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Abstract. Sustainable flood risk management encompasses the implementation of nature-based solutions to mitigate flood 

risk. These measures include the establishment of land use types with a high (e.g. forest patches) or low (e.g. sealed surfaces) 

water retention and infiltration capacity at strategic locations in the catchment. This paper presents an approach for assessing 

the relative impact of such land use changes on economic flood damages and associated risk. This spatially explicit approach 10 

integrates a reference situation, a flood damage model and a rainfall-runoff model, considering runoff re-infiltration and 

propagation, to determine relative flood risk mitigation or increment related to the implementation of land use change 

scenarios. The applicability of the framework is illustrated for a 4800 ha undulating catchment in the region of Flanders, 

Belgium by assessing afforestation of 187.5 ha (3.9%), located mainly in the valleys, and sealing of 187.5 ha, situated mainly 

at higher elevations. These scenarios result in a risk reduction of 57% (100 856 €) for the afforestation scenario and a risk 15 

increment of <1% (535 €) for the sealing scenario. 

1 Introduction 

River flooding is a natural process, but also poses a significant socioeconomic hazard, causing human distress and damage to 

properties and infrastructure. In Europe, floods caused approximately 52 billion euros overall losses and 1100 fatalities 

between 1998 and 2009 (EEA, 2010). Moreover, the economic losses associated with flood events have been on the increase 20 

in the past decades (since 1970), partly due to changing weather patterns (IPCC, 2014), but mainly driven by socioeconomic 

developments such as population growth, increasing wealth and ongoing urbanization in flood prone areas (Barredo, 2009; 

Bouwer, 2011; Koks et al., 2014). The increasing flood losses prompted a shift in flood management in Europe from a flood 

prevention policy to flood risk management policy (EEA, 2017), as detailed in the European Flood Directive (Directive 

2007/60/EC, 2007). Flood risk management aims at minimizing flood risk, which is defined by the probability of a flood event 25 

and its potential negative consequences, also termed flood damages. Flood risk is thus an expression of the expected flood 

damages over a certain period of time, e.g. the expected annual damages (Bubeck et al., 2011; Grossi and Kunreuther, 2005; 

Merz et al., 2010; de Moel et al., 2015).  
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The first step in the general approach for flood risk assessments (de Moel et al., 2015) is to derive indicators of flood hazard, 

i.e. the probability and intensity of floods, from flood maps. These flood maps typically represent the flood extent and water 30 

depth of hypothetical flood events with different probabilities of occurrence (de Moel et al., 2009). Next, the corresponding 

flood damages are determined in flood damage models, which relate the flood hazard characteristics, established in the flood 

maps, to the vulnerability to flooding of the exposed assets, i.e. the ecosystems, people and properties at risk. Finally, the flood 

risk is determined by combining the flood damages caused by flood events with different return periods in a weighted 

summation. 35 

 

Flood damage entails all negative, harmful impacts of floods on society, economy and the environment. Generally, direct and 

indirect damages are distinguished. Direct flood damage occurs at the time of flooding through the physical contact of the 

exposed elements with flood waters, while indirect flood damage relates to the induced losses as a result of flooding, e.g. 

production losses (Merz et al., 2010). A second distinction is made between tangible and intangible damages: tangible damages 40 

can easily be expressed in monetary values, whereas intangible damages encompass damage inflicted on assets of which the 

financial value is more difficult to assess. Examples of direct, tangible flood damage include damage to buildings and 

household effects, whereas direct, intangible damages encompass loss of life and damage to cultural heritage. Indirect, tangible 

flood damages are, for instance, the induced production losses of companies situated outside the flooded area, while indirect 

and intangible damage entails the psychological impact of exposure to flooding (Merz et al., 2010; Messner and Meyer, 2006). 45 

Flood risk analyses often only comprise an assessment of tangible flood damages, which are easier and more reliable to 

estimate than intangible flood damages (Merz et al., 2010). The vulnerability to flooding of assets is described by damage 

functions, providing a link between the valuation of the assets exposed to the flood and the corresponding flood hazard 

characteristics, established in the flood maps. Most often, damage functions are included in flood damage models in the form 

of depth-damage curves, detailing the impact of water depth on the value of the assets exposed to flooding (Gerl et al., 2016).  50 

 

An example of a flood risk analysis tool is LATIS, developed in Flanders, Belgium based on the damage model of Vanneuville 

et al. (2006). The economic damage assessment in LATIS considers direct and indirect flood damages (Beullens et al., 2017; 

Kellens et al., 2013; VMM, 2018). The depth-damage functions implemented in LATIS are expert-based. Due to the lack of 

consistent, complete and spatially distributed data on insured flood damages in Flanders, these depth-damage curves are 55 

derived from enquiries conducted in the Netherlands and the United Kingdom (UK) (Vanneuville et al., 2006). In the 

Netherlands, flood risk frameworks were implemented by Ward, de Moel, & Aerts (2011) and de Moel, van Vliet, & Aerts 

(2014) based on the Damage Scanner model, which assesses direct and indirect economic flood damages. The depth-damage 

functions in the Damage Scanner are based on expert-knowledge and available damage statistics (Klijn et al., 2007).  In the 

UK, flood risk assessments (e.g. Hall, Sayers, & Dawson, 2005) commonly implement the damage model presented in 60 

Penning-Rowsell et al. (2005), assessing both direct and indirect economic damages. Expert-based damage functions are 

implemented, which assess flood damage considering both water depth and flood duration.  
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By explicitly taking into account potential flood damages, these risk assessments identify people and assets at risk of flooding, 

which in turn is a basis for the determination of flood insurance premiums (Grossi and Kunreuther, 2005; Merz et al., 2010) 65 

and to evaluate the effect and efficiency of flood mitigation measures (Koks et al., 2014; de Moel et al., 2014). As flood risk 

management has continued to evolve into an integrated, system-wide approach, flood mitigation measures are increasingly 

incorporating nature-based solutions (EEA, 2015; Sayers et al., 2015; SEPA, 2016). Such measures include the preservation 

and establishment of natural ecosystems at strategic locations in catchments, since vegetated systems have the capacity to 

influence the hydrology of small- to medium-sized catchments by enhancing water retention and infiltration (Bronstert et al., 70 

2002; Peel, 2009). Conversely, the process of sealing soil surfaces for urbanization, e.g. with concrete surfaces, makes these 

surfaces impermeable and prevent water to infiltrate into the soil, thus decreasing the potential for water storage and increasing 

the fraction of rapid surface runoff accumulating in downstream areas (Lin et al., 2007; Miller et al., 2014; Poelmans et al., 

2011). Consequently, land use systems have the capacity to either mitigate or exacerbate flood damage and risk downstream. 

Based on this rationale, we present a spatially explicit, comparative flood risk assessment framework to evaluate land use 75 

changes as flood mitigation measures. This framework compares direct, tangible economic flood damages and the associated 

risk before and after specific land use change scenarios, whereby the original land use serves as a baseline scenario.  

 

The methodological procedure of the comparative risk framework is first elaborated, after which an application of this 

framework is presented on a case study in the Maarkebeek basin in Flanders, Belgium. Flood extents in Flanders have been 80 

recorded in a geospatial flood archive outlining the maximum extent of flooded zones from 1988 to 2016 (Agentschap 

Informatie Vlaanderen and Vlaamse Milieumaatschappij, 2017; Van Orshoven, 2001). To derive estimates of the direct, 

tangible flood damages, a similar methodology to LATIS was adopted. Using a flood damage model based on the depth-

damage curves of LATIS, flood damages were assessed from four flood events occurring in the Maarkebeek basin between 

2000 and 2016, of which the extent is recorded in the geospatial flood archive. The overall flood risk was determined by 85 

combining the flood damages of the four events with their respective probability of occurrence. Next, two land use change 

scenarios were taken into consideration in this case study, namely an afforestation scenario and soil sealing scenario. 

