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Abstract. In coastal regions, floods can arise through a com-
bination of multiple drivers, including direct surface run-off,
river discharge, storm surge, and waves. In this study, we
analyse compound flood potential in Europe and environs
caused by these four main flooding sources using state-of-
the-art databases with coherent forcing (i.e. ERA5). First,
we analyse the sensitivity of the compound flooding poten-
tial to several factors: (1) sampling method, (2) time win-
dow to select the concurrent event of the conditioned driver,
(3) dependence metrics, and (4) wave-driven sea level defini-
tion. We observe higher correlation coefficients using annual
maxima than peaks over threshold. Regarding the other fac-
tors, our results show similar spatial distributions of the com-
pound flooding potential. Second, the dependence between
the pairs of drivers using the Kendall rank correlation coef-
ficient and the joint occurrence are synthesized for coherent
patterns of compound flooding potential using a clustering
technique. This quantitative multi-driver assessment not only
distinguishes where overall compound flooding potential is
the highest, but also discriminates which driver combinations
are more likely to contribute to compound flooding. We iden-
tify that hotspots of compound flooding potential are located
along the southern coast of the North Atlantic Ocean and the
northern coast of the Mediterranean Sea.

1 Introduction

Floods are the most dangerous and costly natural hazard.
For example, in Europe, the economic losses from all nat-
ural disasters amounted to EUR 557 billion during 1980–
2017 (EEA, 2019), of which 63 % resulted from hydro-
meteorological events. Moreover, losses associated with
the highest-magnitude floods are disproportionately large:
around 3 % of these European floods accounted for around
75 % of total deflated losses. The October 2000 flood in Italy
and France, for example, was one of the most expensive cli-
mate extremes, with damages totalling EUR 13 billion. Since
compound floods – floods generated by different source
events occurring concurrently, or in close succession – are
often larger than floods generated by a single source event, it
follows that the adverse consequences of “compound flood-
ing” are, therefore, likely also disproportionately large. As
an example, the November 1966 coastal flood was one of
the most severe observed compound events along the north-
ernmost coast of the Adriatic Sea, which resulted in ap-
proximately 25 fatalities and thousands of people affected
(HANZE database; Paprotny et al., 2018).

The definition of compound events has evolved in recent
years. Compound events were defined by the Intergovern-
mental Panel on Climate Change (Seneviratne et al., 2012)
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as “(1) two or more extreme events occurring simultane-
ously or successively, (2) combinations of extreme events
with underlying conditions that amplify the impact, or (3)
combinations of events that are not themselves extremes but
lead to an extreme event when combined.” More recently,
Zscheischler et al. (2018) defined compound events as “a
combination of multiple drivers and/or hazards that con-
tributes to societal or environmental risk”. This new per-
spective suggests the use of bottom-up approaches to un-
derstand the nature of the risks before identifying the rele-
vant drivers and hazards (Zscheischler et al., 2018). How-
ever, the impacts of compound events are commonly felt at a
local scale over relatively short timescales, embedded at the
same time within larger-scale systems, which requires mod-
elling approaches that fully represent these wide ranges of
space and timescales. To help bridge the gap between the
climate science and impact modelling communities, multi-
level methodologies which include a quantification of flood-
ing potential using proxies of flood hazard (Bevacqua et al.,
2019; Ward et al., 2018; Wahl et al., 2015; Couasnon et al.,
2020; Ridder et al., 2020) have been used to identify po-
tential hotspots at regional, continental, or global scales at a
first “screening” level. The results can then be used to inform
high-resolution risk assessments, where these are most nec-
essary, which integrate all flooding sources through process-
based models to simulate their physical interaction (Bevac-
qua et al., 2019), as well as their interaction with human sys-
tems (Sebastian et al., 2019; Wang et al., 2020).

According to the proposed typology in Zscheischler
et al. (2020), flooding is considered a multivariate event be-
cause multiple climate drivers and/or hazards can occur in
the same geographical region that may not be extreme them-
selves, but their joint occurrence causes an extreme impact.
In coastal regions, flooding can arise from the combination of
multiple sources: pluvial (direct surface runoff), fluvial (in-
creased river discharge), and/or oceanographic (storm surges
plus tides and/or waves). The main drivers of flooding are
typically causally related through their associated weather
patterns, for instance, when a storm causes extreme rainfall
and/or a storm surge and/or high waves. The statistical mod-
elling approach suggested for this typology consists of mul-
tivariate probability distribution functions, which represent
both the marginal and joint features of multiple random vari-
ables (Zscheischler et al., 2020).

High-dimensional systems can be modelled using copula-
based approaches, but due to their complexity these mul-
tivariate statistical models have been limited to local-scale
studies (Bevacqua et al., 2017; Couasnon et al., 2018). At
global or regional scales, where compound flooding risk
varies substantially along coastlines, the risk is estimated
indirectly by quantifying the dependence limited to bivari-
ate drivers (proxies of the flooding hazard). For example
(1) Zheng et al. (2013) found a significant dependence be-
tween maximum daily storm surge and daily precipitation
along the coast of Australia, (2) Wahl et al. (2015) detected

an increasing risk of compound flooding from storm surge
and precipitation for major US coastal cities, and (3) Hendry
et al. (2019) analysed the characteristics of compound flood-
ing arising from the combination of river discharge and sea
level along the UK coast. Such quantifications of compound
flooding potential are based on dependence measures (e.g.
using correlation coefficients, Wahl et al., 2015; or joint oc-
currence, Hendry et al., 2019) or bivariate statistical models
(e.g. bivariate logistic threshold-excess model, Zheng et al.,
2013; or copulas, Wahl et al., 2015; Moftakhari et al., 2017;
Ward et al., 2018). Furthermore, recent advances in large-
scale sea level and river discharge modelling (Muis et al.,
2016; Yamazaki et al., 2014), which provide time series of
these drivers over durations of more than 30 years, allow
the identification of potential hotspots at country, continen-
tal, and global scales (Wu et al., 2018; Bevacqua et al., 2019,
2020; Couasnon et al., 2020).

Regarding the identification of compound events, condi-
tional sampling is usually applied (Wahl et al., 2015; Ward
et al., 2018; Couasnon et al., 2020), which implies that com-
pound events are conditioned to one of the drivers being ex-
treme. For this reason, when limiting to a bivariate charac-
terization of compound events (e.g. when using correlation
coefficients), two subsets of extreme events are identified,
and the dependence is analysed when one or the other of
the variables is extreme. Another option is to select pairs of
high values when both variables exceed individual high per-
centiles (e.g. 95th percentile; Bevacqua et al., 2019), but in
this case, compound events are defined only when both indi-
vidual drivers are characterized as being extreme. This issue
is similar to what happens when measuring compound flood-
ing potential based on factors or indices that quantify the ef-
fect of the dependency using copula AND hazard scenarios
(Ward et al., 2018; Ganguli and Merz, 2019; Couasnon et al.,
2020). However, it could be sufficient that only one of the
driver variables was extreme to make a bivariate occurrence
hazardous (OR hazard scenario; Moftakhari et al., 2017).

In the compound flooding studies summarized above, it is
evident that a wide range of different statistical approaches
have been used to define compound flooding potential, usu-
ally caused by the combination of two drivers. To date, no
study has yet analysed the dependence between the four po-
tential drivers of flooding in coastal regions independently
for each pair combination. Ridder et al. (2020) have identi-
fied hotspots of compound events that potentially cause high-
impact floods related to wet conditions based on the joint oc-
currence of multiple hazard pairs (precipitation, wind, hail,
streamflow, and storm surge). In other studies, the wave
component has typically been included in the sea level di-
rectly (by combining wave height with storm surge and/or
astronomical tide) without analysing the correlation with the
other drivers (Bevacqua et al., 2019; Paprotny et al., 2020).
Similarly precipitation and river discharge have often been
considered equivalent drivers in the analysis of compound
coastal flooding in combination with storm surge (Bevac-
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qua et al., 2020). Additionally, different sampling methods to
identify compound events and dependence measures to quan-
tify compound flooding potential are used. The net effect of
these variations in practice is to complicate comparisons be-
tween different studies.

