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Abstract. The use of mass flow simulations in volcanic hazard zonation and mapping is often limited by model 

complexity (i.e. uncertainty in correct values of model parameters), a lack of model uncertainty quantification, 

and limited approaches to incorporate this uncertainty into hazard maps. When quantified, mass flow simulation 

errors are typically evaluated on a pixel-pair basis, using the difference between simulated and observed (‘actual’) 10 

map-cell values to evaluate the performance of a model. However, these comparisons conflate location and 

quantification errors, neglecting possible spatial autocorrelation of evaluated errors. As a result, model 

performance assessments typically yield moderate accuracy values. In this paper, similarly moderate accuracy 

values were found in a performance assessment of three depth-averaged numerical models using the 2012 debris 

avalanche from the Upper Te Maari crater, Tongariro Volcano as a benchmark. To provide a fairer assessment of 15 

performance and evaluate spatial covariance of errors, we use a fuzzy set approach to indicate the proximity of 

similarly valued map cells. This ‘fuzzification’ of simulated results yields improvements in targeted performance 

metrics relative to a length scale parameter, at the expense of decreases in opposing metrics (e.g. less false 

negatives results in more false positives) and a reduction in resolution. The use of this approach to generate hazard 

zones incorporating the identified uncertainty and associated trade-offs is demonstrated, and indicates a potential 20 

use for informed stakeholders by reducing the complexity of uncertainty estimation and supporting decision 

making from simulated data. 

1 Introduction 

Mass flow numerical models are frequently used to predict the hazard from future events (e.g. Procter et al., 

2010b; Scott et al., 2005; Scott et al., 1997; Aguilera et al., 2004; Pistolesi et al., 2014; Darnell et al., 2013; Thouret 25 

et al., 2013), understand fundamental processes within mass flows, investigate previous events (e.g. Iverson and 

George, 2016), and determine impacts to elements exposed to the flow (e.g. Zeng et al., 2015; Mead et al., 2017). 

Their utility and advancing computational power have positioned numerical models, of various scales and 

complexity, as a critical risk management and decision making tool (Bennett et al., 2013). An important element 

of risk management and decision making in a natural hazard context is the quantification and communication of 30 

uncertainty (Thompson et al., 2015; Doyle et al., 2014). In numerical modelling, much uncertainty is associated 

with a model’s predictive accuracy, where inaccuracies can stem from input and boundary conditions, model 

assumptions and numerical limitations. However, testing model accuracy, eliciting the effect of inputs, 

assumptions and limitations on accuracy and communicating these effects is a non-trivial task (Bennett et al., 

2013; Jakeman et al., 2006; Wealands et al., 2005; Mcdougall, 2016). 35 
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The fundamental requirement for assessing model accuracy is the establishment of a baseline, ‘true’, dataset for 

comparison between model and reality. Experimental facilities and studies (e.g. Iverson et al., 2010; Lube et al., 

2015) can provide detailed observations of mass flow processes to validate, develop and benchmark numerical 

models. Some known, important processes (e.g. initial conditions, unconfined flow, interaction with topography) 

are simplified in these facilities, and an assessment of ‘subsytem’ model accuracy (using definitions of Esposti 40 

Ongaro et al., 2020; Oberkampf and Trucano, 2002) requires the application to ‘real world’ mass flow 

observations. However, such measurements of mass flow characteristics are mostly limited to post-hoc analyses 

of events where data are derived from static (i.e. single points of data not varying in time) observations such as 

deposit depth, flow outlines and flow height markers (Charbonnier et al., 2017; Charbonnier et al., 2013; Procter 

et al., 2014). Temporally-varying measurements of mass flows do exist, for example when the occurrence is 45 

known a priori (e.g. in Procter et al., 2010a) or when permanent sensors (e.g. seismometers) capture some aspect 

of the flow (Velio et al., 2018; Walsh et al., 2016). While these direct observations can provide benchmarking 

opportunities for mass flow models, they are rare, and currently not comprehensive enough to quantify the entire 

range of mass flow sizes and behaviours. Therefore, performance measurement will predominantly need to utilise 

static, post-hoc observations. 50 

In general, quantifications of model performance can be split into global or local comparisons (Wealands et al., 

2005). Global comparisons characterise a mass flow into single, easy to interpret metrics (e.g. length of flow, area 

inundated; Charbonnier et al., 2017; Mergili et al., 2017) but can disguise both spatial and temporal divergent 

behaviour (Bennett et al., 2013). Local comparisons of model performance typically utilise a confusion matrix 

(Bennett et al., 2013; Charbonnier et al., 2017; Mergili et al., 2017) to classify proportions of correctly or 55 

incorrectly simulated data points, where spatial accuracy of simulators can be evaluated by comparing pixel-pairs 

on a map (Wealands et al., 2005). However, there is no universal metric for quality (Bennett et al., 2013), and 

various measures can be used depending on objectives or potential uses of the simulator (Bennett et al., 2013; 

Jakeman et al., 2006). Pixel-pair comparisons are also prone to registration issues (e.g. where systematic errors in 

base data or observations shift results, Wealands et al., 2005; Koch et al., 2015; Foody, 2002) that, even if small, 60 

can decrease overall accuracy metrics (see e.g. Charbonnier et al., 2017) due to the lack of tolerance for spatially 

or quantitatively minor errors. The conflation of quantity and spatial errors is particularly relevant for mass flow 

models, where the likelihood of errors generally decreases as flow depths increase.  