Subsequently, the corresponding hydrological impact of these land use change scenarios was calculated by a spatially explicit 

rainfall-runoff (RR) model, calculating the runoff volume accumulated in each pixel after a rainfall event. Based on the 

accumulated runoff volume after land use changes, the altered flood extents and water depths were derived, and the 90 

corresponding flood damages and flood risk were calculated. Finally, flood damage and risk before and after land use changes 

were compared to provide the relative impact of the considered land use changes on the downstream flooded areas.  



4 

 

2 Material and Methods 

2.1 Comparative flood damage and risk assessment 

The framework determining the spatially explicit, relative flood damage and risk impact of land use changes is visualized in 95 

Figure 1. First, flood depths and volumes are derived from observed, rasterized flood extents for multiple return periods before 

any implementation of land use changes. Next, the hydrological impact of a land use change scenario is determined by a 

spatially explicit RR-model, which calculates the volume of runoff accumulated in each pixel (Gabriels et al., 2021). 

Consequently, an empirical relationship between observed flood volumes and modeled runoff volume accumulation is 

established to determine the flood volumes after land use changes. Based on these modeled flood volumes, a Digital Elevation 100 

Model (DEM) is progressively filled and corresponding water depths are thus determined. The water depths before and after 

land use change are then combined with socio-economic information in a flood damage model to determine the corresponding 

flood damages. In this flood damage model, only direct, economic flood damages were taken into consideration and expressed 

as a monetary values. The difference between the flood damage datasets before and after land use change is defined as the 

relative flood damage impact of the land use changes. In order to evaluate the overall flood risk impact, the flood damages of 105 

several flood events with different probabilities are combined. 

 

Figure 1: Framework determining the overall flood damage and risk impact of land use changes. 
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2.1.1 Flood depth and volume calculations before and after land use changes 

Rasterized flood extents, related to a specific flood event, are first combined with a DEM to derive the water depth in each of 110 

the flooded pixels. This water depth is determined by fitting a linear, least-squares plane representing the water level elevation 

across each flood extent based on the elevation of the pixels bordering the flood extents and the pixels representing the river 

banks. The water elevation is then corrected for each pixel, by averaging this elevation with the water level determined by a 

local, linear interpolation only based on the nearest flood border pixels. Finally, the water depth is calculated per pixel by 

subtracting the DEM from the water level. Consequently, the flooded volume in each pixel is calculated by multiplying the 115 

water depth with each pixel’s area, determined by its resolution.  

 

Next, the rainfall and antecedent soil moisture condition of each flood event together with the land use in the watershed are 

modeled by the RR-model to determine the runoff volume accumulated in each pixel of the basin during the flood event. 

Runoff volume is determined using the empirical, event-based Curve Number (CN) method. The CN method determines runoff 120 

based on rainfall volumes and the CN parameter, which depends on land use and soil information. Prior to the runoff 

calculation, the CN parameter in the RR-model is adjusted to reflect soil moisture conditions antecedent to the rainfall event 

following the method implemented by Neitsch et al. (2011), whereby a higher soil moisture leads to an increase in CN. The 

RR-model then propagates the runoff through the watershed, thereby continuously assessing downstream re-infiltration using 

the Manning’s equation. Further details on this RR-model can be found in Gabriels et al. (2021). The hydrological impact of 125 

land use changes is simulated using the same RR-model by adjusting the model parameters related to land use, i.e. the CN 

value and Manning’s roughness coefficient (Gabriels et al., 2022).  

 

In order to relate the modeled runoff volume accumulation with flood volume, an empirical function is fitted through these 

two variables. Analogously to the relationship found by Mediero, Jiménez-Álvarez, & Garrote (2010) between flood peak 130 

discharge and flood volume, a linear relationship is determined in the log-log space between the total flood volume Vol in the 

flood extent j and the accumulated runoff volume Q at the flood extent’s outlet, i.e. the most downstream pixel in each extent: 

𝑉𝑜𝑙𝑗 = 10𝑎 ∗ 𝑄𝑗
𝑏 ,            (1) 

with a and b respectively the intercept and coefficient of the linear relationship. Using this correlation, the simulated 

accumulated runoff volume resulting from the land use change scenarios can then be expressed as a flood volume. Based on 135 

this simulated flood volume, the altered flood extent and corresponding water depth is determined by progressively filling the 

DEM covering the original flood extent, similar to the simple, conceptual “bathtub” method (Teng et al., 2015).  
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2.1.2 Flood damage model 

Flood damages before and after land use changes are determined for each pixel by combining the derived water depth datasets 

with a flood damage model. The flood damage model estimates the direct economic damages per land use class based on 140 

depth-damage curves, relating the water depth with a damage factor α (Koks et al., 2014). The total effective flood damage D 

in each pixel is then calculated by multiplying this damage factor α with the maximum possible flood damage Dmax (€/m² or 

€/m for road infrastructure), summed over the different land use classes in the pixel:  

𝐷 = ∑ 𝛼 ∗ 𝐷𝑚𝑎𝑥 ,            (2) 

The depth-damage curves implemented in the flood damage model are the expert based functions from Vanneuville et al. 145 

(2006). They are provided in Figure 2 for the different land use classes.  

 

Figure 2: The flood damage curves depicting the relationship between the inundation depth (cm) and the damage factor (Vanneuville 

et al., 2006). 

The maximum damage values implemented in the flood damage model are provided in Table 1 per land use class. These 150 

amounts were established based on the replacement values implemented in the LATIS tool (Beullens et al., 2017; Vanneuville 

et al., 2006) and in Koks et al. (2014); these values were not adjusted to the price level in a specific year. These maximum 

damage estimates were also not spatially differentiated and thus assumed valid for Flanders, with the exception of the 

maximum damage to residential buildings. Similar to the method applied in LATIS, the maximum flood damage to residential 

buildings was derived from socio-economic data regarding the median residential housing price in a municipality divided by 155 

its average housing surface area. The maximum damage to household effects was estimated at 30% of the damage to residential 

buildings, while damage to residential open space, including damage to garden houses, was set at € 1/m² (Kellens et al., 2013). 

The maximum damage to industrial buildings was estimated at a unity price of € 700/m² (Koks et al., 2014), while maximum 
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damage to industrial open spaces, including industrial installations and supplies, was estimated € 100/m² (Kellens et al., 2013; 

Vanneuville et al., 2006). Maximum damage to road infrastructure is dependent on the type of road, ranging between € 41/m 160 

for dirt roads and € 1374/m for highways, as determined by Beullens et al. (2017). The maximum damage to arable land mainly 

relates to losses in crop production and was set to € 0.5/m², while the maximum damage to grasslands, including pastures and 

meadows, was estimated at € 0.08/m². Damage to natural areas, such as forests, was set to € 0/m² (Kellens et al., 2013; 

Vanneuville et al., 2006). 

Table 1: The maximum damage values as implemented in the flood damage model and derived from (Beullens et al., 2017), (Koks 165 
et al., 2014) and (Vanneuville et al., 2006). 

Land use class Damage Function Maximum damage 

Residential Buildings Residential Buildings Housing price /m²  

Residential Household effects Household effects 30% of Housing price /m² 

Industrial Building Industry € 700 /m² 

Open space Recreation/Open Space € 1 /m² (residential) – € 100 /m² (industrial) 

Roads Roads € 41–1374 /m 

Arable land Agriculture € 0.5 /m² 

Grassland Agriculture € 0.08/m² 

2.1.3 Risk calculations 

The damage datasets derived from the flood damage model for flood events with different probabilities or return periods are 

combined to assess the change in flood risk from the implemented land use changes. Flood risk R is calculated by adding the 

flood damages D of all flood events under consideration, thereby weighing these damages according to their corresponding 170 

return period i. This weighted summation takes into account the damages of events with lower return periods to avoid double 

counting damages of these more frequent events. This is mathematically expressed as (Kellens et al., 2013):    

𝑅 = ∑
1

𝑖
∗ (𝐷𝑖 − 𝐷𝑖−1)𝑛

𝑖=1 ,           (3) 

Since only a limited number of return periods are assessed, a linear interpolation is performed between two return periods x 

and p, which can be expressed as (Deckers et al., 2009; Vanneuville et al., 2003):  175 

𝑅 = ∑ (

1

𝑝+1
+⋯+

1

𝑥
 

𝑥−𝑝
)𝑖=𝑥 ∗ (𝐷𝑥 − 𝐷𝑝),          (4) 

Where p is a smaller return period than x.  