The overall aim of this paper is to perform a regional anal-
ysis along the North Atlantic (27–70.5◦ N), Baltic, Mediter-
ranean, and Black Sea coastlines of the compound flood po-
tential caused by pluvial, fluvial, and oceanographic sources
in the period 1979 to 2018, using state-of-the-art model hind-
casts with homogenous forcing (i.e. ERA5). Two objectives
are defined: (1) to assess the sensitivity of the compound
flood potential to several factors that can affect the identi-
fication of compound events and the analysis of the spatial
distribution of compound flooding potential and (2) to detect
different types of compound events and the spatial patterns
of compound flooding potential that arise from the combina-
tion of the four drivers. The paper is structured as follows.
The datasets and methods are detailed in Sects. 2 and 3, re-
spectively. The results of the two objectives are discussed in
Sect. 4. Key findings are discussed in Sect. 5, with conclu-
sions given in Sect. 6.

2 Data

We use modelled data to cover the entire coastlines that are
the focus of this study, using long-term, spatially continu-
ous, and temporally consistent gridded data for all four flood
source variables, as discussed in each of the sub-sections be-
low. Of note is that although these databases are not available
on a common grid and there are differences in their spatial
resolution, they are all derived from the latest European Cen-
tre of Medium-Range Weather Forecasts (ECMWF) global
atmospheric reanalysis (ERA5; Hersbach et al., 2020), or
from hindcasts forced by this atmospheric reanalysis. The
new database GloFAS-ERA (Harrigan et al., 2020) is used
for the first time to characterize river discharge when study-
ing compound flooding potential. We do not account for plu-
vial flooding directly, as pluvial flooding is a much smaller-
scale process. Instead, following Wahl et al. (2015), we use
precipitation at each analysis site as a proxy for surface
runoff potential. Our four flood source variables are therefore
precipitation (P ), river discharge (Q), storm surge (S), and
waves (W ), with this latter variable being characterized by
the significant wave height. Each of the four databases em-
ployed are described in the following sub-sections, including
how we have selected the locations for the sensitivity analy-
ses and compound event characterization.

2.1 Precipitation time series

Precipitation time series have been extracted from the ERA5
reanalysis, which is based on the Integrated Forecasting Sys-
tem (IFS) Cy41r2, which has been used in the ECMWF op-

erational medium-range forecasting system since 2016 and
benefits from a decade of developments in model physics,
core dynamics and data assimilation (Hersbach et al., 2020).
The ERA5 reanalysis replaces the ERA-Interim reanalysis
with a significantly enhanced horizontal resolution of 31 km,
compared to 80 km for ERA-Interim. Long-term (1998–
2018) and monthly average precipitation rates from ERA-
Interim and ERA5 have been evaluated by comparing them
with values from other datasets (e.g. NASA’s TRMM Multi-
satellite Precipitation Analysis (TMPA) 3B43 dataset, ver-
sion 7; Huffman et al., 2010), and there is a marked im-
provement in the estimated precipitation in ERA5 compared
to ERA-Interim (Hersbach et al., 2020). The ERA5 hourly
dataset spans 1979 onwards, and it is currently publicly avail-
able at the Copernicus Climate Change Service. Here, accu-
mulated daily precipitation is calculated from hourly data.

2.2 River discharge time series

River discharge time series were extracted from the Global
Flood Awareness System (GloFAS)-ERA5 reanalysis (Har-
rigan et al., 2020). This reanalysis is a global gridded dataset
(excluding Antarctica), with a horizontal resolution of 0.1◦

at a daily time step and with a 40-year-long duration start-
ing 1 January 1979. The GloFAS-ERA5 river discharge re-
analysis was produced by coupling the land surface model
runoff component of the ECMWF ERA5 global reanalysis
with the LISFLOOD hydrological and channel routing model
(van der Knijff et al., 2010). LISFLOOD allows the lateral
connectivity of ERA5 runoff grid cells routed through the
river channel to produce river discharge. ERA5 runoff is pro-
duced from the HTESSEL land surface model (Hydrology
Tiled ECMWF Scheme for Surface Exchanges over Land;
Balsamo et al., 2009) with an advanced land data assim-
ilation system to assimilate conventional in situ and satel-
lite observations for land surface variables. Groundwater and
river routing parameters in GloFAS were calibrated against
river discharge observations for 1287 catchments globally by
Hirpa et al. (2018). A total of 463 of the largest lakes (surface
area > 100 km2) and 667 of the largest reservoirs have been
incorporated into the GloFAS river network.

2.3 Storm surge time series

Hourly and daily storm surge time series have been extracted
from the Coastal Dataset for the Evaluation of Climate Im-
pact (CoDEC) (Muis et al., 2020). The third-generation
Global Tide and Surge Model (GTSM; Kernkamp et al.,
2011), with a coastal resolution of 2.5 km (1.25 km in Eu-
rope), was forced with meteorological fields from the ERA5
climate reanalysis to simulate extreme sea levels for the pe-
riod 1979 to 2017. Besides the increase in the resolution of
GTSM v3.0 from 5 km along the coast (50 km in the deep
ocean) to 2.5 km along the coast (25 km in the deep ocean),
the GTSM v3.0 model performance for tides was also im-
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proved by the implementation of additional physical pro-
cesses. The validation against observed sea levels demon-
strated a good performance which reflects not only the more
skilful hydrodynamic simulations, but also the accuracy of
the meteorological forcing. ERA5 better represents the evo-
lution of weather systems due to an increase in the spatial
and temporal resolution. The annual maxima had a mean bias
50 % lower than the mean bias of the previous Global Tide
and Surge reanalysis dataset (Muis et al., 2016).

2.4 Wave time series

Hourly wave time series have been extracted from the ERA5
reanalysis at a spatial resolution of 0.5◦ with some improve-
ments and updates compared to ERA-Interim (Hersbach
et al., 2020). The model bathymetry was updated to use a
more recent version of ETOPO2 (NOAA, 2006). A new wave
advection scheme was introduced in the WAM model with
a revised unresolved bathymetry scheme to better account
for the propagation along coastlines and to better model the
impact of unresolved islands (Bidlot, 2012). The slow atten-
uation of long period swells as well as the impact of shal-
low water on the wind input was introduced with an over-
all retuning of the level of dissipation due to white-capping
(Bidlot, 2012). The atmosphere and ocean are coupled by a
two-way interaction: the atmosphere generates ocean waves
through the surface wind stress, while the waves influence
the atmospheric boundary layer via sea-state dependencies in
the surface roughness. Altimeter measurements were used to
assimilate information on significant wave height. Indepen-
dent buoy data were used for validation showing significant
improvement in the wave height in ERA5 data compared to
ERA-Interim (Hersbach et al., 2020).

2.5 Selection of the study locations

The spatial resolution of the four datasets is shown in
Fig. 1a for the area of Ireland, the UK, and northwestern
France. The ERA5 precipitation database has a resolution of
0.25◦× 0.25◦, the ERA5 wave database has a resolution of
0.5◦× 0.5◦, the CODEC storm surge database has a resolu-
tion of 2.5 km along the coast, and the GloFAS-ERA5 river
discharge database has a resolution of 0.1◦× 0.1◦. The river
network data implemented in GloFAS for routing operations
were produced using fine-scale hydrography inputs from Hy-
droSHEDS (Lehner et al., 2008).

