Variations and risk of extreme precipitation events with sub-daily data: a case study in the <u>GangjingGanjiaing</u> river basin

Guangxu-Liu^{1*}, Aicun Xiang¹, Zhiwei Wan¹, Yang Zhou², Jie Wu¹, Yuandong Wang¹, Sichen Lin¹

¹School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China

5 ²Department of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China

Correspondence to:Guangxu Liu (lg760411@126.com)

Abstract Climate warming increases flooding riskflood risk and the intensity of extreme precipitation. Studying extreme precipitation patterns and changes Studying changes and trends of extreme precipitation events is keyvital in term ofto reducing flood riskflood risk-and disaster loss. This paper investigates the thresholds, changes and time scales offor extreme precipitation using sub-daily records infrom meteorological stations in the Ganjiang rRiver basin. We use the Ggamma distribution and chooseselect the L-moment method to estimate the parameters α and β . Results show that (1) events of 1-4 runs occurred most commonly and events of 1-10 runs contributed the most to total precipitation recipitation events with very long duration occur rarely and have minimal contribution to the total precipitation; (2) Extreme precipitation has the

- characteristics of high intensity and occasional occurrence in summerExtreme precipitations have the characteristics of occasional but sudden occurrence in summer and spring and tThe intensity and the occasional probability of extreme precipitation will increase in spring in the future in stations like Yifeng, Zhangshu and Ningdu; (3) Risksflood risk shows
- signs of increasing as elevation increaseswere positively correlated with elevation in the northern plainlowland and Jitai Basin in the mid_stream arearegion, while risks in the southern hillymountainous arearegion decreasing with elevationwerenegatively correlated with elevation_increasing. These findings shouldwill be helpful infacilitate -adjusting regional land use-
- 20 planning and for emergency preparedness, including risk management and <u>disaster reliefassistance operations in flood-prone</u> areas in high-risk areas in the future.

Key words: Extreme precipitation, gamma distribution, L-moment method, the Ganjiang River

1 Introduction

25

10

The hydrological cycle is expected to intensify with global warming, which likely increases the intensity of extreme precipitation events and the risk of flooding_(Tabari, 2020). Extreme weather events such as storms have occurred frequently around the world in recent years, which often cause disastrous floods and landslides, resulting in great casualties and economic losses. Zhengzhou city in China experienced a rare and continuous heavy precipitation process from July 18th to July 21st in 2021. Extreme precipitation intensity reached 201.9 mm in an hour and cumulative precipitation reached 449 mm, which caused 292 deaths and 47 missing, 65.5 billion yuan lost and 44,209.73 hectares of crops affected (Encyclopedia,

- 30 2021). Eight days before the Zhengzhou storm, parts of Rhineland-Palatinate and North Rhine-Westphalia in Germany were also encountered heavy precipitation of 148 litres of rain per square meter within 48 hours, causing severe flash flooding. As of July 23, 2021, the death toll from the flood in western Germany reached 180 Ppeople and about 150 people arewere missing. The reconstruction funds reached billions of euros. Changes in extreme precipitation are among the most impact-relevant consequences of climate warming (Pfahl et al., 2017). IPCC reported that the globally averaged combined land and
- 35 ocean surface temperature had-showed a warming trend of 0.85 °C [0.65 °C to 1.06°C] over the period 1880 to 2012 and continued emission of greenhouse gases will cause further warming in the future_(Pachauri et al., 2014). The continuous warming breaks the original energy balance of the climate system, causing abnormalities in the atmospheric circulation and water circulation system, which in turn causes an increase in extreme precipitation events and discharges. Theoretical models predict that extreme precipitation intensity could exponentially increase with warming at a rate determined by the Clausius–
- 40 Clapeyron (C–C) relationship (Trenberth, 1999; Trenberth et al., 2003). An increase in the frequency of extreme precipitation events has increased at <u>the high</u> and mid-latitudes of the land as a likely consequence of <u>the climate warming (Rodrigo 2010)</u>(Rodrigo, 2010). A rate of 6% to 10% increases per degree of warming has been observed in annual maximum daily precipitation over land (Asadieh et al., 2015; Westra et al., 2013)(<u>Asadieh & Krakauer, 2015; Westra et al., 2013</u>). Climate models project shows that extreme precipitation will continue to increase in the 21st century at approximately
- 45 the same rate because of continued warming (Fischer et al., 2013; O'gorman et al., 2009; Pendergrass and Hartmann, 2014; Sillmann et al., 2013)(Fischer et al., 2013; O'Gorman & Schneider, 2009; Pendergrass & Hartmann, 2014; Sillmann et al., 2013). The future trend of extreme precipitation in China is consistent with that of the world. Xiao et al. finound that analysis from gauge records for 1971–2013 from 721 weather stations showed that the maximum hourly summer rainfall intensity has increased by about 11.2% on average in China which will exacerbate the risks of flash floods in rapidly urbanizing areas
- 50 (Xiao et al., 2016). ZengCao and Lu finound that the biggest increase of summer precipitation in China from 1961 to 2010were found experienced the biggest increase in the middle and lower reaches of the Yangtze River (Zeng and Lu, 2015), which was caused mainly by the positive contribution of extreme precipitation (Shi et al., 2014). Gao and Xie analyseanalyzed the response of extreme precipitation to warming in winter in China and found that extreme precipitation would increase by 22.6% for every 1°C increase in winter temperature. This increase is significantly higher than the global
- 55 average, indicating that extreme precipitation is more sensitive to warming in winter in China (Gao and Xie, 2014). Wu et al. (2014) analyseanalyzed the changes of extreme climate events under the background of future warming and pointed out that compared with 1986-2005, the total annual precipitation (PROPTOT), the five-day maximum precipitation (Rx5day), the heavy precipitation (R95p) would increase in China (Wu et al., 2015). The CMIP5 dataelimate model also shows a trend of increasing extreme precipitation events in the future in various regions of China (Zhao et al., 2019). These studies show the
- 60 importance of studying extreme precipitation changes and trends under climate warming. An eExtreme precipitation event can be defined in manya variety of ways. Pendergrass thinks that extreme events can be considered if more precipitation falls more than those which are often appreciated (Pendergrass, 2018). The Eexpert Team

on Climate Change Detection Monitoring Indices (ETCCDMI) established several indicators such as CWD10, CWD20, R1 day (annual), R10 mm and R20 mm in undertaking regional analyse analysis for understanding climate extremes and trends

65

(Easterling et al., 2003). Soro et al. grouped the extreme events into two broad categories. One is the yearly extreme events, based on heavy daily rainfall. The other is an event-driven extremes characterized by severe floods (Soro et al., 2016). A common definition of extreme precipitation is defined by an event passes a threshold of exceedance or a certain threshold. There are different criteria to define the this-threshold, including a fixed absolute value (Brunetti, Maugeri et al. 2004; López-Moreno and Beniston 2009), standard deviation based on statistics and percentile-based thresholds (Fernández-

- 70 Montes, Seubert et al. 2014; Merino, Fernández - Vaguero et al. 2016). Practically, percentile-based thresholds such as 95th or 99th percentile of the cumulative frequency distribution of daily precipitation with only wet days (or wet hours) is widely used in previous studies many researches (Marelle, Myhre et al. 2018; Merino, Fernández - González et al. 2018; Pendergrass 2018; Myhre, Alterskjær et al. 2019). Pendergrass points out that how we defined extreme precipitation affects the conclusions we draw. The reason why researchers focus on extreme precipitation is because extreme precipitation is one
- 75 of the most frequent weather factors resulting in floods and landslides which are hazards responsible for damage to buildings and infrastructures, serious social disruption, and loss of human life worldwide each year (Soro et al., 2016). The choice of extreme definition depends on the intended use in terms of reducing flood risk flood risk and disaster loss.

In specific research, researchers used either precipitation observations or simulated data from climate models to study the temporal and spatial variation of the scale and frequency of extreme precipitation. For example, Gao et al. examined the

- 80 space-time variations of extreme precipitation over monsoon regions in China and assessed the time-varying influences of the climate drivers using Bayesian dynamic linear regression. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation (Gao et al., 2017). Ren et al. used the 0.5°×0.5° daily precipitation data from 1961 to 2011 in the National Meteorological Information Centrecenter and the daily precipitation observations from the meteorological stations in China to investigate changes of extreme precipitation events in South China. The selected
- 85 index includes the maximum five-day precipitation (RX5day), extreme precipitation (R95), days with precipitation ≥ 20 mm (R20mm), continuous precipitation days (CWD) and intensity of daily precipitation (SDII), which are all recommended by the World Meteorological Organization. They finound that RX5day, R95, R20mm and SDII have an inter-annual tendency rate of 0.17 mm a⁻¹, 1.14 mm a⁻¹, 0.02 d a⁻¹ and 0.01 mm d⁻¹ a⁻¹, respectively. The proportions of grid points with an increasing trend of RX5day, SDII, and R95 reach 60.85%, 75.32%, and 75.74% respectively (Ren, Zhang et al. 2014)(Ren
- 90
- et al., 2014). Pfahl et al. decompose the forced response of daily regional scale extreme precipitation in climate-model simulations into thermodynamic and dynamic contributions using a robust physical diagnostic to study the regional pattern of projected changes in extreme precipitation. Pfahl et al. finound that thermodynamics alone would lead to a spatially homogeneous fractional increase in most regions throughout the globe. The dynamic contribution amplifies the increases in the Asian monsoon region but weakens them across the Mediterranean, South Africa and Australia. 95 They think that the dynamic contribution is a key to reducing uncertainties in future projections of regional extreme

precipitation_(Pfahl et al., 2017). Mukherjee et al. studied the gridded observations and simulations from the Ccoupled model inter-comparison project 5 (CMIP5) and Cclimate of the 20th century plus (C20C+) detection and attribution (D_&_A) project. They -and fifounnd that the frequency and intensity of extreme precipitation events have increased in India during the last few decades and anthropogenic warming has made a significant contribution to the rise ofin the frequency_of-

100 extreme precipitation(Mukherjee et al., 2018). Talchabhadel et al. analyseanalyzed the spatial distribution of monthly and annual precipitation and <u>1</u>-1-day extreme precipitation and their trends with the records from 291 stations across Nepal for the period of 1966–2015. The result shows that extreme precipitation events <u>has</u> increased in western mountainous regions in the recent decades (Talchabhadel et al., 2018). Bao et al. <u>analyseanalyze</u>d daily extreme precipitation events in several Australian cities and found <u>that</u> future daily extremes <u>are</u> increasing at rates faster than those inferred from observed scaling

105 (Bao et al., 2017).