2.2 Case study 

2.2.1 Baseline flood damage and risk assessment of observed flood events 

The framework was implemented in a case study in the catchment of the Maarkebeek (48 km²), situated in the Upper Scheldt 180 

basin in Flanders, Belgium. This is a mostly agricultural area, dominated by arable land. Approximately 10% of the catchment 
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is urbanized and about an equal area is afforested (Figure 3). The RR-model was validated for the Maarkebeek catchment for 

165 rainfall events, resulting in a Nash-Sutcliffe Efficiency (NSE) of 0.57 (Nash and Sutcliffe, 1970). As such, the RR-model 

was deemed sufficiently accurate to compare the hydrological impacts of land use changes (Gabriels et al., 2021). 

 185 

Figure 3: General land use in the Maarkebeek catchment, based on the land use dataset of 2012 (Agentschap Informatie Vlaanderen, 

2016). 

Flood damage and risk were assessed from observed flood extents derived from the geospatial flood archive. This geospatial 

flood archive details the maximum extent of flooded areas in Flanders for flood events between 1988 and 2016 (Agentschap 

Informatie Vlaanderen and Vlaamse Milieumaatschappij, 2017). Eight flood events were registered in the geospatial flood 190 

archive for the Maarkebeek catchment, namely one flood event in each of 1993, 1995, 1998, 1999, 2003 and 2010 and two 

flood events in 2002. Since the rainfall dataset ranges from 2000 to 2012, the risk assessment was performed on the four flood 

events observed after 2000, i.e. two flood events taking place in 2002 (19-27/02/2002 and 19-21/08/2002), one flood event in 

2003 (1-3/01/2003) and one flood event in 2010 (11-15/11/2010). The extents of the flooded areas during these events are 

visualized in Figure 4: one flood extent was registered in each event in 2002, while respectively three and eight separate flood 195 

extents were observed in 2003 and 2010. Flood extents situated partially or completely outside this study area were not taken 

into consideration. 
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Figure 4: Extents of flooded areas in the Maarkebeek basin as recorded in the geospatial flood archive for the 2000–2016 period 

(Agentschap Informatie Vlaanderen et al., 2006; Agentschap Informatie Vlaanderen and Vlaamse Milieumaatschappij, 2017). 200 

For each of these flood events, the water depths in the corresponding flood extents were first determined. Consequently, the 

flood extents were rasterized with a resolution of 5 m and then combined with a DEM to fit a linear plane, as described above, 

to determine the water level and associated water depth in each pixel (Agentschap Informatie Vlaanderen et al., 2006). Based 

on these water depths, the flood damages were assessed on a per-pixel basis using the flood damage model. Socio-economic 

information and land use datasets regarding the land use classes in Table 1 were collected to determine the maximum flood 205 

damage in each pixel. The maximum damage to residential buildings was determined by combining the median residential 

housing price in 2002, 2003 and 2010 in the municipalities situated in the Maarkebeek subcatchment (Oudenaarde, Ronse, 

Brakel, Horebeke and Maarkedal) (Statbel, 2019) with the number of residences and their total surface area in the 

municipalities, which was derived from a high resolution dataset outlining building footprints (Agentschap Informatie 

Vlaanderen, 2020). These residential damages ranged from € 439/m² to € 703/m² in 2002, from € 492/m² to € 745/m² in 2003, 210 

and from € 903/m² to € 1524/m² in 2010. Road infrastructure in the catchment was derived from the road register (Agentschap 

Informatie Vlaanderen and Nationaal Geografisch Instituut, 2020). According to the industrial parcel dataset (Agentschap 

Innoveren en Ondernemen and Agentschap Informatie Vlaanderen, 2020), no industrial areas were flooded during these four 

events. The non-residential and non-industrial land use classes in Table 1, i.e. arable land, grassland and open space, were 

derived from the land use dataset from 2012 with a resolution of 5 m (Agentschap Informatie Vlaanderen, 2016). 215 

Next, the flood risk corresponding to these flood damages was determined according to Eq. (4), for which the return period of 

each flood events was empirically estimated by applying the Weibull formula on an analysis of the annual maximum discharge 
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(Chow et al., 1988), based on discharge data from 1973 to 2019 of the Maarkebeek river (Vlaamse Milieumaatschappij et al., 

2020). In this analysis, 45 annual maxima were included, as data from 2016 and 2017 was incomplete. This analysis estimated 

the return period of the 2010 flood event at 46 years, since the highest discharge of the time series was recorded during this 220 

event. The flood event in 2003 had a return period of 3 years, while the February and August 2002 flood events had return 

periods of, respectively, 11 and 1 year(s). Implementing these values in Eq. (4) results in the following formula to assess the 

flood risk R based on the damages D corresponding to these events:  

𝑅 =  0.58 ∗ 𝐷1 + 0.27 ∗ 𝐷3 + 0.11 ∗ 𝐷11 + 0.04 ∗ 𝐷46,       (5) 

2.2.2 Comparative flood damage and risk assessment of land use changes 225 

After determining the observed flood damage and corresponding flood risk over all four flood events, the relative impact to 

this base-line was assessed for two types of land use changes, afforestation and soil sealing. First, two land use change scenarios 

were derived through a raster-based optimization procedure that identifies locations for the considered land use change having 

maximal impact on the flood volume. This procedure ranks pixels based on (i) where in the upstream area of the flooded zones 

afforestation maximally reduces the runoff accumulation in these zones, and (ii) where upstream soil sealing would lead to the 230 

smallest increase in runoff accumulation, in each of the flood extents of all considered flood events. Land use changes are 

simulated through an adjustment of the RR-model CN parameter and the Manning’s runoff coefficient, with afforestation and 

sealing resp. leading to a decrease or increase in runoff volume and velocity. More details regarding the optimization procedure 

can be found in Gabriels et al. (2022). Based on the priority rank, the top 750 pixels, representing 187.5 ha or approximately 

4% of the study area, were selected, for both the afforestation and the sealing scenario. Figure 5 depicts the resulting 235 

afforestation and soil sealing scenarios. The pixels to be afforested are mostly located along the rivers, whereas pixels to be 

sealed are located in the more elevated parts of the catchment, away from the rivers and situated near forest patches. The 

optimization procedure therefore leads to the hypothesis that building in the uplands leads to a lesser increase of flood hazard 

than building in the lowlands, and that afforestation of the riparian zones leads to a larger reduction of flood hazard than 

afforestation of the uplands. These findings are consistent with the results of Yeo and Guldmann (2010). The selected pixels 240 

are mainly situated in the eastern part of the catchment, upstream from most flood extents: these pixels have higher ranks as 

land use changes in these pixels will have an impact on more flood extents.  
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Figure 5: Locations of the pixels selected for land use change implementation, i.e. the 750 priority pixels (187.5 ha), for both the 

afforestation and soil sealing scenarios. 245 

Next, the runoff volume accumulation Q of each flood event was modeled with a resolution of 50 m, based on the land use 

dataset from 2012 (Agentschap Informatie Vlaanderen, 2016) and meteorological information from the Royal Meteorological 

Institute and the Flanders Environment Agency (Van Opstal et al., 2014). Subsequently, the empirical relationship, analogously 

to Eq. (1), between the modeled runoff volume accumulation Q at the corresponding extent’s outlet and the derived flood 

volumes Vol of the thirteen observed flood extents was fitted with an adjusted R² of 0.76:  250 

𝑉𝑜𝑙 = 10−6.32 ∗ 𝑄1.9,            (6) 

This relationship was used to determine the flood volume before and after implementing the land use change scenarios based 

on the corresponding modeled accumulated runoff volume. Based on these flood volumes, the DEM of the corresponding 

flood extents were filled to determine the water depths with a resolution of 5 m. The flood damage and risk assessment was 

then implemented on these water depths before and after land use changes; and based on the difference between flood damage 255 

and risk, the relative impact of these land use changes was assessed.    
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3 Results 

3.1 Baseline flood damage and risk assessment of observed flood events 

Statistics regarding the flood events are provided in Table 2, which details the flooded area, volume and damage for each flood 

extent in each of the four flood events, as well as the modeled accumulated runoff volume at each extent’s outlet and the 260 

corresponding, modeled flood volumes derived with Eq. (6). Figure 6 depicts the relationship, with an adjusted R² of 0.76, 

between the observed and modeled flood volumes. 

