1 Identifying plausible historical scenarios for coupled lake level

- ² and seismicity rate changes: The case for the Dead Sea during
- 3 the last two millennia.
- 4 M.Mariana Belferman¹, A. Amotz Agnon², R. Regina Katsman¹ and Z. Zvi Ben-Avraham¹
- 5 ¹ The Dr. Moses Strauss Department of Marine Geosciences, Leon H. Charney School of Marine
- 6 Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.
- 7 ² The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of
- 8 Jerusalem, Jerusalem 9190401, Israel
- 9 Mariana Belferman: <u>mkukuliev@gmail.com</u>mkukuliev@gmail.com (corresponding
- 10 <u>outhor</u>author)
- 11 Amotz Agnon: amotz@mail.huji.ac.ilamotz@huji.ac.il
- 12 Regina Katsman: <u>rkatsman@univ.haifa.ac.il</u>
- 13 Zvi Ben-Avraham: zviba@post.tau.ac.il

14 ABSTRACT

Seismicity triggered by water level changes in reservoirs and lakes is usually studied studied from well-documented contemporary records. Can such triggering be explored on a historical time scale when the data gathered on water level fluctuations in historic lakes and the earthquake catalogs suffer from severe uncertainties? These uncertainties stem from the different nature of the data gathered, methods, and their resolution. In this article, we show a way to considerably improve the correlation between the continuous recordinterpolated records of historic water level reconstructions at the Dead Sea and discrete seismicity patterns in the area over the period of the

Formatted: Header & Footer

Style Definition: Normal: Font:

Style Definition: Heading 2: Text Outline

Style Definition: Footer: Font: Font color: Black, Complex Script Font: Arial Unicode MS, (Complex) Hebrew

Style Definition: Heading: Text Outline

Style Definition: Hyperlink.3: Font: (Default) Times New Roman, Complex Script Font: Times New Roman, Italian (Italy)

Style Definition: Hyperlink.4: Font: (Default) Times New Roman, 11 pt, Underline color: Custom Color(RGB(31,56,100)), Font color: Custom Color(RGB(31,56,100)), Complex Script Font: Times New Roman, 11 pt, Italian (Italy)

Style Definition: Hyperlink.5: Font: (Default) Times New Roman, 10 pt, Font color: Black, Complex Script Font: Times New Roman, 10 pt

Style Definition: Hyperlink.6: Font: (Default) Times New Roman, 10 pt, Complex Script Font: Times New Roman, 10 pt, Italian (Italy)

Style Definition: Hyperlink.7: Font: (Default) Times New Roman, Complex Script Font: Times New Roman, English (United States)

Style Definition: Hyperlink.8: Font: (Default) Times New Roman, Complex Script Font: Times New Roman, English (United States)

Style Definition: Hyperlink.9: Font: (Default) Times New Roman, Bold, Italic, Font color: Black, Complex Script Font: Times New Roman, Bold, Italic

Style Definition	(
Style Definition	(
Style Definition	<u> </u>
Style Definition	<u> </u>
Style Definition	<u> </u>
Style Definition: Comment Text: Font:	
Style Definition: Header	
Formatted: Body A	
Formatted: English (United States)	
Formatted: Hyperlink.1	
Formatted: Hyperlink.1	
Formatted	(
Formatted: German (Germany)	
Formatted: None	

22	past two millennia. ConstrictedInspired by the data fromresults of our previous studiesstudy, we	
23	carefully revise the historical earthquake catalog in the Dead Sea keeping only events with	
24	documented destruction in Jerusalem, the largest historical city in the vicinity of the lake. We	
25	then generate an ensemble of random interpolations of water level curves and choose that curve	
26	that best correlates rank them by correlation with the historical records of seismic stress release in	
27	the Dead Sea reflected in the destruction in Jerusalem. We then . We numerically simulate a	Formatted: Default Paragraph Font
28	synthetic earthquake catalog using this curve.catalog of earthquakes triggered by poroelastic	
29	deformations at hypocentral depths. The catalog is produced by a best-fit water level curve and	
30	by regional strike-slip tectonic deformations. The earthquakes of this synthetic catalog show an	
31	impressing agreement with historic earthquake records from the field.earthquakes documented to	
32	damage Jerusalem. We demonstrate for the first time that a high correlation between water level	
33	changes correlate well withand the observed recorded recurrence interval record intervals of	
34	historic earthquakes.	
35	KEYWORDS	
20	Sciencia accountry a internal. Water level that and Dff ative stores. Dead Sec	
30	Seisinic recurrence interval; water level changes; Effective stress; Dead Sea	Formatted: None
37	INTRODUCTION	

I

38

39

40

41

42

Triggering of earthquakes by water level changes in lakes and reservoirs has been a focus of 4-		Formatted: Body A
seismic investigations conducted all overaround the world (e.g. Simpson et al., 1988; Pandey and		
Chadha, 2003; Durá-Gómez and Talwani, 2010). It <u>Triggering</u> is attributed to <u>a drop in</u> the effective		Formatted: Hyperlink.11
normal stress change at a fault, induced by the water loadlevel change at the overlying lake's bed	\leq	Formatted
(Simpson et al., 1988; Durá-Gómez and Talwani, 2010; Hua et al., 2013b; Gupta, 2018). This kind		Formatted: Hebrew

Formatted: Centered

Formatted: Header & Footer

of triggering may be particularly significant for areas with moderate and low tectonic strain
accumulations (Pandey and Chadha, 2003; Gupta, 2018), such as the Dead Sea fault in the Middle
East (e.g₇₄ Masson et al., 2015).

Seismic activity due to water level change was observed beneath artificial reservoirs immediately after their first filling (e.g. Simpson et al., 1988; Hua et al., 2013 a). It also appeared after several seasonal filling cycles (Simpson et al., 1988; Talwani, 1997), explained by <u>diffusion</u> <u>of</u> pore pressure-<u>diffusion</u> to the earthquake's hypocentral depth via the fault (Durá-Gómez and Talwani, 2010). The correspondence of this kind of contemporary seismicity to water level change is usually identified based upon real-time data.

Alternatively, on a much longer time scale, changing seismic activity may also be associated with water level changes in historic water bodies (e.g., the Dead Sea, $4\underline{since 2}$ ka-present, Fig. $1A_{\underline{3}}$ in Appendix, which occupies the tectonic depression along the Dead Sea fault). Water level hikes of ~15 m, characteristic for time intervals of centuries to millennia, were <u>analysedanalyzed</u> in Belferman et al., (2018) and shown to be able to <u>moderately representmoderate</u> the seismicity pattern at the Dead Sea fault (Belferman et al., 2018).

However, <u>reconstruction of</u> fluctuations in historic lake levels and the concurrent seismicity are both <u>includesubject to</u> significant uncertainties. They stem from the differing nature of the data gathered on these two phenomena, and thus deserve special consideration. Earthquake dating can be quite precise, and <u>its</u>-accuracy <u>can beis</u> verified when different historical sources show consensus (Guidoboni et al., 1994; Guidoboni and Comastri, 2005; Ambraseys, 2009). Assessment of the extent of damage (hence earthquake magnitude), similarly requires such a consensus between the different data sources. Sediment records can help to calibrate the analysis of the Formatted: Header & Footer

Formatted: Hebrew

Formatted: None
Formatted: None

historical evidence (Agnon, 2014; Kagan et al., 2011). Such records can be tested by trenching
(KlingerWechsler et al., 20152014; Marco and Klinger, 204; Lefevre, 2018). However, in many
cases location of the earthquake epicenter can be imprecise or not even known. Consequently,
considerable uncertainty pertains to the historical catalog of earthquakes related directly to the
Dead Sea.

70 By contrast, historichistorical water level records are quite precise elevation wise, as they 71 are obtained from different points around the lake (Bookman et al., 2004; Migowski et al., 2006). 72 However, water level dating could have an error of about ± 45 yr, as estimated from the radiocarbon 73 dating of shoreline deposits in a fan delta outeropoutcrops (Bookman et al., 2004). This may 74 underestimate the actual dating uncertainty due to reworking of organic matter, sometimes re-75 deposited a century or more after equilibration with the atmosphere (Migowski et al., 2004). In 76 addition, the entire past bi-millennial Dead Sea level record is constrained by less than twenty 77 "anchor points" (the data obtained by the dating collected from surveyed paleo-shorelines, 78 Bookman et al., 2004). Therefore, its continuous reconstruction, as suggested in the literature 79 (Migowski et al., 2006; Stern, 2010), usually takes different forms within the acceptable limits 80 dictated by the limnological evidence (Bookman et al., 2004). A challenging uncertainty for our study arises from the interpolations required for periods when the available data does not constrain 81 82 the water levels.

In this article, we take advantage of the correlation between the historic water level reconstructions at the Dead Sea and seismicity patterns in the area over the past two millennia. We demonstrate for the first time that plausible scenarios for the lake level history can fit very well the record of the historic carthquakes RI. The fit can even be improved when moderate local earthquakes are considered for stress release historyearthquake recurrence intervals (RIs). Based Formatted: Header & Footer

Formatted: Hebrew

88 on the correlation between these phenomena, we offer an alternative explanation regarding the

89 triggering of the earthquakes in the area of the Dead Sea.

90 METHODS

To investigate the relation between an accurate but discrete chronology of earthquakes and the continuous water level (WL) change, we first explore the space of possible WL histories by a statistical approach. We generate an ensemble of WL curves [based on the anchor points (Bookman et al., 2004), while remaining within the limits dictated by climatic and morphological constraints (Bookman et al., 2004; Migowski et al., 2006 and Stern, 2010), by using a random number generator.

97 BestA best fit random method of WL curve prediction

98 The compilation of WL curves of the Dead Sea for the last two millennia from three recent 99 publications (Bookman et al., 2004; Migowski et al., 2006 and Stern 2010) is presented in Figure 100 $\frac{1}{1}$ by dashed <u>linescurves</u>. Generally, the differences between all dashed curves at anchor points 101 is included within an error limit of ± 45 yr as indicated by error bars, with thean exception of the 102 anchor point dated to 1400 CE₁ (Bookman et al., 2004) for which Migowski et al. (2006) and Stern 103 (2010) suggested a higher WL. Nevertheless, each hypothetical WL curve is forced to pass through 104 all anchor points according to Bookman et al. (2004) except for one, at around 500 CE. The WL 105 drop around this time, according to Migowski et al. (2006) and Stern (2010), occurred later than 106 was originally suggested by Bookman et al. (2004) (Figure 1A). (2004) (Figure 1A)., Because this 107 shift is within the permissible error limits (± 45 yr), this anchor point is shifted to the left (± 40 yr). 108 In addition, the WL determined on the <u>curve_edges</u> of the studied bi-millennial time interval was 109 fixeddefined by an-additional 2two anchor points, through which the estimated WL curve passed

Formatted: None Formatted: German (Germany) Formatted: Body A

Formatted: Header & Footer

Formatted: Space Before	Body A, Justified, Indent: First line: 0 cm, e: 12 pt, After: 8 pt, Line spacing: Double
Formatted:	Font: Bold
Formatted:	Hyperlink.0
Formatted:	Body A
Formatted:	English (United States)
Formatted:	None

Formatted:	English (United States)
Formatted:	None

-{	Formatted: None
1	Formatted: None
Λ	Formatted: None
X	Formatted: None
λ	Formatted: None
-{	Formatted: None
λ	Formatted: Centered

according to all three references specified above. In total, we have 13 anchor points. Between
each pair of points, the trendtrends in the WLs is are constrained by the sedimentary facies
(Migowski et al., 2006) that specify the edge points of the interval as the extrema for the acceptable
WL variation.

114 However, within the largest interval between the anchor points (600 - 1100 CE), the on-115 landfield studies (Migowski et al., 2006; Stern, 2010; Bookman et al., 2004) constrained the WL 116 to be lower than the extrema at the edges of that interval. For this period, the WL was randomly 117 interpolated between the suggested maximum (higher (e.g., Migowski et al., 2006) and 118 minimumlower (e.g., Stern, 2010)-) bounds. To maintain a monotony of the WL variation, 119 (required by the facies analysis of Migowski et al.), a moving average filtered the random noise 120 between every pair of anchor points. Accounting for the above-mentioned limits, and setting a ten-121 year step, the model generateshas generated 10 Millionmillion WL curves for the last bi-millenial 122 interval, using a uniformly distributed random number generator.