These researchesstudies use daily precipitation to analyseanalyze extreme events. However, events with scales shorter or longer than one day also pose flood riskflood risk. Merino et al. explained that daily databases would bring uncertainty in analysing flood riskflood risk with two examples—(Merino et al., 2018). One example is that two extreme precipitation events with the same amount of precipitation amount but the firstone event eaused-resulted in a flash flood because it had

- 110 <u>due to its</u> two hours' duration while the <u>second_other</u> one had no hydrologic floods because it <u>occurred_lasted for</u> over 12 consecutive hours. Another example is that a precipitation event below the extreme precipitation threshold posed flood risk because it began on one day and ended the next and <u>the</u> total amount was high but not recorded. It is key to <u>analyseanalyze</u> precipitation event periods, that is, the time scales of precipitation. Besides, extreme <u>precipitationsprecipitation</u> poses a threat to human society because they may cause floods leading to loss of life and property_(Tabari and Willems, 2018). <u>Regional</u>
- 115 differences often indicate Wwhether extreme precipitation can cause floods ising. regional differences. For example, 50mm daily precipitation of 50mm -may have a weaklow impact on human society in plain areasflat or humid areas, but. However, Iit maycan -causelead to flash floods and even landslides and debris flows in mountainous-areas or arid areas_(Tabari and Willems, 2018). Time distribution patterns and return levels of extreme precipitation should be analyseanalyzed in flood risk research locally (Wu et al., 2018). Furthermore, engineering constructions in disaster mitigation and prevention usually
- 120 follows a standard design flood of a certain return period. With climate warming, the intensity of extreme precipitation has increased significantly. Projects constructed in accordance with the past flood control standards have the risk of increased losses. According to the annual report of road flooding statistics, the annual direct economic loss of road infrastructure caused by flood damage has reached 10 to 30 billion yuan in China in the past 10 years_(Li, Zhang et al. 2014)(Li et al., 2014). Analysing the changing trend of extreme precipitation and proposing a design standard for future flooding
- 125 preparedness is of great significance to improving the disaster prevention and mitigation system (Xu et al., 2014; Chen, 2015)(Xu, Ma et al. 2014; Chen 2015).

Collectively, this analysis focusses <u>on</u> the objectives as below: (1) to investigate the thresholds of extreme precipitation using sub-daily records in meteorological stations in the Ganjiang river basin; (2) to identify the changes and time scales of

extreme precipitation using probability distribution and M-K test; (3) to explore the flood risk caused by extreme 130 precipitation with different time scales and return periods in a case study.

2 Study area

The study area comprises the Ganjiang basin which is located with <u>a</u> longitude spanning from $113.74\underline{\text{E}}-116.63\underline{\text{E}}$ and latitude spanning from $24.57\underline{\text{N}}-29.07\underline{\text{N}}$ in the southeast of China (Figure 1). The drainage area is about 81,244 km². The Ganjiang River is the <u>majormain stream-inflows</u> which <u>is</u>-originates from the south and flows into the Poyang Lake in the north. The

eExtreme precipitation events in this watershed depends heavily on the wind-facingward mountains, the amount of precipitation amount and the timing of precipitation timing. The topography is characterized with mountains mainly distributed in the south and alluvial plains in the north. The Jiulian mountain is the southwesternsouth-western boundary. The Wuyi Mountain forms the east border. The elevation is uplifting gradually from the north to the southeasternsouth-eastern end, which results in a higher precipitation in the mountainous northwesternnorth-western area and a lower rainfall zone in the central basin and the-lower reach in the north (Hu et al., 2013). Apart from theIn addition to moderating effects due to topographical changes in topographychanges, quasinear-stationary front, monsoon and typhoons systems also control precipitation patterns. The average annual precipitation ranges between 1400 and 1600 mm (Li et al., 2017). Due to the long existence of quasinear-stationary fronts over the basin, over 70% of the annual precipitation occurs during the period from April to June. Monsoon and typhoon rainstorms frequently occur between July and September. This area is characterized by a highly variable hydro-climate and flood-prone area in China. Fluvial floodplain deposition investigations indicates that the

Ganjiang basin haves experienced 18 big-floods during the past 130 years (Liu et al., 2018).

3 Data and methods

3.1 Precipitation Data

The precipitation data are collected from 12 national basic meteorological observation-stations in Figure 1 supplied by the
National Meteorological information Centrecenter in China. These stations scatter from latitude 24.87N to 28. 60N and longitude 113.95E to 116.02E (Table 1). The highest station is Jinggangshan (Jgs) with an elevation of 843 meters above the sea level (m a.s.l) and the lowest one is Zhangshu (Zs) with an elevation of 30 m a.s.l. Four stations, Yifeng (Yf), Zs, Lianhua (Lh) and Longnan (Ln) began observing in 1951. Ningdu (Nd)) and the others all began inat the end of 1950s. All these stations have been well maintained and managed since the 1950s. The original data include precipitation records from 8:00 to 20:00 during the days, precipitation from 20:00 to 08:00 the following day during the nights, and daily precipitation from 20:00 to 20:00 the following day. The data precipitation records from 8:00 to 20:00 during days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following days or precipitation from 20:00 to 08:00 the following day during nights and sliced from the original data between 1959-1-1 and 2016-12-31

with the purpose toof keeping the data consistency. The 12-H intervals were composed of the periods from 8:00 to 20:00 and

- 160 20:00 to 8:00 the next day. The data precision is 0.1 mm. ____ The suppliers assessed the data quality with several assay controls and detection limits. The erroneous or likely-erroneous data were all manually verified and corrected. Particular attention has been paid to the problems such as problems changing points arising from inhomogeneities of data series, which were validated and corrected according to the methods supposed by Wang in 2008 (Wang, 2008) station by station. The change points were detected by integrating a Box-Cox power transformation procedure into a common trend two-phase regression
- 165 model-_based test (the transPMFred algorithm). The detected change points were adjusted with a quantile matching (QM) algorithm (Wang et al., 2010).

Then a precipitation event is determined by rainfall above the threshold of 0.1mm in 12 hours (12-H) from 8:00 to 20:00 in the day or 20:00 to 8:00 in the night in this paper. Considering the high seasonal variations of precipitationsprecipitation in the study area, the investigation was performed season by season. Therefore, the data was divided into four seasons, where

170 winter data refers to the records in December, January, and February; spring, March, April, and May; summer, June, July, and August; and autumn, September, October, and November. Seasonal and annual average precipitation was calculated for each station and listed in Table 2, which shows that the highest precipitation in most stations is found in spring, followed by summer, autumn and winter. The stations located in the windward mountains have more annual precipitation, while the stations located in the plain areas have less precipitation. Jgx in the west has the highest annual precipitation.

175 **3.2 Definition of extreme precipitation**

The definition of extreme precipitation should be chosen with care and articulate it clearly (Pendergrass, 2018). <u>Previous</u> <u>studiesMany researches</u> have discussed the definition of what constitutes an extreme event (Saidi et al., 2015). These definitions are grouped into two categories (Easterling et al., 2000).

(1) eExtreme events basedare defined according to on intensity such as yearly or seasonal maximaum, CWD10, CWD20, R1

180 day (annual), R10 mm and R20 mm indices from the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI) (Soro et al., 2016). Yearly or seasonal maxima are one of the commonly used extreme value sampling. It generates annual maximum series whose sample size is identical with the number of years. Yet this definition does not include all extreme values because any second highest would be dropped out (Saidi et al., 2015).

(2) Events over a threshold (EOT), referred to as the extreme frequency (Haylock and Nicholls, 2000), is the other definition.
 EOT is characterized by physical expected <u>impact hazard</u>s, such as floods or hurricanes. Pendergrass investigated thresholds such as the 99th percentile of the cumulative frequency distribution, the 95th percentile the and the 90th percentile and found that the way to define extreme precipitation would affect the conclusions (Pendergrass, 2018).

The main-impact of extreme precipitation on human<u>beingss</u> is to cause flood disasters while flood disastersch often occur several times in some years and are missing in other years. Therefore, a threshold of the 99th percentile is selected to define

190 extreme precipitation in this paper, which is calculated based on all rainy events from 1959 to 2016. According to this

threshold, <u>0-4 extreme precipitation events can be found in a year</u>, <u>extreme precipitation can occur up to four times a year</u>, which is <u>close to the number of floods observed in Chinaconsistent with the flood observation records.precipitation</u>

3.3 Method to analyseanalyze extreme precipitation events

The goal of the return period analysis is to estimate the value of the event magnitude corresponding to a given probability.

- 195 How to accurately estimate the return period of extreme precipitation is an information science problem To have a true return period of extreme precipitation is an information problem _(El Adlouni and Ouarda, 2010). It could be precisely determined by a frequency distribution if there were sufficiently long records of precipitation. In this study, there are only 598 years of rainfall records, which forces us to use a limited amount of observationssamples to estimate events with a chance of 1 in 100 years or even more, i.e., exceedance probabilities of one percent or more. The addressed problem is solved in practice by
- estimating probability distributions, which can estimate parameters of a population based on samples. Such distributions involving precipitation research mainly includes: Gamma, Generalized Extreme Value and Pearson type 3 distributions. Gamma distribution is one of the most popular models for describing precipitation (Papalexiou et al., 2013), which could provide the best fit for rainfall distribution (Sen and Eljadid, 1999).
- Gamma distribution belongs to the exponential family (Papalexiou et al., 2013). It is used to fit positive data and <u>it</u> is a good representation of rainfall distribution. Assuming that the precipitation in a certain period is x, the probability density function that satisfies the Gamma distribution is

$$G(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$
(1)

Where α is the shape parameter, β is the scale parameter, and x is the precipitation records. (α , β) > 0 when x > 0 and (x; α , β) =0 when $x \le 0$. $\Gamma(\alpha)$ is the Gamma function, and its probability function is:

210
$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$$
 (2).