The conflation of these scale and location errors and reliance on precise co-location in comparisons contrasts with 

human (i.e., qualitative) comparisons that provide for some error tolerance, and, through focusing on basic spatial 65 

structure, logical coherence and importance-weighting of similarities (Hagen, 2003; Koch et al., 2015; Wealands 

et al., 2005). Human visual comparison is a powerful method for comparing and evaluating spatial field results 

(Wealands et al., 2005) and many comparison approaches attempt to emulate the human ability to distinguish 

between residual or random errors and errors in registration (i.e. account for co-location errors) and resolution 

(i.e. account for errors that are only significant at certain scales, Costanza, 1989). These approaches, identified 70 

and reviewed in Wealands et al. (2005), include multi-resolution comparisons (Costanza, 1989) to identify 

similarity of measurements with scale; region clustering, segmentation and homogenisation to identify and 

compare patterns in the spatial field; importance weighting to focus performance evaluation on the most 

(hydrologically) important regions; and fuzzy comparisons to represent relative membership (‘fuzziness’) of each 

map cell to a certain category (e.g. inundated/not inundated). Despite this range of potential performance 75 
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evaluation methods, there is no universal criterion or method to evaluate model quality (Bennett et al., 2013) and 

there are few examples of mass flow model performance evaluations that identify the level of both location and 

quantification error. 

Robust, objective and complete evaluations of model performance that quantify the uncertainty of predictions and 

effect of model and input parameters are essential for the development and use of mass flow models as a reliable 80 

hazard forecasting tool (Mcdougall, 2016; Calder et al., 2015). The selection of input parameters and modelling 

approach can be achieved through calibration (often visual, Mcdougall, 2016); however this limits a quantitative 

elicitation of the effect model and input parameter choice have on the hazard prediction. Appropriate model 

performance evaluation would not only quantify this uncertainty, but also communicate the scale and spatial 

dependence of these effects, presenting opportunities for new hazard delineation methodologies. This paper 85 

presents a performance evaluation approach using a multi-scale fuzzy comparison technique that incorporates 

positional error tolerance to assess debris flow model performance. The 2012 debris flow from the Upper Te Maari 

crater, Tongariro volcanic centre (New Zealand) is used as a benchmark to test the effect of debris flow model 

choice on simulation accuracy. Given the necessity to assess model performance on the basis of its constructed 

purpose (Jakeman et al., 2006), each model is evaluated in terms of their ability to delineate hazardous debris-90 

avalanche inundation zones, and demonstrate a new approach to define these zones with quantified uncertainty. 

2 Case study: 2012 Upper Te Maari debris avalanche 

The 6th of August, 2012 eruption in the Tongariro volcanic centre was a short (<60 s), but complex eruption 

sequence beginning with a slope failure on the outer, western flank of the Upper Te Maari Crater, followed by a 

series of (in order) East, West and vertically directed blasts that generated pyroclastic surges and ballistics 95 

covering an area greater than 6 km2 (Jolly et al., 2014; Lube et al., 2014; Procter et al., 2014; Fournier and Jolly, 

2014). The Te Maari debris avalanche emplacement, morphology and deposit characteristics were identified and 

summarised in Procter et al. (2014), here we summarise only the necessary details for this study.  

The debris avalanche generated from the slope failure is presumed to have begun at 11:49:06 UTC, which is when 

an earthquake located at the avalanche head scarp is detected in the seismic record by Jolly et al. (2014). The 100 

cohesive, clay-rich debris avalanche was mostly confined by the Mangatipua Stream, travelling downslope to 

reach a run-out of approximately 2 km (Lube et al., 2014; Procter et al., 2014; Walsh et al., 2016). Volume of the 

debris avalanche was estimated between 6.83 and 7.74 × 105 m3 in Procter et al. (2014), measured as the difference 

between a 10 m pre-event Digital Terrain Model (DTM) and post-event LiDAR derived DTM. The mud-sand 

matrix supported debris flow deposits were primarily emplaced in four lobes along Mangatipua Stream (see Figure 105 

1). Coarse, poorly sorted, clasts ranging in size from pebbles to large boulders were also present, particularly at 

frontal lobes and lateral margins of the deposit, generally decreasing in quantity downstream. Between the lobes, 

steep channel sides limited deposition with 1 to 2 m of erosion into the soil substrate and thin (0.2 to 0.5 m) veneer 

deposits, demarcating maximum extents of the flow. 