Table 2: Overview of the flooded area (ha), total observed flood volume (m³), resulting flood damages (€), runoff volume 

accumulation at the flood extents’ outlet (m³) and total modeled flood volume (m³) for each of the four observed flood events and 

their corresponding flood extents. 265 

Event Extent Flood Area 

(ha) 

Flood Vol. 

(m³) 

Damages (€) Runoff 

Vol. Acc. 

(m³) 

Flood Vol. 

(m³) 

Modeled 

02/2002  31 153 321 566 667 1 143 815 156 840 

08/2002  4.2 14 699 27 515 199 406 5667 

2003 Extent 1 4.3 24 698 49 693 295 820 11 994 

Extent 2 1.0 6032 68 405 282 365 10 978 

Extent 3 0.7 4003 21 552 258 176 9260 

Total 6 34 733 139 650   

2010 Extent 1 43.2 243 407 827 122 1 504 926 264 226 

 Extent 2 0.7 2814 60 594 136 299 2749 

 Extent 3 7.2 55 990 366 219 433 442 24 794 

 Extent 4 1.4 6069 4414 335 090 15 201 

 Extent 5 1.4 7331 11 382 303 962 12 629 

 Extent 6 0.5 2848 43 835 199 504 5672 

 Extent 7 1.2 6923 100 976 188 777 5107 

 Extent 8 3.7 35 724 141 813 331 361 14 881 

 Total 59.3 361 106 1 556 355   
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Figure 6: Scatterplot of the flood volumes derived from the observed flood extents (Observed flood volume, m³) and the flood volumes 

as modeled by Eq. (6) (Modeled flood volume, m³), with an adjusted R² of 0.76 and a relative RMSE of 0.3. 

The water depth and corresponding flood damage datasets are shown per pixel in Figure 7. The highest water depths were 

obtained in river pixels and pixels bordering the river. The flood damages are highly localized, with the highest damages 270 

inflicted in built-up pixels containing roads and residential buildings. The maximum flood damage in a pixel (25 m²) was € 

5493 or approximately € 220/m².  The total flood damage was respectively € 566 667, € 27 515, € 139 650 and € 1 556 355 

for the flood events in February 2002, in August 2002, in January 2003 and in November 2010 (Table 2). During these four 

flood events, a total flood damage of € 2 290 187 was inflicted in the Maarkebeek catchment. The flood damage datasets were 

combined according to Eq. (5) to determine flood risk or the expected annual damages in each pixel, as depicted in Figure 8. 275 

Similarly to flood damage, flood risk is highly localized and highest (€ 1265/year in a pixel or € 50.6/year/m²) in repeatedly 

flooded, built-up pixels. The total flood risk derived from the four flood events in the Maarkebeek catchment equals € 178 

252/year. 
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Figure 7: (a) The inundation depth (m) and (b) the corresponding flood damage (€) per pixel (5m X 5m resolution) derived from the 280 
flood damage model in the Maarkebeek catchment resulting from the observed flood events. The total flood damage was respectively 

€ 566 667, € 27 515, € 139 650 and € 1 556 355 for the flood events in February 2002, in August 2002, in January 2003 and in 

November 2010. 

 

Figure 8: Flood risk, expressed as expected annual damages (€/year) in each pixel (5m X 5m resolution), in the Maarkebeek 285 
catchment based on the four observed flood events. Flood risk is highly localized and highest (€ 1265/year or € 50.6/year/m²) in only 

a few, built-up pixels which were repeatedly flooded. The total flood risk derived from the four flood events in the Maarkebeek 

catchment equals € 178 252/year. 
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3.2 Comparative flood damage and risk assessment of land use changes 

Figure 9 depicts, for each flooded pixel, the relative decrease in flood damages after afforestation of the 750 highest impact 290 

pixels, i.e. the relative flood damage mitigation, and the relative flood damage increment after implementing the sealing 

scenario (750 lowest impact pixels). This information is summarized in Table 3 for every flood extent and for each of the flood 

events. The relative flood damage mitigation after implementing the afforestation scheme was -41.4% and -97.3% in 

respectively February and August 2002, -91.5% in 2003 and -39.3% in 2010. The high damage reduction in the flood event of 

2003 is explained by the flood volumes in the two most upstream, smaller flood extents in this event being reduced to nearly 295 

zero (Table 3). The flood damage reduction is highest where the water depth is reduced in built-up urban areas. For the entire 

Maarkebeek catchment, the afforestation scenario reduced flood damages with 44.7%, which equals an absolute reduction of 

€ 1 023 714. The relative damage increment after sealing the 750 least runoff incurring pixels equals 1.1% and 2.8% in 

respectively February and August 2002, 0.01% in 2003 and 1.9% in 2010. The damage increase is mostly due to new pixels 

being flooded, however, it is limited due to the unbuilt nature of these areas, as the soil sealing took place in the uphill areas 300 

of the catchment, away from the rivers and flooded areas. Total flood damages in the Maarkebeek catchment increased with 

1.5%, which resulted in an increase in total flood damage after soil sealing of € 34 353. 

 

Figure 9: The relative impact in flood damages (%) after (a) implementing the afforestation scenario, resulting in a relative damage 

mitigation, and after (b) implementing the soil sealing scenario, resulting in a relative flood damage increment. New areas being 305 
flooded after soil sealing are depicted as ‘additional damage’, though these areas are limited to a few pixels bordering the river or 

existing flood extents. 
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Table 3: Relative flood damage mitigation and increment (%) after respectively afforesting and sealing the 750 highest ranked pixels 

in each land use change scenario. 

Event Extent Damages (€) Damage  

Mitigation (%) 

Afforestation 

Damage 

Increment (%) 

Sealed 

02/2002  566 667 -41.4 1.05 

08/2002  27 515 -97.3 2.80 

2003 Extent 1 49 693 -99.9 0.01 

Extent 2 68 405 -88.0 0.12 

Extent 3 21 552 -96.8 0.07 

Total 139 650 -91.5 0.01 

2010 Extent 1 827 122 -44.3 0.77 

 Extent 2 60 594 0.0 0.0 

 Extent 3 366 219 -16.3 0.22 

 Extent 4 4414 -67.2 0.08 

 Extent 5 11 382 -74.1 74.8 

 Extent 6 43 835 -86.2 3.73 

 Extent 7 100 976 -22.3 0.0 

 Extent 8 141 813 0.0 0.0 

 Total 1 556 355 -39.3 1.9 

Maarkebeek Total 2 290 187 -44.7 1.5 

 310 

Figure 10 visualizes, in a spatially explicit manner, where and how much the flood risk was relatively mitigated afforesting 

187.5 ha of the most optimal locations for flood volume reduction. The total flood risk mitigation of this afforestation scenario 

equals a reduction of 57% of the total flood risk (€ 178 252/year), representing an absolute value of € 101 604/year. The highest 

relative flood risk mitigation was achieved in areas where flood risk was highest, i.e. the built-up, urban areas, by reducing 

flood depth in these pixels. The relative flood risk increment after implementation of the sealing scenario (Figure 11) equals 315 

0.3%, increasing flood risk with a relatively small increment of € 535/year. Most of this increase was due to the flooding of 

more pixels, however, similarly to the damages, the flood risk increase is minimal since these pixels are within non-built up 

area.  
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Figure 10: Relative flood risk mitigation (%) in the Maarkebeek catchment after afforesting the 750 highest ranked pixels in this 320 
land use change scenario. 