123 TheWe test for linear correlation between the recurrence intervals (RIs) of the widely 124 recorded moderate-to-large (M>5.5) historical earthquakes available from the literature (see Table 125 1 and the text description in Appendix), and the generated WLs, was tested (e.g. WL interpolations. 126 The test is given (as in Figure 9 in Belferman et al., 2018) by calculating the value of the Pearson 127 product-moment correlation coefficient, R (Figure 2B1B). We use these statistics this statistic for 128 evaluating the suitability of each randomly interpolated WL curve for our analysis, for 129 identification and elimination of any outliers, and for studying the behavior of the entire ensemble 130 of the curves generated.

) and Formatted: None iation.

Formatted: None
Formatted: None
Formatted: None

Formatted: Header & Footer

Formatted: None

Formatted: None Formatted: None

Formatted: None

Formatted: None
Formatted: None

Formatted: None

Formatted: None
Formatted: None
Formatted: None
Formatted: None
Formatted: None

131 The earthquake simulation algorithm

6

151 (see Eq. 10b in Belferman et all., 2018). This equation assumes the post diffusion stage: i.e. when 152 pore pressure at the hypocentral depth approaches the value at the lake's bed. Here β_{\star} is Biot's Formatted: Header & Footer

Formatted: Font color: Auto
Formatted: None, Font color: Auto
Formatted: Font color: Auto
Formatted: None, Font color: Auto
Formatted: None, Font color: Auto
Formatted: None, Font color: Auto
Formatted: None, Font color: Auto

Formatted:	Body A
Formatted:	None, Font color: Auto
Formatted:	None, Font color: Auto,
Formatted:	None, Font color: Auto
Formatted:	None, Font color: Auto,
Formatted:	None, Font color: Auto
Formatted:	Font color: Auto
Formatted:	None, Font color: Auto
Formatted:	Font color: Auto
Formatted:	None, Font color: Auto
Formatted:	None, Font color: Auto,
Formatted:	None, Font color: Auto,
Formatted:	None, Font color: Auto
Formatted:	Font color: Auto
Formatted: Auto	Hyperlink.0, Font: Not Italic, Font color:
Formatted:	Font color: Auto
Formatted: Auto	Hyperlink.0, Font: Not Italic, Font color:
Formatted:	None, Font color: Auto
Formatted:	None, Font color: Auto
Formatted:	None, Font color: Auto
Formatted:	Font color: Auto
Formatted:	None, Font color: Auto
Formatted:	Centered

153 coefficient and v_{i} is the Poisson's ratio, $p_{s_i} = \rho g \Delta h_{i_2}$ where ρ_{i} is the density of water and g_{i} is the 154 acceleration of gravity.

155 A radius and a centre location of the Mohr circle change as a function of tectonic deformations 156 and water level changes, correspondingly, eventually reaching a failure envelope that simulates an 157 earthquake. The model uses a Byerlee's law envelope (Byerlee, 1978) to define the residual 158 strength of a seismogenic zone at the fault immediately after the earthquake (see Belferman et al., 159 2018 for more detail). Since the effective stress upon the onset of an earthquake is specified by a 160 high failure envelope and the effective stress following the slip is given by the Byerlee law, the 161 model is time-predictable. The stress drop, at least in the nucleation zone, is expected to be 162 proportional to the recurrence interval.

163 The starting point of the simulations is the date of the first historic earthquake (33CE, see 164 Table 1 in the Appendix) from the studied_bi-millennial time interval_studied. The simulation / 165 incrementally proceeds with time over the <u>chosen_WL</u> curve <u>generated</u> (as above) also 166 <u>consideringunder</u> the accumulating tectonic stress-accumulation. After each stress release, the / 167 time to the next earthquake. Δt_{a} is calculated <u>usingfrom</u> the solution of the Mohr-Coulomb failure / 168 criterion for a strike-slip tectonic regime and a WL change. $\Delta h_{i,a}$ applicable to the Dead Sea fault / 169 (Belferman, et al., 2018):

171

 $\tau_i = C + tan(\varphi)\sigma_i$

assuming that $\Delta \tau_{xy_i} = \frac{Ccos(\varphi)}{t_{RI}} \Delta t$ is the tectonic shear stress <u>accumulated consistently with slip-</u> rate at the strike-slip fault-<u>accumulated</u> during the period Δt (time passed since the last earthquake),

2. $(\tau_i - \tau_0)^2 + (\sigma_i - (\sigma_0 + \Delta \sigma'_i))^2 = (R_0 + \Delta \tau_{xy_i})^2$

	Formatted	
/	Formatted	
/	Formatted	<u> </u>
	Formatted	<u> </u>
\sum	Formatted	
M	Formatted	
	Formatted	
$\left(\right) $	Formatted	
	Formatted	
	Formatted	
	Formatted	
$\overline{}$	Formatted	<u> </u>
	Formatted	(
	Formatted	(
	Formatted	(
1//	Formatted	<u> </u>
	Formatted	<u> </u>
1//	Formatted	<u> </u>
$\parallel \mid$	Formatted	<u> </u>
///	Formatted	
$\ $	Formatted	(
7/,	Formatted	
	Formatted	
7	Formatted	(
	Formatted	(
$\parallel \mid$	Formatted	<u> </u>
//	Formatted	(
///	Formatted	
	Formatted	(
$\parallel \mid$	Formatted	
	Formatted	(
	Formatted	
	Formatted	
//	Formatted	
1	Formatted	
1/	Formatted	
	Formatted	<u></u>
/	Formatted	<u> </u>

ŀ	174	\mathcal{L}_{a} is cohesion, φ_{a} is an angle of internal friction, φ_{0a} and τ_{0a} are the coordinates of the Mohr circle
-	175	immediately after the earthquake and R_{0} its radius, t_{RL} is the reference RI corresponding to the
-	176	minimal WL.

I

177	For each time step, the algorithm determines whether there is a single solution, or two, or $\frac{1}{100}$
178	solutionsnil, A case of no solutions means that the Mohr circle is yet to reach the failure envelope,
179	as the accumulated accumulating tectonic stress and the WL increase are still insufficient. The
180	system of Eq. 2 may have onea single solution when anthe earthquake occurs at the end of some
181	step in time <u>timestep</u> or two solutions when the failure criterion is met before the end of the time
182	steptimestep. A case of two solutions is rounded down to a case of a single solution ifnif a time
183	step (one year) is small compared to the earthquake RI (several hundreds of years).
184	This solution of Eq.2 yields a RI as a function of the effective normal stress change, $\Delta \sigma'_{i_{\star}}$
185	(Belferman et al., 2018):
186	3. $RI = \Delta t = (C + tan(\varphi)\Delta\sigma'_i)\frac{t_{RI}}{c}$

187	where $t_{RI_{a}}$ is the reference <u><i>RIcorrespondingRI_corresponds</i></u> to the minimal WL, C_{a} is cohesion, φ_{a} is		For
			Foi
188	an angle of internal friction. From this formula for RI_{a} the an array of earthquake dates is obtained.	\mathbb{N}	For
		\mathcal{N}	For
189	Substituting Eq.1 into Eq.3, we get a simulated RI as a linear function of WL change with time,		For
		//	For
190	Δh_{i}) (For
			For
101	$A \qquad PI - t \pm \frac{tan(\varphi) 1 - 2\nu}{(\beta - 1)} agt Ab.$		For
171	$4. \qquad \qquad$	-	For
		\square	For
192	Coefficients for the simulations were previously determined in Belferman et al. (2018). Note that		For
			Aut
193	the cohesion C is not a-priory known hence it is fixed by the empirical correlation between WL	1	For

Formatted: Font color: Auto Formatted ... Formatted ... Formatted ...

...

...

....

Formatted	
Formatted: None, Font color: Auto)

Formatted

Formatted

Formatted: Header & Footer

Formatted: Font color: Auto	
Formatted)
Formatted)
Formatted: Hyperlink.0, Font: Not Italic, Font color: Auto	
Formatted	
Formatted: None, Font color: Auto	
Formatted: None, Font color: Auto	
Formatted: Font color: Auto	
Formatted	
Formatted)
Formatted)
Formatted: None, Font color: Auto	
Formatted: Font color: Auto	
Formatted: None, Font color: Auto	
Formatted: Font color: Auto	
Formatted)
Formatted: Hyperlink.0, Font: Not Italic, Font color: Auto	
Formatted: None, Font color: Auto	
Formatted)
Formatted: Centered	

1	95	motion-rate is set at the Dead Sea fault with a constant velocity of -5 mm/yr (e.g. Hamiel et al.,
1	96	2018; Hamiel and Piatibratova, 2019; Masson et al., 2015) is used.), The change in WL is
1	97	calculated relative to its minimal level (415 m bmsl) over the period. A cohesion value, $C =$
1	98	$0.08Mng$ and a reference RL $t_{py} = 300vr$, were adjusted numerically for a specific WL curve
1	70	0.00 mpc_{a} and a reference Ki, $e_{RI} = 500 \text{ yr}_{o}$ were adjusted numerically for a specific WE curve,
1	99	providing the average RI of 144 yr over the modelled period of two millennia justified by
2	00	historical, archaeological, and geological, data (Agnon, 2014).

RESULTS 201

202 The best fit WL curve (black solid line in Figure 1A) was Ten most suitable WL curves 203 (Figure 2) are identified out of the 10M random set of WL randomly generated curves 204 ("ensemble"), by the Pearson product-moment correlation test. The values of correlation 205 coefficients, R, for the entire ensemble of randomly interpolated WLs are distributed normally 206 around R=0.63 (Figure 1B) with a standard deviation of $\sigma = 0.076$.

207 Three outliers from the thirteen RIs of the widely recorded historic earthquakes (749 CE, 208 1293 CE, 1834 CE in Figure 1) were identified and reevaluated (Figure 1D(see the explanation in 209 Appendix). A curve with a highest Pearson coefficient of R=0.912 was chosen from the correlation 210 between the RIs of the revised historic catalog and the randomly generated WLs. This correlation 211 can be specified by a linear prediction function

212

 $S_{k} RI = -5442 - 14WL$

213 where RI is given in years and WL in meters. In addition, a synthetic earthquake history including 214 14 seismic events was simulated from the chosenbest fit randomly interpolated WL curve with

Formatted: Header & Footer

Formatted: None, Font color: Auto Formatted: Font color: Auto Formatted: None, Font color: Auto Formatted: Font color: Auto Formatted: None, Font color: Auto Formatted: None, Font color: Auto Formatted: None, Font color: Auto

Formatted: German (Germany)

Formatted: Body A

Formatted: Hyperlink.5	
Formatted: Hyperlink.5	
Formatted: Hyperlink.5	
Formatted: Hyperlink.5	
Formatted: Hyperlink.5, Pattern: Clear	
Formatted: Hyperlink.5	
Formatted: Hyperlink.5	
Formatted: Hyperlink.5	
Formatted: Font: 14.5 pt	
Formatted: Hyperlink.5	
Formatted: None	
Formatted: None	
Formatted: English (United States)	
Formatted: None	
Formatted: None, Pattern: Clear (White), Not
Formatted: None	
Formatted: None	
Formatted: Hyperlink.0, Font: Not Italic	

Formatted: None

Formatted: None

	•		Formatted: Header & Footer
215	R=1 specified above. The correlation between the synthetic RIs and WLs (presented in $Figure$		
216	4 <u>Figure 1</u> C) is:		Formatted: None
			Formatted: None
217	$6_{k} \qquad RI = -3840 - 10WL$		Formatted: Hyperlink.0, Font: Not Italic
218 219	as expected from the linear dependence suggested by the analytical solution (Eq.4). The dates of the simulated synthetic earthquakes are presented, versus the dates of the historic earthquakes from		Formatted: None, Font color: Auto
220	the literature (Table A1, Appendix) in Figure Figure 1E.		Formatted: Font color: Auto
		\square	Field Code Changed
I			Formatted: Font color: Auto
			Formatted: None, Underline color: Custom Color(RGB(31,56,100)), Font color: Auto

Formatted: Centered

Historic earthquakes [years CE]

Formatted: Centered

Dates of historic vs. simulated earthquakes based

on the suggested best fit WLs curve (Figs.C,D).

1033

1000

Historic earthquakes [years CE]

1500

2000

780 • 749

500

from 10M random WLs reconstructions. (C) and (D): Orange curve represents the best fit random WL curve vs. simulated and historic RIs, correspondingly. The blue dots mark the dates of the seismic events, while the black dots indicate the recurrence interval between these events. for optimal visualization of the correlation, the degree of scaling freedom for the RI axis was set for these figures. (E) Dates of historic vs. simulated earthquakes based on the suggested best fit WLs curve (Figs.C,D).

