However, the choice of this threshold is crucial as the assumptions of a Poisson arrival of exceedances y as well as the GP 655 

distribution of these exceedances only hold for a threshold u ensuring both the sampled events to be “extreme” and a large 

number of samples n (Picklands, 1975, Miniussi and Marani, 2020).  

Furthermore, uncertainty is induced by the parameter optimization of the respective EVD to adapt the theoretical EVD to the 

extreme precipitation samples, even though appropriate methods are chosen (see Section 3.3; Muller et al., 2009). Assessing 

the goodness of fit by quality measures or statistical testing (e.g. the Anderson-Darling test) can lower the uncertainty due to 660 

the aforementioned assumptions. However, the goodness of fit can only assess the quality of the fit between the theoretical 

EVD and the empirical distribution of the samples. It cannot evaluate if the samples are a “good representation” of possible 

extreme rainfall events within the boundaries of internal variability of the climate system. 
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Uncertainty is therefore apparent as the different sampling approaches, EVDs, and fitting methods may lead to differing 

estimations of rainfall return levels (Lazoglou and Anagnostopoulou, 2017). For the GEV-LMOM (Fig. 4g) and GP-MLE 665 

(Fig. 6d) based on the WRF-ERA5 the mean absolute deviation (MAD) between the 10-year return levels based on both 

approaches amounts to a spatial average of 1.7 %. The MAD between the respective 100-year return levels amounts to 8.0 %. 

Hence, despite different sampling, distributions, and fitting methods, the results are almost equivalentclose to each other on 

average. Larger deviations occur at single grid cells.  

However, both classical approaches still suffer from drawbacks. Papalexiou and Koutsoyiannis (2013) as well as Serinaldi and 670 

Kilsby (2014) argue that producing stable fits of the shape parameter of the GEV and GP distributions needs larger sample 

sizes than typically available. They have shown that the estimation of the shape parameter of the GEV and GP distributions is 

dependent on the sample size, whereby it is also influenced by the geographical location. Papalexiou and Koutsoyiannis (2013) 

propose to restrict the shape parameter of the GEV to a window described by a normal distribution around the mean value of 

0.114 or to apply a fixed shape parameter of ξ = 0.114. Indeed, the shape parameter of GEV-LMOM shows a heterogeneous 675 

spatial distribution with small patches of positive and negative values for all three RCM setups (Figs. 3c, f, i). This spatial 

distribution can be interpreted as “noise” due to too low sample sizes, where the 30 annual maximum precipitation events do 

not fully represent the range of possible extreme precipitation within the boundaries of internal climate variability. The 

distribution of the shape parameter ξ based on all three RCM setups is centred around a value close to 0.114 (see Fig. S1c). 

However, Papalexiou and Koutsoyiannis (2013) suggest that 99 % of the distribution should be between 0 and 0.225, whereas 680 

the distribution of all three RCM setups reveals a larger spread. When restricting the shape parameter to ξ = 0.114, however, 

the 10-year return levels only differ very slightly from the GEV-LMOM resulting in an average MAD of 3.4 % (see Fig. 6a). 

As ξ only defines the tail of the distribution it is more relevant for longer return periods. Hence, high values of the shape 

parameter (Figs. 3c, f, i) strongly influence the resulting 100-year return level. The outcome of this issue shows up as 

unrealistically high rainfall intensities (Figs. 7a, d, g) at single grid cells. The GP-MLE approach also suffers from this problem 685 

to a lesser extent (Fig. 9d). The fixed shape parameter prevents this issue (Figs. 9a, S11). However, restricting the shape 

parameter also restricts the flexibility of the GEV, which results in a smaller range of 100-year return levels. The low return 

levels in the plains and leeward areas are therefore slightly overestimated. However, the resulting 100-year return levels show 

a higher degree of homogeneity than the 100-year return levels of GEV-LMOM or GP-MLE (compare Fig. 9a to 7g and 9d).     

In addition to unstable parameters fits, the sampling strategies of both classical EVT approaches only use a small fraction of 690 

available data. In this study, only 0.3 % (GEV) and 0.8 % (GP) of the daily precipitation sums from the RCMs are sampled. 