 

Figure 11: Relative flood risk increment (%) in the flooded areas in the Maarkebeek catchment after sealing the 750 highest ranked 

pixels in this land use change scenario. New areas being flooded after soil sealing are depicted as ‘additional risk’. 
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4 Discussion 325 

The results of the comparative flood risk assessment using the proposed framework indicate the potential of identifying optimal 

locations in catchments for off-site flood damage and risk reduction or minimization of flood risk increment. A limited number 

of studies have assessed the effect of spatial adaptation measures on flood damages and flood risk. Most notably, Koks et al. 

(2014) assessed the impact of land-use zoning and compartmentalization on coastal flood risk in Belgium. This study indicated 

an increase in coastal flood risk without adaptation measures due to socioeconomic developments. Compartmentalization, i.e. 330 

upgrading linear elements in the landscape to serve as flood protection, resulted in a higher risk reduction than land-use zoning, 

i.e. constricting urban development in flood prone areas, which decreased the flood risk by 10 %. The flood risk assessment 

of soil sealing presented here indicates that constricting soil sealing and urbanization to higher elevations in the catchment 

results in an overall small relative increment in flood risk of 0.3% or € 535/year, since no additional urban areas are affected 

by an increase in flood volume. However, this analysis does not take into account urban floods or surcharge of urban drainage 335 

systems, which also impact the hydrological response of the catchment leading to an increase in peak discharges (Poelmans et 

al., 2011).  

 

The relative flood risk reduction resulting from the afforestation scenario is 57% in the Maarkebeek catchment, or € 100 

856/year in absolute terms. Figure 11 quantitatively depicts, on a per-pixel basis, where this relative decrease in flood risk is 340 

delivered. The absolute flood risk reduction in the Maarkebeek catchment can be compared to the cost associated with the 

afforestation scenario, estimated based on information provided by E. Van Beek (personal communication, 3/11/2020) and 

from Van Den Broeck (2019). Saplings costs are approximated at € 1 – 1.5 each, resulting in a cost of € 4000 – 6000/ ha 

assuming a planting density of 4000 trees/ha. Labour costs are estimated at € 6000, though these costs can be reduced by 

working with volunteers. The highest cost in afforestation is the acquisition of land, as the price of agricultural land ranges 345 

from € 30 000 – 70 000/ha, and averages € 56 595/ha in the province of East Flanders (Federatie van het Notariaat, 2019), 

wherein the Maarkebeek catchment is situated. Assuming a total afforestation cost of € 67 000/ha in the Maarkebeek, the costs 

of afforesting 187.5 ha would amount to approximately € 12 500 000. Considering a reduction in flood risk of € 101 604/year, 

it would therefore take around 125 years for the risk reduction to compensate the costs of afforestation, not taking into account 

inflation. However, this scenario assumes the acquisition of 187.5 ha of land, constituting 85% of the cost of afforestation. The 350 

regional government in Flanders also promotes afforestation among land owners through subsidies, which can total up to € 

3250/ha. Under the assumption that a governmental program would sufficient incentives to land owners in the Maarkebeek 

catchment to afforest 187.5 ha, costing at most € 8750/ha or € 1 640 625 in total, afforestation costs would be compensated by 

flood risk reduction after approximately 16 years. However, the afforestation scenario used to illustrate the implementation of 

the comparative risk framework assumes the implementation of a full-grown forest. Consequently, the associated flood risk 355 

reduction corresponds to the risk reduction of a full-grown forest, not to a stand of saplings. Hence, afforestation costs would 

be compensated by the flood risk reduction approximately 16 years after the forest has reached maturity. A more detailed 
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assessment of the risk reduction pertaining to the different development stages of a forest could be assessed by combining a 

forest growth model (e.g. Dalemans et al. (2015)) with a hydrological model (Sutmöller et al., 2011). 

 360 

The two land use change scenarios on afforestation and soil sealing were used to illustrate the proposed comparative flood 

damage and risk assessment framework. These land use change scenarios pertain to the optimization procedure, and provide 

an indication where afforestation and sealing will resp. maximally reduce or minimally increase flood hazard in the flood-

prone areas (Gabriels et al., 2022).  The land use change scenarios were chosen to reflect the spatial planning context in 

Flanders, a highly urbanized region. Recent spatial planning policy measures aim to reduce flood hazard through the  reduction 365 

of soil sealing, the establishment of green and blue infrastructures and the restoration of natural flood plains (Departement 

Ruimte Vlaanderen, 2017; VMM, 2019). Especially the reduction of soil sealing is a current point of discussion, centred on 

the so-called ‘building shift’. This policy aims to halt soil sealing in Flanders by removing the building rights on certain plots 

of land. However, this comes at a high cost, as the loss of these rights by the owners is to be compensated at 100% of the 

market value by the local authorities (Grommen, 2020). The results of the comparative flood risk framework provide a first 370 

indication where to most effectively allocate the efforts of this building shift by quantifying the flood insurance value of the 

upstream areas contributing to flood risk reduction downstream. Protecting these locations, and increasing their infiltration 

capacity through for instance afforestation, will have a higher return on investment in terms of the corresponding reduction in 

flood risk. The results of the comparative risk assessment thereby point to and quantify the important flood insurance value of 

green and blue infrastructure and natural flood plains for downstream areas at risk. In future applications of the comparative 375 

framework, other types of nature-based solutions can be considered, for instance the establishment of natural floodplains. By 

integrating a more detailed hydrological model, the impact of small-scale landscape elements could be taken into consideration. 

These small-scale measures, especially when implemented at strategic locations, could reduce the associated costs of land use 

changes, which are relatively high for afforestation. Socio-economic land use dynamics were not taken into account in the 

implemented land use change scenarios. However, these dynamics will also influence ecosystem insurance values. However, 380 

the generic capacity of the presented framework allows the evaluation of any land use change scenario, including more detailed, 

socio-economic based scenarios. 

 

Validation of flood damage and risk assessments is challenging, as in most cases there is a lack of detailed and consistently 

updated flood damage databases. Therefore, comparisons between different risk assessments are often used as an alternative 385 

validation method  (Gerl et al., 2016). Accordingly, the flood risk calculated in this study for the Maarkebeek catchment was 

compared to benchmark assessment of economic flood risk performed by the LATIS method, as depicted in Figure 12. This 

economic flood risk was determined by combining economic damages of flood events with a return period of 10, 100 and 1000 

years. The overall flood risk calculated by LATIS in the Maarkebeek catchment is € 247 255, which is considerably higher 

than the flood risk of € 178 252/year calculated in this analysis. This can be explained on the one hand by the larger area at 390 

risk of flooding considered in the LATIS too, which is l based on modeled flood events with larger return periods. Considering 



20 

 

only the pixels at risk of flooding in the presented framework, the LATIS framework estimates flood risk at € 227 139/year. 

However, the maximum damage per pixel is higher in the LATIS estimate (€ 9880) than in the presented framework (€ 1265), 

which is the result of the more extensive economic assessment incorporated in LATIS. The LATIS framework also assesses 

indirect, internal economic damages, such as clean-up costs, in addition to direct economic damages, which are more 395 

comprehensive, including, for instance, damage to vehicles (VMM, 2018). Flood damage assessments typically show a high 

level of uncertainty in the estimates of maximum damages and in the definition of depth-damage curves (de Moel and Aerts, 

2011). Absolute estimates of flood damage therefore have a high level of uncertainty, which is less of an issue when comparing 

two situations relative to each other, i.e. in the comparison of land us changes, as in the relative risk assessment of the 

afforestation or soil sealing scenarios (Koks et al., 2014; de Moel and Aerts, 2011). 400 

 

Figure 12: Flood risk (€/year per pixel of 25 m²) in the Maarkebeek catchment as calculated by the LATIS tool based on the flood 

damages determined for flood events with a return period of 10, 100 and 1000 years (adapted from (VMM, 2015)). (source: Vlaamse 

Milieumaatschappij, Waterbouwkundig Laboratorium, Maritieme Dienstverlening & Kust, & De Vlaamse Waterweg nv, 2020). 