Geomorphic change associated with the debris flow was calculated through comparisons between the 10 m pre- 110 

and LiDAR derived post-event DTM. The pre-event DTM was created from contours generated from stereo-

photogrammetry captured in 1975, with an accuracy of 90% within 10 m. The LiDAR post-event DTM was 

acquired on 8 – 9 November 2012 and has a 1-sigma accuracy of 0.25 m horizontally and 0.15 m vertically. While 
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the accuracy of both terrain models are within acceptable limits, there are a number of issues in terrain model 

interpolation, representation and acquisition time, which limits the comparison between terrain models and usage 115 

in numerical modelling. Interpolation of contours to generate the pre-event DTM results in a smoothed 

representation of terrain with no sharp gradients which results in an inaccurate representation of steep features 

and narrow sections of Mangatipua stream (Procter et al., 2014). One major zone of misrepresentation is in the 

upper section of lobe 4, highlighted in Figure 1. In this region, elevation of the pre-event DTM increases to form 

a barrier to flow along Mangatipua stream which is not present in the field. The magnitude of this error is unknown, 120 

but the height difference between pre- and post-event DTM’s indicate it could be between 10 - 15 m. Additionally, 

the LiDAR survey used to generate the post-event DTM was taken 3 months after the debris flow, and almost 1 

month after a breakout lahar (13 October 2012, Walsh et al., 2016) caused through damming of Mangatipua stream 

by the initial debris avalanche (Walsh et al., 2016; Procter et al., 2014). The breakout lahar, and possibly 

subsequent streamflow, eroded and entrained the 6th of August debris avalanche and ash deposits, redistributing 125 

sediment further downstream and cutting a new stream into the deposit. Therefore, the post-event DTM does not 

represent the exact morphology of Mangatipua stream immediately after the debris flow. 

Despite the previously mentioned uncertainties, the difference between the pre- and post-eruption DTM’s form a 

useful data set for evaluating the accuracy of numerical models. Figure 1c shows the deposit outline (dotted black 

line) used in the accuracy assessment (see ‘Model performance assessment’ section) and points of deposit depth. 130 

Deposit depth points are a subset of deposit depths in Procter et al. (2014) where the depth estimates are least 

affected by uncertainties in both terrain models. The points all have depths greater than 0.5 m (i.e. larger than 

LiDAR inaccuracies, avoiding veneer deposits) and are located where the pre-event terrain slope is moderate (<15 

degrees) to avoid the effects of smoothing high gradient slopes in the pre-event DTM. An outline of the debris 

avalanche, shown as the black line in Figure 1, was created as the union of the debris avalanche outline in Procter 135 

et al. (2014) and outline of the debris avalanche detected using image classifications from airborne hyperspectral 

survey in 2016. While this survey was undertaken 4 years after the eruption, thin veneer deposits appear to be 

detected and classified well (Kereszturi et al., 2018), improving the estimates of flow outline. 

3 Debris avalanche simulation 

3.1 Numerical mass flow models 140 

Numerical techniques to predict the motion of debris avalanches (and/or debris flows) commonly employ depth-

averaging to simulate large scale geophysical flows (Mcdougall, 2016; Fischer et al., 2012), being favoured for 

their computational efficiency (in comparison to three-dimensional models), comparative scales, and level of 

detail to field measurements (Iverson and Ouyang, 2014). However, the physics of granular and granular-mixture 

flows is an area of active research and there are no universally accepted constitutive laws for debris flows 145 

(Mcdougall, 2016). As a result, several models, varying in complexity from single-phase rheologies (e.g. 

Voellmy-Salm, Christen et al., 2010; O'brien et al., 1993) to two-fluid (Pitman and Le, 2005) and multiphase 

approaches (Pudasaini, 2012; George and Iverson, 2014) have been used to simulate debris flows and avalanches 

(e.g. Iverson and George, 2016; Procter et al., 2010c; Mergili et al., 2017; Iverson et al., 2016; Sosio et al., 2007; 

Sosio et al., 2012; Sheridan et al., 2005). 150 
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For all models studied here, the depth averaged system of equations can be expressed in Cartesian coordinates as 

(Patra et al., 2005; Pudasaini, 2012): 

𝝏𝐔

𝝏𝒕
+

𝝏𝐅

𝝏𝒙
+

𝝏𝐆

𝝏𝒚
= 𝐒 (1) 

Where U is the height and momentum vector, F and G are momentum fluxes in the x and y directions respectively, 

and S is the source term representing the net driving force (Patra et al., 2005; Patra et al., 2018). The three models 155 

in our study utilise different assumptions and simplifications, and all four vectors (U, F, G and S) vary between 

models. The models studied here are the Pitman and Le (2005) two-fluid model and Voellmy-Salm rheology 

model (Salm, 1993; Fischer et al., 2012), both implemented in the Titan2D toolkit (Patra et al., 2005; Pitman et 

al., 2003), and the Pudasaini (2012) two phase model, implemented in the Avaflow software package (Mergili et 

al., 2017). The aim of this section is to summarise the features and key differences between each model that may 160 

affect model comparison. Readers are referred to the source publications for complete model implementation 

details and justification of assumptions. 

