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ABSTRACT,

Seismicity triggered by water level changes in reservoirs and lakes js usually studied stueied
from well-documented contemporary records. Can such triggering be explored on a historical
time scale when the data gathered on water level fluctuations in historic lakes and the earthquake
catalogs suffer from severe uncertainties? These uncertainties stem from the different nature of
the data gathered, methods, and their resolution. In this article, we show a way to considerably

improve the correlation between the-centinuousrecerdinterpolated records of historic water level

reconstructions at the Dead Sea and discrete seismicity patterns in the area over the period of the
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past two millennia. CenstrictedInspired by the data-fromresults of our previous studiesstudy, we

carefully revise the historical earthquake catalog in the Dead Sea keeping only events with

documented destruction in Jerusalem, the largest historical city in the vicinity of the lake. We

then generate an ensemble of random interpolations of water level curves and choose-that-curve

that-best-correlatesrank them by correlation with the historical records of seismic stress release-i

the-Dead-Seareflected-in-the-destructionin-Jderusaterm—We-ther-. We numerically, simulate a

synthetic earthguakecatalog-using-this-eurve-catalog of earthquakes triggered by poroelastic

deformations at hypocentral depths. The catalog is produced by a best-fit water level curve and

by regional strike-slip tectonic deformations. The earthquakes of this synthetic catalog show an

impressing agreement with historic earthguake-recerdsfrom-thefield-earthquakes documented to

damage Jerusalem. We demonstrate for the first time thata high correlation between water level

changes eorrelate-welwithand the ebservedrecorded recurrence intervalrecerdintervals of

historic earthquakes.

KEYWORDS

Seismic recurrence interval; Water level changes; Effective stress; Dead Sea <

INTRODUCTION

Triggering of earthquakes by water level changes in lakes and reservoirs has been a focus of«
seismic investigations eenducted-at-overaround the world (e.g. Simpson et al., 1988; Pandey and
Chadha, 2003; Durad-Gomez and Talwani, 2010). T riggering,is attributed to a drop in the effective
normal stress ehange-at a fault, induced by the-water leadlevel change at the overlying lake’s bed

(Simpson et al., 1988; Dura-Gémez and Talwani, 2010; Hua et al., 2013b; Gupta, 2018). This kind
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of triggering may be particularly significant for areas with moderate and low tectonic strain
accumulations (Pandey and Chadha, 2003; Gupta, 2018), such as the Dead Sea fault in the Middle

East (e.g-.. Masson et al., 2015).

Seismic activity due to water level change was observed beneath artificial reservoirs
immediately after their first filling (e.g. Simpson et al., 1988; Hua et al., 2013 a). It also appeared
after several seasonal filling cycles (Simpson et al., 1988; Talwani, 1997), explained by diffusion
of pore pressure-diffusien to the earthquake’s hypocentral depth via the fault (Dura-Gémez and
Talwani, 2010). The correspondence of this kind of contemporary seismicity to water level change

is usually identified based upon real-time data.

Alternatively, on a much longer time scale, changing seismic activity may also be associated
with water level changes in historic water bodies (e.g., the Dead Sea, 4since 2 ka-present, Fig. 1A,
in Appendix, which occupies the tectonic depression along the Dead Sea fault). Water level hikes
Belferman et al., (2018) and shown to be able to mederately+epresentmoderate the seismicity

pattern at the Dead Sea fault (Belferman et al., 2018).

However, reconstruction of fluctuations in historic lake levels and the concurrent seismicity
are both taeludesubject to significant uncertainties. They stem from the differing nature of the data
gathered on these two phenomena, and thus deserve special consideration. Earthquake dating can
be quite precise, and Hs—accuracy ean—beis verified when different historical sources show
consensus (Guidoboni et al., 1994; Guidoboni and Comastri, 2005; Ambraseys, 2009). Assessment
of the extent of damage (hence earthquake magnitude), similarly requires such a consensus

between the different data sources. Sediment records can help to calibrate the analysis of the
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historical evidence (Agnon, 2014; Kagan et al., 2011). Such records can be tested by trenching

(KhingerWechsler et al., 26452014; Marco and Klinger, 204; Lefevre, 2018). However, in many

cases location-of-the-earthquake epicenter can be imprecise or not even known. Consequently

considerable uncertainty pertains to the historical catalog of earthquakes related directly to the

Dead Sea.