We used HydroSHEDS data to identify the mouths of
rivers with a catchment area higher than 1000 km2 to ad-
just the distribution of study locations for a regional analysis.
The GloFAS grid nodes closest to the locations of the river
mouths were checked, and we selected the grid node with
the highest river discharge. The closest grid nodes of the pre-
cipitation, wave, and storm surge databases to the selected
GloFAS grid nodes were identified and are shown in Fig. 1b.

Across the whole domain (see Fig. S1 in the Supplement) we
analyse 540 locations.

3 Methods

We characterize the compound flooding potential generated
by the four flood drivers (P , Q, S, W ) by calculating the de-
pendence between all possible pairs of the four main source
variables along the coasts in the study area. In addition, we
also linearly superimpose the storm surge and wave compo-
nents into a combined sea level, ignoring the astronomical
tidal component of sea level, which is deterministic (we note
that for detailed flood risk assessments the timing of tidal
levels with the other drivers is important, but this is beyond
the scope of this analysis). We do this considering two defi-
nitions of the wave-driven sea level component: (1) a simpli-
fied wave contribution to sea level as 0.2W (e.g. Vousdoukas
et al., 2017) and (2) a more sophisticated semi-empirical for-
mulation (e.g. Vitousek et al., 2017) that also considers the
wave period (Tp) to calculate setup. We refer to the resulting
variables after combining the surge and wave contribution re-
spectively as SW (sum of S and 0.2W ) and WL (sum of S
and semi-empirical setup) and compare results of compound
flooding potential using both definitions. The seven paired
driver combinations we consider here are therefore (1) Q–P
[P –Q], (2)Q–S [S–Q], (3)Q–W [W–Q], (4)Q–SW [SW–
Q] or Q–WL [WL–Q], (5) P –S [S–Q], (6) P–W [W–P ],
and (7) P–SW [SW–P ] or P –WL [WL–P ]. Here the in-
dicated leading variable is the conditioning variable (dom-
inant driver) and the second one is conditioned on the first
(secondary driver) in the two-sided conditional sampling we
apply.

In the following sub-sections, we first describe the sen-
sitivity analysis designed to elucidate the extent to which
the methodology employed affects the quantification of com-
pound flooding potential. Second, we describe the cluster-
ing method used here to identify different types of multi-
variate compound events and the spatial distribution of com-
pound flooding potential thereby arising across the four flood
drivers considered in this study.

3.1 Sensitivity analysis

Our first objective is to assess the sensitivity of compound
flood potential to different aspects of the underpinning
methodology: (1) sampling method used, (2) time window
investigated, (3) dependence metrics employed, and (4) defi-
nition of wave-driven sea level. Each of these sensitivity tests
is discussed in turn below.

3.1.1 Sampling

Evaluation of the dependence between multiple drivers is
limited to a bivariate analysis which imposes a two-sided
conditional sampling to select multivariate extremes. Com-
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Figure 1. (a) Spatial resolution of the precipitation (ERA5), river discharge (GloFAS-ERA5), storm surge (CoDEC), and wave (ERA5) data
in the area of Ireland, the UK, and northwestern France. (b) Selected river discharge grid nodes at the mouth of rivers with a catchment area
> 1000 km2 and the closest precipitation, storm surge, and wave grid nodes along these coasts.

pound extreme events are defined in previously published
studies and selected using either annual maxima (AM) or
peak over threshold (POT). Although Ward et al. (2018) per-
formed a sensitivity analysis and compared correlations be-
tween river discharge and storm surge using both POT with
two thresholds (equal to 95th and 99th percentiles) and AM
sampling, here we build on that prior work to also examine
the effect of the sampling method in the dependence between
the four coastal flooding drivers considered. The disadvan-
tage of the AM is that events are selected that might not be
considered extreme in the dominant variable. On the other
hand, the POT approach increases the number of selected ex-
treme events but introduces two parameters in the selection
process: (1) the threshold and (2) the definition of indepen-
dent events established by a minimum time between peaks
or below the threshold. The independence between extreme
events is assured by de-clustering the events based on the du-
ration of the storms in the study area and selecting the highest
event within each storm. The criteria used to select indepen-
dent events in this study comprise a storm duration of 5 d
for river discharge and 3 d for precipitation, storm surge, and
waves. These values were selected based on an analysis of
the duration of the highest storms conditioned to each vari-
able in the study domain and following numbers used in pre-
vious studies (Ward et al., 2018; Hendry et al., 2019; Marcos
et al., 2019; Bevacqua et al., 2019). Many methodologies for
an automated threshold selection have been proposed based
on graphical methods combined with goodness of fit (e.g. So-
lari et al., 2017), but such techniques are difficult to imple-
ment in regional studies due to the different characteristics of
time series of the several drivers involved in coastal flooding.
Hence, we decide to apply the POT method with a threshold

that guarantees three (POT3) or six (POT6) events per year
to also analyse the effect of the value of the threshold.

3.1.2 Time window

The conditional sampling introduces another factor that
could affect the definition of compound events and this is
related to the selection of the concurrent value of the sec-
ondary variable to the identified extreme events of the dom-
inant variable. Specifically, there could be a temporal lag
between variables that leads to a potential coastal flooding
event. This lag can be implemented after identifying both se-
ries of extremes from the two drivers (Hendry et al., 2019) or
by a time window when identifying the value of the condi-
tioned variable (Wahl et al., 2015; Ward et al., 2018; Couas-
non et al., 2020). Once a time window (1t) is established, the
value of the secondary variable is selected as the maximum
value within ±1t days (d). A variety of temporal windows
have been considered, from zero lag (Bevacqua et al., 2020),
through ±1 d (Wahl et al., 2015) to ±3 d (Couasnon et al.,
2020) and±5 d (Ward et al., 2018; Hendry et al., 2019). Fur-
thermore, although river discharge data have been extracted
at the river mouth, not all the databases for the four coastal
flooding drivers have the same spatial resolution, with the
distance between grid nodes at each location of the study do-
main varying considerably. Therefore, here we test the sen-
sitivity of the identification of bivariate compound events to
time windows of ±10 or ±3 d, keeping the lag which pro-
vides the highest correlation coefficient between each pair of
variables at each location.
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3.1.3 Dependence metrics

Several correlation coefficient definitions (e.g. Kendall’s tau,
Wahl et al., 2015; or Spearman’s rho, Couasnon et al., 2020)
and other metrics for the characterization of the dependence
between events when both drivers are extreme (e.g. joint oc-
currence, Hendry et al., 2019; or tail dependence, Marcos
et al., 2019) have been used in previous studies. Here we
analyse the extent to which characterization of compound
events could be affected by the selection of these varying de-
pendence metrics.

Correlation coefficient. We use the Kendall rank correla-
tion coefficient tau and Spearman rank correlation coefficient
rho because they are commonly used nonparametric meth-
ods of detecting associations between two variables. Signif-
icance is assessed at α = 0.05 (i.e. 95 % confidence level),
using corresponding p values. The Spearman rank correla-
tion between two variables is defined as the covariance of the
two variables normalized by the product of their standard de-
viations between the rank scores of those two variables. The
Kendall tau is also a rank order correlation coefficient which
quantifies the difference between the percent of concordant
and discordant pairs among all possible pairwise events. The
Kendall correlation is considered to be more robust than the
Spearman correlation because it offers better estimates with
smaller asymptotic variance and is less susceptible to outliers
(Ganguli and Merz, 2019).

Joint occurrence. The “joint occurrence method” (Hendry
et al., 2019) consists of simply counting the number of times
extreme events are identified in the two drivers analysed
within the time window (1t) considered.