Especially with respect to short available observation time series, but also with respect to the extensive computational power 

and related costs of such high-resolution climate models, this sampling is a waste of valuable information (Miniussi and 

Marani, 2020). The sampling of the MEV approach overcomes this limitation and uses the information of rainfall intensities 

of all wet days as well as the frequency of these days. This is found to result in more stable fits (Zorzetto et al., 2016). Zorzetto 695 

et al. (2016) concluded that the MEV outperforms the classical GEV approach due to the more stable parameter fits if the 

return period exceeds the length of the available samples. Furthermore, they found that the MEV is better than the GEV at 
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predicting return levels if the EVT models are calibrated on samples, which are independent from the samples used to calculate 

the return levels. However, this is not the case for the 10-year return levels based on 30 years of RCM data in this study. As 

also found by Zorzetto et al. (2016), the performance of the MEV-PWM at reproducing the return levels for such a combination 700 

of return period and available sample size is slightly worse than of the GEV-LMOM (see Figs. 4 and 6). In this study, the 

MEV-PWM return levels are on average lower than the return levels based on the other EVT approaches (Tables 1 and 2). 

While this leads to an average underestimation of the observational product at the 10-year return levels, the MEV can 

outperform the other EVT approaches at the 100-year return levels. In terms of the spatial correlation, the MEV-PWM leads 

to superior results overall than the other approaches for both calculated return levels. The moderate to strong underestimation 705 

of rainfall intensities at the 100-year return period in the area of the Pre-Alps and northern Alps (Fig. 9i) is mainly attributed 

to the climate model data, as all EVT approaches yield lower intensities in this area as well (Figs. 7i, 9c, 9f). The other EVT 

approaches “compensate” these low intensities by their tendency to overestimate the 100-year return levels (see Figs. 7i and 

9). Schellander et al. (2019) apply the MEV optimized via PWM and GEV optimized via MLE on 55 rain gauges with more 

than 100 years of measurements in Austria, which is partly covered by the study area. They split the data, where up to 50 years 710 

are used to calibrate the EVT models. The remaining data are the basis to calculate the return levels, which are used for the 

evaluation of the GEV and MEV. They find that the MEV can outperform the GEV for return periods of 30 years or longer, 

when less than 30 years of data are available. For the two cases of this study (sample size of 30 years and return periods of 10 

and 100 years), they report a slightly superior performance of the GEV for 10-year return levels and a slightly superior 

performance of the MEV for 100-year return levels. In sum, the results of their study are in line with the findings of this study, 715 

even if the differences between GEV and MEV in this investigation are a little more pronounced, especially for the 100-year 

return period. 

5 6 Conclusion 

Various combinations of high-resolution regional climate models driven by reanalysis data and state-of-the-art EVT 

approaches have been explored to reproduce 10-year and 100-year return levels ofr daily rainfall. The increase in spatial 720 

resolution comparing the 12 km CRCM5-ERA-I and the 5 km WRF-ERA-I setups to observations reveals added value in terms 

of spatial correlation and bias compared to the lower-resolution 12 km CRCM5-ERA-I. The further increase in spatial 

resolution featuring thevery high resolution 1.5 km WRF-ERA5, accompanied by an explicit simulation of convective 

processes, cannot greatly only slightly improve the performance metrics. This is possibly since the observational product is 

resolved natively between 6 km and 8 km. Hence finer-scale spatial features cannot be evaluated by such comparison. Despite 725 

the improvement of overall performance metrics, local biases in the order of 30 to 40 % still remain. Therefore, the criticism 

of the practitioners that was expressed for the CRCM5 return levels from Poschlod et al. (2021; see Sect. 1) would also be 

present for the return levels shown here.    
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The resulting 10-year return levels based on the four different applied EVT approaches show good agreement to each other 

and to the observational product. This suggests that the methodological uncertainty for return levels of moderate extremes is 730 

relatively low. However, if return periods outside the sample size are to be extrapolated, the estimation uncertainty of the shape 

parameter governing the tail of the GEV and GP distributions becomes more important. The 100-year return levels based on 

the GEV-LMOM and GP-MLE suffer from single grid cells with unrealistically high return levels due to high estimations of 

the shape parameter. Two approaches are studied to overcome this uncertainty. The GEV with fixed shape parameter shows 