By contrast, histerichistorical water level records are quite precise_elevation wise, as they
are obtained from different points around the lake (Bookman et al., 2004; Migowski et al., 2006).
However, water level dating could have an error of about +£45 yr, as estimated from the radiocarbon
dating of shoreline deposits in a-fan delta euterepoutcrops (Bookman et al., 2004). This may
underestimate the actual dating uncertainty due to reworking of organic matter, sometimes re-
deposited a century or more after equilibration with the atmosphere (Migowski et al., 2004). In
addition, the entire past bi-millennial Dead Sea level record is constrained by less than twenty
“anchor points” (the data obtained by the dating collected from surveyed paleo-shorelines,
Bookman et al., 2004). Therefore, its continuous reconstruction, as suggested in the literature
(Migowski et al., 2006; Stern, 2010), usually takes different forms within the acceptable limits
dictated by the limnological evidence (Bookman et al., 2004). A challenging uncertainty for our

study arises from_the interpolations required for periods when the available data does not constrain

the water levels.

In this article, we take advantage of the correlation between the historic water level
reconstructions at the Dead Sea and seismicity patterns in the area over the past two millennia. We
demonstrate for the first time that plausible scenarios for the lake level history can fit very well

the record of the historic e

earthguakes-are-considered-forstressrelease-historyearthquake recurrence intervals (Rls). Based
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on the correlation between these phenomena, we offer an alternative explanation regarding the

triggering of the earthquakes in the area of the Dead Sea,,

METHODS

To investigate the relation between an accurate but discrete chronology of earthquakes and-
the continuous water level (WL) change, we first explore the space of possible WL histories by a
statistical approach. We generate an ensemble of WL curves (based on the anchor points
(Bookman et al., 2004), while remaining within the limits dictated by climatic and morphological
constraints (Bookman et al., 2004; Migowski et al., 2006 and Stern, 2010), by using a random

number generator.

BestA best, fit random method of WL curve prediction, -
The compilation of WL curves of the Dead Sea for the last two millennia from three recent-

publications (Bookman et al., 2004; Migowski et al., 2006 and Stern 2010) is presented in Figure

TALA by dashed Hinescurves, Generally, the differences between all dashed curves at anchor points

anchor point dated to 1400 CE- (Bookman et al., 2004) for which Migowski et al. (2006) and Stern
(2010) suggested a higher WL. Nevertheless, each hypothetical WL curve is forced to pass through

all anchor points according to Bookman et al. (2004) except for pne, at around 500 CE. The WL

drop around this time, according to Migowski et al. (2006) and Stern (2010), occurred later than
was originally suggested by Bookman et al. {2004)(Figure-1A)-(2004) (Figure 1A), Because this
shift is within the permissible error limits (£45 yr), this anchor point is shifted to the left (+40 yr).
In addition, the WL determined on the curve edges of the studied bi-millennial time interval was

fixeddefined by an-additional 2two anchor, points, through which the estimated WL curve passed

_— o e
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according to all three references-specified-abeve:, In total, we have 13 anchor points. Between

each pair of points, the trendtrends in the WLs isare, constrained by the sedimentary facies

ends,

(Migowski et al., 2006) that specify the edge points of the interval as the extrema for the acceptable

WL variation.

However, within the largest interval between the anchor points (600 - 1100 CE), the en-
fandfield, studies (Migowski et al., 2006; Stern, 2010; Bookman et al., 2004) constrained the WL
to be lower than the extrema at the edges of that interval. For this period, the WL was randomly

interpolated between the—suggested—maximum—thigher (e.g., Migowski et al., 2006) and

minimumlower (e.g-., Stern, 2010):) bounds, To maintain a monotony of the WL variation;

(required by the facies analysis of Migowski et al.), a moving average filtered the random noise

between every pair of anchor points. Accounting for the above-mentioned limits, and setting a ten-

year step, the model gererateshas generated, 10 Mitheamillion WL curves for the last bi-millenial

interval, using a uniformly distributed random number generator.