Tail dependence. The dependence structure in the tails be-
tween two variables can be measured by the pair of statistics
(χ , χ̄ ) (e.g. Coles, 2001). Both coefficients χ and χ̄ are de-
fined as limit values which tend to 1 if both variables are
asymptotically dependent over a certain threshold. The co-
efficient χ represents the probability of bivariate extreme
events when both variables are extreme and provides a mea-
sure of the dependence strength (Marcos et al., 2019), re-
ferred to as extremal correlation (Zscheischler et al., 2021).
χ̄ is the residual tail dependence coefficient and contains ad-
ditional information about the association (−1< χ̄ < 1) be-
tween extremes of both variables when they are asymptoti-
cally independent (χ = 0). We use the function taildep from
the R package extRemes (Gilleland and Katz, 2016) to derive
these values.

3.1.4 Definition of wave-driven sea level

Although non-linear interactions between storm surges and
waves could amplify the magnitude of the sea level, the as-
sumption that both contributions may be linearly summed
is generally adopted and has often been used as a proxy of
coastal flooding driven by oceanographic variables (Rueda
et al., 2016; Bevacqua et al., 2019; Marcos et al., 2019).

Regarding the wave contribution to sea level, when wind-
generated waves approach nearshore and break in the shallow
surf zone, they induce variations in the sea level at different
time and space scales, enhancing coastal flooding. The high-
est wave-driven contribution to the total water level, called
run-up, depends on two dynamically different processes: (1)
wave setup, which is a time-average sea level rise occur-
ring over a few hours to several days, and which is deter-
mined by local wind sea and swell conditions, and (2) swash,
which is a high-frequency process by which sea level fluc-
tuates due to individual incident waves, with an additional
low-frequency component generated by infragravity waves
(related to the presence of groups in incident short waves).
The magnitude and expanse of both components depend on
the sea-state characteristics (significant wave height, period,
and spectrum shape; Guza and Feddersen, 2012), as well as
nearshore bathymetry and topography. Spatially, setup could
extend from tens of metres in steep coastal areas to several
kilometres in low-sloping coastal areas, while runup exten-
sion varies from a few metres to the order of a hundred metres
in reflective and dissipative environments, respectively (Do-
det et al., 2019). Runup is not usually included in the wave
component of the sea level driver in coastal flooding anal-
ysis because its temporal duration is on the order of hours
and requires local geological characteristics that could arti-
ficially inflate the wave contribution in global and regional
studies (Aucan et al., 2019). The setup contribution is de-
fined with different levels of sophistication. Wave setup has
been approximated as the significant wave height multiplied
by 0.2 (Vousdoukas et al., 2017; Bevacqua et al., 2019; Mar-
cos et al., 2019) or by applying the Stockdon formulation
(Stockdon et al., 2006) with different parameterizations (Vi-
tousek et al., 2017; Rueda et al., 2017; Melet et al., 2018).
The wave setup contribution to the total water level is very
sensitive to this parameterization (Aucan et al., 2019). Fol-
lowing Vitousek et al., 2017, we used the Stockdon formula-
tion for dissipative beaches (Eq. 1), which is known to pro-
vide similar results as using a beach slope of 0.02 (∼ 50 %
of the world’s beaches have slopes smaller than 0.02; Aucan
et al., 2019). The two variables we use here to represent the
sea level are (1) SW as the sum of S and setup given as 0.2W
and (2) WL as the sum of S and the setup calculated using
the Stockdon formulation.

Setup= 0.016
√
HsL0, (1)

where Hs and L0 are the deep-water wave height and wave-
length, respectively.

3.2 Characterization

The evaluation of compound flooding potential due to the
combination of four drivers based on a bivariate analysis is a
complex problem due to the high dimensionality (e.g. spatial
variability of the dependence metrics and relative contribu-
tion of each pair of drivers). We apply a two-step cascade
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classification with two sub-objectives: (1) to analyse the de-
pendence between the metrics that characterize the bivari-
ate compound flooding potential between the pairs of drivers
and (2) to extract spatial patterns from this dataset in order
to identify hot spots of compound flooding potential arising
from P –Q–S–W .

The two-step classification method consists of the use of
self-organizing maps (SOMs) as the first step and applying
the k-means algorithm (KMA) as the second step (Rueda
et al., 2017). In this study, SOM is applied first to take advan-
tage of the powerful visualization characteristics but not to
obtain a reduced number of clusters. The k-means algorithm
is a classification technique that divides the high-dimensional
data space into a number of clusters, each one defined by a
centroid and formed by the data for which the centroid is the
nearest (Hastie et al., 2001). The SOM automatically extracts
clusters of high-dimensional data and projects them into a
two-dimensional organized space (2D lattice), allowing an
intuitive visualization of the classification (Kohonen, 2000).
A SOM algorithm is a version of the KMA in which the cen-
troids are forced with a neighbourhood adaptation mecha-
nism to a 2D lattice preserving the original topology of the
data and producing similar patterns in the original space that
are close in the 2D lattice. The maximum-dissimilarity al-
gorithm (MDA; Camus et al., 2011) is applied to initialize
the KMA to obtain a better distribution of the centroids over
the multi-dimensional data space and avoid random initial-
ization. The optimal number of clusters is evaluated using
the Davis–Boudin (Davies and Bouldin, 1979) and the gap
criteria (Tibshirani et al., 2001).

4 Results

4.1 Sensitivity analysis

This section describes the results for the first objective, relat-
ing to the sensitivity analysis. Results from each of the four
sensitivity tests are described in turn.

4.1.1 Sampling

Two-sided conditional sampling has been applied to the
seven pairs of drivers identified when applying the AM and
the POT methods with either three or six events per year us-
ing a time window of±3 d. Figure 2 shows the comparison of
the correlation coefficients between Q and P using the three
approaches when either Q or P is the dominant driver. Only
this pair of variables is shown because it presents the highest
correlation, and the purpose of this subsection is only to test
the sampling method. Locations are divided into five regions
(see Fig. S1 for the locations of these regions): northwest-
ern Europe (NEW, 99 locations), northeastern Europe (NEE,
165 locations), southern North Atlantic coast (SNA, 60 loca-
tions), western Mediterranean Sea (WM, 99 locations), and
eastern Mediterranean Sea (EM, 117 locations). Correlation

is higher between the conditional pairs of extremes selected
using AM while similar correlation is obtained using POT3
or POT6, with higher dispersion in the lower values of the co-
efficients. Correlation coefficients calculated with AM sub-
sets of extremes are, on average, around 0.2 higher than those
derived with the POT approach, and this is consistent across
all regions. Scatter plots display data only for those loca-
tions where significant (p < 0.05) correlation coefficients are
present. Overall, conclusions about the comparisons for all
other pairs of drivers are similar to those for Q–P (Fig. S2
in the Supplement).

Figure 3 shows the comparison of the number of co-
occurring events between Q and P using the three ap-
proaches. The number of events is higher when using POT3
compared to AM and when using POT3 compared to POT6,
as expected. The scatter plots follow roughly the 1 : 3 or
1 : 2 slope, indicating an approximate tripling or doubling
in the number of events between different approaches. How-
ever, the spatial pattern is similar (correlation coefficient be-
tween the number of co-occurring events is around 0.93–
0.98), which means that the three methods identify broadly
equivalent areas prone to compound events with both vari-
ables being extreme. Results for all pairs of drivers are shown
in Fig. S3 in the Supplement, which has a similar behaviour,
albeit with an overall lower number of co-occurring events.