100-year return levels, which whose performance metrics are almost equivalent to the three-parameter GEV optimized via L-735 

moments. However, the resulting return levels are homogeneous and do not show any unrealistic outliers. The rather new EVT 

approach by Marani and Ignaccolo (2015) featuring the MEV distributions leads to a slight underestimation of 10-year return 

levels but produces the best results for the 100-year return period. Nevertheless, tThis methodology shows great potential for 

extrapolation of longer return periods due to the larger sampling and, therefore, increased stability of the fits (Schellander et 

al., 2019; Zorzetto et al., 2016).  740 

The question remains to be answered as to what the findings of this study can contribute to in practice.  

First, in regions with a low density of rain gauges, such RCM setups can contribute to a homogeneous spatial estimation of 

return levels. Even in regions, where the rain gauges cannot represent the spatial heterogeneity, RCMs can be applied to support 

observational products. This is already being done in Austria using a convective-permitting weather model, and the results of 

this study reinforce such use of regional climate models. It is also conceivable to use the high-resolution spatial patterns of 745 

CPMs as an auxiliary variable for the interpolation of the return levels based on measured data (e.g. via kriging with external 

drift; Haberlandt, 2007; or spatial GEV models; Davison et al., 2012; or a spatial representation of the simplified MEV; 

Schellander et al., 2019). A visualization of a simple combination approach for such a subsequent enhancement of 100-year 

return levels is provided in Figure 710. Therefore, the differences at each grid cell between the observational product and the 

WRF-ERA5 GEVMEV-LMOMPWM are smoothed with a Gaussian filter and again added to the climate model return levels. 750 

However, this rather naive approach only serves to provide a visual impression of a possible enhancement.  
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Figure 710: (a) Observational 100-year return levels based on the German (8 km), Austrian (6 km), and Swiss (interpolated via 

ordinary kriging) data at original resolution. (b) 100-year return levels based on the WRF-ERA5 applying the GEVMEV-755 
PWMLMOM approach. (c) Combination of (a) and (b) by applying a Gaussian filter on the differences. 

 

Second, different EVT approaches are explored based on 30 years of data with daily rainfall. For moderate extremes (10-year 

return level), the differences between the EVT approaches are minor. Due to the slight underestimation of the MEV-PWM, 

GEV and GP approaches can be recommended for such applications. For return periods, which are longer than the available 760 

data, the estimation uncertainty of the shape parameter of the GEV and GP distributions induces unrealistic return level values 

at single grid cells. Fixing the shape parameter can prevent this issue. However, the MEV framework using the information of 

all ordinary wet events produces stable fits and shows the best performance at the reproduction of 100-year return levels. It is 

recommended for applications, where the return period needs to be extrapolated. 

Further conclusions regarding the future use of RCMs follow from these findings. SecondThird, large ensembles of RCMs can 765 

be set up to increase the sample size within the boundaries of the internal climate variability. On the one hand, increased sample 

sizes lower the uncertainty related to EVT, on the other hand large ensembles enable to quantify uncertainties due to internal 

variability (Poschlod et al., 2021).  

ThirdFourth, RCMs driven by global climate models following different emission scenarios allow to simulate climate change 

induced alterations of return levels (Ban et al., 2020; Poschlod and Ludwig, 2021). Even though an increase in extreme 770 

precipitation intensities is known for decades (Trenberth et al., 2003), there is a lack of operational implementation and 

adaptation. In 2004, a climate change surcharge of a flat +15 % on top of the 100-year flood return level was introduced in 

Bavaria for the planning of flood protection facilities (LfU, 2021). Indeed, trends in the magnitude of floods in Bavaria can be 

detected (Blöschl et al., 2019). However, such an adaptation for extreme rainfall is missing so far, even though there is much 
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higher consensus in the scientific community about the increase in extreme rainfall intensities than about the increase in floods 775 

(Sharma et al., 2018, Merz et al., 2021).  

Despite all model-specific uncertainties, the evaluation of RCMs in this study proved that they are suitable to reproduce daily 

extreme precipitation intensities over complex terrain. 
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The daily precipitation of the WRF-ERA-I and WRF-ERA5 are publicly available at Warscher (2019) and Collier (2020), 
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