FheWe test for, linear correlation between the recurrence intervals (RIs) of the widely

recorded moderate-to-large (M>5.5) historical earthquakes available from the literature (see Table

1 and the text description in Appendix), and the generated Wiswas-tested-{e-g-\WL interpolations.
The test is given (as in Figure 9 in Belferman et al., 2018) by ealeulating-the value of the Pearson

product-moment correlation coefficient, R (Figure 2B1B). We use these-statistiesthis statistic, for
evaluating the suitability of each randomly interpolated WL curve for our analysis, for
identification and elimination of any outliers, and for studying the behavior of the entire ensemble

of the curves generated.

The earthquake simulation algorithm
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152

The mpst suitable WL curve suggested by this correlation (discussed in the results section

below), was used to generate aA“Symheti%eaFthquakeswnthetic” earthquakeAcatalog based on the

algorithm described in this section. Synthetic—earthguakes—are—simulated—in—the—model-by

supeﬁmpesing—the—eﬁeeﬁ#eEffective‘ normal Qoroelastic‘stress change due to the WL change is

sugerimposed‘on the tectonic stress accumulated consistently with the slip rate since the preceding

seismic event:, and synthetic earthquakes are simulated using a Coulomb failure envelope and a

Mobhr circle (Jaeger et al., 2009). A vertical outplane strike-slip fault below the lake/reservoir bed

is assumed (simulating a Dead Sea fault), embedded in 2D (plain strain) geometry of the upper

crust (see Belferman et al., 2018). Tectonic horizontal strike-slip displacements at the fault are

approximated by a simple shear approach with no normal strain component.

In the poroelastic part of the model, horizontal stress change normal to the strike slip fault«

produced by the water level change, is calculated under a uniaxial (vertical) strain condition

(Eq.10b in Belferman et al., 2018), applicable to a post-diffusion stage: i.e., when pore pressure at

hypocentral depth approaches that at the lake’s bed, An array of Wi—changeAhfi=
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R=1 specified above. The correlation between the synthetic Rls and WLs (presented in Figure

4Figure 1C),is:

6, Rl = —3840 — 10WL

as expected from the linear dependence suggested by the analytical solution (Eq.4). The dates of
the simulated synthetic earthquakes are presented, versus the dates of the historic earthquakes from

the literature (Table A1, Appendix) in Figure-Figure 1E.
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Eigure 1: (A) The Dead Sea WL reconstruction for the last two
millennia. The dashed curves are suggested by the literature
sources. Turguoise anchor points follow Bookman et al. (2004)
used in WL interpretation, while one point shifted to left in
error_interval of 45 yr. Solid, black line water curve is
suggested by this study. (B) Distribution of Pearson’s product-
moment correlation coefficient of randomly interpolated WLs
and RIs of historic earthquakes. Normal distribution results
from 10M random WLs reconstructions. (C) and (D): Orange
curve represents the best fit random WL curve vs. simulated
and historic Rls, correspondingly. The blue dots mark the dates
of the seismic events, while the black dots indicate the
recurrence _interval between these events. for optimal
visualization of the correlation, the degree of scaling freedom
for the RI axis was set for these figures. (E) Dates of historic
vs. simulated earthquakes based on the suggested best fit WLs
curve (Figs.C.D).
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Figure 2: Ten most suitable WLs identified out of the 10M randomly generated by the Pearson product-moment
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DISCUSSION

Uncertainties in the WL reconstructions associated with dating and resolution lead to-
considerable variance in possible interpolations (Figure-1B).Figure 1B). A Pearson correlation
coefficient test shows that most of the randomly interpolated WL curves give linear correlation
with earthquake RIs (indicated by a mean Pearson coefficient of R=0.63), excluding the three

outliers (Figure-1D)-to-be-diseussed-belowFigure 1D) to be discussed below. Figure 2 shows a

similar pattern of the WL change for the ten most correlated curves. In all cases, a significant rise

in the water level of about 400 CE and 1100 CE is visible and a decrease in the WL around 200

and 600 CE. Also, the maximum level around 500 and 1900 CE appears in all ten cases,

For simulating synthetic earthquakes triggered by WL change, we use the WL curve that
generates the highest correlation with the revised historical catalog (R = 0.912). The dates of these
simulated synthetic earthquakes are comparable with historical earthquakes (Figure-tEFigure 1E)

excluding two events, whose datesdate labels, are shiftedoffset to the y-axis for clarity of

yatt 1autlo,

presentation (1753 CE, 1180 CE). The dates of these synthetic earthquakes might be connected to
three outliers from the historical catalog (1834 CE, 1293 CE, 749 CE depicted in Figure-tBFigure

1D) as explained below.