The L-moment method (LM), along with the moment and maximum likelihood methods, was often applied to samples taken from simulated gamma distribution (Kliche et al., 2008). LM are linear combinations of order statistics (L-statistics) analogous to conventional moments and can be used to summarize the shape of a probability distribution (Hosking, 1990).
LM of a probability distribution of random variable X areis defined in terms of a linear combination of probability weighted moments (PWM) by Hosking (Hosking, 1990). LM have manysome advantages: they are less sensitive to outliers in the data, approximate their asymptotic normal distribution more closely, are nearly unbiased for all combinations of sample sizes and populations, and can characterize <u>a</u> wider range of probability distributions than conventional moments. As <u>the</u> literature of Vivekanandan (Vivekanandan, 2015), LM areis used to sample the precipitation for determining parameters *a* and *β* in this paper. The sSample L-moments can be computed as the-population L-moments of the sample. Assume that the-variable *X* follows a certain distribution function, and *n is* sample values of the observed variable *x*. The *n*-values are sorted in

ascending order and $X_{j:n}$ is used to represent the *j*-th value, i.e. $X_{l:n} \leq \dots \text{precipitation} \leq X_{j:n} \leq \dots \text{precipitation} \leq X_{n:n}$. The sample L-moments of the first 2 orders in a finite sample of *n* observations are calculated as follows (Wang, 1996):

$$l_{1} = b_{0}$$

$$l_{2} = 2b_{1} - b_{0}$$

$$b_{0} = n^{-1} \sum_{j=1}^{n} x_{j:n}$$

$$b_{1} = n^{-1} \sum_{j=2}^{n} \frac{j-1}{n-1} x_{j:n}$$
(42)

The L-mean, L-variation of the sample series are defined as follows:

225
$$\begin{array}{c} l_1 = b_0 \\ t_2 = l_2 / l_1 \end{array}$$
(53)

Then the shape parameter α is estimated with l_1 and l_2 with <u>the</u> equation below by iteration using recursion_(Kliche et al., 2008):

$$\frac{1}{\sqrt{\pi}} \frac{\Gamma(\alpha_L + 3/2)}{\Gamma(\alpha_L + 2)} = \frac{l_2}{l_1}$$
(64)

where α_L is the LM estimate of α .

230 Once the shape parameter is determined, the estimator for the scale parameter is calculated from:

$$\beta_{\rm L} = \frac{\mathbf{a}_{\rm L} + 1}{I_1} \tag{75}$$

The Python programs are designedused to estimate the gamma distribution function from of the precipitation events with these equations, as well as to estimate extreme precipitation thresholds.

3.4 Method for spatio-temporal changes

- 235 <u>The Mann-Kendall non-parametric test (M-K test) is a statistical test widely used to detect monotonic trends in climatological data series. Two advantages of the M-K test were summed up by Soro et al. (Soro et al., 2016).</u>:
 - Distribution-free. It does not need to assume any distribution function of the values.
 - Low sensitivity to abrupt breaks in homogeneous time series. It does not need to censor missing data.

Precipitations Precipitation areis intermittent and highly scale-dependent (Sun and Stein, 2015). Therefore, The M-K test is

240 used to <u>analyse analyze</u> the trends of extreme precipitation in seasons.

If X_i and X_j are the time series precipitation observations in chronological order, then the M-K Statistics *S*, *V*(*S*) and standardized test statistics *Z* are calculated with <u>the</u> equation as follows (Ahmad et al., 2015):

$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sig(X_{j} - X_{i})$$

$$sgn(X_{j} - X_{i}) = \begin{cases} +1 & if(X_{j} - X_{i}) > 0\\ 0 & iif(X_{j} - X_{i}) = 0\\ -1 & if(X_{j} - X_{i}) < 0 \end{cases}$$

$$VAR(S) = \frac{1}{18} \left[n(n-1)(2n+5) - \sum_{p=1}^{q} t_{p}(t_{p} - 1)(2t_{p} + 5) \right]$$

$$Z = \begin{cases} \frac{S-1}{\sqrt{VAR(S)}} & if S > 0\\ 0 & if S > 0\\ \frac{S+1}{\sqrt{VAR(S)}} & if S < 0 \end{cases}$$
(86)

- where *n* is the length of time series, t_p is the number of data points for *p*th values, and *q* is the number of tied groups in the data set; and *VAR(S)* is the variance of *S*. When *VAR(S)* V(S) > 0, it indicates an upward trend in the precipitation series. When VAR(S)V(S) < 0, a negative trend. *Z* value is to detect whether the trend is significant. If $|Z| > Z_{(1-0.5 \times \alpha)}$, there exists a statistically significant trend in the series. $Z_{(1-0.5 \times \alpha)}$ is the critical value for *p* value of 0.05 from the standard normal table.
- Spatial distribution of precipitation hazards is analyse<u>analyze</u>d with<u>using</u> a GIS method. Extreme precipitation is the main disaster-causing factor of floods in the study area. The extreme precipitation thresholds of different probabilities are used to evaluate the flood risk. The number of events above the thresholds are calculated <u>-inat</u> each meteorological station. The inverse distance weighted method (IDW) is <u>then usedemployed</u> to interpolate and zone the <u>events estimated from the Gamma distributionnumber</u> after <u>validated validation</u> with observations, with the purpose to show the spatial characteristics of the flood risk.

255 4 Results and discussion

4.1 Frequency and contributions of precipitation events

Runs of 12-H precipitation in each station were calculated based on the standard of an event-with records of precipitation >0.1mm. Runs are defined as consecutive precipitation events for time series analysis in this paper. 1-run refers to a precipitation event recorded in 12 hours. 2-run refers to an event with precipitation recorded in two consecutive 12-hour

- 260 intervals, and so on. If no precipitation is recorded at an interval greater than 12 hours, precipitation is defined as discontinuous and divided into two runs. This definition helps-and interval ≤12 hours, with the purpose to keep independent
 - 9

for time series analysis. keep the calculated events independent. We further calculated their frequency and contribution to the total precipitation in all the stations and plotted them in Figure 2. Figure 2 showed that the frequency of precipitation events decreased with runs increasing. 1-run continuous precipitation event occurred most frequently, accounting for 39.0% of the

- 265 total events; followed by the 2-run, with a frequency of 21.7%. The Ffrequency of events ≤4 runs accounted for as high as 83.5% of the total events. The Ffrequency of events ≤10 runs reached 98.6%. Events greater than 10 runs only accounted for 1.4% of the total. This indicated that the study area was mainly characterized with short duration precipitation events. Events of 1 to 4 runs occurred most commonly (frequency> 10%). Events greater than 10 runs occurred rarelyrarely occurred. The longest consecutive event was the 28-run, which only occurred once at Jgs station in June 1994.
- 270 Figure 2 also shows that the contribution of runs of precipitation events to the total precipitation rose slowly first and then fell sharply. Contributions gradually increased from 9.5% to 16.3% from 1-run events to the 3-run. 3-run precipitation events contributed the most to the total precipitation. Contribution of events >14 runs decreased to less than 1%; Cumulative contributions of events with 1-10run counted for 92.6% while events greater than 10 runs counted for only 7.4%. This indicates that continuous precipitation events that contributed the most to total precipitation events that contributed the most to total precipitation were events of 1-<u>510</u> runs-(Their-
- 275 contribution rates were all > 10%). The precipitation events with a longer duration had lower frequency and contributed fewerless to the total precipitation.

Frequency and contribution to total precipitation of all the runs in the study area were not proportional according to Figure 2. Frequency ies of 1-run and 2-run events wasere higher than their contribution rates. Contribution rates of events >3 runs were all greater than their frequency. The Ffrequency of the 1-run precipitation event (Its frequency was 39% and contribution

was 9.5%) was 2.61 times bigger than that of the 3-run (Its frequency was 14.9% and contribution was 16.3%), but the contribution rate of the former was only 58% of the latter events. This indicated that precipitation events <u>of</u> fewer than 3 runs occurred most often, but the total amount was small. 3-run precipitation events contributed the most precipitation <u>but</u> with lower frequency and would be key events for flood monitoring.

Figure 3 reportedshows the cumulative probability distribution and fitted gamma curves in stations. Consecutive events with

fewer than 10 runs showed an abrupt rainfall rise, up to more than 250mm in all the stations. Rainfall of runs longer than 10 roses slowly, with increasing rainfall less than 30mm in most stations. This result showed the similar findings to the analysis aboutin Figure 2, that is, precipitation events with very long duration occurred rarelyzarely occurred and had minimal contribution to the total. Therefore, 1-to-10 runs were selected as experimental data for estimating flood risk in the follow-up analysis.

290

4.2 Gamma fits of precipitation events

4.2.1 Estimated distribution of precipitation events

As presented in Section 3.3, the gamma function was used to fit observed precipitation data first with the purposea view to

providinggive a smooth changes and long-terime projection uniformly rigorous and systematic approach. Table 2 Table 3 295 showeds the mean values of α and β of the gamma curves in the four seasons. Related research shows that when \mp the shape parameter α was ≤ 1 -in all the cases, the gamma distribution has a asymmetric J-shaped probability density function (Loucks et al., 2005), which indicating indicates that events with small amounts of rainfall account for a substantial large proportion, while events with large amounts of rainfall account for very small proportion (Rodrigo, 2010). This case is common for the four seasons in Table 3, especially in summer and autumn when α is ≤ 0.1 , indicating that these two seasons are 300 characterized with occasional and sudden extreme heavy precipitation in all stations. The β parameter characterizes the scale of the gamma distribution. When β increase, the distribution curve squeezes leftward and upward, indicating high intensity of precipitation (Rodrigo, 2010). The scale parameter β has a greater temporal variability. βB -in summer is the bigger biggest in summer, followed by that in spring, autumn and winter. The higherst values of β in spring are from Nd and Ln. These two stations are located in the mountainous upstream areas in the upstream where northerly cold air meets with warm air from 305 the ocean in spring, often resulting in frontal and cyclone precipitation. The high erest values of β in summer appear in Nc, Zs and Yof, which are located in the alluvial plains where the precipitationsprecipitation areis often caused by typhoons heading west and southwest in summer (Yin, Kim et al. 2007) (Yin et al., 2007). The higherst values of β in autumn are in Sc, Yof, Nd and Ln, indicating that fronts, typhoons and other air activities are frequent in autumn and the main precipitation occurs in the hilly area of the upper Ganjiang river.