4.1.2 Time window

Figure 4 shows the comparison between the highest corre-
lation coefficient obtained when using a time window (1t)
of ±3 d vs. using 1t =±10 d for the pairs of variables Q
and P , S, W , or SW using POT3 and the joint occurrence
between Q and P , S, W , or SW . Only locations with a sig-
nificant correlation (p < 0.05) are represented in Fig. 4. Re-
sults indicate there is no major difference in the correlation
between drivers when employing the two investigated time
windows. Larger differences (∼ 0.1 higher correlation) are
obtained when Q is the dominant variable in the few loca-
tions (9 of the 540) where correlation is moderate overall
(∼ 0.30). The joint occurrences tend to be slightly higher (10
number of co-occurring events) with a higher time window,
but also fewer compound events (by half) are detected in lo-
cations with low–medium joint occurrence (<∼ 40) using a
1t =±3 d (lower left corner of scatter plots in Fig. 4b).

4.1.3 Dependence metrics

Figure 5a shows the comparisons when using the Kendall
vs. Spearman rank coefficients for the pairs of variables
(Q–P/P–Q, Q–S/S–Q, Q–W/W–Q, Q–SW/SW–Q, P –
S/S–P , P –W/W–P , and P–SW/SW–P ), using a time
window of±3 d and across the three approaches (AM, POT3,
POT6) considered in the conditional sampling. There is a
categorical correspondence between both correlation coef-
ficients, with Kendall’s coefficient having a tendency to be
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Figure 2. (a) Scatter plots of the Kendall correlation (p < 0.05) between Q and P using POT3 vs. AM (upper panels) and POT3 vs. POT6
(lower panels), using either Q (left panels) or P (right panels) as the dominant variable. (b) Histograms of the correlation coefficients using
the three approaches (AM, POT3, and POT6) for each region when either Q (left panels) or P (right panels) is the dominant driver.

Figure 3. (a) Scatter plots of the number of co-occurring events between Q and P using AM vs. POT3 (a) and using POT3 vs. POT6 (b).
Dashed lines mark relationships between AM and POT3 or between POT3 and POT6 covering scaling factors equal to 2.0 and 3.0.

smaller than the Spearman coefficient. Therefore, to charac-
terize compound events in terms of correlation and its spatial
distribution, the information provided by both coefficients is
equivalent. The number of locations with significant correla-
tion is very similar to both correlation coefficients (see Ta-
ble 1).

Regarding (χ,χ̄ ) statistics, the usual way to decide the
threshold involves making a visual examination of the evolu-
tion of their empirical estimates for increasing threshold lev-
els (Zscheischler et al., 2021). Here, we decided to estimate
χ at a probability threshold of 0.95 after careful examination
of the results for different levels. The comparison between
χ and the joint occurrences divided by three events per year,
and the number of years (40) for the pair of variables Q–S
is shown in Fig. 5b. There is high correspondence (correla-
tion coefficient around 0.9) between both dependence met-
rics mainly because both of them measure the probability of
bivariate extremes when both drivers are extreme. The re-
maining small differences may be due to different sampling

processes leading to different extreme subsets. The statistic
χ is estimated using the empirical distribution of the daily
time series of Q (mean daily values) and S (maximum daily
values), and the extremes are selected without any cluster-
ing. On the other hand, the number of co-occurring events
was calculated using a POT with a threshold that guarantees
three events per year and with a storm duration of 3 or 5 d
to select independent events. A similar relationship between
both metrics has been found for other combinations of vari-
able pairs (not shown here).

4.1.4 Definition of wave-driven sea level

The effect of the definition of sea level (oceanographic flood-
ing drivers) in the characterization of compound events is
analysed here by comparing the Kendall correlation coeffi-
cients obtained between the pair of variables Q or P when
using the two varying sea level definitions (SW and WL)
used in this study (Fig. 6). Differences in the obtained corre-
lation coefficients are typically small (mainly around 0.05),
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Figure 4. (a) Scatter plots of the highest correlation coefficient (p < 0.05) between Q and P (•), S (∗), W (�), and SW (�) using a time
window (1t) of ±3 and 10 d with a POT3 approach, using Q either as the dominant (left panel) or secondary (right panel) variable in the
conditional sampling. (b) Scatter plots of the joint occurrences betweenQ and S,W , and SW (left panel) and between P and S,W , and SW
(right panel); markers are the same as in (a).

Figure 5. (a) Scatter plot of the Kendall correlation coefficient (p < 0.05) vs. Spearman correlation coefficient (p < 0.05) between all pairs
of variables. (b) Scatter plot of the statistic χ (threshold= 0.95) against the joint occurrence divided by three events per year for the pair of
variables Q–S.

except along the southern Atlantic coast where the differ-
ences are slightly higher than 0.15. The southern Atlantic
coast region presents the highest correlations between plu-
vial or fluvial sources and oceanographic drivers (correla-
tion coefficients around 0.6–0.7) within the entire study do-
main, meaning that the identification of this region as an area
with significance dependence is still preserved. The effect of
the sea level definition on the correlation when Q or P is
the dominant variable in the conditional sampling is much
smaller (around 0.05, not shown here).

4.2 Characterization of compound flooding potential

This section describes the results obtained in relation to the
second objective and contains (1) a description of the de-
pendence between all identified pairs of drivers based on the
Kendall correlation coefficient and the joint occurrences, (2)
formulation of a severity index to represent the metocean cli-
mate in the study domain and which combines the extreme-
ness of the four drivers, and (3) an identification of spatial
patterns of compound flooding potential derived based on a
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Table 1. Number of locations with significant correlation (p < 0.05), with 540 being the total number of locations.

Kendall’s tau Spearman’s rho

Dominant variable Variable 1 Variable 2 Variable 1 Variable 2

Pairs of variables AM POT3 POT6 AM POT3 POT6 AM POT3 POT6 AM POT3 POT6

Q–P 307 301 334 332 327 355 309 306 339 332 325 353
Q–S 101 145 212 126 137 204 105 144 213 126 141 204
Q–W 116 166 262 0 122 193 114 171 260 0 116 195
Q–SW 124 178 251 0 139 210 120 182 254 0 146 213
P–S 47 69 141 124 173 281 47 69 139 120 171 279
P–W 87 123 204 0 214 363 87 122 203 0 219 360
P–SW 83 128 210 0 223 353 83 126 208 0 222 355

Figure 6. Differences in the Kendall correlation coefficient (p < 0.05) between [SW–Q] and [WL–Q] (a) and between [SW–P ] and [WL–
P ] (b), when SW or WL is the dominant variable.

classification of the dependence metrics between the pairs of
drivers and the severity index.

4.2.1 Dependence between pairs of the four flooding
drivers

Here we consider the results obtained using the POT3
method and a time window of±3 d to characterize the multi-
variate compound events along the North Atlantic, Mediter-
ranean, and Black Sea coasts. The analysis of the dependence
between S–W is performed at an hourly temporal resolution
and using a smaller 1t (1 d) because it is considered that
both drivers contribute simultaneously to the definition of
sea level. The dependence between S–W as calculated us-
ing daily data is compared with the results using hourly data
(Fig. S4 in the Supplement). A reduction of the correlation
coefficients in the whole study domain, especially along the
Atlantic coasts of Spain and France and along the Baltic Sea
coast is evident while the number of joint occurrences in-
creases in almost all locations, especially along the Atlantic

coast of the Iberian Peninsula up to north of Africa and in the
Mediterranean Sea.

Kendall’s correlation coefficient and the joint occurrences
between the four pairs of variables: Q–P , Q–S, Q–W , and
Q–SW are represented in Fig. 7. The variables Q and P
(Fig. 7a) present correlation coefficients of around 0.6–0.7
along the most southern coasts of the Atlantic study region
and also in some locations in the Mediterranean Sea (coast of
Gibraltar Strait, Algeria, southern Italy, east coast of Turkey
and Levante region in the eastern Mediterranean), while cor-
relation coefficients of around 0.1–0.2 are more predominant
along northern European coasts (except the west coast of Jut-
land and west coast of the UK). Similar spatial correlations
are found whether Q (red scale) or P (blue scale) is used
as the dominant variable in the conditional sampling, except
in locations along the French coast of the English Channel,
the eastern coast of the UK, and the coasts of Tunisia and
Libya, where higher correlations are obtained when the com-
pound events are conditioned to P . The joint occurrence (cir-
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cle size) presents a similar spatial pattern to the correlation
coefficient between these two variables, with the maximum
number of co-occurring events close to 100.