The flood damage assessment only considers direct, tangible flood damage to physical assets, thereby disregarding the impact 405 

of flooding on health and the environment. The flood insurance value of land use changes is therefore a reflection of only the 

direct, tangible economic flood losses. This estimate of direct flood damage does not take into account monetary inflation; the 

accuracy of this assessment could therefore be increased by adjusting for inflation by using indexed prices to compare housing 

prices of 2002, 2003 and 2010. Most flood risk assessments are limited to direct, tangible damages (de Moel et al., 2015), as 

these costs are easy to quantify compared to indirect economic damages (e.g. loss of production of commercial goods for 410 

companies situated outside the flooded areas), which would require taking into account complicated supply and delivery chains 
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(Merz et al., 2010). Other risk assessment tools, including LATIS, also provide an indication of social and cultural impacts, 

together with the loss of life based on the rate of water level rise and flow velocity. In addition, flood duration will also 

influence total damages, as indicated by flood loss data related to farmland damage (Morris and Brewin, 2014) and residential 

properties (Mohor et al., 2021).  The flood damage assessment also does not take into account adaptive measures, such as 415 

Property Level Flood Risk Adaptations (PLFRA), which can be adopted in response to repetitive flooding (Attems et al., 2020; 

Davids and Thaler, 2021; Joseph et al., 2015). These measures have the capacity to decrease the potential flood damage 

component of risk, whereas the presented comparative risk framework assesses land use changes as mitigation measures, 

reducing the hazard component of risk. The flood insurance value thereby reflects the potential risk mitigation value of land 

use changes in reducing economic flood damage. Depending on the level of implementation of PLFRA, these potential values 420 

can overestimate the actual risk mitigation. The implemented flood damage model could be extended and refined to take into 

account more flood characteristics, allowing a more complete assessment of flood damages. Taking into account adaptive 

measures, such as PLFRA, would allow the flood insurance value to reflect more realistic values of risk mitigation or 

increment. 

 425 

The presented flood risk assessment assesses flood damage and risk reduction or increment resulting from land use changes 

based on an event-based rainfall-runoff model, which is straightforward to implement and was also used to derive the two 

considered land use change scenarios. However, this RR-model is temporally lumped, and as such assesses the hydrological 

impact of land use changes in terms of runoff volume accumulated during the event (Gabriels et al., 2021). Instead of deriving 

peak discharge from runoff volume using the rational method (Bingner et al., 2018; Yeo and Guldmann, 2010) and relating 430 

the flood peak discharge to flood volume (Mediero et al., 2010), flood volume was directly derived from accumulated runoff 

through an observed statistical relationship of which the adjusted R² was 0.76. However, a regional analysis should be 

performed to assess the applicability of this relationship as in Mediero et al. (2010). A straightforward, conceptual ‘bathtub’-

model (Teng et al., 2015) was implemented to fill the DEM with the derived flood volumes. This simple method is unable 

though to accurately simulate inundation in more urbanized settings, where flood risk is highest. Despite the uncertainty related 435 

to the RR- and ‘bathtub’-model, the uncertainty in flood damage assessments is mostly determined by the implemented 

estimates of maximum damages and to the depth-damage curves (de Moel and Aerts, 2011). Moreover, this uncertainty is less 

of an issue in a comparative framework (Koks et al., 2014). Though the implemented methods are thus deemed sufficiently 

accurate for a comparative analysis of flood hazard and risk, the genericity of the comparative framework also allows the 

implementation of more complex hydrological and hydraulic models, able to provide a more detailed modelling of the flood 440 

extents and corresponding water depths before and after land use changes.  

 

Most flood risk frameworks assess risks based on hypothetical flood events with known return periods, derived from 

hydrodynamic models encompassing composite hydrographs, which are constructed from extreme value analyses of rainfall-

runoff discharge time-series (Kellens et al., 2013; de Moel et al., 2009, 2015; Ward et al., 2011). The impact assessment of 445 
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land use changes on these hypothetical flood events would therefore require consideration of a long rainfall-runoff time series 

in order to assess the difference in composite hydrograph and corresponding flood extent. In contrast, the choice was made for 

the presented framework to implement observed, historical flood events, of which the return periods were estimated based on 

an analysis of annual maximum discharges. However, the comparison between these observed flood events is restricted, since 

boundary conditions may have significantly altered between observations (de Moel et al., 2009). Moreover, these historical 450 

flood events are characterized by specific meteorological conditions, including rainfall distribution in space and time, which 

impacts the occurrence of flood extents and thus influence the pixel ranking of the optimization framework. This is reflected 

in the flood event of August 2002 (Figure 5), where one flood extent was recorded in the east of the Maarkebeek catchment. 

The historical flood events are thus not as representative to assess flood risk as the hypothetical flood events, and more flood 

events with a larger range in return periods are required to provide a more comprehensive assessment of flood risk (Ward et 455 

al., 2011). 

5 Conclusion 

The presented comparative flood risk assessment framework allows for an estimation of the relative reduction or increase in 

flood damages and risk due to the implementation of land use changes in the catchment, thereby explicitly taking into account 

off-site effects of these land use changes in terms of runoff propagation. The comparative flood risk framework was applied 460 

in a case study in the Maarkebeek catchment, situated in Flanders, Belgium. Four historical flood events were considered in 

the risk assessment and their corresponding flood damages and risk were assessed using a flood damage model. Two land use 

change scenarios of afforesting and sealing 187.5 ha in the catchment were assessed. Comparing flood damages and risk before 

and after land use change implementation showed a large flood risk mitigation value of afforestation of 57%. This flood risk 

mitigation value was determined in a spatially explicit manner, depicting which areas benefit the most from afforestation. For 465 

the soil sealing scenario, a limited increase of less than 1% in flood risk after soil sealing was modelled. These numeric results 

are conditioned by the type of scenario implemented in the framework, in this case including the 750 pixels which after 

afforestation contribute maximally to reducing the flood volume resp. the 750 pixels which after sealing contribute minimally 

to increasing the flood volume. 

 470 

Apart from its obvious strengths for assessing the flood risk impact of land use changes, this framework also has limitations, 

some inherent to flood damage estimation, such as the uncertainty in maximum damage estimates and depth-damage curves, 

and some specific to this assessment, as it is based on observed flood events rather than hypothetical flood events with known 

return periods. Moreover, it derives flood volumes from runoff volume accumulation based on an empirical relationship, which 

should be further established using regional analyses. Despite these limitations, the framework provides the possibility for 475 

computationally efficient and spatially explicit assessments of the flood mitigation value or relative risk increment associated 

with potential land use changes. The generic framework can be applied for studying the effectiveness and efficiency of a 
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variety of nature-based solutions, whereby other, more detailed hydrological and hydraulic models can be integrated to further 

refine the flood insurance value. As such, this framework can be used as an explorative tool in spatial planning processes 

related to flood risk management.  480 

Author contribution 

All three authors conceptualized the methodology presented in this paper. Karen Gabriels developed the model code and 

performed the simulations under supervision from Patrick Willems and Jos Van Orshoven. The manuscript was prepared by 

Karen Gabriels with significant contributions from both co-authors, Jos Van Orshoven and Patrick Willems.  

Competing interests 485 

The authors declare that they have no conflict of interest. 

Acknowledgements 

This research was made possible by the research foundation FWO (Fonds WetenschappelijkOnderzoek) through a PhD 

scholarship (Grant SB/1S01217N) to Karen Gabriels. 