223

1

al

Formatted: Centered

Ì

I	•	(Formatted: Header & Footer
225	DISCUSSION		Formatted: German (Germany)
226	Uncertainties in the WI reconstructions associated with dating and resolution load tot	_	Formattad None
220	Oncertainties in the wL reconstructions associated with dating and resolution read to	\leq	Formatted: None
227	considerable variance in possible interpolations (Figure 1B). Figure 1B). A Pearson correlation		Formatted: Dody A
		l	romatted. None
228	coefficient test shows that most of the randomly interpolated WL curves give linear correlation		
229	with earthquake RIs (indicated by a mean Pearson coefficient of R=0.63), excluding the three		
230	outliers (Figure ID) to be discussed below Figure 1D) to be discussed below. Figure 2 shows a		
231	similar pattern of the WL change for the ten most correlated curves. In all cases, a significant rise		
232	in the water level of about 400 CE and 1100 CE is visible and a decrease in the WL around 200		
233	and 600 CE. Also, the maximum level around 500 and 1900 CE appears in all ten cases	(Formatted: None
234	For simulating synthetic earthquakes triggered by WL change, we use the WL curve that		
-0.			
235	generates the highest correlation with the revised historical catalog ($R = 0.912$). The dates of these		
236	simulated synthetic earthquakes are comparable with historical earthquakes (Figure 1EFigure 1E)	(Formatted: None
237	excluding two events, whose datesdate labels are shiftedoffset to the y-axis for clarity of		Formatted: None
238	presentation (1753 CE, 1180 CE). The dates of these synthetic earthquakes might be connected to		Formatted: None
239	three outliers from the historical catalog (1834 CE, 1293 CE, 749 CE depicted in Figure 1DFigure		
240	1D) as explained below.		Formatted: None
241	The 1180 CE synthetic earthquake (Figure 1EFigure 1E) is comparable to an earthquake in		Formatted: None
242	the -literature dated by Ben-Menachem (1979) and Amiran et al., (1994) to the mid-12th century,		Formatted: None, English (United States)
2/3	(1150 CE) Ambrasays (2009) doubted the precise dating but accented this mid 12th century	\bigvee	Formatted: None
243	(-1150 CL), Amoraseys (2007) doubled the precise daming but accepted this mid-12th century		Formatted: None
244	estimate. The damaged area of this earthquake spanned Jericho and Jerusalem, and the event could		Formatted: None, Font: (Default) Times New Roman
D.4.7		1	Formatted: None
245	be considered as significant, because it led to the total destruction of two monasteries, one of which		
246	is 10 km south of Jerusalem's curtain wall. By admitting the ~1150 CE earthquake to the amended		Formatted: None

Formatted: Centered

catalog, we reduce the RI of the subsequent earthquake at 1293 CE (Figure 1DFigure 1D) from
260 to 143 yrs, thereby bringing this outlier very close to the linear correlation.

Our model also generates an earthquake in the 18th century, dated 1753 CE, for which there were no matches in our initial historical catalog- (Belferman et al., 2018), However, in Amiran's et al. (1994) catalog an earthquake in 1712 CE is indicated: 'The quake shook the solid houses and ruined three Turkish houses. Felt in Ramle, but not in Jaffa'. Additionally, this earthquake is evidenced by seismites dated to 1700 – 1712 CE from an Ein Gedi site (Migowski et al., 2004).

254 Regarding the modeled 1907 CE event, we note the well documented (although often 255 overlooked) 29 March 1903 CE earthquake (Amiran et al., 1994). This was a moderate but 256 extendedprolonged earthquake: local intensity reached VII in a number of localities distributed 257 outside the rift valley over an area of 140x70 square km (including Jerusalem), whereas the 258 maximum intensity reported in the rift was VII as well (Jericho). We prefer to correlate the 259 modeled 1907 event with the stronger 1927 Jericho earthquake that clearly released stress in the 260 Dead Sea (e.g. Shapira, et al., 1993; Avni et al., 2002; Agnon, 2014). This leaves the 1903 261 unmatched to our model. Perhaps the earthquake ruptured the northern part of the central Jordan 262 Valley, north of the Dead Sea and south of Lake Kinneret (Sea of Galilee).

Regarding the last outlier from the historical earthquakes dated to 749 CE (or its neighbors 747 and 757, Table A1 in the Appendix) (Figure 1DFigure 1D) and corresponding to the simulated 780 CE earthquake (Figure 1EFigure 1E): the simulation generated the preceding earthquake 514 CE associated with the 659/660 CE event from the literature (Table A1 in the Appendix) with a deviation of 146 years. The rupture zone of 659/660 CE event is uncertain, and this earthquake is not necessarily related to stress release at the Dead Sea basin. Alternatively, following Formatted: None

Formatted: None Formatted: None

Formatted: None

Formatted: None, Underline
Formatted: None

Formatted: None

Formatted: None

269	RusselRussell (1985), as a result of the 551 CE earthquake, a fortresses fortress east of the southern		Formatted: None
270	Dead Sea and Petra were destroyed. Newer data-(Marco et al. 1996) contradicts the assertion		Formatted: None
2,0	Dead Sea and Feda were desitoyed. Newer data (Marco et al., 1996) constants are assertion		Formatted: None
271	regarding Petra; a failure at the Dead Sea region is still plausible. Replacing the 660 CE earthquake		
272	with 551 CE in the list of relevant historical earthquakescatalog changes the RI preceding the 749		Formatted: None
273	CE historical earthquake from 89 to 198, which brings this outlier into a satisfactory linear		
274	correlation (Figure 1DFigure 1D).		Formatted: None
275	Additionally, it should be emphasized that in the simulation presented in this article, the		
276	starting point is, quite arbitrarily, the earthquake of 33CE. This event andtogether with the		Formatted: None
277	subsequent earthquakes 90CE and 112CE (not predicted by our model) span a single century-		
278	where the catalog is nebulous. Each of these events could thus represent the starting point of the		Formatted: None
279	simulations, or could be omitted at this early and poorly documented interval.		Formatted: None
280	Summarizing the above amendments, we add to our listcatalog of historic events the 551		Formatted: None
281	CE, ~1150 CE, 1712 CE, earthquakes and remove 559/660 CE and 90CE, 112 CE earthquakes		
282	(Figure 1E). Altogether, we get 14 triggered historic earthquakes.		
283	The RI of the resulting list of historical earthquakes linearly correlates with WL change.		
784	This correlation between the water level and recurrence interval is noticeable despitator the		Formatted: None
207	inscorrendon between the water level and recurrence interval is noticeable despitetol, the	\leq	Formatted: None
285	different formvarious variants of the water level curves curve reconstruction (Figure 23).		Formatted: None

Formatted: Centered	

Formatted: None Formatted: None

Formatted: Header & Footer

292 The correlation of RI with best fit random estimated curve can be specified by a linear

293 prediction function:

1

Formatteu. Form Color. Diack
Formatted: Body A
Formatted: Font: Not Italic, Font color: Black, Complex Script Font: Not Italic, Hebrew
Formatted: Font color: Black
Formatted: Font color: Black

Formatted: Font color: Black

•

294	RI = -2483 - 6.5WL	Formatted: Hyperlink.0, Font: Not Italic
		Formatted: Hyperlink.0, Font: Not Italic
295	This linear relationship between WL and RI underscores the previously proposed	
296	correlations between these phenomena (in Figure 9 in Belferman et al., 2018).	
297	Since the last earthquake (1927CE), the water level in the Dead Sea has continuously*	Formatted: None
200		Formatted: Body A
298	decreased at an average annual rate of ~1 m/yr. Today the water level is about -440 (m bmsl), thus	Formatted: None, English (United States)
299	our prediction function suggests uggests an RI of 377 vr. for such a WL. More	Formatted: None
	our prediction function suggesting an ite of stry ji, for such a will more	Formatted: None
300	specifically <u>Alternatively</u> , if the water level in the Dead Sea remained <u>should remain</u> constant (-440	Formatted: None
201		Formatted: None
301	m bmsl), as intended in some mitigation plans, we would expect the next earthquake at about	Formatted: None
302	~2300 yr. However, as the water level keeps falling, a moderate- to large earthquake is predicted	
303	even later,	Formatted: None
304 305	This paper stresses that reconstructions of WL curves are not unique and may take various forms under the constraints available (e.g., Figure $1A_{\gamma}$). However, the correlation with an	Formatted: None
306	independent record of PIs of saismic events, assuming that earthquakes are affected by WL bikes	Formatted: None
307	allows deciphering plausible scenarios for WL evolution. Moreover, for cases with the best but	
308	not perfect correlation, the deviation might be consistent with a release of elastic energy by smaller	
309	earthquakes, which are not accounted for by the deterministic part of our model. We note that	
310	smaller earthquakes might rupture dippingdip-slip fault planes, again not accounted for by our	Formatted: None
311	simple model.	
312	Additionally, as large earthquakes are accompanied by aftershocks, some of the elastic	
313	energy is released by them. Moreover, it was shown earlier, in areas where earthquakes caused by	
314	artificial reservoirs, how this mechanism influenced by water level change. It was shown that in	
315	areas of induced seismicity, earthquakes are not only accompanied by aftershocks but also	Formatted: Centered

I

316	preceded by foreshocks (Gupta, 2011). The decay curve of this kind of seismicity satisfies criteria
317	for the second class of earthquake sequences by Mogi (1963). The lack of instrumental records of
318	historical earthquakes in our study area, does not allow comparison with this class. The 1995 Gulf
319	of Aqaba earthquake (7.2 Mw), the last instrumentally recorded earthquake, was accompanied by
320	a long period (significant enough for stress release consideration) of aftershocks. The earthquake
321	occurred along the southern part of the plate boundary, which is far enough from the Dead Sea,
322	and most likely is not influenced by the water level change. Following this earthquake, felt
323	aftershocks continued for about two years. At least 50 percent of the total moment associated with
324	these aftershocks was released during the first day after the main shock and over 95 percent in the
325	first 3 months (Baer 2008). In total, the post-seismic moment released during the period of 6
326	months to 2 yr after the Nuweiba earthquake is about 15 percent of the co-seismic moment release
327	(Baer 2008). This earthquake showed that the response of the crust to earthquakes by aftershocks
328	is negligible, as noted for many large earthquakes (e.g., Scholz 1972).
329	For the case of artificial reservoirs, it was shown that for induced seismicity sequences,
330	aftershocks continue for a longer time than for tectonic earthquake sequences (Gupta, 2011).
331	However, because the time scale of RI, the period of aftershocks is insufficient to consider
332	earthquakes from the sequence in our model as separate events. Regarding the time scale presented
333	in our study, when the minimal inter-seismic period is about 50 years, the stress released during
334	post -seismic period can be considered a part of the main shock.
335	The mechanical model used in this article is rather simplistic, where earthquakes release
336	strike-slip loading. The basins around the Dead Sea fault system testify for also an extensional
337	component that could be manifested in co-seismic motion along normal faults. To justify our focus

338 on a single type of fault (strike-slip), we list the following arguments:

339	•	The far-field maximal and minimal principal stresses in the Dead Sea region are horizontal
340		(Hofstetter et al., 2007; Palano et al. 2013). This is compatible with a dominance of strike-
341		slip faulting (Anderson, 1951). The tectonic motion at the DSF is characterized
342		predominantly by a left-lateral strike-slip regime with a velocity of ~5 mm/yr along various
343		segments (Garfunkel, 2014; Masson et al., 2015; Sadeh et al., 2012). Large earthquakes that
344		initiate clusters are likely to rupture along the straight ~100 km strike-slip segments
345		(Lyakhovsky et al., 2001). The strike of these segments parallels the relative plate velocity
346		vector and thus can be approximated by a simple shear. Additionally, in the Dead Sea basin,
347		GPS surveys indicate dominance of strike slip loading. Hamiel et al. (2018) show that, on
348		a plate scale, horizontal shear loading dominates the velocity north of the lake. Hamiel and
349		Piatibratova (2019) detected a sub mm/yr component of extension across the southern
350		normal fault bounding the Dead Sea pull apart, yet the strike-slip component across this
351		very fault seems much larger.
351 352		very fault seems much larger.
351 352 353	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by
351 352 353 354	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined
351 352 353 354 355	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined by the relative orientations of the three principal stresses (Anderson, 1951). In regions
351 352 353 354 355 356	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined by the relative orientations of the three principal stresses (Anderson, 1951). In regions where the vertical compressive stress is not minimal (normal and strike-slip faulting).
351 352 353 354 355 356 357	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined by the relative orientations of the three principal stresses (Anderson, 1951). In regions where the vertical compressive stress is not minimal (normal and strike-slip faulting), seismic activity is more sensitive to the effective stress change due to water level change.
351 352 353 354 355 356 357 358	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined by the relative orientations of the three principal stresses (Anderson, 1951). In regions where the vertical compressive stress is not minimal (normal and strike-slip faulting), seismic activity is more sensitive to the effective stress change due to water level change, than in regions where it is minimal (thrust faulting) (Simpson, 1976; Snow, 1982; Roeloffs,
351 352 353 354 355 356 357 358 359	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined by the relative orientations of the three principal stresses (Anderson, 1951). In regions where the vertical compressive stress is not minimal (normal and strike-slip faulting), seismic activity is more sensitive to the effective stress change due to water level change, than in regions where it is minimal (thrust faulting) (Simpson, 1976; Snow, 1982; Roeloffs, 1988). This is applicable to a case of reservoirs approximated as "infinite" in horizontal
351 352 353 354 355 356 357 358 359 360	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined by the relative orientations of the three principal stresses (Anderson, 1951). In regions where the vertical compressive stress is not minimal (normal and strike-slip faulting), seismic activity is more sensitive to the effective stress change due to water level change, than in regions where it is minimal (thrust faulting) (Simpson, 1976; Snow, 1982; Roeloffs, 1988). This is applicable to a case of reservoirs approximated as "infinite" in horizontal plane (e.g., Wang, 2000), with respect to the fault zone horizontal cross-section. Since we
351 352 353 354 355 356 357 358 359 360 361	•	very fault seems much larger. Normal, as well as strike-slip faults, similarly react to water level change that contributes to the vertical stress component and pore pressure change. The seismicity induced by surface water level fluctuations and affected by the faulting regime is critically determined by the relative orientations of the three principal stresses (Anderson, 1951). In regions where the vertical compressive stress is not minimal (normal and strike-slip faulting), seismic activity is more sensitive to the effective stress change due to water level change, than in regions where it is minimal (thrust faulting) (Simpson, 1976; Snow, 1982; Roeloffs, 1988). This is applicable to a case of reservoirs approximated as "infinite" in horizontal plane (e.g., Wang, 2000), with respect to the fault zone horizontal cross-section. Since we are using a one-dimensional model, such approximation is valid for our study area where

l

Formatted: None

Formatted: None

Formatted: None

Before: 6 pt, After: 0 pt Formatted: None

Formatted: None, Font color: Auto

Formatted: Body A, Indent: First line: 1.27 cm, Space

362	the Dead Sea is large enough in a horizontal plane (100 km x 10 km) compared to the
363	thickness of the underlying strike-slip fault (cross-section) located in the central part of the
364	valley.
365	Our results demonstrate that a fairly simple forward model (based on 1D analytical-
366	solution, Belferman et al., 2018) achieves a very good correlation between WLs and RIs of
367	moderate-to-strong earthquakes on the Dead Sea fault. Whereas the fault system along the Dead
368	Sea fault is more complicated, three-dimensional modeling of the tectonic motion, coupled to the
369	pore pressure evolution, may give more reliable predictions regarding the earthquake ruptures and
370	their chronology. Finally, we note that under However, based on the relationship between the
371	present man induced decline of WL and RI changes presented in this article, with the current
372	anthropogenic decrease in the Dead Sea level (at with an average annual rate $\frac{1}{1} \frac{1}{1} \frac{1}{1}$
373	moderate_to large_severe_earthquake will not be triggered by the mechanism discussed here. This
374	article not only presents the existence of a connection between WL and RI, but also provides
375	additional guidance based on this connection, also about the uncertainties regarding the two

	Formatted: None
\frown	Formatted: None
	Formatted: None
//	Formatted: None
	Formatted: None
	Formatted: None

Formatted: None

Formatted: Body A

Formatted: Hyperlink.0, Font: Not Italic

377 ACKNOWLEDGMENTS

phenomena separately.

376

This project was supported by the grants from Ministry of Natural Infrastructures, Energy and Water Resources of Israel # *213-17-002*, and GIF- German - Israeli Foundation for Scientific Research and Development # I-1280-301.8. The data for this paper was obtained with analytical and numerical modeling.

	•	Formatted: Header & Footer
382	REFERENCE	Formatted: German (Germany)
383	Agnon A. 2014. Pre-instrumental earthquakes along the Dead Sea rift. In Dead Sea transform fault	Formatted: Body A
384	system: reviews, edited by Garfunkel, Zvi, Ben-Avraham, Zvi, Kagan, Elisa, 207-261,	
385	Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8872-4_8.	Formatted: Hyperlink.8, Font:
386	Ambraseys, N. 2009. Earthquakes in the Mediterranean and Middle East: a multidisciplinary study	
387	of seismicity up to 1900. Cambridge University Press. doi:	Formatted: None
388	https://doi.org/10.1017/CBO9781139195430	Formatted: Hyperlink.9, Font:
389	Ambraseys N.N. Melville, C.P. and Adams, R.D. 1994. The Seismicity of Egypt. Arabia and	Formatted: None Font: (Default) Times New Roman
300	the Red Se: A Historical Review Cambridge: Cambridge Univ. Press	Formatted: Hyperlink.0, Font: (Default) Times New
201	https://Jeit.org/10.1017/2125(19/200007240	Roman
591	nups://aoi.org/10.101//S155618650000/240	Formatted: None, Font: (Default) Times New Roman, Not Italic
392	Amiran, D. H., Arieh, E., and Turcotte, T. 1994. Earthquakes in Israel and adjacent areas:*	Formatted: Hyperlink.0, Font: (Default) Times New Roman
393	macroscopic observations since 100 B.C.E. Israel Exploration Journal, 44, 260-305.	Formatted: None, Font: (Default) Times New Roman
394	http://www.istor.org/stable/27926357.	Formatted: Hyperlink.10, Font: Text Outline
		Formatted: Body A
395	Anderson, E. M. (1951). The dynamics of faulting and dyke formation with applications to Britain.	Formatted: Hyperlink.8, Font:
		Formatted: Hyperlink.8, Font:
396	Oliver and Boyd, Avni, R., Bowman, D., Shapira, A. and Nur, A. 2002. Erroneous	Formatted: Hyperlink.9, Font:
397	interpretation of historical documents related to the epicenter of the 1927 Jericho	
398	earthquake in the Holy Land. Journal of seismology, 6(4), 469-476,	Formatted: Hyperlink.11
399	https://doi.org/10.1023/A:1021191824396	Formatted: Complex Script Font: Times New Roman, Hebrew
100		Formatted: Hyperlink.11
400	Baer G., G. J. Funning, G. Shamir, T. J. Wright (2008). The 1995 November 22, Mw 7.2 Gulf of	Formatted: Hyperlink.12, Font: (Default) Times New Roman, 12 pt, Not Bold, Not Italic, Font color: Black
401	Elat earthquake cycle revisited, Geophysical Journal International, 1/5(3), 1040-	Formatted: None, Font: (Default) Times New Roman, Font color: Black
402	<u>1054. https://doi.org/10.1111/j.1365-246X.2008.03901.x</u>	
403	Belferman, M., Katsman, R. and Agnon, A. 2018. Effect of large-scale surface water level-	Formatted: Body A
404	fluctuations on earthquake recurrence interval under strike-slip faulting. <i>Tectonophysics</i> ,	Formatted: Hyperlink.0, Font: Not Italic

Formatted: Centered

	•		Formatted: Header & Footer
405	744, 390-402.		
406	https://doi.org/10.1016/j.tecto.2018.06.004/https://doi.org/10.1016/j.tecto.2018.06.004		
407	Ben-Menahem, A. 1979, Earthquake catalogue for the Middle East (92 BC-1980 AD). Boll.		Formatted: Hyperlink.11
108	Geofie Tear Appl 21 245 313	_	Formattadi Naza
+08	Geojis. Teor. Appl., 21, 245-515.	\leq	Formatted: None
409	Bookman, R., Enzel, Y., Agnon, A., and Stein, M. 2004. Late Holocene lake levels of the Dead	l	
410	Sea. Geological Society of America Bulletin 116, 555-571.	(Formatted: Hyperlink.0, Font: Not Italic
411	https://doi.org/10.1130/B25286.1/https://doi.org/10.1130/B25286.1		
412	Byerlee, J.D., 1978. Friction of rocks. In: Byerlee, J.D., Wyss, M. (Eds.), Rock Friction and		Formatted: Font color: Black
413	Earthquake Prediction. Springer, Birkhäuser, Basel, pp. 615–626.		Formatted: Hyperlink.0, Font: Not Italic, Font color: Black
414	https://doi.org/10.1007/978-3-0348-7182-2		Formatted: Font color: Black
		\nearrow	Formatted: None, Font color: Black
415 416	Durá-Gómez, I. and Talwani, P. 2010. Reservoir-induced seismicity associated with the Itoiz Reservoir Spain: a case study <i>Geophysical Journal International</i> 181 343–356		Formatted: Hyperlink.14, Font: (Default) Times New Roman, 12 pt, Not Bold, Not Italic, Font color: Black, Border: : (No border), Pattern: Clear
+10	Reservon, Span. a case study, <u>Geophysical Journal International</u> , 181, 343–350.		Formatted: Hyperlink.0, Font: Not Italic
417	https://doi.org/10.1111/j.1365-246X.2009.04462.x		Formatted: Hyperlink.15, Font: Not Bold, Not Italic, Font color: Black, Pattern: Clear
418	Elad, A. (1982)- An early arabic source concerning the markets of Jerusalem. <i>Cathedra</i> , 24, 31-		Formatted: Hyperlink.0, Font: Not Italic
419	40.		
420	Elad, A., 1992. Two Identical Inscriptions From Jund Filastin From the Reign of the Abbāsid		
421	Caliph, Al-Muqtadir. Journal of the Economic and Social History of the Orient, 35(4),		
422	301-360. https://doi.org/10.2307/3632739		
423	Garfunkel, Z., 2014. Lateral motion and deformation along the Dead Sea Transform. In: Garfunkel,		
424	Z., Ben-Avraham, Z., Kagan, E. (Eds.), Dead Sea Transform Fault System: Reviews. 5.		
425	Springer, Dordrecht, pp. 109–150. http://dx.doi.org/10.1007/978-94-017-8872-4.		