For Q and S (Fig. 7b), the highest correlations are of
around 0.3–0.4 when both drivers are dominant, mainly
along the southern Atlantic coasts of the Iberian Peninsula,
north of Africa and the Gibraltar Strait. The dependency is
slightly higher when Q is the main variable in the identifi-
cation of compound events, even the only correlation along
most of the northern coasts of the Mediterranean Sea. Higher
joint occurrences are detected in locations with higher corre-
lation, with around 50–60 of co-occurring events. However,
similar numbers of joint occurrences are found in locations
along the eastern coast of Italy and the eastern north Mediter-
ranean coasts with lower correlation.

ForQ andW (Fig. 7c), the spatial distribution is quite sim-
ilar to Q–S, with slightly smaller correlation along the most
southern Atlantic coast and higher along the west coast of
the Iberian Peninsula. Correlation only when Q is the domi-
nant variable is even more pronounced in locations along the
Mediterranean Sea (e.g. eastern coast of Spain). These spa-
tial patterns are also reflected in the distribution of the cor-
relation coefficient between Q and SW as a combination of
both (Fig. 7d).

Spatial distribution of the dependence between P and S,
W , or SW (Fig. S5 in the Supplement) is relatively similar
to the spatial distribution between Q and the three oceano-
graphic variables. The highest correlation between P –S or
P –W (with values around 0.3–0.4) is concentrated on the
southern coast of the North Atlantic Ocean. In the case of the
Mediterranean Sea, similar areas with high dependence are
detected including the western coast of the Black Sea and
excluding many locations along the Greek coast. Correlation
is higher when the conditional sampling is conditioned to
oceanographic variables. S and W (Fig. S5d) are the drivers
with the highest correlation, with coefficients of around 0.6–
0.7 in the north Atlantic Ocean to minimum values of 0.2 in
some regions in the Mediterranean Sea.

4.2.2 Severity index

Here we define an index, based on driver severity, to be in-
cluded in the characterization of the spatial patterns of com-
pound flooding potential. The driver severity is calculated as
the sum of normalized thresholds of each driver, applied in
the conditional sampling (multiplied by 0.2 in the case of
W ). Q thresholds, which cover a wide range of values, have
been categorized into 10 intervals [0–10–25–50–100–250–
500–750–1000–5000→ 25 000 m3 s−1] to avoid skewing the
driver severity due to very high discharge magnitude in sev-
eral locations. Driver severity is divided into 11 scores from
0 to 1. Figure 8d shows the spatial distribution of the severity
index (SI). Areas with the highest SI are concentrated in the
North Sea, the northwest of the Iberian Peninsula, the east-
ern coast of the Adriatic Sea, the eastern coast of the Black

Sea, and a few locations that represent large rivers. Coastal
areas with the lowest SI are mainly concentrated along the
southern coast of the Mediterranean Sea and the most south-
ern coast of the Atlantic Ocean of our study domain. The SI
spatial distribution indicates that an identical SI ranking can
be determined by different combinations of driver extremes.
To facilitate this analysis, we classify the thresholds of the
four drivers (shown in Fig. S6 in the Supplement) into 10
clusters to define the main combinations of driver extreme-
ness (Fig. 8a). The probability of occurrence of each clus-
ter (number of locations of the study domain represented by
each cluster) associated with each SI rank (Fig. 8b) provides
which combinations of the four driver thresholds have an
equal SI rank. For example, locations with SI equal to 0 are
associated with only one cluster (represented in light green),
which is defined by a combination of the lowest thresholds of
Q, P , and S and lowW severity. On the other hand, locations
with SI equal to 1 are associated with clusters 1 and 2 (in yel-
low and orange, respectively) which are characterized mainly
by the severity of one driver (Q or S, respectively) but also
associated with clusters 3, 7, and 8 (in red and dark and light
blue, respectively) with high severity of two or three drivers
(Q, P , and W ; or Q and P ; or Q and S, respectively). The
spatial distribution of these clusters (Fig. 8c) allows identi-
fication of the representative combination of the four driver
thresholds for each location.

4.2.3 Spatial patterns of compound flooding potential

The characterization of compound flooding potential can
be summarized using the combination of two metrics: the
Kendall correlation (τ ) and the joint occurrence (JO) for
the pairs Q–P , Q–SW , and P –SW and the number of
co-occurring events when all three variables are extreme
JO(Q–P –SW ). The two-step cascade classification method
is applied to the 11-dimensional array Xi = [τ1(Q–P)i ,
τ2(P –Q)i , JO(Q–P )i , τ1(Q–SW)i , τ2(SW–Q)i , JO(Q–
SW )i , τ1(P –SW)i , τ2(SW–P)i , JO(P –SW )i , JO(Q–P –
SW )i , SIi], where the subscript represents the ith grid point.
Each parameter is normalized to avoid assigning different
weights in the classification process. We first use the SOM
algorithm to obtain a large collection of centroids (20×20=
400) projected onto a 2D organized lattice that helps to anal-
yse the dependence between the 11 parameters. The hexago-
nal SOM of 20× 20 size of the compound flooding potential
derived from the 11 metrics outlined above for the study sites
is shown in Fig. 9. Results are shown in individual panels
(Fig. 9a–k) over the same 2D lattice for the different metrics
defining the SOM centroids (the hexagons in a certain posi-
tion correspond to the same map unit in each figure). Note
that each figure has a different scale. For example, we can
observe that the three parameters related with the pair Q–P
(ρ1, ρ2, JO; see Fig. 9a–c) present a similar distribution in
the lattice, which means that there is a high dependence be-
tween them. Locations with the highest correlation between
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Figure 7. Kendall’s correlation coefficients (p < 0.05) between multivariate extremes selected using the POT3 approach and the joint oc-
currences between (a) Q–P , (b) Q–S, (c) Q–W , and (d) Q–SW . Correlations between compound events selected when variable 1 is the
dominant driver are represented on the red scale while the blue scale denotes the correlations obtained when variable 2 is the dominant driver.
The size of the circles on the blue scale represents the joint occurrences (maximum= 100). If correlation is insignificant when variable 2
is the conditioning variable, the size of the circle on the red scale represents the joint occurrences. When both correlation coefficients are
insignificant, the size of the grey circle represents the joint occurrences.

Q–P (P –Q) (Fig. 9a and b) also have the highest number of
joint occurrences (Fig. 9c). Centroids with the highest de-
pendence parameters between Q–SW and P –SW are con-
centrated in the upper right corner of the lattice (Fig. 9d–j).
They are also characterized by the highest number of joint
occurrences between Q–P (Fig. 9c) and high–medium de-
pendence between Q–P (Fig. 9a and b). Accordingly, the
highest joint occurrences between all three variables are also
found in the upper right corner (Fig. 9i). Other centroids lo-
cated in the upper left side of the lattice represent locations
with high dependence between P –SW (Fig. 9g–h) but not

between Q–SW and relatively smaller dependence between
Q–P .