The Voellmy-Salm model (Salm, 1993) is a single phase rheological approach similar to shallow-water 

approaches, solved to find the unknown vector 𝐔 = (ℎ, ℎ𝑢, ℎ𝑣)𝑇, where h  is the debris flow depth, and u, v are 

the depth-averaged x- and y- direction velocities. The source term in this model assumes a combination of 165 

coulomb-like basal friction, proportional to the coefficient µ, and a velocity dependent turbulent friction, with 

coefficient ξ (Christen et al., 2010). This combination of friction terms enables the simulation of both high and 

low velocity phases of the debris flow (Christen et al., 2010), but requires calibration of two coefficients (µ, ξ) 

which may vary depending on topography and material properties (Fischer et al., 2012).  

The Pitman and Le (2005) and Pudasaini (2012) approaches approximate the combined motion of granular 170 

material and interstitial fluid, solving for the unknown momentum of both components (fluids in Pitman and Le 

(2005) and phases in Pudasaini (2012)). In the Pitman and Le (2005) approach, the vector 𝐔 =

(ℎ, ℎ𝜑, ℎ𝜑𝑢𝑠, ℎ𝜑𝑣𝑠, ℎ𝑢𝑓 , ℎ𝑣𝑓 , )𝑇, where φ is the solid volume fraction and subscripts s, f indicate the solid and 

fluid components of velocity. The Pitman and Le (2005) model contains several features (comparted to the 

Voellmy-Salm model) that may affect the debris avalanche simulations: 175 

i. To account for the non-hydrostatic pressure distribution in granular materials (Scheidl et al., 2014), the 

earth pressure coefficient Ka/p is used to relate the bed parallel (σl) to bed normal (σn) stresses. The active 

and passive earth pressures are calculated from the internal (ϕi) and basal (ϕb) frictions (Savage and 

Hutter, 1989; Pitman and Le, 2005; Iverson, 1997) depending on whether the flow is expanding 

(accelerating) or contracting (decelerating). 180 

ii. Solid (granular) and fluid (water) interaction is accounted for through a Darcy-like drag model and 

buoyancy effects, which alter energy dissipation within the flow. 

This additional detail requires the specification of the volume fraction φ, and the granular materials internal (ϕi) 

and basal (ϕb) friction coefficients.   

The Pudasaini (2012) model, in a different formulation to the Pitman and Le (2005), also accounts for buoyancy 185 

effects, but also considers the effect of relative motion between fluid and granular phases through a ‘virtual mass’ 

term ∁ . This parameter, and the density ratio 𝛾 =
𝜌𝑓

𝜌𝑠
 are in the vector 𝐔 = (ℎ, ℎ𝜑, (1 − 𝜑)ℎ, ℎ𝜑 (𝑢𝑠 −
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𝛾∁(𝑢𝑓 − 𝑢𝑠)) , ℎ𝜑 (𝑣𝑠 − 𝛾∁(𝑣𝑓 − 𝑣𝑠)) , (1 − 𝜑)ℎ (𝑢𝑓 +
𝜑

1−𝜑
∁(𝑢𝑓 − 𝑢𝑠)) , (1 − 𝜑)ℎ (𝑣𝑓 +

𝜑

1−𝜑
∁(𝑣𝑓 −

𝑣𝑠)) )

𝑇

. While this formulation appears more complex than previous models, this approach still only contains six 

unknown variables (i.e. as in Pitman and Le (2005) approach). The most notable differences in regards to debris 190 

avalanche simulations are: 

i. The virtual mass, ∁, means the solid and fluid components of the debris flow are not assumed to be 

‘interlocked’ (relative velocity between phases of 0), and phase separation (such as at deposition) is 

accounted for, which is a key difference between the Pitman and Le (2005) and Pudasaini (2012) model. 

ii. The source term contains a buoyancy-modified Coulomb term as in Pitman and Le (2005), and a 195 

‘generalised drag’ term incorporating viscous drag effects. The generalised drag accounts for granular 

and fluid contributions to drag, the ratio of which depends on the interpolation parameter 𝒫 with an 

exponent, ℐ , controlling whether the drag term is linear or quadratic (i.e. similar to Voellmy-Salm 

models). At 𝒫=0 and ℐ=1, the Pitman and Le (2005) drag model is recovered. 

The generalised drag term and virtual mass coefficient extends the applicability of the model for all types of 200 

granular-fluid flows, including at extremes (i.e. high or low solid fraction flows), but requires the specification of 

14 parameters. While many of these parameters can be specified from field/material properties (see e.g. Mergili 

et al., 2017), some values (e.g. ℐ, 𝒫, ∁) require calibration.  

From an application point of view (i.e. neglecting differences in numerical solution techniques), these models 

vary in their level of description (‘completeness’) of debris flow physics. It is important to identify that even well 205 

observed and quantified debris flows, such as the one studied here, may have considerable uncertainty in material 

properties, which can expand the unknown (i.e. to be calibrated) parameter space. Therefore, while some models 

may offer more complete descriptions of debris flow physics, there may not be a commensurate improvement in 

prediction compared to less complex models when uncertainty in material properties is considered. Therefore, this 

study analyses the performance of all three models to elicit, under locational uncertainty, the relative 210 

improvements and trade-offs in accuracy considering calibration and parameterisation needs.  