Formatted: Centered

426	Gerber, H., 1998. " Palestine" and Other Territorial Concepts in the 17th Century. International	
427	Journal of Middle East Studies, 30(4), 563-572. https://www.jstor.org/stable/164341	
428 429	Guidoboni, E., Comastri, A., and Traina, G. 1994. Catalogue of Ancient Earthquakes in the Mediterranean Area Up to the 10th Century Rome: Istituto nazionale di geofisica	Formatted: Hyperlink.11
430	https://doi.org/10.1163/182539185X01377https://doi.org/10.1163/182539185X01377	ormatted: Hebrew
431	Guidoboni, E. and Comastri, A. 2005. Catalogue of Earthquakes and Tsunamis in the	
432	Mediterranean Area from the 11th to the 15th Century. Istituto nazionale di geofisica e	
433	vulcanologia.	
434	https://doi.org/10.1515/BYZS.2008.854 <u>https://doi.org/10.1515/BYZS.2008.854</u>	Formatted: None, Underline color: Custom Color(RGB(60,60,60))
435	Gupta, H., K., 2018, Reservoir triggered seismicity (RTS) at Koyna, India, over the past 50	
120	vrs Bulletin of the Seismological Society of America 108 5B: 2907-2918	cormatted, Habrow
430	Jis. Dancenne of the Scismological Society of Hinerica 100.5D. 2501 2510	
430 437	https://doi.org/10.1785/0120180019	ield Code Changed
430 437 438	https://doi.org/10.1785/0120180019 Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of crustal	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.17 (No border), Pattern: Clear
436437438439	Just Darent of the Sensition of the Dead Sea Fault and Just Darent of the Sensition of the Dead Sea Fault and	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.15
 436 437 438 439 440 	 Jutenin of the Seismological Society of Hinterica 100.5D. 2507 2518, <u>https://doi.org/10.1785/0120180019</u> <u>Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment. Tectonophysics, 724, 171-178.</u> 	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.17 (No border), Pattern: Clear Formatted: Hyperlink.15
430 437 438 439 440 441	 Jutenin of the Seismological Society of Hinterica 100.5D. 2507 2518, <u>https://doi.org/10.1785/0120180019</u> <u>Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment. Tectonophysics, 724, 171-178. https://doi.org/10.1016/j.tecto.2018.01.016</u> 	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.15
430 437 438 439 440 441 442	 Juterial of the Secondological Society of Hindrica 100.5D. 2507 2518, https://doi.org/10.1785/0120180019, Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment. Tectonophysics, 724, 171-178. https://doi.org/10.1016/j.tecto.2018.01.016 Hamiel, Y., & Piatibratova, O. (2019). Style and distribution of slip at the margin of a pull-apart 	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Font color: Black, Border: : (No border), Pattern: Clear Formatted: Hyperlink.15
 436 437 438 439 440 441 442 443 	 Juterial of the Seismological Society of Hindrica 100.5D. 2507 2518, https://doi.org/10.1785/0120180019 Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment. Tectonophysics, 724, 171-178. https://doi.org/10.1016/j.tecto.2018.01.016 Hamiel, Y., & Piatibratova, O. (2019). Style and distribution of slip at the margin of a pull-apart structure: Geodetic investigation of the Southern Dead Sea Basin. Journal of Geophysical 	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.17 (No border), Pattern: Clear Formatted: Hyperlink.15
 436 437 438 439 440 441 442 443 444 	 Juleini of the beishologiear boetery of Hinterica rootsb. 2507 2518, https://doi.org/10.1785/0120180019 Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment. Tectonophysics, 724, 171-178. https://doi.org/10.1016/j.tecto.2018.01.016 Hamiel, Y., & Piatibratova, O. (2019). Style and distribution of slip at the margin of a pull-apart structure: Geodetic investigation of the Southern Dead Sea Basin. Journal of Geophysical Research: Solid Earth, 124(11), 12023-12033. https://doi.org/10.1029/2019JB018456 	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.17 (No border), Pattern: Clear Formatted: Hyperlink.15
 436 437 438 439 440 441 442 443 444 445 446 	 Julichin of the Seismological Society of Enherica footsb. 2507 2510, https://doi.org/10.1785/0120180019, Hamiel, Y., Masson, F., Piatibratova, O., & Mizrahi, Y. (2018). GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment. Tectonophysics, 724, 171-178. https://doi.org/10.1016/j.tecto.2018.01.016 Hamiel, Y., & Piatibratova, O. (2019). Style and distribution of slip at the margin of a pull-apart structure: Geodetic investigation of the Southern Dead Sea Basin. Journal of Geophysical Research: Solid Earth, 124(11), 12023-12033. https://doi.org/10.1029/2019JB018456 Hofstetter, R., Klinger, Y., Amrat, A. Q., Rivera, L., & Dorbath, L. (2007). Stress tensor and focal mechanisms along the Dead Sea fault and related structural elements based on 	Field Code Changed Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Formatted: Hyperlink.17 (No border), Pattern: Clear Formatted: Hyperlink.15

Formatted: Centered

Formatted: Header & Footer

I

	4-		Formatted: Header & Footer
447	seismological data. Tectonophysics, 429(3-4), 165-181.		
448	https://doi.org/10.1016/j.tecto.2006.03.010		
449	Hua, W., Chen, Z. and Zheng, S., 2013a. Source parameters and scaling relations for reservoir-		Formatted: Body A
450	induced seismicity in the Longtan reservoir area. Pure Appl. Geophys. 170, 767-783.		
451	https://doi.org/10.1007/s00024-012-0459-7	_	Formatted: Hyperlink.19, Font: Not Bold, Not Italic, Font color: Black, Pattern: Clear
452	Hua, W., Chen, Z., Zheng, S., and Yan, C., 2013b. Reservoir-induced seismicity in the Longtan		
453	reservoir, southwestern China. J. Seismol. 17 (2), 667-681.		
454	https://doi.org/10.1007/s10950-012-9345-0		Formatted: Hyperlink.19, Font: Not Bold, Not Italic, Font color: Black, Pattern: Clear
455	Hough S. E. and Avni R., 2011. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term		
456	magnitude distribution of the Dead Sea Fault Zone, Isr. J. Earth Sci., 58, 295-308,		Formatted: Hyperlink.0, Font: Not Italic
			Formatted: None
457	ttps://doi.org/10.1560/1JES.58.3-4.295		Formatted: Hyperlink.19, Font: Not Bold, Not Italic, Font color: Black, Pattern: Clear
458	Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics. John Wiley		Formatted: Hyperlink.19
459	and Sons.		
460	Kagan, E., Stein, M., Agnon, A., and Neumann, F. 2011. Intrabasin paleoearthquake and		Formatted: Hyperlink.11
1.51			Formatted: Body A
461	quiescence correlation of the late Holocene Dead Sea. Journal of Geophysical Research:		
462	Solid Earth, 116(B4). https://doi.org/10.1029/2010JB007452		Formatted: Hyperlink.11
			Formatted: Hyperlink.8, Font:
463	Ken-Tor, R., Agnon, A., Enzel, Y., Stein, M., Marco, S., and Negendank, J. F. 2001. High-		
464	resolution geological record of historic earthquakes in the Dead Sea basin. Journal of		Formatted: Hyperlink.0, Font: Not Italic
465	Geophysical Research-Solid Earth, 106, 2221-2234.		
466	https://doi.org/10.1029/2000JB900313		Formatted: Hyperlink.9, Font:
467	Klinger, Y., Le Béon, M. and Al-Qaryouti, M., 2015. 5000 yr of paleoseismicity along the southern		
468	Dead Sea fault- Geophys. J. Int. 202 (1), 313-327. https://doi.org/10.1093/gji/ggv134		
			Formatted: Centered

	*		Formatted: Header & Footer
469	Langgut, D., Yannai, E., Taxel, I., Agnon, A. and Marco, S., 2015, Resolving a historical*		Formatted: Hyperlink.11
		\sim	Formatted: Body A
470	earthquake date at Tel Yavneh (central Israel) using pollen seasonality. Palynology, $40(2)$,	\mathcal{N}	Formatted: Hebrew
471	1/15 150 Attras://doi.org/10 1080/01016122 2015 1035/05	$\langle \rangle$	Formatted: Hyperlink.11
+/1	145-159. mips://aoi.org/10.1000/01910122.2015.1055405	$^{\prime}$	Formatted: Hyperlink.11
472	Lefevre, M., Klinger, Y., Al-Qaryouti, M., Le Béon, M. and Moumani, K., 2018. Slip deficit and		Formatted: Hyperlink.20, Font: Not Bold, Not Italic, Font color: Black
172	temporal eluctoring along the Dead See fault from palaosoismological investigations. Sei	$\langle -$	Formatted: Hyperlink.11
+73	temporar clustering along the Dead Sea raut noni pateoseismological investigations. Sci.		Formatted: Hyperlink.11
474	Rep. 8 (1), 4511. https://doi.org/10.1038/s41598-018-22627-9	<	Formatted: Hyperlink.17, Font: Not Bold, Not Italic, Font color: Black, Pattern: Clear
475	Lyakhovsky, V., Ben-Zion, Y., Agnon, A., 2001. Earthquake cycle, fault zones, and seismicity		Formatted: Hyperlink.15
476	patterns in a rheologically layered lithosphere. J. Geophys. Res. Solid Earth 106 (B3),		
477	<u>4103–4120.</u>		
478	Marco, S., Stein, M., Agnon, A., and Ron, H. 1996. Long-term earthquake clustering: A 50,000-4-		Formatted: Body A
479	year paleoseismic record in the Dead Sea Graben. Journal of Geophysical Research: Solid		
480	Earth, 101(B3), 6179-6191. https://doi.org/10.1029/95JB01587		Formatted: Hyperlink.15, Font: Not Bold, Not Italic,
401	Massen E. Hamiel V. Asnen A. Klinger V and Dennes A. 2015 Variable behavior of the		
+01	Masson, F., Hanner, T., Agnon, A., Kninger, T. and Deprez, A., 2015. Variable behavior of the	<	Formatted: Hebrew
482	Dead Sea Fault along the southern Arava segment from GPS measurements. comptes		rormatted: nypenink.11
483	rendus geoscience, 347(4), pp.161-169. https://doi.org/10.1016/j.crte.2014.11.001		Formatted: Hyperlink.11
			Field Code Changed
484	Migowski, C., Agnon, A., Bookman, R., Negendank, J. F., and Stein, M. 2004. Recurrence pattern		Formatted: Hyperlink.20, Font: Not Bold, Not Italic, Font color: Black
485	of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and		
486	radiocarbon dating of lacustrine sediments. Earth and Planetary Science Letters, 222, 301-		Formatted: Hyperlink.0, Font: Not Italic
487	314. https://doi.org/10.1016/j.epsl.2004.02.015		Formatted: Hyperlink.9, Font:
400		/	Formatted: Hyperlink.0, Font: Not Italic
488	Miguwski, C., Stein, M., Prasad, S., Negendank, J. F. W., and Agnon, A. 2006. Holocene climate		Field Code Changed
489	variability and cultural evolution in the Near East from the Dead Sea sedimentary record.		Formatted: Hyperlink.18, Font: Not Bold, Not Italic, Font color: Black
490	Quaternary Research, 66(3), 421-431. https://doi.org/10.1016/j.yqres.2006.06.010		Formatted: Hyperlink.9, Font: Not Bold, Not Italic, Font color: Black
I		/	Formatted: Centered

491	Palano, M., Imprescia, P., & Gresta, S. (2013). Current stress and strain-rate fields across the Dead		
492	Sea Fault System: Constraints from seismological data and GPS observations. Earth and		
493	Planetary Science Letters, 369, 305-316. https://doi.org/10.1016/j.epsl.2013.03.043		
494	Pandey, A.P. and Chadha, R.K., 2003. Surface loading and triggered earthquakes in the Koyna-	(Formatted: Body A
495	Warna region, western India. Phys. Earth Planet. Inter. 139 (3-4), 207-223.		Formatted: Hyperlink.11
496	<u>http://dx.doi.org/10.1016/j.pepi.2003.08.003</u>		Formatted: Hyperlink.13, Font: Not Bold, Not Italic
497	Parker, S.T., 1982. Preliminary Report on the 1980 Season of the Central" Limes Arabicus"		Formatted: None, Underline color: Blue, Font color: Blue
498	Project. Bulletin of the American Schools of Oriental Research, 247(1), pp.1-26.		
499	https://www.journals.uchicago.edu/doi/10.2307/1356476		Formatted: Hyperlink.18, Font: Not Bold, Not Italic,
500	Rao, N. P., & Shashidhar, D. (2016). Periodic variation of stress field in the Koyna-Warna		Formatted: Hyperlink.18
501	reservoir triggered seismic zone inferred from focal mechanism		
502	studies. Tectonophysics, 679, 29-40. https://doi.org/10.1016/j.tecto.2016.04.036		
503	Russell, K. W., 1985. The earthquake chronology of Palestine and northwest Arabia from the 2nd		
504	through the mid-8th century AD. Bulletin of the American Schools of Oriental		
505	Research, 260(1), 37-59. https://doi.org/10.2307/1356863		
506	Sadeh, M., Hamiel, Y., Ziv, A., Bock, Y., Fang, P., Wdowinski, S., 2012. Crustal deformation		
507	along the Dead Sea Transform and the Carmel Fault inferred from 12 years of GPS		
508	measurements. J. Geophys. Res. Solid Earth 117, B08410.		
509	http://dx.doi.org/10.1029/2012JB009241.		
510	Scholz, C. H. (1972). Crustal movements in tectonic areas. Tectonophysics, 14(3-4), 201-217.		
511	https://doi.org/10.1016/0040-1951(72)90069-8		