The severity index (Fig. 9k) reveals that locations with the
highest driver severity do not present dependence between
any pair of drivers (lower right corner of each individual
panel in Fig. 9). These locations are the ones represented
principally by clusters with the severity determined by only
one driver (clusters 1 and 2 in Fig. 8a). The probability of
many SOM centroids is null (Fig. 9l) because a large lattice
size (20× 20) is required to guarantee that SOM centroids
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Figure 8. (a) A total of 10 clusters defined by the combination of the thresholds of four drivers (Q, P , S, W ) used in the conditional
sampling (the same colour is used to represent the four thresholds by the mean, 25th, 75th, 5th, and 95th percentiles within each cluster).
(b) Probability of occurrence of each cluster for each severity index (SI) score (greyscale shows the number of locations represented by each
cluster). (c) Spatial distribution of the clusters represented in the same colour as used in (a). (d) Spatial distribution of SI based on the sum
of the normalized thresholds of the four drivers.

cover the multidimensional data space defined by the 11 pa-
rameters.

In the second step, we apply the KMA to find a reduced
number of clusters applied to the SOM centroids. We obtain
an optimal number of eight clusters by applying the Davis–
Bouldin and gap criteria. Figure 10b shows the KMA classi-
fication in eight groups over the SOM lattice and highlights
the similarity between KMA clusters because neighbouring
centroids in the 2D lattice have similar values of the 11 pa-
rameters (see black contours of Fig. 9 which delimitate the
SOM centroids belonging to each KMA cluster). Figure 10a
shows the mean value of the 11 parameters associated with
each cluster and the variability within each group (25th, 75th,

5th, and 95th percentiles). The number of locations repre-
sented by each cluster is shown in Fig. 10c.

The KMA classification reveals two clusters (red and
pink groups) that represent locations where more compound
flood events can occur. The pink group is characterized
by the highest dependence (both correlation and joint oc-
currences) between Q–SW (SW–Q) and P –SW (SW–Q)
and high dependence between Q–P (P –Q), which is re-
flected in the highest number of joint occurrences between
the three drivers. The SI centroid presents a medium–high
severity with a wide variability. The red group represents lo-
cations with the highest dependence between Q–P (P –Q)
and medium correlation, only when extremes are selected
conditioned to oceanographic drivers, and high joint occur-
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Figure 9. SOM classification: (a) τ1(Q–P), (b) τ2(P–Q), (c) JO(Q–P ), (d) τ1(Q–SW), (e) τ2(SW–Q), (f) JO(Q–SW ), (g) τ1(P–SW),
(h) τ2(SW–P), (i) JO(P –SW ), (j) JO(Q–P –SW ), (k) SI, (l) probability of each SOM centroid.

rence between Q–SW and Q–P . It is characterized by a
low–medium severity index because most of the locations
present mild meteocean conditions (represented by cluster 4
in Fig. S8a in the Supplement). The purple cluster follows
the other two in terms of compound flooding potential. It is
characterized by a high joint occurrence betweenQ–SW and
P –SW but lower dependence between Q–P and represents
locations with a high severity index. Green and blue clusters
stand out for the high numbers of compound events resulting
mainly from the combination of P –SW . The green cluster
is also characterized by significant dependence between Q–
P and Q–SW at locations with low-severity meteocean cli-
mates. In contrast, the blue cluster represents locations with-
out compound events generated by the combination of Q
and SW . The dark green cluster represents locations where
only compound events from the combination of Q–P can
occur. The two remaining clusters, which represent 43 % of
all study locations, are characterized by negligible compound
flooding potential and are distinguished by the severity of the

drivers, with the yellow cluster representing locations with
high severity index and the light blue cluster representing lo-
cations with low severity index.

The geographical distribution of the eight KMA clusters
represents the compound flooding potential patterns across
the study domain (see Fig. 11). For example, the pink clus-
ter which characterizes the pattern where the most com-
pound events occur from the combination of the four drivers
is distributed along the southern coasts of the North At-
lantic Ocean, the eastern coast of France, and scattered lo-
cations along the northern coast and off the eastern coast
of the Mediterranean Sea. On the other hand, the red clus-
ter is mainly localized along the most southern coast of the
North Atlantic Ocean and isolated locations in the Mediter-
ranean and Black Sea; recall that this cluster represents loca-
tions with low driver severity. Other locations identified with
significant compound flooding potential, including along the
western coast of France and the UK or the northeastern coast
of the Mediterranean Sea, are part of the purple cluster.
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Figure 10. KMA classification. (a) Characteristics of each cluster: τ1(Q–P), τ2(P–Q), JO(Q–P ), τ1(Q–SW), τ2(SW–Q), JO(Q–SW ),
τ1(P–SW), τ2(SW–P), JO(P –SW ), JO(Q–P –SW ), SI. (b) The eight KMA clusters over the SOM lattice. (c) Number of locations repre-
sented by each KMA cluster.

5 Discussion

In this paper, we have analysed the compound flooding
potential arising from pluvial, fluvial, and oceanographic
sources. The assessment is based on a bivariate analysis of
the dependence between drivers (P , Q, S, and W ) using
a two-sided conditional sampling. Our first objective is fo-
cused on the analysis of the sensitivity of the results to sev-
eral factors that have been applied indiscriminately in previ-
ous studies with the purpose of identifying compound events
and characterizing compound flooding potential.

First, we apply AM and POT sampling approaches to anal-
yse how the choice of these approaches affects the computed
dependency between variables. It is noteworthy that our re-
sults show that a lower statistical dependence is obtained
when using the POT method, which is in agreement with
Ward et al. (2018), yet a broad consensus has emerged in
favour of the use of the POT approach for identifying ex-
treme events (Mazas et al., 2014; Coles, 2001). The larger
correlation coefficient derived using the AM approach might

be due to a higher tendency that annual peaks of both drivers
co-occurred, when the dependence between them is sig-
nificant, while the POT method selects more combinations
where drivers are less extreme, which in turn is reflected
in the lower correlation coefficient. However, AM can po-
tentially disregard information on extremes in the remaining
data from using only one data point per year (Méndez et al.,
2006), or select events that are not extreme, as we have ob-
served in several of our study sites. However, the spatial pat-
terns in both approaches are similar, and comparable areas
are identified as hotspots with relatively higher dependence.

In our second sensitivity analysis, we found that the choice
of the time window used has almost a negligible effect on the
computed correlation coefficients (at least for the time win-
dows in excess of the 3 d used here). The higher probability
of finding more severe events using a longer1t has only been
reflected in a higher correlation in a few locations. However,
it can result in a lower number of compound events when
both drivers are extreme (i.e. fewer joint occurrences).
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Figure 11. Compound flooding potential patterns identified in this
study as highlighted by the spatial distribution of the eight KMA
clusters. Each KMA cluster is represented in the same colour as
used in Fig. 10.

In the third sensitivity analysis, we investigated differ-
ences in the characterization of the dependence between
drivers using different metrics. We found that the correla-
tions obtained are always higher when using the Spearman
rank correlation coefficient compared to the Kendall coeffi-
cient, but they are unequivocally related, and equivalent spa-
tial distributions are obtained irrespective of the choice of the
correlation coefficient. Regarding joint occurrences and tail
dependence, we found that both provide comparable quan-
tifications of the dependence between driver variables when
both variables are extreme. Moreover, the concept of joint oc-
currences provides a better measure of the compound flood-
ing potential because it applies a declustering method to se-
lect independent events.

The last factor we assessed is the definition of the wave-
driven contribution to the sea level when using the sum of the
S and W components. Any differences in correlation emerg-
ing as a result of the definition of wave-driven contribution
to sea level seem to be explained by a higher dependence be-
tween surge and the simplified wave-driven sea level (20 %
of W ) than surge and setup also based on the wave period
(see Fig. S7 in the Supplement), so that this could be due
to the influence of swells. Although the same beach slope is
considered in all study locations, our results showed that the
combination of W and Tp in the estimation of setup influ-
ences the selection of compound events conditioned to sea
level more than the semi-empirical formulation itself.