310 4.2.2 <u>TChanging trends of the gamma parameters</u>

Temporal trends of the shape parameter α and the scale parameter β were further analyseanalyzed withusing the Mann-Kendall. Table 3 Table 4 summarizeds the results, which indicated that precipitation would occur more occasionally but with higher intensity in spring, winter and autumn. The two parameters in most stations are experiencing more intensive changes in spring. α in spring shows a significant downward trend in Yf, Yc, Jgs, Sc, Nc, Zs and Nd with the absolute value of Z bigger than 2.32 while β exhibits an upward trend in Yf, Lh, Zs, Nd and Ln. The trend of α areis tested downward in Jgs, Yof and Ln in autumn while the trend of β areis upward in Ja, Zs and Yof. β in Ja, Jgs, Sc, Gx, Yof and Nd-show an upward trend in winters. No obvious trends are detected in summer. Studies have showed that decreases ofing the shape parameter α will lead to decreases offreduce the threshold for the the extreme precipitation threshold, which in turn increases the risk of the risk of storm floodsing (Rodrigo, 2010). The down-trend α along with upward-trend scale parameter β in Yf, Zs, Nd means that the intensity and occasional probability of concentrated precipitation events in these stations will increase in the future, which will thereby increase the risk of storm floods in spring. Similar cases were also found in Yof in autumn and Jgs in winter, which indicated that extreme precipitation would become more intensive with a warmer and warmer climate. The particular case is the station of Jgs, with α decreasing in all the seasons except summer. Jgs is located ion the mountain

325 characteristics in the future.

withat an elevation of 843m. We may infer this mountainous station will present increasingly obvious maritime precipitation

4.3 Risk of extreme precipitation

4.3.1 Estimation of thresholds for extreme precipitation

- 330 <u>As defined in Section 3.2, the The-99% percentiles of the 12-H precipitation data and their gamma distribution estimates obtained from the gamma distribution were first calculated as thresholds extreme precipitation with 12-H precipitation data first. thresholds. Table 4Table 5 shows the mean values infor each station. The estimated threshold values show higher variability from winters to summers in Table 4Table 5. The maximum threshold values occur in summer, followed by spring, autumn and winter. The study area is mainly controlled by monsoons and typhoons in summer, which result in the most</u>
- 335 concentrated heavy precipitation_(Shan et al., 2001) (Shan, Zhang et al. 2001). In spring, the ridge of the subtropical high system moved to the south of 20°N latitude. The warm and humid air from the south along the subtropical high ridge intersects with_cold air from the north, forming fronts and cyclones activities which bring a wide range of cloudy and rainy weather. Autumn and winter are often affected by the winter monsoon, which is characterized with cold air and low precipitation (Zhang and Song, 2018)(Zhang and Song 2018).
- What stands out in Table 4Table 5 is that the estimated gamma values are 0.3-0.8% lower than those from the observed on average, with the smallest in spring (0.3%) and the largest in autumn (0.8%). This result is similar to that from in the literature of Rodrigo (Rodrigo 2010). A slightly lower threshold of extreme precipitation threshold for extreme precipitation will increase flood risks, which allows risk managers to improve risk management before storm floods occur. Therebyfore, the lower values from the Gamma function would help reduce risks. The 99th percentiles estimates are maintained as the threshold values to obtain the risk analysis.
- threshold values to obtain the risk analysis. The estimated thresholds of 12 hours to 120 hours' precipitationsprecipitation events (1 to 10 runs of 12-H events) were also calculated and plotted. The Kolmogorov–Smirnov test (KS) was used to test the goodness of the fits at the 95% confidence level. KS values range from 0.06 to 0.12, which show that Gamma distribution had a good agreement with the selected thresholds from the observations. Forty-eight fits (4 seasons × 12 stations) were calculated eventually and Figure 4
- 350 shows an example in Ganxian StationGx. Its horizontal axis represents scenarios or probability while the vertical axis represents thresholds of extreme precipitation events in millimeters (mm). The lowest curve is the fitted from 1-run observed precipitation. Curves from the 2-run to the 10-run are higher and higher. Figure 4 shows that there are bigger intervals between curves in summer and winter, indicating that runs of precipitation events in summer and winter have a greater impact on the extreme event thresholds. Compared with 5 to 10 runs, the intervals are even larbigger between 1-4
- runs, indicating that the precipitation threshold changes greatly when the events happen with $\frac{1}{2}$ when the probability is less than 0.5 (1/2), which shows precipitation thresholds increase

quickly. The slopes gradually declined when the probability is less than $0.2_{(1/5)}$. It shows the precipitation threshold increases slowly as the probability decreases. Fits in other stations show similar trends.

With the help of these gamma fits, thresholds under any given probability <u>couldcan</u> be estimated. The orange hollow points in Figure 4 shows estimates when the <u>recurrencercturn</u> period is set to be one in 2 years (its probability is 0.5), one in 5 years (0.2), one in 10 years (0.1), one in 20 years (0.05) and one in 50 years (0.02) respectively, which will be used for flood risk analysis later in the following section.

4.3.2 Extreme events and floods

The estimated thresholds in Section 4.3.1 could help to analyse analyze extreme precipitation events and their risks. In order

- to identify what kinds of extreme events would cause floods, we selected GanxianGx, a meteorological station, and Hanlinqiao, because of the available data, a hydrological observation station to do a comparative analysis, due to the available hydrological data. Figure 5 shows their location. Ganxian StationGx (E115°, N25.87), -located at the lower reach of the Gongshui River (a branch of the Ganjiang River in its upper reach), is a national meteorological observatory. It is one of the four national basic stations in the upper reach of the Ganjiang River. The records in GanxianGx began in 1951 and
- 370 they_are relatively complete with good data consistency. Hanlinqiao is a regional representative hydrological station at $E115^{\circ}12'_{,,,}and_N26^{\circ}03'$. It was established in February 1953 and is located in Laoheshi Village, Jibu Town, Ganxian County, downstream of the Pingjiang River, whose catchment area is 2689 km². It is 17 kilometres away from the entrance to The Gongshui River, The two stations are close, and the representative area covers almost the same region. The extreme events supposed to be with risk to causecausing floods in GanxianGx are selected according to the following
- 375 standards and <u>Table 5 Table 6</u> shows <u>the number of selected events</u>:

1) Events above thresholds estimated by the Gamma curves of 1-10 runs in Section 4.3.1;

2) Events under the scenarios of probability at 0.5, 0.2, 0.1, 0.05 and 0.02, representing return periods of 2, 5, 10, 20 and 50 years respectively.

3) The time intervals between two events are greater than one run (12 hours).

4) Events between 2009-2014, which is the period of the <u>collectedavailable</u> hydrological data <u>at Hanlingiao station</u>.
 The floods events in Hanlingiao is selected according to the standards below and <u>Table 6Table 7</u> shows the result:

1) Events above the threshold, which is the 99% percentiles of the daily flow records

2) The time interval between two events greater than one day, that is, the estimated convergence time from the farthest point to the outlet in the catchment.

385 Analysis from Table 5<u>Tables 6</u> and Table 6<u>7</u> shows that the predicted extreme precipitation events have the similar trends as the flood records. Both of them have more events in spring than those in summer, followed by autumn and winter. Table 5<u>Table 6</u> shows the predicted events of all the runs in spring account for more than 40 percent under the scenarios of probability at 0.5, 0.2, 0.1, and about 30 percent under scenarios of probability at 0.05 and 0.02. Events in summer account for more than 30 percent under all the scenarios. Those in autumn and winter only account for 20-percent% or so from 2009

- 390 to 2014. Flood records in Hanlinqiao find 12 events in the 6 years. Seven events arewere in spring and 5 in summer. No events are found in autumn and winter. Compared with flood records, thresholds in Scenario 1 (probability at 0.5) isare a little low, which will overestimate extreme precipitation events. Scenarios 3, 4 and 5 (probabilities at 0.1, 0.05 and 0.02) have high thresholds which will underlow estimate the events. The predicted extreme precipitation events from Scenario 2 (probability at 0.2) are very close to the recorded flood events.
- 395 Of all the runs under Scenario 2, <u>the</u> predicted events from runs more than 7 are lower than the recorded floods. It is a complex process from <u>precipitationsprecipitation</u> to floods, involving several disaster-generating environments such as land covers, topography, soil, temperature, shape of the catchment area, etc. It is reasonable that the predicted extreme precipitation events are bigger than or equal to flood events in flood risk assessment. Therefore, **R**<u>r</u>un<u>s</u> 1, 2, 3, 4, 5 and 6 are more suitable tofor predicting extreme events. According to the flood events at Hanlinqiao Station, the predicted events from
- 400 Run 1 (one 12-H precipitation) under Scenario 1 are almost double of the floods records flood records. Events from Runs 2,3,4,5 and 6 are all more or very close to the floods records flood records. The analysis indicates that events predicted with the gamma distribution from precipitation of 12-72 hours are all very helpful for flood estimates, while those from more than 72 hours, which will low underestimate the flooding risk, have little use in flood prediction. There are some cases thatwhere small precipitation (small than the given threshold) was observed at the beginning, which was not considered to the flood observed at the beginning.
- 405 eausecause floods. However, a new record of precipitation that iswas just above the threshold in the following periods eventually led to flooding because of rainfall accumulated in the previous period. If time intervals of precipitation are too long, this flood event will be missed because of the high threshold. Run 1 (12-H precipitation) will be the best time intervals for predicting extreme events in flood riskflood risk, which will avoid such missed cases.

4.3.3 Spatial analysis of flood risk flood risk caused by extreme events

410 The paper further analyseanalyzed the overall flood riskflood risk caused by extreme precipitation events in the study area. The method wasis listed below according to the analysis above.

1) The observed precipitation was 12-H precipitation from the 12 meteorological stations. The 99th percentile of the cumulative frequency distribution was used for selectingselected as thresholds in each season.

2) A gamma function was used to fit the observed data. Thresholds were calculated at a given probability of 0.2 from the
 gamma curves. Events bigger than the threshold were considered as the extreme precipitation events and calculated for risk map.

3) The number of events in all the station was further interpolated with an inverse distance method₁. The results were mapped and stretched from low to high_a according to the number of the events.