Formatted: Centered

Formatted: Header & Footer

•

l

512	Pandey, A.P. and Chadha, R.K., 2003. Surface loading and triggered earthquakes in the Koyna-	Formatted: Body A
		Formatted: Hyperlink.11
513	Warna region, western India. Phys. Earth Planet. Inter. 139 (3-4), 207-223.	
514	http://dx.doi.oug/10.1016/; pop; 2002.09.002	Formatted: Hyperlink.13, Font: Not Bold, Not Italic
514	mp.//dx.doi.org/10.1010/j.pcpi.2003.00.003	Formatted: None, Underline color: Blue, Font color: Blue
515	Shapira, A., Avni, R., and Nur, A. 1993. A new estimate for the epicenter of the Jericho earthquake	Formatted: Hyperlink.11
516	of 11 July 1927. Isr. J. Earth Sci, 42(2), 93-96,	Formatted: Hyperlink.11
		Formatted: Hebrew
517	Simpson, D. W. (1976). Seismicity changes associated with reservoir loading. Engineering	
518	Geology, 10(2-4), 123-150. https://doi.org/10.1016/0013-7952(76)90016-8	
519	Simpson, D. W., Leith, W., and Scholz, C. 1988. Two types of reservoir-induced seismicity.	Formatted: Body A
		Formatted: Hyperlink.22
520	Bulletin of the Seismological Society of America, 78, 2025–2040.	Formatted: Hyperlink.0, Font: Not Italic
		Formatted: Hyperlink.22
521	Snow, D. T. (1982). Hydrogeology of induced seismicity and tectonism: Case histories of Kariba	
522	and Koyna. Geological Society of America Special Papers, 189, 317-360.	
523	https://doi.org/10.1130/SPE189-p317	
524	Stern, O. 2010. Geochemistry, Hydrology and Paleo-Hydrology of Ein Qedem Spring System;	Formatted: Body A
		Formatted: Hyperlink.11
525	Report GSI/17/2010; Geological Survey of Israel: Jerusalem, Israel, 2010; p. 91. (In	Formatted: Hyperlink.11
526	Hebrew)	Formatted: Hyperlink.22
527	Talwani, P., 1997. On the nature of reservoir-induced seismicity. Pure Appl. Geophys. 150, 473–	
528	492. https://doi.org/10.1007/978-3-0348-8814-1_8	Formatted: Hyperlink.13, Font: Not Bold, Not Italic
529	Wang, H., 2000. Theory of Linear Poroelasticity With Applications to Geomechanics and	
520	Undergoology, University Dress, Dringston	
550	riyarogeology. University Press, Princeton.	
531	Wechsler, N., Rockwell, T. K., Klinger, Y., Štěpančíková, P., Kanari, M., Marco, S., & Agnon, A.	
532	(2014). A paleoseismic record of earthquakes for the Dead Sea transform fault between the	
	<u>, 10 - 1 - 10 - 10 - 10 - 10 - 10 - 10 -</u>	Formatted: Centered

I

533	first and seventh centuries CE: Nonperiodic behavior of a plate boundary fault. Bulletin of	
534	the Seismological Society of America, 104(3), 1329-1347. https://doi.org/10.1785/0120130304	
535	Williams, J. B., Schwab, M. J., & Brauer, A. 2012. An early first-century earthquake in the Dead	Formatted: None, Underline color: Custom
536	Sea. International Geology Review, 54(10), 1219-1228,	Formatted: Body A
537	https://doi.org/10.1080/00206814.2011.639996	Formatted: None, Underline color: Custom Color(RGB(34,34,34)), Hebrew
		Formatted: None, Font: (Default) Times New Roman, Underline color: Dark Gray
538		Formatted: Hyperlink.13, Font: Not Bold, Not Italic
539		
540		
541		
542	Appendix: The earthquake history of the Dead Sea environs	
543	Numerous publications list earthquakes that hit the Dead Sea and its surroundings during the last	Formatted: Hyperlink.22
544	two millennia (e.g. Agnon, 2014; Ambraseys et al., 1994; Ambraseys, 2009; Amiran et al., 1994;	Formatted: Body A
545	Guidoboni et al., 1994, Guidoboni and Comastri, 2005). In Belferman et al. (2018) we adopted	
546	from the scores of listed events only the most destructive ones, typically causing local intensities	
547	of VII or higher in Jerusalem. For a minimal epicentral distance of 30 km, this would translate to	
548	a magnitude of ~5.7 or higher (according to the attenuation relation of Hough and Avni, 2011).	
549	Table A1 lists the Dead Sea earthquakes considered for stress release across the Dead Sea basin	Formatted: Hyperlink.11
550	during the last two millennia. We used two criteria: noticeable damage in fortified Jerusalem, and	Formatted: None, Complex Script Font: Times New
551	seismites in the northern Dead Sea. Our simple model simulates an earthquake time series, given	Formatted: Hyperlink.11
552	a water level curve. Eleven events from this time series correlate with events of magnitude ~6 or	
553	more in the historic record. Yet, the model generates four events that are not included in our	Formatted: Centered
1 	30	

•

I

original <u>listcatalog</u>. On the other hand, a single event (~660 CE) listed in Belferman et al. (2018) has no counterpart in the simulations despite a wide range of level curves tested. All these curves are generated by a random number generator, subject to constraints from field data. We first discuss the four events required by the simulations one by one. Then we <u>review the ~660 CE event</u> along with other historic events that were left out already in Belferman et al. (2018).

559 The earthquakes in Table 1 are classified according to the level of acceptance for being destructive

560 in Jerusalem. The nine events of **Class C** are all consensual, also used by Belferman et al.(2018).

These events appear in all <u>cataloguescatalogs</u> and lists, and need no further discussion. The six events of **Class A** are debated events, accepted in the present study. All earthquakes in this class are selected by simultaneously satisfying two criteria: (1) The acceptance regularizes the relation

between recurrence intervals and lake level; (2) They are corroborated by evidence from seismites
in the northern basin of the Dead Sea (Ein Feshkha and Ein Gedi sites, Fig.A1corroborate).

566 We chose the year **33** CE to start our simulations. While this earthquake did not cause a widespread 567 damage, it was recorded in all three seismite sites (Kagan et al., 2011), with a maximum of decade 568 uncertainty based on dating by counting lamina under the microscope (Migowski et al., 2004; 569 Williams et al., 2012).

The second entry in Table A1, ~100 CE, refers to two decades of unrest. Migowski et al. (2004) identified a pair of seismites around 90 CE and 112 CE in the 'Ein Gedi Core. The corresponding sequences in Ein Feshkha and Ze'elim Creek are laminates, attesting to quiescence. A historical hiatus between the Roman demolition of Jerusalem and the erection of Ilya Capitolina in its stead (70-130 CE) preclude historical evidence. Although damage to the Masada fortress has been assigned to an earthquake **1712 CE**. Formatted: Header & Footer

Formatted: Hyperlink.11

-	Formatted: Roman	None, Complex Script Font: Times New
1	Formatted:	Hyperlink.11
-{	Formatted:	Hyperlink.11
-{	Formatted:	None
1	Formatted:	Hyperlink.11
	Formatted: Roman	None, Complex Script Font: Times New
ľ	Formatted:	Hyperlink.11
Y	Formatted:	Hyperlink.11
ľ,	Formatted:	None
Y	Formatted:	Hyperlink.11

-	Formatted: Hyperlink.22
-	Formatted: None
Y	Formatted: Hyperlink.22

Formatted: Hyperlink.22	
Formatted: None	
Formatted: Hyperlink.22	

Formatted: None

576 Table A2 lists ten earthquakes that have been reported to damage around Jerusalem but are not 577 required by our simulations. The seven events of Class R are the debated events, rejected here, 578 after discussion. The three Class S events were skipped altogether in that compilation of 579 Ambraseys (2009).

580 Of the seven Class R events, the 7 June 659 CE earthquake was accepted by us in Belferman et al. 581 (2018). The earthquake has been associated with destruction of the Euthymius monastry 10 km 582 east of Jerusalem, but no damage in the town of Jerusalem has been unequivocally reported 583 (Ambraseys, 2009). In Belferman et al. (2018) we included this event in the listcatalog of Dead 584 Sea earthquakes, as Langgut et al. (2015) have located it on the center of the Jordan Valley segment 585 of the transform (Figure A1). However, this interpretation neglected the possibility that the rupture 586 could have been outside the hydrological effect of the Dead Sea basin. One of the lessons of our numerous simulations is that our model would not support triggering of this earthquake shortly 587 588 (less than a century) before the mid-8th century crisis, when lake levels were dropping to the lowest 589 point in the studied period (420 m bsl, Fig.Figure, 1a). When rejecting the 659 CE event, the 419 590 CE earthquake is the one preceding the mid-8th century crisis; the three century recurrence interval 591

fits well the low lake level.

592 **1016** CE: The collapse of the Dome of the Rock was not explicitly attributed to an earthquake by 593 the original sources, who found it enigmatic as well (Ambraseys, 2009).

594 1644 CE: Ambraseys (2009) quoted a late Arab author, al-Umari, who reported collapse of houses 595 and deaths of five persons in "the town of Filistin". While Ambraseys has interpreted it probably 596 to Jerusalem, it might refer to al-Ramla, the historical capital of the classical Filistin District, as in 597 "al-Ramla, Madinat Filastin" (Elad, 1992, p335). Or, it is a mistranslation of "Bilad Filistin" which 598 at that time started refer to the entire Holy Land district, without specifying a town (Gerber, 1998).

Formatted: Header & Footer
Formatted: Hyperlink.11
Formatted: None
Formatted: Hyperlink.11
Formatted: None, Complex Script Font: Times New Roman
Formatted: Hyperlink.11
Formatted: None
Formatted: None, Font: Not Bold, Complex Script Font: Times New Roman, Not Bold
Formatted: Hyperlink.11
Formatted: Hyperlink.11
Formatted: None
Formatted: Hyperlink.11
Formatted: None, Complex Script Font: Times New Roman
Formatted: Hyperlink.11
Formatted: Hyperlink.11

Formatted: Hyperlink.11 Formatted: None, Complex Script Font: Times New Roman Formatted: Hyperlink.11

-{	Formatted: None
1	Formatted: Hyperlink.11
-(Formatted: None
Υ	Formatted: Hyperlink.11
	Formatted: None
	Formatted: Hyperlink.22

	•	•	Formatted: Header & Footer
599	Jerusalem, at that time, was called Bayt el Maqdis or, as nowadays, al-Quds. The only report of an	ı	
600	earthquake in Jerusalem around 1644 mentions horror but no structural damage - the 1643 CE	8	
601	event that Ambraseys (2009) tends to equate with the 1644 CE event. A seismite in Ein Gedi core	e	
602	can be correlated with this event (Migowski et al., 2004, Table 2, entry 6). Migowski et al. (2004))	
603	have identified the seismite with the 1656 earthquake that was felt in Palestine; Ambraseys' (2009))	
604	interpretation was not yet available for them.		
605	1656 CE: This event was strong in Tripoli and only felt in Palestine. Migowski et al. (2004)		Formatted: None
606	correlated it to a seismite based on deposition rates (no lamina counting for that interval). Given	1	Formatted: Hyperlink.22
607	the 1644 CE entry of Ambraseys (2009), this interpretation should be revised, and the 1656 CE	1	
608	earthquake is not to be associated with any local rupture in the Dead Sea.		Formatted: None, Font: (Default) Times New Roman
I			

Formatted: Centered

								/	Formatted
							/	/ ,	Formatted
							•		Formatted
							/	//	Formatted
1: A catolog of	f ea	rthe	juake	s tha	ut could potentiall	damage Jerusalem. The classes denote the level of acceptant	<u>ce of</u>		Formatted
<u>e to Jerusalem a</u> I here	mo	ng i	the re	searc	<u>chers: C - consen</u>	<u>ual; B - accepted by Belferman et al., 2018; A - amended hero</u>	<u>re; R -</u>	[] [Formatted
<u>Increa</u>							•		Formatted
Year CE or	C	S	Seism	ite	Reference	Comments			Formatted
Century	1		corre	el.				_	Formatted
(marked C)	a		by si	te					Formatted
	s	z	E	E			•		Formatted
		E	G¥	F					Formatted
		_			·				Formatted
33	в	+	+	+	MI,K&,W&,	Identified in all three seismites sites, varve-counted to	31 BCE •	N)	Formatted
									Formatted
100~	в		2		MI,AM	Seismites ~90 and ~112; questionable archaeologic evi	idence 🔹	\square	Formatted
								/ ///	Formatted
~175	в	-	t.		ML	A seismite: no historic or archeological support	-		Formatted
						A			Formatted
363	C	Ā	Ā	+	K&,A&	A seiche in the Dead Sea, a seismite at EF° (north Dead	d Sea) 🖣		Formatted
410									Formatted
419		+	+	+	<u>κ</u> 1/ΜΙ/κα				Formatted
551	A	+	+	+	PA,AM		-		Formatted
									Formatted
747/9,757	C	+	+	+	KT/MI/K&				Formatted
									Formatted
1033	C	?	+	+	KT/MI/K&		-		Formatted
									Formatted
~1150	A	+	Ā	4	AM,K&	Jo IX - Mar Elias (& Qasr al-Yahud) monastries demol	lished 🔹		Formatted
1293	C	+	+	+	K&		-		Formatted
1295					, Mac				Formatted
1458	C	+	+	h	MI		4		Formatted
1546	0	,		i	М				Formatted
1340		4	4						Formatted
1712	A	1	+	a	MI	A& / I ₀ VII - "ruined three Turkish houses in Jerusalen	n",		Formatted
				t					Formatted
1834	C	+	+	u	KT,MI				Formatted
1903	R	m	m	c	A&.AM	In VII Mt. of Olives: several shocks. In up to VII over a	a large area		Formatted
									Formatted
1927	C	+	+		KT MI	AV / Io VII-VIII in and around Jerusalem (Io 7.8 by GM	MPE)		Formatted
1721		T			121,1711	(10, 10, 0) (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,			Formatted
							4		Formatted

(...