The 1180 CE synthetic earthquake (FiguretEFigure 1E) is comparable to an earthquake in

the —Jiterature dated by Ben-Menachem (1979) and Amiran et al.- (1994) to the mid-12th century,

(~1150 CE), Ambraseys (2009) doubted the precise dating but accepted this mid-12th century
estimate. The damaged area of this earthquake spanned Jericho and Jerusalem, and the event could
be considered as significant, because it led to the total destruction of two monasteries, one of which

is 10 km south of Jerusalem’s curtain wall. By admitting the ~1150 CE earthquake to the amended
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catalog, we reduce the RI of the subsequent earthquake at 1293 CE (Figure-1BFigure 1D) from

260 to 143 yrs, thereby bringing this outlier very close to the linear correlation.

Our model also generates an earthquake in the 18th century, dated 1753 CE, for which there

were no matches in our initial historical catalog- (Belferman et al., 2018)., However, in Amiran’s

et al. (1994) catalog an earthquake in 1712 CE is indicated: 'The quake shook the solid houses and
ruined three Turkish houses. Felt in Ramle, but not in Jaffa’. Additionally, this earthquake is

evidenced by seismites dated to 1700 — 1712 CE from an Ein Gedi site (Migowski et al., 2004).

Regarding the modeled 1907 CE event, we note the well documented (although often
overlooked) 29 March 1903 CE earthquake (Amiran et al., 1994). This was a moderate but

extendedprolonged, earthquake: local intensity reached VII in a number of localities distributed

outside the rift valley over an area of 140x70 square km (including Jerusalem), whereas the
maximum intensity reported in the rift was VII as well (Jericho). We prefer to correlate the
modeled 1907 event with the stronger 1927 Jericho earthquake that clearly released stress in the
Dead Sea (e.g. Shapira, et al., 1993; Avni et al., 2002; Agnon, 2014). This leaves the 1903
unmatched to our model. Perhaps the earthquake ruptured the northern part of the central Jordan

Valley, north of the Dead Sea and south of Lake Kinneret (Sea of Galilee).

Regarding the last outlier from the historical earthquakes dated to 749 CE (or its neighbors
747 and 757, Table Al in the Appendix) (Figure-1BFigure 1D) and corresponding to the simulated
780 CE earthquake (Figure-1EFigure 1E): the simulation generated the preceding earthquake 514
CE associated with the 659/660 CE event from the literature (Table Al in the Appendix) with a
deviation of 146 years. The rupture zone of 659/660 CE event is uncertain, and this earthquake is

not necessarily related to stress release at the Dead Sea basin. Alternatively, following
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RusselRussell (1985), as a result of the 551 CE earthquake, a fortressesfortress east of the southern

Dead Sea and Petra were destroyed. Newer data—(Marco—et-al—1996), contradicts the assertion
regarding Petra; a failure at the Dead Sea region is still plausible. Replacing the 660 CE earthquake

with 551 CE in the hist-of relevant-historical-earthguakescatalog, changes the RI preceding the 749

CE historical earthquake from 89 to 198, which brings this outlier into a satisfactory linear

correlation (Figure-tBFigure 1D).

Additionally, it should be emphasized that in the simulation presented in this article, the
starting point is, quite arbitrarily, the earthquake of 33CE. This event andtogether with, the
subsequent earthquakes 90CE and 112CE (not predicted by our model) span a single century-

where the catalog is nebulous. Each of these events could thus represent the starting point of the

simulations; or could be omitted at this early and poorly documented interval.

Summarizing the above amendments, we add to our Hstcatalog, of historic events the 551
CE, ~1150 CE, 1712 CE, earthquakes and remove 559/660 CE and 90CE, 112 CE earthquakes

(Figure 1E). Altogether, we get 14 triggered historic earthquakes.

The R

Fhiscorrelation between the water level and recurrence interval is noticeable despitefor, the

—a

different-formvarious variants of the water level eurvescurve reconstruction, (Figure 23).