Maps of flood riskflood risk map in spring, summer, autumn and summer with the methods above are followed in Figure 6 to

420 show spatial analysis of flood riskflood risk caused by extreme events. Figure 6 shows that the high-risk <u>centres centers</u> of extreme precipitation are distributed on the east side of the Luoxiao Mountains in the west in spring, moving south to the upper reaches of the Ganjiang River, which is the north side of the Nanling Ranges in summer. Two new high-risk <u>centres</u>

<u>centers</u> are formed in the middle reaches of <u>the</u> Ganjiang River, near the west side of Wuyi Mountain in autumn and tend to move eastward and northward in winter. The low-risk areas are distributed in the Jitai Basin, which is in the middle reaches

- 425 of the Ganjiang River and the upper Ganzhou Basin in spring, moving north to the lower reaches to the Poyanghu Lake in summer, then moving slightly to the south in autumn. In winter, a new low-risk centrecenter is formed in the northwest, and move to the northwest and the northwest near the Luoxiao Mountain in the west. In general, the extreme precipitation has a high risk of flooding in the upper reaches of the Ganjiang River, the Jitai Basin in the middle reaches and the northern plains. Risk tends to increase with elevationRisks are positively correlated with elevation in the northern river-lake plain area and
- the Jitai Basin in the midstream area while risks in the southern hilly area areis the opposite, negatively correlated shows
 signs of decreasing with elevation as elevation rises. This risk result is similar to the conclusions of the literature of Yin et al. (YIN, TIAN et al. 2018)

The main weather systems that cause extreme precipitation in the study area include low- and medium-level shear lines, lowlevel jets, typhoon with low pressure, etc_-(Shan, Zhang et al. 2001)(Shan et al., 2001). Monsoons in spring and summer from the tropical ocean cyclones run southwest in the study area, are uplifted with micro-topography and result in high-risk eentres centers in the west and south mountain regions. The winter monsoons in autumn and winter from deep inland move southeastwardsouth-eastward and form frontal precipitation when they encounter stranded warm air currents, causing highrisk centres centers in the eastern and southern parts inof the study area.

4.4 Discussion

440 4.4.1 Time scales of precipitation

Precipitation events, especially <u>occasional extreme precipitation</u>high intensity precipitation events, are key to precipitation is highly variable in time (Beck et al., 2015) and intermittency is a core characteristic (Trenberth et al., 2017). This paper investigated the time scales of precipitation with 12-H data and found <u>3-run precipitation events contributed the most</u> precipitation but with lower frequency the frequency of precipitation events has <u>a significant negative correlation</u> with the duration of precipitation, which showed that___the study area was mainly characterized with short-_duration precipitation events, and events greater than 10 runs occurred very rarely. Hence, short duration precipitation events would be a key hazard factor for extreme precipitation forecasting, flood and disaster risk management analysis. Section 4.2 further analyzed the trend of short duration precipitation and found that it would occur more occasionally but with higher intensity in future. Other associated studies have vielded similar results. Researches shows that global warming, urban built up areas and nearby-

450 suburbs, condensate and cloud base elevations in rural and wilderness areas may lead to a decrease in the frequency of shortduration precipitation events. Cheng et al. investigate<u>d</u> the precipitation Intensity-Duration-Frequency (IDF) in a changing climate and fin<u>oun</u>d that climate-induced changes on heavy rainfall events are non-uniform. The shorter precipitation events have-been changed more in the past decades, while longer events have not changed substantially (Cheng and Aghakouchak, 2014). Hosseinzadehtalaei et al. finound the frequency of sub-daily extreme precipitation events of 50- and 100-year return

- 455 periods will be tripled under the high-end RCP8.5 scenario in the future climate change, which will increased the risk of the existing water infrastructure systemsflooding (Hosseinzadehtalaei et al., 2020). Similar cases are also found in China. Ren act al. analyseanalyzed the data from 2,300 stations across China. Their research shows that the frequency of trace precipitation (precipitation with a daily rainfall of less than 0.1 mm) has shown a more significant downward trend than the frequency of light rain events in the eastern monsoon region. The frequency of light precipitation in the eastern monsoon
- 460 region has shown a very obvious downward trend_<u>(REN, LIU et al. 2016)</u>(Ren et al., 2016). The Ganjiang river basin is located in the south of the east Asian monsoon region. Changes in short-duration precipitation events caused by climate warming will cause <u>a</u>higher risk of flooding, which <u>areis</u> certainly the key indicator for further study on climate change, floods and other extreme weather disasters.

4.4.2 Extreme precipitation and Flood riskflood risk

- 465 In fact, most precipitation events bring us necessary beneficial freshwater resources. Only <u>a</u> few events, especially extreme precipitation events, cause disasters and losses. <u>YetHowever</u>, what extreme events will result in floodsing is not very clear. Researchers <u>mustshould</u> consider how extreme precipitation is defined and <u>carefully</u> choose the data for their <u>analysis of</u> extreme precipitation<u>analysis with care</u>_(Pendergrass, 2018). We compared the extreme precipitation events estimated with from 1-10 runs of 12-H data with the flood records <u>inat the</u> hydrological observation station<u>We and</u> found that the
- 470 number of events from 1, 2, 3 and 4 runs-of-12-H data were relatively-close to that<u>the number</u> of flood records. <u>Tand</u> the number of diagnosed extreme events decreases as <u>precipitation</u> the accumulatedruns of 12-H precipitation time-increases, i.e., precipitation of more than 5 runs would low estimate the flood risk. Similar case has also been are also-found in the research-of<u>literature of</u> Merino et al. (Merino, Fernández González et al. 2018), who selected 29 floods-in rivers_between 2000 and 2014 in Spain and compared them with their extreme precipitation events calculated with hourly and daily-from-hourly
- 475 precipitation data with those from daily accumulated precipitation<u>in order</u> to find their capability <u>to</u>identifying major flood events. The result show<u>s</u> that no extreme precipitation events are identified in eight of the flood events using definition based on daily precipitation, but events based on sub-daily data permit much more accurate identification of events posing hydrologic risks (Merino et al., 2018). Obviously, it would be better to use <u>short-duration data</u>, for example, sub-daily precipitation, <u>-forin</u>-extremely events analysis to avoid underestimation <u>of</u> potentially dramatic consequences they caused,
- 480 likesuch as -flood-risk-ing. In practice, daily precipitation serices are commonly used to analyseanalyze extreme precipitation events with their sufficient quantities and fewlittle homogeneity problems. The reason might be-because_that high-_time resolution precipitation data are not provided or recorded in most regions. Therefore, Rremotely sensed data from satellites or rain radar would be suitable substitute forused to replace high spatial resolution-sub-daily precipitation-analysis in follow-up research (Müller and Kaspar, 2014).

5 Conclusion 485

490

In this study, we investigated the frequency and contributions of precipitation events using sub-daily records in meteorological stations in the Ganijang river basin: identified their changes and time scales using gamma distribution and M-K test; and explored the definition, thresholds of extreme precipitation events and theirflooding risk-causing floods. We further spatially mapped flood risk across the entire study domainarea and analyseanalyzed the distribution characteristics. Based on the analyse presented in this study, the following main conclusions can be drawn:

- (1) For frequency and contributions, it was found events of 1 to 4 runs occurred most commonly and events of 1-10 runs contributed the most to total precipitation. The frequency of events ≤ 4 runs accounted for as high as 83.5% of the total events. Events greater than 10 runs only accounted for 1.4% of the total. The cumulative contributions of events with 1-10 run counted for 92.6% while events greater than 10 runs counted for only 7.4%. 3-run precipitation events contributed the most
- 495 precipitation but with lower frequency and would be key events for flood monitoring. Precipitation events with very longduration occurred rarely and had minimal contribution to the total precipitation. The study area was mainly characterized with short duration precipitation events. 3 run (36 hours) precipitation events contributed the most precipitation but with lower frequency.
 - (2) The gamma parameters analysis shows that extreme precipitation has the characteristics of high intensity and occasional
- 500 occurrence in summer in all stations. In summer, the shape parameter α is <0.1 and the scale parameter β is the highest. The highest β values indicate that stations in mountainous areas and the transition areas from mountains to plains, such as Ningdu, Longnan Nanchang, Zhangshu and Yongfeng, are characterized with high-intensity precipitation in spring. Suichuan, Yongfeng, Ningdu and Longnan often have high-intensity precipitation in autumn. Temporal trends analysis of α and β shows the intensity and occasional probability of precipitation events will increase in spring in the future in Yifeng,
- 505 Zhangshu and Ningdu, which will in turn increase the risk of storm floods. This study has identified by Gamma parametersanalysis that extreme precipitations have the characteristics of occasional and sudden occurrence in summer and spring. The scale parameters B presents a trend of summer>spring>autumn>winter. The highest B values in spring were identified in mountainous stations such as Ningdu and Longnan. Stations of Nanchang, Zhangshu, and Yongfeng which are in the transition areas from mountains to plains. In autumn, the high values of β were found in Suichuan, Yongfeng, Ningdu and
- 510 Longnan. Temporal trends analysis of α and β shows the intensity and occasional probability of precipitation events willincrease in spring in the future in Yifeng, Zhangshu and Ningdu, which will in turn increase the risk of storm floods. (3) RiskFflood risks are positively shows signs of increasing correlated withas elevation increases in the northern river-lake
 - plain area and the Jitai Basin in the midstream area, while the risks in the southern hilly area wereis the opposite, negativelycorrelated decreasing with elevation. Elevation and weather systems such as medium-to-low--level shear lines, low-level jet, and the southward route of typhoons are the key disaster-pregnant factors for flood risk management.
- 515

Author contribution: Liu Guangxu and Wan Zhiwei designed the structures and prepared the manuscript. Xiang Aicun and Lin Sichen collected and processed data. Zhou Yang, Wu Jie and Wang Yuandong revised and improved the manuscript.

Competing interests: The authors declare that they have no conflicts of interest.

Acknowledgements: We would like to thank the funding from the Social science Planning project of Jiangxi Province

520 (19GL30), Humanities and Social Science Research Planning Project for Universities of Jiangxi Province (No. GL20116), Science and Technology Project of Jiangxi–Department of Education (No. GL20116) and the Natural Science Foundation of China (NSFC) (No. 42161019).

Reference

Ahmad, I., Tang, D., Wang, T., Wang, M., and Wagan, B.: Precipitation trends over time using Mann-Kendall and spearman's rho tests in swat river basin, Pakistan, Advances in Meteorology, 2015.

Asadieh, B., Krakauer, N., and Y.: Global trends in extreme precipitation: climate models versus observations, Hydrology & Earth System Sciences, 2015.