[...

...

(...

(...

[...

(...

(...

(...

(...

...

...

[...

[...

...

Formatted

- 614 615 616 617

Year CE C Seismic Reference Comments 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2014; Aamended here; Rrejected here; Amended here; Rrejected here; R									_
Table A2: Events listed in some catalooss and subsequently skinped (Class S) or declined (Class D) by Ambraseys (2009), or rejected (Class R) in the present study. cofearinguales that could potentially damage Jerusalem. The classes denote the level of acceptance of damage to derusalem among the coverchers C - consenuate B - accepted by Belferman et al., 2018; A - anended here, R - rejected here. Abbreviations and notes: *ZE - Ze' elim Creek; *EG - Ein Gedi core; *EF - Ein Feshkhs-Nature Reserve AM: Ambreaeya, 2009; A&: Amiran et al., 1094; K&: Kagan et al., 2011; L&: Langgut et al. 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012; vear CE C Seismite Reference, Comments, i correl. i by site, i site, i correl. i by site, i correl. i correl. i by site, i correl. i poten									
Table A2, Events listed in some catalogs and subsequently skipped (Class S) or declined (Class D) by Ambrases (2009), or trettered (Class B) in the present study. of cardinations that could potentially damage Jonanalum. The classes denote the level of acceptance of damage to Jonanalum. Abbreviations and notes: *ZE = Ze' elim Creek; *EG = Ein Gedi core; *EF = Ein Feshkhe. Nature Reserve AMM: Ambraseys, 2000; A&: Amiran et al., 1994; K&: Kagan et al., 2011; L&: Langgut et al. 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012. Year CE C Seismite Reference 1 correl. 3 S 2 F 5 Z 6 Site 8 Z 8 Z 9 S 4 S 9 S 1 correl. 2 S 2 F 8 Z 9 S 4 S 2 A. 2 S 2 S 2 S 2 S 3									
construction construction • of earthquakes that could potentially damage Jerusalem. The classes denote the level of acceptance of damage to Jerusalem. • among the researchers. Constructions and notes: • • *ZE Ze' elim Creek; ^V EG Ein Gedi core; °EF Ein Foshkhs Nature Reserve • AM: Ambraseya; 2000; A&: Amiran et al., 1094; K&: Kagan et al., 2011; L&: Langgut et al. • 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2013. • Vear CE E Seismite Reference Comments • al., 2013. • • • • • Vear CE E Seismite Reference Comments • al., 2013. • • • • • Vear CE E Seismite Reference Comments • • al., 2013. • • • • • • • Seise E E E • • • • • al., 2014. • • J. • • • • • <td>Table /</td> <td>A2: Events liste</td> <td><u>ed ir</u></td> <td><u>ı son</u></td> <td>ne cat</td> <td>alog</td> <td>s and subsequent</td> <td>tly skipped (Class S) or declined (Class D) by Ambraseys (2009), or</td> <td></td>	Table /	A2: Events liste	<u>ed ir</u>	<u>ı son</u>	ne cat	alog	s and subsequent	tly skipped (Class S) or declined (Class D) by Ambraseys (2009), or	
consistence of the conditional proteining of the accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2018; A - anomale B - accepted by Belferman et al., 2011; L&: Langgut et al. et al., 2004; A&: Amiran et al., 1094; K&: Kagan et al., 2011; L&: Langgut et al. et al., 2012; KT: Ken Tor et al., 2004; MI: Migowold et al., 2004; PA: Parker, 1082; W&: Williams et al., 2012; E - a - accepted by step s - accepted by s	rejeciei	<u>i (Ciuss K) in i</u>	ie p	Tese	ni sin	<u>uy.</u>			
among the researchers: $e^{-consentended}$, $B^{-accepted}$ by Belferman et al., 2018; A-annended here: R-rejected here: Abbreviations and notes: *ZE - Ze' elim Creek; *EG - Ein Gedi core; *EF - Ein Feshkhs Nature Reserve AM: Ambraseya, 2009; A&: Amiran et al., 1094; K&: Kagan et al., 2011; L&: Langgut et al. 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012; Year CE C Seismite Reference Comments Year CE C Seismite Reference Comments Year CE C Seismite Reference Comments	of eart	hquakes that ce	suld	<u>pote</u>	entiali	ly da	ımage Jerusalem .	The classes denote the level of acceptance of damage to Jerusalem	•
*Zenzeviation and motes: *ZE Ze' elim Creek; *EG Ein Gedi core; °EF Ein Feshkhs Nature Reserve AM: Ambraseys, 2009; A&: Amiran et al., 1994; K&: Kagan et al., 2011; L&: Langgut et al. • 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2013. • Year CE C Seismite Reference Comments • • Year CE C Seismite Reference Comments • • • • • • • • • • • • • •	among A bba	the researchers	:: C		nsens	ual;	B - accepted by	Belferman et al., 2018; A - amended here; R - rejected here.	
⁴ ZE Ze' elim Creek; ⁴ EG Ein Gedi core; ^o EF Ein Feshkhs Nature Reserve AM: Ambraseys, 2009; A&: Amiran et al., 1994; K&: Kagan et al., 2011; L&: Langgut et al. • 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012. • Vear CE C Seismite Reference, Comments, • 1 correl. • 2 F F 2 F F 2 F • 2 F F 2 F • 1 correl. • 2 F • 2 F F 2 F • 2 F • 2 F • 2 F • 2 F • 2 F • 2 F • 2 F • 2 A A 2 F • 2 A A 2 A A 2 A	AUUR	eviations an		.1010	23.				
AM: Ambraseys, 2009; A&: Amiran et al., 1994; K&: Kagan et al., 2011; L&: Langgut et al. 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012. Vear CE C Seismite Reference Comments • * Z F E - • * Z F E • • * Z F E • • * Z F F • • * Z F F • • * Z F F • • * Z F F • • * Z F F • • * Z A& A • • • * Z A A • • • • * Z A A • • • • • * Z A A A • • • • • •	[†] ZE_	Ze' elim C	ree	<u>k</u> ∙¥	EG	- F	in Gedi core:	°FF Fin Feshkhs Nature Reserve	
AM: Ambraceyo, 2009; A&: Amiran et al., 1994; K&: Kagan et al., 2011; L&: Langgut et al. 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012. Vear CE C Seismite Reference, Comments 1 correl. * 8 Z F * 8 Z F * 9 * Z F 1 orrel. * * 2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012. * * * 2012. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * <t< td=""><td></td><td>20 01111 0</td><td></td><td>,</td><td>20</td><td>-</td><td>in ordi rollo,</td><td></td><td></td></t<>		20 01111 0		,	20	-	in ordi rollo,		
2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012. Vear CE C Seismite Reference Comments Vear CE C F E F Correl $aVear CE F C F FC C C F F FC C C$	AM:	Ambraseys	, 20	009	; 16	<u>. /</u>	miran et al.,	1994; K&: Kagan et al., 2011; L&: Langgut et al.	•
2015; KT: Ken Tor et al., 2004; MI: Migowski et al., 2004; PA: Parker, 1982; W&: Williams et al., 2012. * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
al., 2012. Year CE, C Seismite Reference, Comments, 4 a correl, by site, a a a S Z F F a a E G ^V , F F a a a c659 R c c J.&.AM, Jordan Valley, possibly over 65 km NE of Jerusalem, a g08 S 4 c J. A& a a g1016 P 2 2 A.A.AA Damage to the Dome of Rock, no specific reference to shaking, a g1042 S c c BM Syria, off the Dead Sea transform, a g1060 S c A.A.AS.B The roof of Al-Aqsa collapsed, a a g1063 R A A&.AM,SB Syrian littoral, a a a g1063 R A A&.AM, M Neither of the two events can be associated with the Dead Sea, a a g1063 D t t A&.AM, M Strong" but "no damage recorded in the sources", a a g1105 <td< td=""><td>2015;</td><td>KT: Ken 7</td><td>for</td><td>et</td><td>al., 2</td><td>200</td><td>4; MI: Migor</td><td>wski et al., 2004; PA: Parker, 1982; W&: Williams et</td><td></td></td<>	2015;	KT: Ken 7	for	et	al., 2	200	4; MI: Migor	wski et al., 2004; PA: Parker, 1982; W&: Williams et	
Ath, 2012. Year CE C Seismite Reference Comments a by site - - - a by site - - - s Z E E - - c 659 R - - - - g08 S 4 - 2 A& - µ016 D 2 2 A A& - µ042 S a - - A& - µ042 S a - A Damage to the Dome of Rock, no specific reference to shaking - µ042 S a - A& Damage to the Dome of Rock, no specific reference to shaking - µ042 S a - A&,SB The roof of Al-Aqsa collapsed - - µ060 S - - A&,AB,SB Syrian littoral - - µ063 R - - - A&,AM, SB Syrian littoral - <									
Year CE C Seismite Reference Comments 1 correl. by site - - - - 8 Z E F - - - - c659 R r. r. t. Jordan Valley, possibly over 65 km NE of Jerusalem - 808 S A a 2 A& - - 1016 D 2 2 A A& - - 1016 D 2 2 A AA - - - 1016 D 2 2 A AA - - - 1042 S a t. a A& - - - 1060 S a A AS.SB The roof of Al-Aqsa collapsed - - - 1063 R - + A& Neither of the two events can be associated with the Dead Sea - 1068 D - + A& AM Neither	a l., 20	$\frac{112}{12}$							
Year CE, C Seismite Reference, Comments, • 1 correl, by site, • • • • 8 Z E E G ⁴ , F • • c-659 R \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} 808 S 4 \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} 1016, D 2 2 A & Damage to the Dome of Rock, no specific reference to shaking • 1042 S \vec{x} \vec{x} A Damage to the Dome of Rock, no specific reference to shaking • 1060, S \vec{x} \vec{x} A A A A 1063 R \vec{x} \vec{x} A A A A A A 1068 D \vec{x} \vec{x} A									
Year CE,CSeismiteReference,Comments,1correl,8ZEE8ZEC9EG ⁴ , F112A&2C2A&2A222A1016,D222AA1016,D222AA1016,D2231060,S1063,R-A&,AB,SB, The roof of Al-Aqsa collapsed1063,R1064,D22107,D221114,D++2A&,AM, SItrong" but "no damage recorded in the sources",1114,D++2A&,AM,1117,R+21644,Rh, +*, h, Am,2Some damage and death toll in Palestine, likely Seismite 6 of Me									
Interview Performe Performe Performe a by site s s Z E E e G ^V F - t G ^V F - z 659 R t t g08 S A z A& 1016 D 2 2 AM,A& Damage to the Dome of Rock, no specific reference to shaking 1042 S t t A& Damage to the Dome of Rock, no specific reference to shaking 1042 S t t A& A 1060 S , A& A& 1060 S , A& A& 1063 R A& A& Neither of the two events can be associated with the Dead Sea 1068 D t t A& AM 1063 R A& A& Strong" but "no damage recorded in the sources", I 1105 D 2 2 A& A& A 1105 <t< td=""><td></td><td>Vear CE</td><td>C</td><td>- 5</td><td>eismi</td><td>ite</td><td>Reference</td><td>Comments</td><td></td></t<>		Vear CE	C	- 5	eismi	ite	Reference	Comments	
a sby siteZE E GF F Sc-659R Tt TL&AMJordan Valley, possibly over 65 km NE of Jerusalem808S T T808S T T T T808S T <td></td> <td></td> <td>1</td> <td></td> <td>corre</td> <td>l.</td> <td>Reference</td> <td>comments</td> <td>_</td>			1		corre	l.	Reference	comments	_
s Z E E			a	1	by sit	e			
* P P P * F * * * * * * * <			S	7	F	F			
* *				E	G [¥]	F			
c-659 R				Ť		•			
808 S 4 7 7 2 A& 808 S 4 7 2 A& 4 1016 D 2 2 2 AM,A& Damage to the Dome of Rock, no specific reference to shaking 1016 D 2 2 2 AM,A& Damage to the Dome of Rock, no specific reference to shaking 1042 S \overline{x} \overline{x} \overline{x} BM Syria, off the Dead Sea transform 4 1060 S \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} 1063 R \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} 1063 R \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} 1063 R \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} 1068 D \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} 1105 D 2 2 \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} 1114 D \overline{x} </td <td></td> <td>~659</td> <td>R</td> <td>, _</td> <td>+</td> <td>+</td> <td>I & AM</td> <td>Jordan Valley, possibly over 65 km NF of Jerusalem</td> <td>-</td>		~659	R	, _	+	+	I & AM	Jordan Valley, possibly over 65 km NF of Jerusalem	-
808 S 4 - 2 A& 1016 D 2 2 2 AM,A& Damage to the Dome of Rock, no specific reference to shaking 1042 S - + - BM Syria, off the Dead Sea transform 1060 S - - A&,SB The roof of Al-Aqsa collapsed 1063 R - - - - 1063 R - - - - 1063 R - - - - 1063 R - - - - - 1063 R - - - - - 1063 R - - - - - 1068 D + + + AM Neither of the two events can be associated with the Dead Sea - 1105 D 2 2 2 A&,AM ''Strong'' but ''no damage recorded in the sources''. - 1114 D + + 2 A&,AM 1114 - no damage around the city, a swarm, Kingdom's north.					A'A	A'A		portain valiey, possibly over of kin the of serusatent	_
1016 D 2 2 AM,A& Damage to the Dome of Rock, no specific reference to shaking 1042 S i t i BM Syria, off the Dead Sea transform 1060 S i A&,SB The roof of Al-Aqsa collapsed i 1063 R A&,AM,SB Syrian littoral i 1068 D t t A&,AM,SB Syrian littoral 1068 D t t A&,AM Neither of the two events can be associated with the Dead Sea 1105 D 2 2 A&,AM "Strong" but "no damage recorded in the sources" 1114 D t t 2 A&,AM 1557 R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven 1644 R h +* h Am		808	S	6	Ā	?	A&		•
1042 S A A AM, A&, A Panage to the Done of Nock, no specific Telefence to shaking 1042 S I I Image to the Done of Nock, no specific Telefence to shaking 1060 S Image to the Done of Al-Aqsa collapsed Image to the Done of Al-Aqsa collapsed 1063 R Image to the A&, AM, SB Syrian littoral 1068 D H H A&, AM, SB 1068 D H H AM 1105 D 2 2 A&, AM, "Strong" but "no damage recorded in the sources". 1114 D H H 2 A&, AM 1557 R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven 1644 R H +* h Am		1016	Г	2	2	2	AM A &	Damage to the Dome of Rock, no specific reference to shaking	
1042 S i t i BM Syria, off the Dead Sea transform 1060 S A&,SB The roof of Al-Aqsa collapsed i 1063 R A&,AM,SB Syrian littoral i 1063 R A&,AM,SB Syrian littoral i 1068 D + + AM Neither of the two events can be associated with the Dead Sea 1105 D 2 2 A&,AM "Strong" but "no damage recorded in the sources" 1114 D + t 2 A&,AM 1114 - no damage around the city, a swarm, Kingdom's north 1557 R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven i 1644 R h +* h Am Some damage and death toll in Palestine likely Seismite 6 of M		1010			A ² A	A*A	Alvi,Ad	Damage to the Dome of Rock, no specific reference to shaking	
1042 S + + + + BM Syria, off the Dead Sea transform • 1060 S + + + + AK A&,SB The roof of Al-Aqsa collapsed • 1063 R A&,AM,SB Syrian littoral • 1063 R A&,AM,SB Syrian littoral • 1063 R A&,AM,SB Syrian littoral • 1068 D + + + + AM Neither of the two events can be associated with the Dead Sea • 1105 D 2 2 A&,AM "Strong" but "no damage recorded in the sources" • 1114 D + + + 2 A&,AM 1114 - no damage around the city, a swarm, Kingdom's north • 1117 R + 2 A&,AM Collapse in Jerusalem: a gun foundry, a forgery, an oven • 1557 R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven •		10.40				-	D) (_
1060 S A&,SB The roof of Al-Aqsa collapsed 1063 R A&,AM,SB Syrian littoral 1063 R A&,AM,SB Syrian littoral 1063 R A&,AM,SB Syrian littoral 1063 D + + AM 1068 D + + AM 1068 D + + AM 1105 D 2 2 A&,AM 1105 D 2 2 A&,AM 1114 D + + 2 1114 D + + 2 1114 D + + 2 1117 R + 2 A&,AM 1557 R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven 1644 R + + Am Some damage and death toll in Palestine, likely Seismite 6 of M		1042	S	• •	+	Ā	BM	Syria, off the Dead Sea transform	
1063 R - + -		1060	s				A&,SB	The roof of Al-Aqsa collapsed	-
1063 R A&,AM,SB Syrian littoral • 1068 D + + + AM Neither of the two events can be associated with the Dead Sea • 1105 D 2 2 2 A&,AM "Strong" but "no damage recorded in the sources". • 1114 D + + 2 A&,AM 1114 - no damage around the city, a swarm, Kingdom's north, • • 1117 R + 2 A&,AM • • • 1557 R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven, • • • 1644 R h +* h Am Some damage and death toll in Palestine, likely Seismite 6 of M		10.00	-	4	-	+			_
1068 D, +, +, +, AM Neither of the two events can be associated with the Dead Sea 1105 D, 2, 2, 2, A&,AM "Strong" but "no damage recorded in the sources" 1114 D, +, +, 2, A&,AM 1114 - no damage around the city, a swarm, Kingdom's north, 1117 R, +, 2, A&,AM 1114 - no damage around the city, a swarm, Kingdom's north, 1557 R Am 1644 R, h, +* h 1644 R, h, +* h		1063	K				A&,AM,SB	Syrian littoral	-
1105 D. 2. 2. 2. A&,AM "Strong" but "no damage recorded in the sources". 1114 D. +. +. 2. A&,AM 1114 - no damage around the city, a swarm, Kingdom's north, ~1117 R. +. 2. A&,AM 1114 - no damage around the city, a swarm, Kingdom's north, ~1117 R. +. 2. A&,AM Collapse in Jerusalem: a gun foundry, a forgery, an oven, 1557 R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven, 1644		1068	L) +	+	+	AM	Neither of the two events can be associated with the Dead Sea	
1105 D. 2. 2. 2. A&,AM, "Strong" but "no damage recorded in the sources". 1114 D. +. +. 2. A&,AM, 1114 - no damage around the city, a swarm, Kingdom's north, " ~1117 R. +. 2. A&,AM, 1114 - no damage around the city, a swarm, Kingdom's north, " ~1117 R. +. 2. A&,AM, Collapse in Jerusalem: a gun foundry, a forgery, an oven, " 1557 R. Am, Collapse in Jerusalem: a gun foundry, a forgery, an oven, " 1644 R. h. +* h. Am, Some damage and death toll in Palestine, likely Seismite 6 of M*									
1114 D. +. +. 2. A&,AM 1114 - no damage around the city, a swarm, Kingdom's north 1117 R. +. 2. A&,AM 1114 - no damage around the city, a swarm, Kingdom's north 1557 R. Am Collapse in Jerusalem: a gun foundry, a forgery, an oven 1644 R. h. +* h. Am Some damage and death toll in Palestine, likely Seismite 6 of M*		1105	Г	2	2	2	4& 4M	"Strong" but "no damage recorded in the sources"	
1114 D, +, +, 2, A&,AM, 1114 - no damage around the city, a swarm, Kingdom's north, -1117 R, +, 2, A&,AM,		1105			A*A	A*A	1100,71111	strong but no damage recorded in the sources	
~1117, R, +, 2. A&,AM, 1557, R Am, Collapse in Jerusalem: a gun foundry, a forgery, an oven, 1644, R, h, +*, h, Am, Some damage and death toll in Palestine, likely Seismite 6 of Mi		1114	L) +	+	?	A&,AM	1114 - no damage around the city, a swarm, Kingdom's north	•
~1117, R, +, 2, A&,AM, 1557, R, Am, Collapse in Jerusalem: a gun foundry, a forgery, an oven, 1644, R, h, +*, h, Am, Some damage and death toll in Palestine, likely Seismite 6 of Mi									
1557, R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven		~1117	R	+		2	A&,AM		-
1557, R Am Collapse in Jerusalem: a gun foundry, a forgery, an oven			-						
1644 R h +* h Am Some damage and death toll in Palestine, likely Seismite 6 of Mi		4 5 5 5 5							
		1557	R	2			Am	Collapse in Jerusalem: a gun foundry, a forgery, an oven	