Valivto valiallls,
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Figure 23: The Dead Sea WL reconstruction for the last two millennia. The dashed curves are suggested-
by the literature. Blue anchor points with an error interval of 45 yr follow Bookman et al. (2004). The

solid black line is the water level curve suggested by this study. The black points represent the RI for revised

historical events, suggested in this study as being relevant to the Dead Sea area.

The correlation of RI with best fit random estimated curve can be specified by a linear

prediction function:
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7. RI = —2483 — 6.5W1L,

This linear relationship between WL and RI underscores the previously proposed

correlations between these phenomena (in Figure 9 in Belferman et al., 2018).

Since the last earthquake (1927CE), the water level in the Dead Sea has continuously-

decreased, at an average annual rate of ~1 m/yr. Today the water level is about -440 (m bmsl), thus

our prediction function suggestsuggests an RI of 377 yr, for such a WL. Mere

specificathyAlternatively, if the water level in the Dead Sea rematnedshould remain, constant (-440

m bmsl), as intended in some mitigation plans, we would expect the next earthquake at about

~2300 yr. Hewey

even-later.

A

This paper stresses that reconstructions of WL curves are not unique and may take various

forms under the constraints available (e.g-., Figure 1A;)-). However, the correlation with an

independent record of RIs of seismic events, assuming that earthquakes are affected by WL hikes,
allows deciphering plausible scenarios for WL evolution. Moreover, for cases with the best but
not perfect correlation, the deviation might be consistent with a release of elastic energy by smaller
earthquakes, which are not accounted for by the deterministic part of our model. We note that
smaller earthquakes might rupture eippinrgdip-slip, fault planes, again not accounted for by our

simple model.

Additionally, as large earthquakes are accompanied by aftershocks, some of the elastic

enerqy is released by them. Moreover, it was shown earlier, in areas where earthquakes caused by

artificial reservoirs, how this mechanism influenced by water level change. It was shown that in

areas of induced seismicity, earthquakes are not only accompanied by aftershocks but also

19 <«
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B16 preceded by foreshocks (Gupta, 2011). The decay curve of this kind of seismicity satisfies criteria

B17  for the second class of earthquake sequences by Mogi (1963). The lack of instrumental records of

B18 historical earthquakes in our study area, does not allow comparison with this class. The 1995 Gulf

B19  of Agaba earthquake (7.2 Mw), the last instrumentally recorded earthquake, was accompanied by

B20 along period (significant enough for stress release consideration) of aftershocks. The earthquake

B21  occurred along the southern part of the plate boundary, which is far enough from the Dead Sea,

B22 and most likely is not influenced by the water level change. Following this earthquake, felt

B23  aftershocks continued for about two years. At least 50 percent of the total moment associated with

B24  these aftershocks was released during the first day after the main shock and over 95 percent in the

B25 first 3 months (Baer 2008). In total, the post-seismic moment released during the period of 6

B26  months to 2 yr after the Nuweiba earthquake is about 15 percent of the co-seismic moment release

B27  (Baer 2008). This earthquake showed that the response of the crust to earthquakes by aftershocks

B28 s negligible, as noted for many large earthquakes (e.q., Scholz 1972).

329 For the case of artificial reservoirs, it was shown that for induced seismicity sequences,

B30 aftershocks continue for a longer time than for tectonic earthquake sequences (Gupta, 2011).

B31 However, because the time scale of RI, the period of aftershocks is insufficient to consider

B32 earthquakes from the sequence in our model as separate events. Regarding the time scale presented

B33 in our study, when the minimal inter-seismic period is about 50 years, the stress released during

B34  post -seismic period can be considered a part of the main shock.

B35 The mechanical model used in this article is rather simplistic, where earthquakes release

B36  strike-slip loading. The basins around the Dead Sea fault system testify for also an extensional

B37 component that could be manifested in co-seismic motion along normal faults. To justify our focus

338  on asingle type of fault (strike-slip), we list the following arguments: [ Formatted: Centered