Bao, J., Sherwood, S. C., Alexander, L. V., and Evans, J. P.: Future increases in extreme precipitation exceed observed scaling rates, Nature Climate Change, 7, 128-132, 2017.

- 530 Beck, F., Bárdossy, A., Seidel, J., Müller, T., Sanchis, E. F., and Hauser, A.: Statistical analysis of sub-daily precipitation extremes in Singapore, Journal of Hydrology: Regional Studies, 3, 337-358, 2015. Chen, M.: Research on the Prevention and Control of Urban Rainstorm and Flood Disasters Based on the Construction of Standardization System (in Chinese), Opportunities for Standardization Reform and Development-The 12th China Standardization Forum, Hanzhou2015.
- 535 Cheng, L. and AghaKouchak, A.: Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate, Scientific reports, 4, 1-6, 2014.
 Easterling, D. R., Alexander, L. V., Mokssit, A., and Detemmerman, V.: CCI/CLIVAR workshop to develop priority climate indices, Bulletin of the American Meteorological Society, 84, 1403-1407, 2003.
 Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O.: Climate extremes:
- observations, modeling, and impacts, Science, 289, 2068-2074, 2000.
 El Adlouni, S. and Ouarda, T.: Frequency analysis of extreme rainfall events, Rainfall: State of the science, 191, 171-188, 2010.

Fischer, E. M., Beyerle, U., and Knutti, R.: Robust spatially aggregated projections of climate extremes, Nature Climate Change, 3, 1033-1038, 2013.

- Gao, T. and Xie, L. a.: Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years (in Chinese), Advances in Earth Science, 29, 577, 2014.
 Gao, T., Wang, H. J., and Zhou, T.: Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China, Atmospheric research, 197, 379-389, 2017.
 Haylock, M. and Nicholls, N.: Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–
- 1998, International Journal of Climatology: A Journal of the Royal Meteorological Society, 20, 1533-1541, 2000.
 Hosking, J. R.: L moments: Analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society: Series B (Methodological), 52, 105-124, 1990.
 Hosseinzadehtalaei, P., Tabari, H., and Willems, P.: Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe, Journal of hydrology, 590, 125249, 2020.
- 555 Hu, Q., Yang, D., Wang, Y., and Yang, H.: Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin, Science China Technological Sciences, 56, 853-865, 2013. Kliche, D. V., Smith, P. L., and Johnson, R. W.: L-moment estimators as applied to gamma drop size distributions, Journal of applied meteorology and climatology, 47, 3117-3130, 2008. Li, J., Zhang, L., Tian, W., Guo, P., and Dong, Q.: Risk-based Study of Flood Frequency Standard for Highway Subgrade (in
- 560 Chinese), China Journal of Highway and Transport, 27, 32-38, 2014.

Li, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., and Yang, K.: Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin, Atmospheric research, 183, 212-223, 2017.

LIU, X., FAN, S., WANG, J., and XU, C.: Analysis on Meteorological Characteristics of a Strong Storm Disasters in the Eastern Foot of Longmen Mountain, Journal of Catastrophology, 33, 102-110, 10.3969/j.issn.1000-811X.2018.01.019, 2018.

565 Loucks, D. P., Van Beek, E., Stedinger, J. R., Dijkman, J. P. M., and Villars, M. T.: Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications, Springer International Publishing, 2005. Müller, M. and Kaspar, M.: Event-adjusted evaluation of weather and climate extremes, Natural Hazards and Earth System Sciences, 14, 473-483, 2014.

Merino, A., Fernández - González, S., García - Ortega, E., Sánchez, J., López, L., and Gascón, E.: Temporal continuity of

570 extreme precipitation events using sub - daily precipitation: application to floods in the Ebro basin, northeastern Spain, International Journal of Climatology, 38, 1877-1892, 2018.
 Mukherjee, S., Aadhar, S., Stone, D., and Mishra, V.: Increase in extreme precipitation events under anthropogenic warming in India, Weather and climate extremes, 20, 45-53, 2018.

O'Gorman, Paul, A., Schneider, and Tapio: The physical basis for increases in precipitation extremes in simulations of 21stcentury climate change, Proceedings of the National Academy of Sciences of the United States of America, 2009.

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., and Dasgupta, P.: Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 151 pp.2014.

Papalexiou, S., Koutsoyiannis, D., and Makropoulos, C.: How extreme is extreme? An assessment of daily rainfall distribution tails, Hydrology and Earth System Sciences, 17, 851-862, 2013.

Pendergrass, A. G.: What precipitation is extreme?, Science, 360, 1072-1073, 2018. Pendergrass, A. G. and Hartmann, D. L.: Changes in the Distribution of Rain Frequency and Intensity in Response to Global Warming*, Journal of Climate, 27, 8372-8383, 2014.

Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Understanding the regional pattern of projected future changes in extreme precipitation, Nature Climate Change, 7, 423-427, 2017.

REN, G., LIU, Y., SUN, X., ZHANG, L., Yuyu, R., Ying, X., Hua, Z., Yunjian, Z., Tao, W., and Yanjun, G.: Spatial and temporal patterns of precipitation variability over mainland China: III : causes for recent trends, Advances in Water Science, 27, 327-348, 2016.

Ren, Z., Zhang, M., Wang, S., Zhu, X., Dong, L., and Qiang, F.: Changes in precipitation extremes in South China during 1961-2011 (in Chinese), Acta Geographica Sinica, 69, 640-649, 2014.

Rodrigo, F.: Changes in the probability of extreme daily precipitation observed from 1951 to 2002 in the Iberian Peninsula, International Journal of Climatology, 30, 1512-1525, 2010.

Saidi, H., Ciampittiello, M., Dresti, C., and Ghiglieri, G.: Assessment of trends in extreme precipitation events: a case study in Piedmont (North-West Italy), Water Resources Management, 29, 63-80, 2015.

595 ŞEN, Z. and Eljadid, A. G.: Rainfall distribution function for Libya and rainfall prediction, Hydrological sciences journal, 44, 665-680, 1999.

Shan, J., Zhang, Y., and Zhang, Y.: Features analysis about weather system to five river basins of Jiangxi province and important precipitation procedure, JIANGXI METEOROLOGICAL SCIENCE & TECHNOLOGY, 14-18, 10.3969/j.issn.1007-9033.2001.01.003, 2001.

- ShI, P., Kong, F., and Fang, J.: Spatio-temporal Patterns of China Decadal Storm Rainfall (in Chinese), Scientia Geographica Sinica, 34, 1281-1290, https://doi.org/10.13249/j.cnki.sgs.2014.011.1281, 2014.
 Sillmann, J., Kharin, V. V., and Zhang, X. B.: Climate extremes indices in the CMIP5 multi-model ensemble: Part 1, Journal of Geophysical Research Atmospheres, 118, 1-18, 2013.
 Soro, G. E., Noufé, D., Goula Bi, T. A., and Shorohou, B.: Trend analysis for extreme rainfall at sub-daily and daily
- timescales in Côte d'Ivoire, Climate, 4, 37-52, 2016.
 Sun X and Stoin M L : A stachastic space time model for intermittent precipitation ecourrenees. The Appella of /

Sun, Y. and Stein, M. L.: A stochastic space-time model for intermittent precipitation occurrences, The Annals of Applied Statistics, 9, 2110-2132, 2015.

Tabari, H.: Climate change impact on flood and extreme precipitation increases with water availability, Scientific reports, 10, 1-10, 2020.

- Tabari, H. and Willems, P.: Lagged influence of Atlantic and Pacific climate patterns on European extreme precipitation, Scientific reports, 8, 1-10, 2018.
 Talchabhadel, R., Karki, R., Thapa, B. R., Maharjan, M., and Parajuli, B.: Spatio - temporal variability of extreme precipitation in Nepal, International Journal of Climatology, 38, 4296-4313, 2018.
 Trenberth, K. E.: Conceptual framework for changes of extremes of the hydrological cycle with climate change, in: Weather
- and climate extremes, Springer, 327-339, 1999.
 Trenberth, K. E., Zhang, Y., and Gehne, M.: Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data, Journal of Hydrometeorology, 18, 1393-1412, 2017.
 Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, Bulletin of the American Meteorological Society, 84, 1205-1218, 2003.
- 620 Vivekanandan, N.: Flood frequency analysis using method of moments and L-moments of probability distributions, Cogent engineering, 2, 1018704, 2015.

Wang, Q.: Direct sample estimators of L moments, Water resources research, 32, 3617-3619, 1996.

Wang, X. L.: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test, Journal of applied meteorology and climatology, 47, 2423-2444, 2008.

- Wang, X. L., Chen, H., Wu, Y., Feng, Y., and Pu, Q.: New techniques for the detection and adjustment of shifts in daily precipitation data series, Journal of applied meteorology and climatology, 49, 2416-2436, 2010. Westra, S., Alexander, L. V., and Zwiers, F. W.: Global Increasing Trends in Annual Maximum Daily Precipitation, Journal of Climate, 26, 7834, 2013.
- Wu, J., Zhou, B., and Xu, Y.: RESPONSE OF PRECIPITATION AND ITS EXTREMES OVER CHINA TO WARMING: 630 CMIP5 SIMULATION AND PROJECTION (in Chinese), Chinese Journal of Geophysics, 58, 3048-3060, <u>d o i : 1 0</u>.
- 6 0 3 8 / c j g 2 0 1 5 0 9 0 3, 2015.
 Wu, X., Guo, S., Yin, J., Yang, G., Zhong, Y., and Liu, D.: On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels, Journal of hydrology, 562, 305-317, 2018.
- Xiao, C., Wu, P., Zhang, L., and Song, L.: Robust increase in extreme summer rainfall intensity during the past four decades observed in China, Scientific reports, 6, 1-9, 2016.
- Xu, K., Ma, C., Lian, J., and Bin, L.: Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment, PLoS One, 9, e109341, 2014.
- Yin, J., Kim, M., Feng, K., and Chen, J.: Comparative Analysis of Three Typhoons Hitting Jiangxi on Routes and Mechanisms of Heavy Rainfall, METEOROLOGY AND DISASTER REDUCTION RESEARCH, 30, 18-22, 10.3969/j.issn.1007-9033.2007.02.004, 2007.
- YIN, Z. e., TIAN, P., and CHI, X.: Multi-scenario-based risk analysis of precipitation extremes in China during the past 60 years (1951-2011) (in Chinese), Acta Geographica Sinica, 73, 405r-413, 2018.
 Zeng, Y. and Lu, E.: Changes of Summer Rainfall and Extreme Precipitation During 1961-2010 in China (in Chinese), Climate Change Research, 11, 79-85, doi: 10.3969/j.issn.1673-1719.2015.02.001-2015.
- Chang, D. and Song, W.: Northern Hemisphere Atmospheric Circulation Characteristics in 2017/2018 Winter and Its Impact on Weather and Climate in China, Meteorological Monthly, 44, 969-976, 10.7519/j.issn.1000-0526.2018.07.013, 2018.
 Zhao, Y., Xiao, D., and Bai, H.: Projection and Application for Future Climate in China by CMIP5 Climate Model (in Chinese), Meteorological Science and Technology, 47, 608-621, 2019.