References 490 

Agentschap Informatie Vlaanderen: Bodembedekkingskaart (BBK), 5m resolutie, opname 2012, [online] Available from: 

http://www.geopunt.be/catalogus/datasetfolder/cbd76a37-027a-48ed-a5fe-012d5f6db55b, 2016. 

Agentschap Informatie Vlaanderen: Grootschalig Referentiebestand (GRBgis), [online] Available from: 

http://www.geopunt.be/catalogus/datasetfolder/7c823055-7bbf-4d62-b55e-f85c30d53162, 2020. 

Agentschap Informatie Vlaanderen and Nationaal Geografisch Instituut: Wegenregister, 17/09/2020, [online] Available from: 495 

http://www.geopunt.be/catalogus/datasetfolder/b8007407-21ea-46f7-ab2c-3736e9f7fb27, 2020. 

Agentschap Informatie Vlaanderen and Vlaamse Milieumaatschappij: Recent overstroomde gebieden, [online] Available 

from: http://www.geopunt.be/catalogus/datasetfolder/6BC263EB-F4DF-4B16-963B-840CD2EFAACF, 2017. 

Agentschap Informatie Vlaanderen, Vlaamse Milieumaatschappij and Watlab: DHM-Vlaanderen, raster, 5 m, [online] 

Available from: http://www.geopunt.be/catalogus/datasetfolder/B5C62D89-A0C4-4228-B359-6FCAB7020C50 (Accessed 500 

13 February 2020), 2006. 

Agentschap Innoveren en Ondernemen and Agentschap Informatie Vlaanderen: Bedrijventerreinen, Toestand 30/09/2020, 

2020. 

Attems, M., Thaler, T., Genovese, E. and Fuchs, S.: Implementation of property‐level flood risk adaptation (PLFRA) measures: 



24 

 

Choices and decisions, WIREs Water, 7(1), 1–19, doi:10.1002/wat2.1404, 2020. 505 

Barredo, J. I.: Normalised flood losses in Europe: 1970-2006, Nat. Hazards Earth Syst. Sci., 9(1), 97–104, doi:10.5194/nhess-

9-97-2009, 2009. 

Beullens, J., Broidioi, S., De Sutter, R., De Maeyer, P., Verwaest, T. and Mostaert, F.: Ontwikkeling LATIS 4 Deelrapport 

bis: Actualisatie basiskaarten en schadewaarden. Versie 3.0. WL Rapporten, 13_159_7., 2017. 

Bingner, R. L., Theurer, F. D., Yuan, Y. and Taguas, E. V: AnnAGNPS Technical Process, Version 5.5. [online] Available 510 

from: https://www.wcc.nrcs.usda.gov/, 2018. 

Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate change?, Bull. Am. Meteorol. Soc., 92, 39–46, 

doi:10.1175/2010BAMS3092.1, 2011. 

Van Den Broeck, S.: Een bos aanplanten. Hoeveel moet dat kosten?, Stand. [online] Available from: 

https://www.gemeentevoordetoekomst.be/artikel/een-bos-aanplanten-hoeveel-moet-dat-kosten, 2019. 515 

Bronstert, A., Niehoff, D. and Bürger, G.: Effects of climate and land-use change on storm runoff generation: Present 

knowledge and modelling capabilities, Hydrol. Process., 16(2), 509–529, doi:10.1002/hyp.326, 2002. 

Bubeck, P., de Moel, H., Bouwer, L. M. and H. Aerts, J. C. J.: How reliable are projections of future flood damage?, Nat. 

Hazards Earth Syst. Sci., 11(12), 3293–3306, doi:10.5194/nhess-11-3293-2011, 2011. 

Chow, V. T., Maidment, D. R. and Mays, L. W.: Applied Hydrology, edited by B. J. Clark and J. Morriss, McGraw-Hill., 520 

1988. 

Dalemans, F., Jacxsens, P., Van Orshoven, J., Kint, V., Moonen, P. and Muys, B.: Assisting sustainable forest management 

and forest policy planning with the sim4tree decision support system, Forests, 6(4), 859–878, doi:10.3390/f6040859, 2015. 

Davids, P. R. and Thaler, T.: Flood‐resilient communities: How we can encourage adaptive behaviour through smart tools in 

public–private interaction, Urban Plan., 6(3), 272–282, doi:10.17645/up.v6i3.4246, 2021. 525 

Deckers, P., Kellens, W., Reyns, J., Vanneuville, W. and De Maeyer, P.: A GIS for Flood Risk Management in Flanders, in 

Geospatial Techniques in Urban Hazard and Disaster Analysis, edited by P. Showalter and Y. Lu, pp. 51–69., 2009. 

Departement Ruimte Vlaanderen: Witboek Beleidsplan Ruimte Vlaanderen, Brussel., 2017. 

DHI Software: Mike HYDRO - User Manual., 2020. 

Directive 2007/60/EC: The assessment and management of flood risks, [online] Available from: 530 

http://data.europa.eu/eli/dir/2007/60/oj, 2007. 

EEA: EEA Technical report 132010: Mapping the impacts of natural hazards and technological accidents in Europe: An 

overview of the last decade, European Environment Agency, Copenhagen., 2010. 

EEA: EEA Technical report 12/2015: Exploring nature-based solutions: The role of green infrastructure in mitigating the 

impacts of weather- and climate change-related natural hazards, European Environment Agency, Copenhagen., 2015. 535 

EEA: EEA Report 15/2017: Climate change adaptation and disaster risk reduction in Europe: Enhancing coherence of the 

knowledge base, policies and practices, European Environment Agency, Copenhagen., 2017. 

Federatie van het Notariaat: Notarisbarometer: Landbouwgronden., 2019. 



25 

 

Gabriels, K., Willems, P. and Van Orshoven, J.: Performance evaluation of spatially distributed, CN-based rainfall-runoff 

model configurations for implementation in spatial land use optimization analyses, J. Hydrol., 602, 126872, 540 

doi:https://doi.org/10.1016/j.jhydrol.2021.126872, 2021. 

Gabriels, K., Willems, P. and Van Orshoven, J.: An iterative runoff propagation approach to identify priority locations for land 

cover change minimizing downstream river flood hazard, Landsc. Urban Plan., 218, 104262, 

https://doi.org/10.1016/j.landurbplan.2021.104262, 2022. 

Gerl, T., Kreibich, H., Franco, G., Marechal, D. and Schröter, K.: A review of flood loss models as basis for harmonization 545 

and benchmarking, PLoS One, 11(7), 1–22, doi:10.1371/journal.pone.0159791, 2016. 

Grommen, S.: Akkoord over betonstop krijgt forse kritiek van oppositie en experten: “Onbetaalbaar en dus onuitvoerbaar,” 

VRT NWS, 16th December [online] Available from: https://www.vrt.be/vrtnws/nl/2020/12/16/debat-bouwshift-betonstop/, 

2020. 

Grossi, P. and Kunreuther, H.: Catastrophe modeling: A new approach to managing risk, Springer, Boston, MA., 2005. 550 

Hall, J. W., Sayers, P. B. and Dawson, R. J.: National-scale assessment of current and future flood risk in England and Wales, 

Nat. Hazards, 36, 147–164, doi:10.1007/s11069-004-4546-7, 2005. 

IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change, edited by Core Writing Team, R. K. Pachauri, and L. A. Meyer, IPCC, 

Geneva, Switzerland., 2014. 555 

Joseph, R., Proverbs, D. and Lamond, J.: Homeowners’ perceptions of property-level flood risk adaptation (PLFRA) measures: 

The case of the summer 2007 flood event in England, Int. J. Saf. Secur. Eng., 5(3), 251–265, doi:10.2495/SAFE-V5-N3-251-

265, 2015. 

Kellens, W., Vanneuville, W., Verfaillie, E., Meire, E., Deckers, P. and De Maeyer, P.: Flood Risk Management in Flanders: 

Past Developments and Future Challenges, Water Resour. Manag., 27(10), 3585–3606, doi:10.1007/s11269-013-0366-4, 560 

2013. 