3.2 Initial and boundary conditions 

The DTM, location and height of debris avalanche source material are common inputs to all debris avalanche 

simulators in this study. The DTM input was defined from the 10 m pre-event terrain model, modified to: (a) 

remove the previously discussed misrepresentation of elevation (see Figure 1) along Mangatipua stream, and (b) 215 

remove the debris avalanche source from the terrain model. The spurious elevation was modified by adjusting 

elevations in this region to equal the post-event LiDAR survey elevations. Terrain model elevations in the source 

area were also adjusted to account for debris avalanche material to be simulated, using source depths from Procter 

et al. (2014), which were used as the input for the initial pile of debris avalanche material. 

The parameters used in each debris avalanche model simulation are shown in Table 1. Selection of these values 220 

were derived from previous examples of debris avalanche simulations in literature and the authors’ experience 

(e.g. Mergili et al., 2017; Sosio et al., 2012; Mead and Magill, 2017), and visual comparisons to flow and deposit 

properties (i.e. similar to visual calibration in Mcdougall, 2016). Best-fit values for similar parameters (basal 

friction and solid volume fraction) in Table 1 vary as a result of the differing drag contributions, parameter 
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sensitivity, rheological and constitutive models and the calibration approach. For example, the two-phase models 225 

only apply basal friction to the solid volume fraction, whereas the (single phase) Voellmy-Salm approach 

considers a bulk basal friction of the fluid-solid mixture, and additional viscous stresses in the Pudasaini (2012) 

model appeared to reduce the sensitivity and value of basal friction. Since the aim of this study is to demonstrate 

performance evaluation to delineate hazard zones a-priori, we chose not to undertake further calibration of 

parameters (such as in Charbonnier et al., 2017). This best represents typical conditions where the only data 230 

available are flow and deposit outlines. 

3.3 Simulation results 

Snapshots of the simulated debris flow depth are shown in Figure 2 for each model. Simulated debris flow 

behaviour is generally similar for all three modelling approaches, being an acceleration of material from rest at 

the debris avalanche source to the upper reaches of Mangatipua stream (0 – 40 seconds), where debris flow 235 

material ponded (~40 – 100 seconds, not shown) and gradually travelled downstream to its rest (150 – 300 

seconds). This is in agreement with field and LiDAR based interpretations of the event (Procter et al., 2014), and 

best-fit volume fraction (0.8 – 0.85) parameters of the Pitman and Le (2005) and Pudasaini (2012) support the 

hypothesis of an unsaturated debris flow. Visual, qualitative comparisons of flow and deposit outlines also appear 

to match reasonably well to observations. While the Voellmy-Salm simulation shows less ponding in upper 240 

Mangatipua stream and has a more defined (i.e. steeper) distal deposit compared to the other simulations, other 

differences between simulations appear minor. 

Figure 3 shows the simulated deposit depth (at 300 seconds) for each model. Black lines indicate the observed 

deposit and source outlines from Procter et al. (2014). Accurate prediction of deposition is difficult in these depth-

averaged approaches as none explicitly consider stopping of material (Mergili et al., 2017). The predicted deposit 245 

outlines for all simulations appear (qualitatively) to have similar levels of accuracy as other depth-averaged debris 

flow case studies (e.g. Rickenmann et al., 2006; Iverson and George, 2016; Charbonnier et al., 2017). The most 

notable difference in simulated deposits is between Voellmy-Salm (i.e. a rheological approach, Figure 3a) and the 

two-fluid approaches (Figure 3b,c). The Voellmy-Salm simulated deposit is mostly confined to the Mangatipua 

Stream, whereas the two-fluid approaches show more spreading of the distal deposit and shallow flow in areas of 250 

super elevation.  

4 Model performance assessment 

The previous qualitative comparisons between field observations and simulation results can provide some 

credibility to flow predictions; however, modern, robust hazard assessments require quantitative evaluations of 

model performance to understand the level of uncertainty in model predictions. Previous assessments of flow 255 

simulation accuracy (Mergili et al., 2017; Charbonnier et al., 2017), use various ratios of data points classified as 

either true negative (TN), false negative (FN), true positive (TP) or false positive (FP) to quantify aspects of 

accuracy as a single value (between 0.0 and 1.0). Map cell classification is achieved through a pairwise 

comparison of simulation results and the observed flow outline (solid line in Figure 1c), as illustrated in Figure 4.  