Our second objective was focused on estimating the spa-
tial distribution of compound flooding potential considering
the driversQ, P , S,W , and SW . We observed significant dif-
ferences in the dependence between the pairs of drivers and
even for one individual pair depending on which driver is em-

ployed as the dominant one in the selection of the compound
events. We find that the correlation coefficient and joint oc-
currences are not always positively related. Therefore, we
considered that combinations of both metrics provide com-
plementary information about the type of compound events
and represent different flooding mechanisms (Wahl et al.,
2015). The joint occurrence only characterizes compound
events when both drivers are extreme. On the other hand,
correlation coefficients characterize those compound events
generated when one of the drivers is extreme but not nec-
essarily the other, providing information about the relative
severity of the secondary driver.

Regarding a comparison with previous global and regional
studies of compound flooding potential in the study domain,
the hotspots we have identified on the coasts of Portugal, the
Strait of Gibraltar, and Morocco have also been detected in
Couasnon et al. (2020). However, although we found a higher
number of joint Q–S occurrences on the southwest and west
coasts of the UK than on the east coast, as previously noted
by Hendry et al. (2019), the number of co-occurrences is
lower in our analysis, as is also the case around the coast
of Ireland. Similar high joint occurrences between Q–S on
the northern and eastern Mediterranean coasts and on the
coast of Tunisia are found, in accordance with Couasnon
et al. (2020). We do not observe a predominance of higher
correlation when compound events are conditioned toQ as in
Couasnon et al. (2020). However, differences in the correla-
tion between the two conditional samples are found between
P and S, W , or SW . As pointed out by Hendry et al. (2019),
storms that generate high precipitation are different to the
ones that generate high storm surges. Specifically, heavy
precipitation and extreme surges are driven by deep low-
pressure systems, while intense rainfall can also be caused by
convection without intense cyclonic activity (Bevacqua et al.,
2019). Therefore, there is higher probability of compound
events when S or W is the dominant variable (generated by
extratropical storms) than when compound events are condi-
tioned to P (convective storms). This effect seems to be less
perceptible between river discharge and oceanographic vari-
ables because other climatic and non-climatic factors affect
the fluvial source driver (Bevacqua et al., 2020), as for exam-
ple, land use characteristics or snowmelt, evaporation, and
accumulated precipitation over previous weeks or months.
Bevacqua et al., 2019 found the lowest joint return peri-
ods due to high dependence between P –S were concentrated
along the Atlantic coast and in the Mediterranean Sea (partic-
ularly in the regions of the Gulf of Valencia (Spain), north-
west Algeria, the Gulf of Lion (France), the Adriatic coast
of the Balkan Peninsula, the Aegean coast, southern Turkey,
and the Levante region). Even though we did not calculate
return periods, our results suggest similar areas of higher de-
pendency between P–S. We find a distinct pattern between
southern and northern European coasts with more joint oc-
currences between S–W , especially over the Irish Sea, En-
glish Channel, and south coasts of the North Sea and Baltic
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Sea in line with the results of Petroliagkis (2018). Similar re-
gional patterns of dependence between S–W as we find here
were reported by Marcos et al. (2019), but we find some addi-
tional local areas with strong dependence when both drivers
are extreme (characterized by the statistic χ or joint occur-
rence) such as the western coast of the Iberian Peninsula and
certain areas in the Mediterranean Sea, perhaps because we
used a higher 1t than in Marcos et al. (2019).

We apply a two-step clustering method to synthesize the
high-dimensional results of the bivariate characterization of
compound flooding potential from the four sources. First, the
SOM algorithm allows us to analyse the multivariate depen-
dence between the correlation coefficients and the joint oc-
currences between the pairs of drivers Q–P , Q–SW , and
P –SW , enabling the establishment of the degree of con-
tribution of each driver combination to compound flooding
in the study area. Moreover, the method also distinguishes
whether the identified compound events are more likely to
occur when both drivers are extreme or when only one driver
is extreme. With the second step of the clustering method,
we identify a reduced number of types of compound events
based on the contribution of each driver combination and the
driver severity. The spatial distribution of these types of com-
pound events reveals spatial patterns of compound flooding
potential. These patterns allow us to discern locations with
the highest overall compound flooding potential and the as-
sociated contributions of each pair of drivers. Additionally,
we introduce a severity index to distinguish between loca-
tions with similar compound flooding potential (from the de-
pendence perspective) but very different driver severity.

The main limitation of our study is the identification of the
compound events based on drivers. None of the contribut-
ing variables have to be necessarily extreme to create a com-
pound flooding event. Therefore, the selection of compound
events should ideally be based on an impact function or a risk
function that accounts for exposure and vulnerability. How-
ever, this function is usually unknown and difficult to derive,
especially in regional and global studies. An intermediate
approach could be based on the selection of the compound
events in the extreme water levels generated by the interac-
tion between oceanographic drivers and riverine drivers. The
amplification of the flooding impact has been identified at the
local scale (van den Hurk et al., 2015; Kumbier et al., 2018)
and recently at the global scale (Eilander et al., 2020) using a
global coupled river–coast flood model framework (Ikeuchi
et al., 2017).

Although compound flooding drivers have been found
to be generally captured well in different reanalysis and
hindcast products (Paptrony et al., 2020), differences in the
strength of dependence derived from observations and mod-
els can vary spatially and across different variables, which is
more evident when regional climate models are used, even
after bias corrections have been made (Ganguli et al., 2020).
In addition, Paprotny et al. (2020) also detected false positive
and large compound floods in observations that were missed

in the modelled products. We therefore acknowledge that
model biases might mischaracterize absolute values of de-
pendence in some cases. However, the conclusions we draw
from our results regarding sensitivity analysis are not likely
to be altered, and the relative importance of drivers and spa-
tial patterns would also likely be less (or not at all) affected.

6 Conclusions

In this paper we have evaluated the compound flooding po-
tential arising from the combination of precipitation, river
discharge, storm surge, and waves along the coasts of the
eastern North Atlantic Ocean, Baltic Sea, Mediterranean Sea,
and Black Sea (i.e. Europe and environs). The paper pro-
vides two advances. First, we performed a series of sensitiv-
ity analyses to establish how methodological choices affect
the identification of compound flood events. Specifically, we
investigated (1) the sampling method, (2) the time window
used to match events in the two-way sampling, (3) the use
of typical metrics applied in the evaluation of the depen-
dence between drivers, and (4) the definition of the wave-
driven sea level contribution. Among these, the sampling ap-
proach shows the highest differences in the quantification of
the compound flooding potential. However, none of the fac-
tors analysed cause significant differences in the spatial dis-
tribution of the compound flooding potential, so similar re-
sults are identified irrespective of the method.

Second, our work provides a new regional characterization
of compound flood potential using a methodology which ag-
gregates the bivariate dependence between driver combina-
tions. This multivariate characterization reveals three main
locations with high compound flooding potential: the south-
ern coast of the North Atlantic, the western coasts of France
and the UK, and the northern coast of the Mediterranean Sea.
These locations are characterized by compound events that
arise from the combination of the four drivers, albeit with dif-
ferences related to the driver severity, the contribution of each
pair of drivers, and the predominance of compound events
when drivers are extreme. Other locations of relatively high
compound flood potential include the eastern coast of Italy
and the southern Mediterranean Sea, where compound flood-
ing is mainly driven by combinations of precipitation and sea
level.

This regional quantitative assessment of multivariate com-
pound flooding potential can be considered a screening tool
for coastal management. The results provide information
about which areas are more predisposed to experience com-
pound flooding. In addition, this multivariate flooding po-
tential classification identifies the relevant drivers of coastal
compound flooding at each location. This assists the selec-
tion of the most appropriate methodological approach to per-
form high-resolution hydrodynamic and impact modelling.
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