Klijn, F., Baan, P., de Bruijn, K. and Kwadijk, J.: Overstromingsrisico’s in Nederland in een veranderend klimaat: 

Verwachtingen, schattingen en berekeningen voor het project Nederland Later, Report number Q4290, , 165, 2007. 

Koks, E. E., de Moel, H., Aerts, J. C. J. H. and Bouwer, L. M.: Effect of spatial adaptation measures on flood risk: Study of 

coastal floods in Belgium, Reg. Environ. Chang., 14, 413–425, doi:10.1007/s10113-013-0514-7, 2014. 565 

Lin, Y. P., Hong, N. M., Wu, P. J., Wu, C. F. and Verburg, P. H.: Impacts of land use change scenarios on hydrology and land 

use patterns in the Wu-Tu watershed in Northern Taiwan, Landsc. Urban Plan., 80, 111–126, 

doi:10.1016/j.landurbplan.2006.06.007, 2007. 

Mediero, L., Jiménez-Álvarez, A. and Garrote, L.: Design flood hydrographs from the relationship between flood peak and 

volume, Hydrol. Earth Syst. Sci., 14(12), 2495–2505, doi:10.5194/hess-14-2495-2010, 2010. 570 

Merz, B., Kreibich, H., Schwarze, R. and Thieken, A.: Review article “assessment of economic flood damage,” Nat. Hazards 

Earth Syst. Sci., 10(8), 1697–1724, doi:10.5194/nhess-10-1697-2010, 2010. 



26 

 

Messner, F. and Meyer, V.: Flood Damage, Vulnerability and Risk Perception - Challenges for Flood Damage Research, in 

Flood Risk Management: Hazards, Vulnerability and Mitigation Measures, edited by J. Schanze, E. Zeman, and J. Marsalek, 

pp. 149–167, Springer., 2006. 575 

Miller, J. D., Kim, H., Kjeldsen, T. R., Packman, J., Grebby, S. and Dearden, R.: Assessing the impact of urbanization on 

storm runoff in a peri-urban catchment using historical change in impervious cover, J. Hydrol., 515, 59–70, 

doi:10.1016/j.jhydrol.2014.04.011, 2014. 

de Moel, H. and Aerts, J. C. J. H.: Effect of uncertainty in land use, damage models and inundation depth on flood damage 

estimates, Nat. Hazards, 58(1), 407–425, doi:10.1007/s11069-010-9675-6, 2011. 580 

de Moel, H., Van Alphen, J. and Aerts, J. C. J. H.: Flood maps in Europe - Methods, availability and use, Nat. Hazards Earth 

Syst. Sci., 9(2), 289–301, doi:10.5194/nhess-9-289-2009, 2009. 

de Moel, H., van Vliet, M. and Aerts, J. C. J. H.: Evaluating the effect of flood damage-reducing measures: A case study of 

the unembanked area of Rotterdam, the Netherlands, Reg. Environ. Chang., 14(3), 895–908, doi:10.1007/s10113-013-0420-z, 

2014. 585 

de Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E. and Ward, P. J.: Flood risk assessments at different 

spatial scales, Mitig. Adapt. Strateg. Glob. Chang., 20(6), 865–890, doi:10.1007/s11027-015-9654-z, 2015. 

Mohor, G. S., Thieken, A. H. and Korup, O.: Residential flood loss estimated from Bayesian multilevel models, Nat. Hazards 

Earth Syst. Sci., 21(5), 1599–1614, doi:10.5194/nhess-21-1599-2021, 2021. 

Morris, J. and Brewin, P.: The impact of seasonal flooding on agriculture: the spring 2012 floods in Somerset, England, J. 590 

Flood Risk Manag., 7(2), 128–140, doi:https://doi.org/10.1111/jfr3.12041, 2014. 

Nash, J. E. and Sutcliffe, J. V: River Flow Forecasting Through Conceptual Models: Part I - A discussion of principles, J. 

Hydrol., 10, 282–290, 1970. 

Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Williams, J. R.: Soil and Water Assessment Tool: Theoretical Documentation, 

Version 2009, , 647, 2011. 595 

Van Opstal, M., Tits, M., Beckers, V., Elsen, A., Van Overtveld, K., Batelaan, O., Van Orshoven, J., Bries, J., 

Vandendriessche, H. and Diels, J.: Vernieuwde kwantificering van de verliezen van N en P vanuit de landbouw naar het 

oppervlaktewater. Eindrapport, mei 2014., 2014. 

Van Orshoven, J.: Van nature overstroombare en recent overstroomde gebieden in Vlaanderen., in Proceedings of the Study 

Day on ‘“Space for Water, The Best Insurance Against Flooding,”’ pp. 1–22, AMINAL and KBC-Insurance, Brussels, 600 

Belgium., 2001. 

Peel, M. C.: Hydrology: Catchment vegetation and runoff, Prog. Phys. Geogr., 33(6), 837–844, 

doi:10.1177/0309133309350122, 2009. 

Penning-rowsell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J. and Green, C.: The Benefits of Flood and 

Coastal Risk Management: A Handbook of Assessment Techniques, Middlesex University Press., 2005. 605 

Poelmans, L., Rompaey, A. Van, Ntegeka, V. and Willems, P.: The relative impact of climate change and urban expansion on 



27 

 

peak flows: a case study in central Belgium, Hydrol. Process., 25, 2846–2858, doi:10.1002/hyp.8047, 2011. 

Sayers, P., Galloway, G., Penning-rowsell, E., Yuanyuan, L., Yiwei, C., Kang, W., Quesne, T. Le, Wang, L., Guan, Y., Sayers, 

P., Galloway, G., Penning-rowsell, E. and Yuanyuan, L.: Strategic flood management: ten ‘golden rules’ to guide a sound 

approach, Int. J. River Basin Manag., 13(2), 137–151, doi:10.1080/15715124.2014.902378, 2015. 610 

SEPA: Natural Flood Management Handbook, 2016. 

Statbel: Statistiek van de verkopen van gebouwen: aantal en verkoopprijs per datum, oppervlakte en type gebouw, [online] 

Available from: https://bestat.statbel.fgov.be/bestat/crosstable.xhtml?view=0859950c-50e4-4e39-acde-bc48f47215a5, 2019. 

Teng, J., Vaze, J., Dutta, D. and Marvanek, S.: Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM, Water 

Resour. Manag., 29, 2619–2636, doi:10.1007/s11269-015-0960-8, 2015. 615 

Vanneuville, W., De Maeyer, P., Maeghe, K. and Mostaert, F.: Model of the effects of a flood in the dender catchment, based 

on a risk methodology, in Bulletin of the Society of Cartographers, vol. 37, pp. 59–64., 2003. 

Vanneuville, W., Maddens, R., Collard, C., Bogaert, P., De Maeyer, P. and Antrop, M.: Impact op mens en economie t.g.v. 

overstromingen bekeken in het licht van wijzigende hydraulische condities, omgevingsfactoren en klimatologische 

omstandigheden, , 120, 2006. 620 

Vlaamse Milieumaatschappij, Waterbouwkundig Laboratorium, Maritieme Dienstverlening & Kust and De Vlaamse 

Waterweg nv: Waterinfo.be, [online] Available from: www.waterinfo.be, 2020. 

VMM: De voorlopige OverstromingsRisicoBeoordeling in Vlaanderen, 2018. 

VMM: Actieplan Droogte en Wateroverlast 2019-2021, , 69, 2019. 

Ward, P. J., de Moel, H. and Aerts, J. C. J. H.: How are flood risk estimates affected by the choice of return-periods?, Nat. 625 

Hazards Earth Syst. Sci., 11(12), 3181–3195, doi:10.5194/nhess-11-3181-2011, 2011. 

Yeo, I.-Y. and Guldmann, J.-M.: Global spatial optimization with hydrological systems simulation: Application to land-use 

allocation and peak runoff minimization, Hydrol. Earth Syst. Sci., 14, 325–338, doi:10.5194/hess-14-325-2010, 2010. 

 