There is a wide range of ratios (see e.g. Sing et al., 2005) to quantify model accuracy, and there is usually no 260 

single ‘best’ metric (Charbonnier et al., 2017). Rather, several metrics are usually analysed together to achieve a 
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comprehensive understanding of performance. However, as demonstrated in Figure 4, the proportion of TN values 

is dependent on size of the model domain, and can have significantly higher counts than other values. Therefore, 

for model evaluation purposes, most metrics that consider TN values in the denominator or numerator are 

unsuitable. Here, as with previous approaches (Charbonnier et al., 2017; Mergili et al., 2017), we calculate positive 265 

predictive value (PPV), sensitivity and critical success index (CSI, Formetta et al., 2016; also called the Jaccard 

similarity coefficient) performance metrics for each flow model. 

Figure 5 shows the calculated performance metrics for each flow simulation at inundation thresholds up to 10 m. 

The inundation threshold value is used to convert simulated flow depths into a binary (i.e. inundated/not 

inundated) classification, and performance curves were calculated using the ROCR package (Sing et al., 2005) in 270 

the R statistical language. The PPV, shown in Figure 5a, is the proportion of correctly simulated (TP) areas within 

the simulated inundation footprint, calculated as 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. As FP values are in the denominator, this measure 

penalises over-prediction of debris flow extents. This metric increases with depth cut-off values, indicating it is 

less likely that simulations are incorrect in areas where deep flow is predicted. Sensitivity (Figure 5b), the 

proportion of correctly simulated (TP) areas within the observed inundation footprint (𝑆𝑒𝑛𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
), penalises 275 

under-prediction of debris flow extents and shows the opposite trend. The CSI (Figure 5c) penalises both under- 

and over- prediction flow extents, calculated as the proportion of correctly simulated (TP) areas within a combined 

simulation and observed inundation footprint (𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
). Values of this metric are much lower than the 

sensitivity or PPV as both under- and over-prediction are penalised. In effect, this metric identifies the proportion 

of the simulated inundation footprint that is correctly simulated. In effect, this means values of CSI less than 0.5 280 

indicate the simulation is more ‘incorrect’ than ‘correct’ (more FP and FN than TP).  

In Table 2, we report performance metrics at a depth cut-off where CSI indicates the simulations are more ‘correct’ 

than ‘incorrect’ (0.5 m). The accuracy metrics reported here are comparable to similar flow simulation studies 

where accuracy metrics are explicitly reported (e.g. Charbonnier et al., 2017; Mergili et al., 2017). However, as 

previously discussed, single-value metrics are useful for model comparison, but can conflate and disguise sources 285 

and the distribution of error. In particular, the spatial distribution of error is not random; rather, it is related to 

topography (e.g. degree of confinement to the channel) and distance from source. To demonstrate this effect, the 

maximum flow depth for each cell (10 m resolution) was mapped to its corresponding PPV (i.e. from Figure 5) 

and is shown in Figure 6. At the centre of the debris flow, where flow depth is high, PPV’s are generally higher 

and the largest area of low PPV’s for all simulations are most distal from the source (where flow depth is low). 290 

This indicates trends of decreasing PPV away from the source and topography affecting PPV, with areas of low 

topographic slope having lower PPV’s. The correlation of flow depth and PPV from topographic and distance 

from source effects result in a degree of spatial autocorrelation in the performance metrics that are un-reported in 

global PPV measures. 

4.1 Locational tolerance in performance assessment 295 

The uncertainties in terrain data, initial conditions, model assumptions and potential observation errors suggest 

that precise quantitative and locational agreement between simulated and observed debris flows are unlikely. 

Some level of error tolerance is therefore necessary in comparisons, and would produce performance metric values 

more aligned with qualitative (i.e. human) assessments (Wealands et al., 2005). The spatial autocorrelation of 
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performance metrics, shown in Figure 6, indicate that locational tolerance may be accounted for by considering 300 

the cell neighbourhood in model comparisons. 

To incorporate the influence of neighbouring cells in defining inundation footprints for model comparison, a fuzzy 

set approach is used. Our approach, based largely on Hagen (2003), expands classification boundaries according 

to a distance decay function. The classification of each cell is converted into a ‘fuzzy’ membership vector, 

calculated as 𝑚𝑎𝑥(𝑐𝑖 ∙ 𝑊) , where ci is the ‘crisp’ category membership vector (e.g. 1,0 for a map with 305 

inundated/not inundated categories) and W is the distance decay function. Here, we use a 2-dimensional Gaussian-

like weighting function: 

𝑾𝒊 = 𝒆

−(𝒊−
𝝀−𝟏

𝟐
)

𝟐

𝟐𝝈𝟐 (2)
 

 

where Wi is weighting of cell i, λ is the neighbourhood width/length (in cells), 𝑖 = 0 … 𝜆 − 1, and the standard 310 

deviation is defined as a function of the neighbourhood size: 

𝝈 = 𝟎. 𝟑 (
𝝀 − 𝟏

𝟐
− 𝟏) + 𝟎. 𝟖 (3) 

This technique creates a ‘fuzzy’ quantity (between 0 and 1) that indicates the proximity of a cell to similar-valued 

cells. 