	Formatted	
	Formatted	
/ //	Formatted	
	Formatted	
///	Formatted	
	Formatted	
	Formatted	
\square	Formatted	
	Formatted	
$\left(\right) $	Formatted	
$\langle \rangle$	Formatted	
	Formatted	
- and \$1257.52		1

ĺ

[...

[... [... [... **... ...**

[...

...

(... [... <u>...</u> (... (... (...

...

	1656 R h - h	A&,AM,SB, Tripoli V	VII, Palestine IV, MI misidentified with Seismite 6	Formatted: None, Font: (Default) Times N	ew Roman
	1817 R	AM Two chu	urches damaged in Jerusalem Holy Sepulchre affected	Formatted: Font: (Default) Times New Ro	nan
			nenes damaged in serusalem, Hory Septience arected	Formatted	(
I	1870 S 2 - b	AM Mediter		Formatted: Table Style 2 A	
		Aw		Formatted	.
629	Abbreviations and notes:		"- Fold I - Notes Deces	Formatted	.
630	ZE - Ze' elim Creek; 'EG - Ein	n Gedi core; "EF - E	un-Feshkha Nature Reserve	Formatted	
631	AM: Ambraseys, 2009; A&: Ar	miran et al., 1994; K	K&: Kagan et al., 2011; L&: Langgut et al.	Formatted	
	· · · · ·	·	· · · · · · · · · · · · · · · · · · ·	Formatted	
632	2015; KT: Ken-Tor et al., 2004;	; MI: Migowski et a	l., 2004; PA: Parker, 1982; W&: Williams et	Formatted: None, Font: (Default) Times N	ew Roman
(22	-1 2012			Formatted: Table Style 2 A	
033	<u>al., 2012.</u>			Formatted: Font: (Default) Times New Ro	nan
		621	•	Formatted	
				Formatted: None, Font: (Default) Times N	ew Roman
	Sea of		•	Formatted: Table Style 2 A	
	Galilée	Table A2	: Events listed in some catalogs and subsequently skipped or declined (Class D) by Ambraseys (2009), or rejected	Formatted: Font: (Default) Times New Ro	nan
	rea	(Class R)	in the present study.	Formatted	
	Pella			Formatted: None, Font: (Default) Times N	ew Roman
	a solution	erasa		Formatted: Table Style 2 A	
	The state			Formatted: Font: (Default) Times New Ro	nan
	- Pericha			Formatted	<u>.</u>
	erusalem • Sin Fesh'ba	15		Formatted	<u>.</u>
	(Fin Gedi			Formatted	
	za			Formatted	<u> </u>
	Masada			Formatted	(
				Formatted	
				Formatted: Hyperlink.22	

Formatted: Centered

Formatted: Body A

Formatted

Formatted: Body A, Line spacing: Double Formatted: Body A, Line spacing: single

Figure A1: A map showing the epicenter reconstructed by Langgut et al.

(2015) for the 659/660 -- mainshock,

Formatted: Header & Footer Formatted: None, Font: 9 pt Formatted: None, Font: 9 pt Formatted: Hyperlink.11, Font: 9 pt Formatted: None, Font: 9 pt, Italic Formatted: None, Font: 9 pt, Complex Script Font: Times New Roman, 9 pt Formatted: None, Font: 9 pt, Complex Script Font: Times New Roman, 9 pt Formatted: None, Font: 9 pt, Complex Script Font: Times New Roman, 9 pt Formatted: None, Font: 9 pt, Hebrew Formatted: None, Font: 9 pt, Hebrew Formatted: None, Font: 9 pt, Italic Formatted: None, Font: 9 pt, Italic Formatted: None, Font: 9 pt, Italic

Formatted: Body A, Left, Indent: Before: 0 cm, First line: 0 cm, Space Before: 0 pt, After: 0 pt