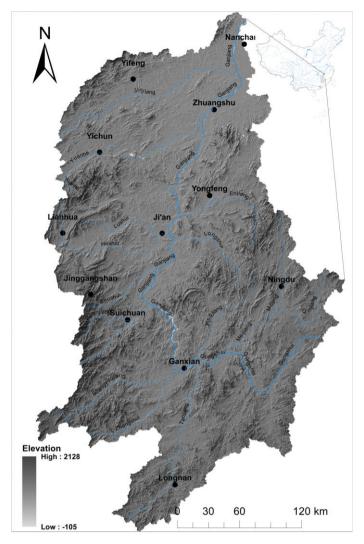


Figure 1 Study area and location of the_meteorological stations

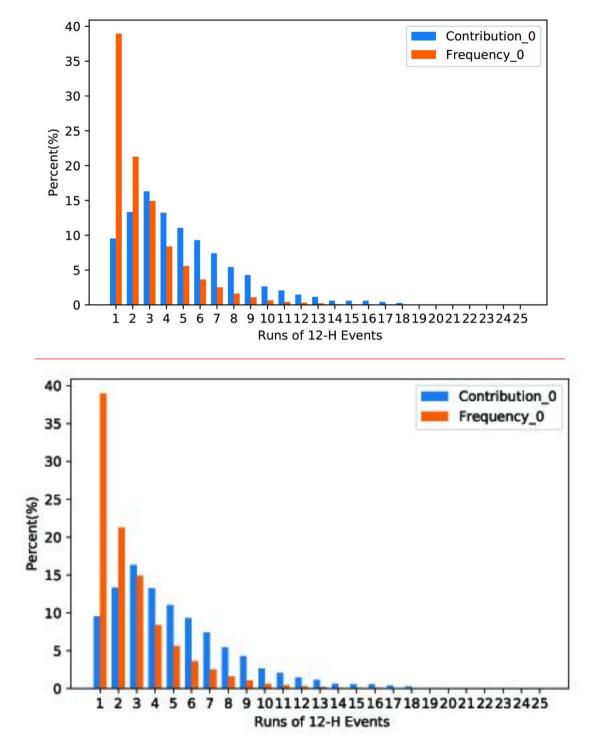
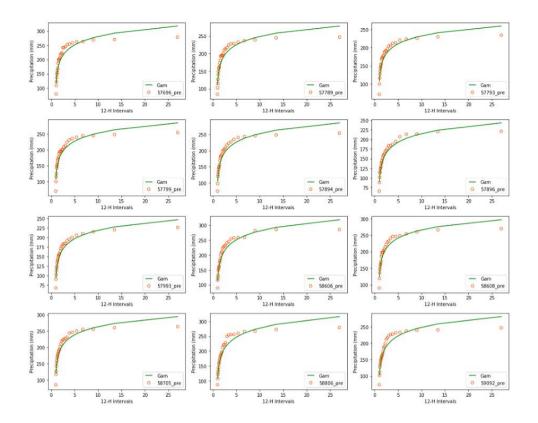



Figure 2 Frequency and contribution of runs of 12-H events

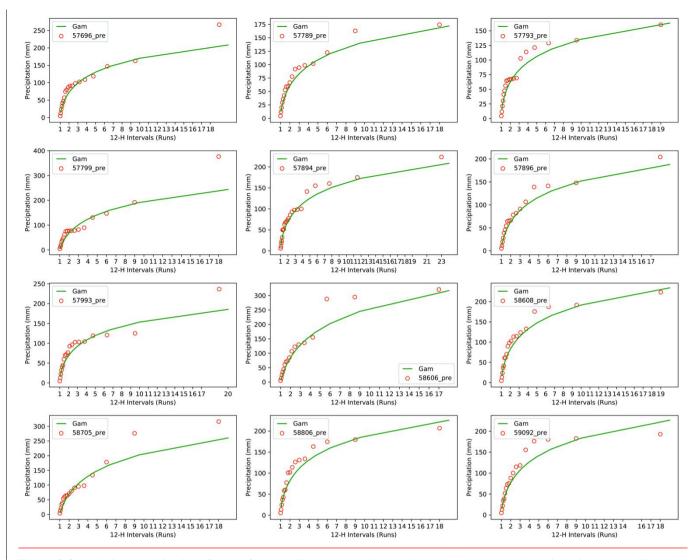


Figure 3 Cumulative precipitation of runs of events. The orange hollow points <u>areshow</u> observed precipitation events. The green lines <u>arerepresent</u> their gamma estimates

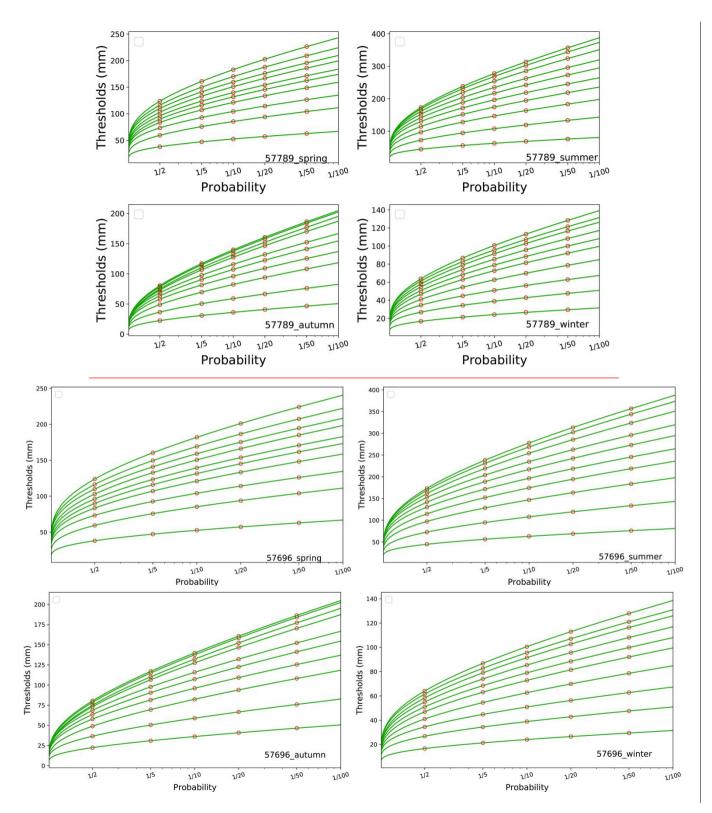


Figure 4 An example of extreme precipitation threshold distribution from the gamma fits of 1-10 run 12-H data in seasons. The green lines from bottom to up show the gamma fits of 1-10 runs respectively. The orange hollow points are thresholds calculated with <u>a</u> probability <u>stof</u> 0.5 (1/2), 0.2 (1/5), 0.1 (1/10), 0.05 (1/20) and 0.02 (1/50).

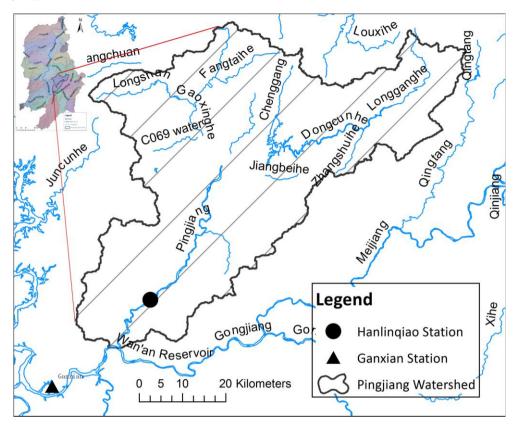
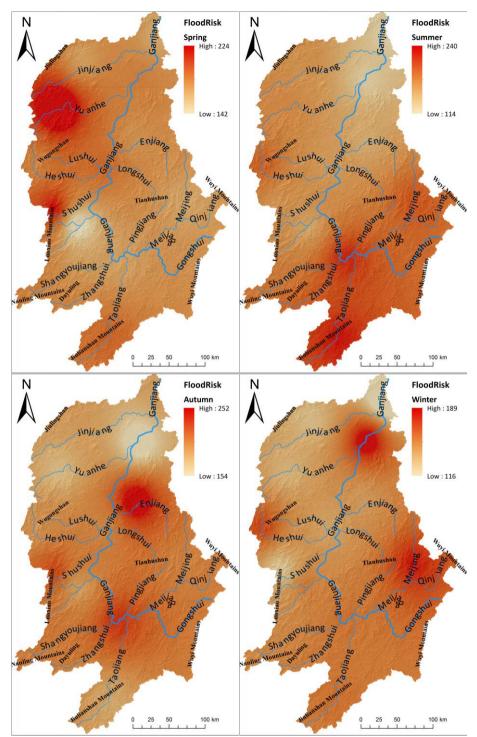



Figure 5 Location of Ganxian meteorological station and Hanlinqiao hydrological observation station

670 Figure 6 Flood riskfFlood risk under Scenario 2 in spring, summer, autumn and winter in the Ganjiang River basin. The colors range from light orange to red, indicating the increasing risk from low to high.