Figure 7 shows the performance metrics fuzzified through equations 2 and 3. Regardless of fuzzy quantity, the 315 

target performance metric (sensitivity, Figure 7a) is improved by increasing the length scale (λ) to account for 

spatial autocorrelation. The increase in sensitivity is associated with a commensurate decrease in the opposing 

performance value (PPV), shown in Figure 7b. The greatest change in performance occurs between length scales 

of 10 m (i.e. model scale, no fuzzification) and 30 m (i.e. 3 model cells), and the rate of change diminishes with 

length scale, with only marginal improvements in performance beyond 70 m (7 model cells). This indicates the 320 

approximate scale of positional error in the model, demonstrating the length scale parameter could be an 

alternative metric to quantify performance and evaluate models to their desired purpose. For example, a ‘best’ 

model could be chosen from the model with the smallest length scale that exceeds a desired performance level, or 

through optimising the trade-off between sensitivity and PPV beyond a given level. 

The fuzzy quantity decreases the number of false negatives (and decreases false positives) in the result by 325 

expanding the zone of cells considered close to the central cell. The use of the fuzzy quantity to tune performance 

is not reliable at small length scales due to the discrete (cell-based) approximation of the weighting function in 

equation 2 (e.g. a fuzzy quantity less than 0.25 is not possible at 30 m length scale). As a result, the fuzzy quantity 

is fixed at 0.25 (the minimum value of 3-cell length scale), with length scale chosen to achieve desired 

performance levels. 330 

5 Discussion 

5.1 Model suitability, calibration and performance 

In this study, we restricted our use of post-event calibration to a visual calibration within a limited bound of values 

similar to previous literature (Mergili et al., 2017; Sosio et al., 2012). Despite this restriction, the potential 

improvement in model performance appears marginal when compared to more extensive calibration procedures 335 
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such as parameter sweeping (e.g. a CSI of ~0.6 reported in Mergili et al., 2017) or rheological calibration (e.g. 

CSI of ~0.5 reported in Charbonnier et al., 2017). These differences are on a similar scale to the performance 

differences between models in our study. Potentially, this indicates source and input (e.g. terrain) uncertainties 

are a greater limitation on performance than uncertainties introduced by model and parameter choice. The spatial 

autocorrelation in performance values (Figure 6) also supports this assertion. Areas of deeper flow (centre of 340 

channels) are likely to be less affected by terrain uncertainties than those with shallower flows (at edges of 

channels). In contrast, performance of the entire simulation domain would be affected if model choice or poorly 

calibrated parameters were the primary source of error. This is not evident in simulations presented here, and the 

improvement in PPV when accounting for autocorrelation further suggests terrain error, not model error, is 

dominant in real-scale mass flow simulations.  345 

5.2 Implications for hazard zonation 

An advantage of the previously described fuzzy performance evaluation approach is the identification of 

simulation uncertainty at various length scales. This presents an avenue to generate hazard zonations and maps 

that incorporate areal uncertainty. For example, Figure 8 shows debris avalanche hazard outlines generated at 

model scale (10 m) and a correlation function (see Equation 2) length scale of 70 m (see caption for details on 350 

delineation of the zones). The false negative rate (i.e. 1 - model sensitivity) decreases from 0.07 to 0.01 between 

model and fuzzified estimates, a crucial reduction from a life safety perspective. The technique also identifies 

trade-offs in minimising the false negative rate, such as an increase in area and decrease in positive predictive 

value from 0.52 to 0.46.  

The hazard zonation approach (and fuzzification technique in general) demonstrated here can address key issues 355 

in the generation of volcanic hazard zonations by: 

• quantifying and communicating model-based uncertainty, including the trade-off between hazard zone 

area, positive predictive value and sensitivity, and 

• identifying appropriate scales at which to display simulated hazard data. For example, if the chosen 

length scale is 70 m, an appropriate hazard map scale is approximately 1:70,000 (obtained by multiplying 360 

length scale by 1,000 as in Tobler, 1987). 

This method can also reduce the complexity of estimating uncertainty and making decisions using simulated data 

to a problem that only requires judicious choice of a length scale value. However, the lack of a currently defined 

(mathematical) basis to parameterise length scale means that a careful consideration of hazard exposure and the 

acceptability of risk to exposed elements is required. This may differ between users; we therefore believe this 365 

hazard zonation process is currently best suited for use by informed stakeholders as a decision support tool, rather 

than an automated process to generate publically disseminated hazard zones. 

6 Conclusion 

The accuracy of three depth-averaged numerical models were assessed using the 2012 Te Maari debris avalanche 

as a benchmark. Results of the simulations show a similar qualitative accuracy of all three models to other 370 

published studies. Quantitative performance metrics of inundation area show high model sensitivity (i.e. a low 
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proportion of false positives) with moderate values of positive predictive values and the critical success index, 

which are similar in scale to other published performance assessment studies. 

Our investigation also demonstrates the positional dependence of model performance, specifically the positive 

predictive value, where model performance (i.e. accuracy) is highest in areas of deep flow or where topography 375 

is steep with confined channels. Using this observation, a fuzzy set approach is used to incorporate locational 

tolerance (the covariance of location and positive predictive value) into the simulation performance assessment. 