20 <
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B39 o The far-field maximal and minimal principal stresses in the Dead Sea region are horizontal
840 (Hofstetter et al., 2007; Palano et al. 2013). This is compatible with a dominance of strike-
341 slip_faulting (Anderson, 1951). The tectonic motion at the DSF is characterized
342 predominantly by a left-lateral strike-slip regime with a velocity of ~5 mm/yr along various
343 segments (Garfunkel, 2014; Masson et al.,2015; Sadeh et al., 2012). Large earthquakes that
B44 initiate clusters are likely to rupture along the straight ~100 km strike-slip segments
345 (Lyakhovsky et al., 2001). The strike of these segments parallels the relative plate velocity
346 vector and thus can be approximated by a simple shear. Additionally, in the Dead Sea basin,
347 GPS surveys indicate dominance of strike slip loading. Hamiel et al. (2018) show that, on
348 a plate scale, horizontal shear loading dominates the velocity north of the lake. Hamiel and
349 Piatibratova (2019) detected a sub mm/yr component of extension across the southern
350 normal fault bounding the Dead Sea pull apart, yet the strike-slip component across this
351 very fault seems much larger.

352 o Normal, as well as strike-slip faults, similarly react to water level change that contributes
353 to the vertical stress component and pore pressure change. The seismicity induced by
354 surface water level fluctuations and affected by the faulting regime is critically determined
B55 by the relative orientations of the three principal stresses (Anderson, 1951). In regions
356 where the vertical compressive stress is not minimal (normal and strike-slip faulting),
357 seismic activity is more sensitive to the effective stress change due to water level change,
358 than in regions where it is minimal (thrust faulting) (Simpson, 1976; Snow, 1982; Roeloffs,
859 1988). This is applicable to a case of reservoirs approximated as “infinite” in horizontal
360 plane (e.g., Wang, 2000), with respect to the fault zone horizontal cross-section. Since we
361 are using a one-dimensional model, such approximation is valid for our study area where
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the Dead Sea is large enough in a horizontal plane (100 km x 10 km) compared to the

thickness of the underlying strike-slip fault (cross-section) located in the central part of the

valley.

Our results demonstrate that a fairly simple forward model (based on 1D analytical« :
solution, Belferman et al., 2018) achieves a very good correlation between WLs and RlIs of
moderate-to-strong earthquakes on the Dead Sea fault. Whereas the fault system along the Dead
Sea fault is more complicated, three-dimensional modeling of the tectonic motion, coupled to the
pore pressure evolution, may give more reliable predictions regarding the-garthquake ruptures and
their chronology. Finaly—we-nete-that-underHowever, based on the relationship between, the
present-man-induced-dechine-of- WL and RI changes presented in this article, with the current

anthropogenic decrease in the Dead Sea level (atwith an average annual rate 6f=~ 1 mAa / yr), a

moderate-, to farge-severe garthquake will not be triggered by the mechanism discussed here. This

article not only presents the existence of a connection between WL and RI, but also provides

additional guidance based on this connection, also about the uncertainties regarding the two
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Appendix: The earthquake history of the Dead Sea environs

Numerous publications list earthquakes that hit the Dead Sea and its surroundings during the last-
two millennia (e.g. Agnon, 2014; Ambraseys et al., 1994; Ambraseys, 2009; Amiran et al., 1994;
Guidoboni et al., 1994, Guidoboni and Comastri, 2005). In Belferman et al. (2018) we adopted
from the scores of listed events only the most destructive ones, typically causing local intensities
of VII or higher in Jerusalem. For a minimal epicentral distance of 30 km, this would translate to
a magnitude of ~5.7 or higher (according to the attenuation relation of Hough and Avni, 2011).
Table Al lists the Dead Sea earthquakes considered for stress release across the Dead Sea basin
seismites in the northern Dead Sea. Our simple model simulates an earthquake time series, given
a water level curve. Eleven events from this time series correlate with events of magnitude ~6 or

more in the historic record. Yet, the model generates four events that are not included in our
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original Hstcatalog, On the other hand, a single event (~660 CE) listed in Belferman et al. (2018)
has no counterpart in the simulations despite a wide range of level curves tested. All these curves
are generated by a random number generator, subject to constraints from field data. We first

discuss the four events required by the simulations one by one. Then we review the ~660 CE event

along with other historic events that were left out already in Belferman et al. (2018).
The earthquakes in Table 1 are classified according to the level of acceptance for being destructive

in Jerusalem. The nine events of Class C, are all consensual, also used by Belferman et al.( 2018).