Table 1 Characteristics of the selected meteorological stations

Stations	Station <mark>s <u>Code</u></mark>	Location		Elevation	Observation
Stations	Stations Code	Latitude (N)	Longitude (E)	(m a.s.l)	period (Year)
Nanchang_(Nc)	<u>58806</u> Nanchan g(Nc)	28.60	115.92	47	1956-2016
Yifeng (Yf)	<u>58806</u> ¥ifeng- (¥f)	28.40	114.78	92	1951-2016
Zhangshu (Zs)	<u>58608</u> Zhangsh u (Zs)	28.07	115.55	30	1951-2016
Yichun (Yc)	<u>57793</u> ¥ichun- (¥c)	27.80	114.38	131	1956-2016
Yongfeng (Yof)	Yongfeng (Yof)<u>58705</u>	27.33	115.42	86	1959-2016
Lianhua (Lh)	Lianhua (Lh)<u>57789</u>	27.13	113.95	195	1951-2016
Ji'an (Ja)	<u>57799</u> Ji'an (Ja)	27.05	114.92	71	1956-2016
Jinggangshan (Jgs)	<u>57894</u> Jinggang shan (Jgs)-	26.58	114.17	843	1959-2016
Ningdu (Nd)	<u>58806</u> Ningdu- (Nd)	26.48	116.02	209	1952-2016
Suichuan (Sc)	<u>57896</u> Suichuan (Sc)	26.33	114.50	126	1957-2016
Ganxian (Gx)	<u>57896</u> Ganxian- (Gx)	25.87	115.00	138	1958-2016
Longnan (Ln)	<u>59092</u> Longnan- (Ln)	24.87	114.80	250	1951-2016

675 <u>Table 2 Seasonal and annual mean precipitation in stations (mm)</u>

<u>statio</u>	<u>n</u> <u>spring</u>	<u>summer</u>	<u>autumn</u>	<u>winter</u>	<u>annual</u>
Yf	<u>667.1</u>	<u>588.2</u>	<u>252.9</u>	<u>249.2</u>	<u>1757.4</u>
Lh	<u>627.4</u>	<u>512.8</u>	<u>228.8</u>	<u>236.7</u>	<u>1605.6</u>
Yc	<u>624.4</u>	<u>522.3</u>	<u>242.2</u>	<u>237.9</u>	<u>1626.8</u>

Ja	<u>604.5</u>	<u>490.2</u>	<u>221.3</u>	<u>211.3</u>	<u>1527.4</u>
Jgs	<u>578.4</u>	<u>774.5</u>	<u>336.4</u>	<u>207.9</u>	<u>1897.2</u>
Sc	<u>494.6</u>	<u>501</u>	<u>273.9</u>	<u>188.2</u>	<u>1457.6</u>
Gx	<u>570.2</u>	<u>458.4</u>	<u>208</u>	<u>209.2</u>	<u>1445.9</u>
Nc	<u>626</u>	<u>556</u>	<u>196.5</u>	<u>214.7</u>	<u>1593.4</u>
Zs	<u>665.4</u>	<u>542.6</u>	<u>215.5</u>	<u>243.7</u>	<u>1667.2</u>
Yof	<u>656.1</u>	<u>550.5</u>	<u>227.3</u>	<u>234.7</u>	<u>1668.6</u>
Nd	<u>706.9</u>	<u>614.7</u>	<u>234.5</u>	<u>224.8</u>	<u>1781</u>
Ln	<u>597.6</u>	<u>544.4</u>	<u>205</u>	<u>196.5</u>	<u>1543.5</u>

Table <u>2</u>Table <u>3</u> Mean parameters α (shape) and β (scale, mm/day) for gamma distribution in stations

Stations	spri	ng	sum	mer	autu	mn	wint	er
Stations	α	β	α	β	α	β	α	β
Yf	0.16	23.43	0.08	38.73	0.06	22.59	0.12	12.01
Lh	0.16	22.40	0.08	35.95	0.07	18.25	0.12	11.29
Yc	0.16	21.70	0.08	33.79	0.07	19.55	0.12	11.79
Ja	0.15	22.15	0.07	38.35	0.06	22.30	0.10	12.21
Jgs	0.18	17.68	0.15	29.53	0.09	21.44	0.13	9.29
Sc	0.15	18.80	0.09	30.18	0.06	26.44	0.10	10.89
Gx	0.14	22.50	0.08	31.16	0.05	22.85	0.09	13.35
Nc	0.14	24.76	0.07	45.94	0.05	24.43	0.09	13.55
Zs	0.15	24.58	0.07	43.46	0.06	22.13	0.10	13.59
Yof	0.15	23.40	0.08	39.48	0.06	25.41	0.10	12.90
Nd	0.15	26.32	0.09	37.44	0.05	26.24	0.09	13.96
Ln	0.13	25.01	0.10	29.48	0.05	25.59	0.07	14.30

Table 3Table 4 Changes of the gamma distribution parameters α and β in each station and season during 1959 to 2016. Z: Z values from the M-K test. When Z is bigger than 0, the trend is upward; when Z is smaller than 0, the trend is downward. When the absolute value of Z is bigger than or equal to 1.28, 1.64, and 2.32, it means that the test has passed the reliability test of 90%, 95%, and 99%, respectively. Tr: trend of α and β , increasing (\uparrow): when the M-K statistic is positive and the confidence level is below 0.05. Decreasing (\downarrow): when the Mann-Kendall statistic is negative and the confidence level is below 0.05. No trend (--): there is no trend detected according to the confidence level.

		spri	ing			sumi	ner			autu	mn			win	ter	
station		α		β		α		β		α		β		α		β
	Tr	Z	Tr	Z	Tr	Z	Tr	Z	Tr	Z	Tr	Z	Tr	Z	Tr	Z
Yf	Ļ	-3.05	Î	2.99		0.74		0.36		-0.17		0.00		0.09		1.16
Lh		-1.69	ſ	1.99		1.05		-0.76		-1.31		1.89		-0.52		1.01
Yc	Ļ	-2.76		1.20		0.74		1.74		-1.63		1.77		-0.65		0.74
Ja		-1.00		0.78		1.11		0.32		-1.92	Ţ	2.21		-0.79	ſ	2.33
Jgs	Ļ	-2.46		1.37		-0.21		1.58	Ļ	-2.29		1.11	Ļ	-2.82	ſ	3.60
Sc	Ļ	-2.18		1.62		0.79		0.89		-1.84		1.56		-0.43	ſ	2.36
Gx		-1.20		1.19		-0.76		0.42		-1.49		0.08		-0.64	ſ	2.35
Nc	Ļ	-2.42		1.40		1.91		0.23		-0.08		0.45		1.05		1.14
Zs	Ļ	-2.35	ſ	2.11		1.67		0.87		-1.29	Ţ	2.75		0.20		0.71
Yof		-1.78		0.72		0.01		0.87	Ļ	-2.49	Ţ	2.69		-1.09	ſ	2.93
Nd	Ļ	-2.15	ſ	2.18		-0.39		1.12		-1.19		1.33		-1.73	ſ	3.10
Ln		-0.83	Î	2.54		-0.21		0.08	Ļ	-2.13		0.65		-1.14		1.73

Table 4<u>Table 5</u> Mean threshold values (mm) of 12-H in each station and seasons and their estimates obtained from the gamma distribution according data in 1959-2016. <u>pP</u>re_99 <u>indicaterefers</u> thresholds from the observed precipitation and gam_99, the estimates from gamma distribution.

station	spring		sur	nmer	aut	tumn	winter		
station	pre_99	gam_99	pre_99	gam_99	pre_99	gam_99	pre_99	gam_99	
Yf	38.88	38.77	45.93	45.79	23.66	23.52	17.17	17.11	
Lh	36.71	36.60	42.33	42.15	19.97	19.79	16.72	16.65	
Yc	35.03	34.91	40.94	40.77	21.97	21.84	16.57	16.51	

Ja	34.96	34.88	41.08	40.96	20.29	20.16	16.08	16.00
Jgs	31.58	31.48	46.97	46.86	27.32	27.15	14.31	14.23
Sc	28.85	28.79	37.59	37.49	25.78	25.58	14.31	14.22
Gx	34.32	34.23	37.17	37.05	20.02	19.87	16.87	16.77
Nc	38.39	38.24	49.09	48.89	20.04	19.84	17.38	17.31
Zs	38.06	37.97	47.98	47.78	20.87	20.71	18.39	18.29
Yof	37.92	37.81	46.23	46.03	20.90	20.68	18.04	17.96
Nd	42.33	42.22	46.05	45.84	23.72	23.52	16.92	16.84
Ln	37.89	37.76	41.76	41.56	21.20	21.06	15.99	15.88

Table 5 Table 6 Statistics of extreme precipitation events from 1-10 runs at Ganxian station from 2009 to 2014

Runs	seasons		5	Scena	rio		Runs	seasons .		S	Scenar	io	
Runs	scasons	0.5	0.2	0.1	0.05	0.02	ituns	scasons	0.5	0.2	0.1	0.05	0.02
1	spring	13	9	6	6	2	6	spring	10	6	4	1	1
1	summer	12	11	9	6	5	6	summer	5	5	3	2	1
1	autumn	4	2	1	1	1	6	autumn	2	1	1	1	1
1	winter	1	1	1	1	1	6	winter	2	2	1	1	1
2	spring	11	9	6	3	1	7	spring	11	5	3	2	2
2	summer	10	8	6	4	2	7	summer	6	3	3	2	1
2	autumn	1	1	1	1	1	7	autumn	2	1	1	1	1
2	winter	1	1	1	1	1	7	winter	2	2	2	2	2
3	spring	8	7	4	2	2	8	spring	8	5	2	1	1
3	summer	9	7	4	4	2	8	summer	4	3	3	2	1
3	autumn	2	1	1	1	1	8	autumn	1	1	1	1	1
3	winter	2	1	1	1	1	8	winter	2	2	2	2	2
4	spring	9	7	4	3	3	9	spring	6	4	4	1	1
4	summer	8	5	4	2	2	9	summer	4	4	3	2	1

4	autumn	2	1	1	1	1	9	autumn	1	1	1	1	1
4	winter	2	2	2	2	2	9	winter	1	1	1	1	1
5	spring	8	7	5	2	2	10	spring	7	5	4	1	1
5	summer	5	2	1	1	1	10	summer	3	3	3	2	1
5	autumn	2	2	1	1	1	10	autumn	1	1	1	1	1
5	winter	2	1	1	1	1	10	winter	1	1	1	1	1

Table 6 Table 7 Floods events recorded in Hanlinqiao hydrological station from 2009 to 2014

695	Year	spring	summer	autumn	winter	Total
	2009	0	1	0	0	1
	2010	2	1	0	0	3
	2012	2	1	0	0	3
700	2013	1	1	0	0	2
700	2014	2	1	0	0	3
	Total	7	5	0	0	12