We found increasing the length scale (λ) of the correlation function can increase performance metrics for a 

commensurate decrease in the opposing performance metric and resolution. For example, an increase in sensitivity 

will result in a decrease in positive predictive value. 380 

The identification of positional uncertainty in hazard simulations has positive implications for hazard zonation 

and mapping. The process demonstrated here can improve desired performance metrics (e.g. sensitivity), account 

for uncertainty (by increasing hazard zone area) and identify trade-offs to opposing metrics (e.g. positive 

predictive value). This can be a valuable tool for informed stakeholders with well-quantified exposures and risk 

tolerances. The process is, however, less suited to publicly disseminated hazard information due to the lack of a 385 

mathematically optimum solution for length scale. An optimum solution may be identifiable, and progress in 

hazard zonation methodologies would benefit from deeper investigation of the trade-offs between area, length 

scale and model performance to fully leverage benefits of the fuzzy performance evaluation approach. 
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Tables 560 

Voellmy-Salm Pitman and Le (2005) Pudasaini (2012) 

Parameter Value Parameter Value Parameter Value 

Basal friction coefficient, µ 0.15 Basal friction angle, ϕb 31° Basal friction angle ϕb 21° 

Turbulent friction coefficient, ξ 1091 Internal friction angle, ϕi 36° Internal friction angle, ϕi 36° 

 Solid volume fraction, α 0.80 Solid volume fraction, α 0.83 

 Virtual mass, ∁ 0.5 

Solid material density, ρs 2,500 

Fluid material density, ρf 1,000 

Fluid-solid drag 

contributions, 𝒫 

0.5 

Fluid-solid drag exponent, ℐ linear 

All other parameters as in Mergili et al. 

(2017), Table 2 

Table 1. Debris flow simulation parameter settings for all models. 

Simulation 

Positive 

predictive 

value (PPV) Sensitivity 

Critical 

success index 

(CSI) 

Voellmy-Salm 0.62 0.93 0.59 

Pitman and Le (2005) 0.53 0.93 0.51 

Pudasaini (2012) 0.51 0.98 0.51 

Table 2. Pixel-pair performance assessment results for all flow simulations at a depth cut-off of 0.5 m.  
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Figures 

 565 

Figure 1. Te Maari debris avalanche case study region (a) pre-eruption, (b) post-eruption, and (c) debris avalanche 

deposit depth and outline. Blue rectangle in (c) shows area of spurious elevations from source Digital Terrain Model. 
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Figure 2. Snapshots of simulated debris flow height for each flow model at 0, 40, 150 and 300 seconds after initiation. 

Aerial basemap sourced from LINZ Waikato Aerial Photos (2012-2013).   570 
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Figure 3. Simulated deposit depth for (a) Voellmy-Salm, (b) Pitman and Le (2005), and (c) Pudasaini (2012) models 

compared with the observed deposit and source outline (black). Aerial basemap sourced from LINZ Waikato Aerial 

Photos (2012-2013).  
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Figure 4. Illustration of confusion matrix classification for simulation performance assessment. Dashed black outline 575 
represents the observed flow outline; solid red outline represents the simulated flow outline. Areas outside of both 

simulated and observed flow outlines are classed as True Negatives (TN, dotted region); areas outside simulated outline 

but inside observed outline are classed as False Negatives (FN); areas inside both simulated and observed outline are 

classed as True Positives (TP); areas inside simulated outline but outside observed outline are classed as False Positives 

(FP).  580 
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Figure 5. Flow outline performance with depth for Voellmy-Salm (solid line), Pudasaini (2012) (dashed line) and Pitman 

and Le (2005) (dotted line) flow models. Performance metrics are: (a) positive predictive value (PPV), (b) Sensitivity, 

and (c) Critical success index (CSI).  
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 585 

Figure 6. Positive predictive values for (a) Voellmy-Salm, (b) Pitman and Le (2005), and (c) Pudasaini (2012) 

simulations. The observed flow and source are outlined in black. Aerial basemap sourced from LINZ Waikato Aerial 

Photos (2012-2013).  
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Figure 7. Fuzzy performance metrics at 3 cell (30 m), 5 cell (50 m), 7 cell (70 m), 9 cell (90 m) and 11 cell (110 m) length 590 
scales (λ) and fuzzy quantities of 0.1 (blue), 0.25 (black) and 0.5 (red) for (a) model sensitivity and (b) positive predictive 

value for Voellmy-Salm (solid line), Pudasaini (2012) (dashed line) and Pitman and Le (2005) (dotted line) flow models.   
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Figure 8. Hazard zones generated from simulations at (left) 10 m model scale, and (right) using fuzzy length scale of 70 

m. Hazard outline for model scale is generated where flow heights exceed 0.5 m. Hazard outline for 70 m scale is 595 
generated where fuzzy quantity exceeds 0.25. Hazard zones are overlain on New Zealand Topo50 map from Land 

Information New Zealand (LINZ), blue gridlines are 1 km apart, oriented North-South and East-West. 