These events appear in all eataloguescatalogs and lists, and need no further discussion. The six

events of Class A are debated events, accepted in the present study. All earthquakes in this class

are selected by simultaneously satisfying two criteria: (1) The acceptance regularizes the relation
between recurrence intervals and lake level; (2) They are corroborated by evidence from seismites
in the northern basin of the Dead Sea (Ein Feshkha and Ein Gedi sites, Fig.Alcorroborate).

We chose the year 33 CE to start our simulations. While this earthquake did not cause a widespread

damage, it was recorded in all three seismite sites (Kagan et al., 2011), with a maximum of decade
uncertainty based on dating by counting lamina under the microscope (Migowski et al., 2004;
Williams et al., 2012).

The second entry in Table Al, ~100, CE, refers to two decades of unrest. Migowski et al. (2004)

identified a pair of seismites around 90 CE and 112 CE in the ‘Ein Gedi Core. The corresponding
sequences in Ein Feshkha and Ze’elim Creek are laminates, attesting to quiescence. A historical
hiatus between the Roman demolition of Jerusalem and the erection of llya Capitolina in its stead
(70-130 CE) preclude historical evidence. Although damage to the Masada fortress has been

assigned to an earthquake 1712 CE.
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Table A2 lists ten earthquakes that have been reported to damage around Jerusalem but are not

required by our simulations. The seven events of Class R are the debated events, rejected here,

after discussion. The three Class S gvents were skipped altogether in that compilation of

Ambraseys (2009).

Of the seven Class R events, the 7 June 659, CE earthquake was accepted by us in Belferman et al.

(2018). The earthquake has been associated with destruction of the Euthymius monastry 10 km

east of Jerusalem, but no damage in the town of Jerusalem has been unequivocally reported
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(Ambraseys, 2009). In Belferman et al. (2018) we included this event in the listcatalog, of Dead
Sea earthquakes, as Langgut et al. (2015) have located it on the center of the Jordan Valley segment
of the transform (Figure Al). However, this interpretation neglected the possibility that the rupture
could have been outside the hydrological effect of the Dead Sea basin. One of the lessons of our
numerous simulations is that our model would not support triggering of this earthquake shortly
(less than a century) before the mid-8th century crisis, when lake levels were dropping to the lowest

point in the studied period (420 m bsl, Fig-Figure, 1a). When rejecting the 659 CE event, the 419

CE earthquake is the one preceding the mid-8th century crisis; the three century recurrence interval
fits well the low lake level.

1016, CE: The collapse of the Dome of the Rock was not explicitly attributed to an earthquake by

the original sources, who found it gnigmatic as well (Ambraseys, 2009).

1644 CE: Ambraseys (2009) quoted a late Arab author, al-Umari, who reported collapse of houses

and deaths of five persons in “the town of Filistin”. While Ambraseys has interpreted it probably
to Jerusalem, it might refer to al-Ramla, the historical capital of the classical Filistin District, as in
“al-Ramla, Madinat Filastin” (Elad, 1992, p335). Or, it is a mistranslation of “Bilad Filistin” which

at that time started refer to the entire Holy Land district, without specifying a town (Gerber, 1998).
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Jerusalem, at that time, was called Bayt el Maqdis or, as nowadays, al-Quds. The only report of an
earthquake in Jerusalem around 1644 mentions horror but no structural damage - the 1643 CE
event that Ambraseys (2009) tends to equate with the 1644 CE event. A seismite in Ein Gedi core
can be correlated with this event (Migowski et al., 2004, Table 2, entry 6). Migowski et al. (2004)
have identified the seismite with the 1656 earthquake that was felt in Palestine; Ambraseys’ (2009)
interpretation was not yet available for them.

1656, CE: This event was strong in Tripoli and only felt in Palestine. Migowski et al. (2004)

correlated it to a seismite based on deposition rates (no lamina counting for that interval). Given
the 1644 CE entry of Ambraseys (2009), this interpretation should be revised, and the 1656 CE

earthquake is not to be associated with any local rupture in the Dead Sea.,
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Table Al: A catolog, of earthquakes that could potentially damage Jerusalem. The classes denote the level of acceptance of

damage to Jerusalem among the researchers: C - consensual; B - accepted by Belferman et al., 2018; A - amended here; R -

rejected here.
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