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Abstract. Occurrence probabilities of extreme sea levels required in coastal planning, e.g. for calculating design floods, have

been traditionally estimated individually at each tide gauge location. However, these estimates include uncertainties, as sea

level observations typically have only a small number of extreme cases such as annual maxima. Moreover, exact information

on sea level extremes between the tide gauge locations and incorporation of dependencies between the adjacent stations is often

lacking in the analysis.5

In this study, we use Bayesian hierarchical modeling to estimate return levels of annual maxima of short-term sea level

variations related to storm surges in the Finnish coastal region. We use the generalised extreme value (GEV) distribution as the

basis and compare three hierarchical model structures of different complexity against tide gauge specific fits. The hierarchical

model structures allow to share information on annual maximum sea levels between the neighboring stations and also provide

a natural way to estimate uncertainties in the theoretical estimates.10

The results show that compared to the tide gauge specific fits, the hierarchical models, which pool information across the tide

gauges, provide narrower uncertainty ranges for both the posterior parameter estimates and the corresponding return levels in

most locations. The estimated shape parameter of the GEV model is systematically negative for the hierarchical models, which

indicates a Weibull-type of behavior for the extremes along the Finnish coast. The negative shape parameter also allows us to

calculate the theoretical upper limit for the annual maximum sea levels on the Finnish coast. Depending on the tide gauge and15

hierarchical model considered, the median value of the theoretical upper limit was 47–73 cm higher than the highest observed

sea level.

1 Introduction

Extreme sea level phenomena (waves, storm surges, tides, etc.) together with the rising mean sea level introduce hazards

both to people and coastal infrastructure by causing migration, loss of functionality and biodiversity, and by decreasing our20

living habitat. In the Baltic Sea region, sea level extremes are directly associated with such hazards as coastal erosion and

flooding (e.g., Rutgersson et al., 2022; Weisse et al., 2021). Recent studies have shown that the increase in the mean sea

level has generally exceeded the global average during the past 50 years in the Baltic Sea (Weisse et al., 2021) with some local

exceptions from this trend (e.g., Männikus et al., 2020). It is foreseen that the main drivers for long-term changes in the extreme

sea levels are changes in the the relative mean sea level and atmospheric conditions. For these reasons, reliable projections of25
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extreme sea levels are key tools for supporting coastal planning and safety in regional scales. For example, estimation of low-

probability - high-consequence events such as extremely high sea levels are important for nuclear power plant safety in Finland

(Jylhä et al., 2018).

The Finnish coast is surrounded by the Baltic Sea – an intra-continental small sea that is connected to the Atlantic Ocean via

narrow and shallow Danish Straits (Leppäranta and Myrberg, 2009). The unique geography of the Baltic Sea as well as various30

local and global processes govern the sea level variations on the Finnish coast. On short temporal scales, wind and air pressure

are the main factors inducing local sea level fluctuations along the Finnish coast. In addition, wind-generated waves, seiche

oscillations (standing waves inside the Baltic Sea basin), and meteotsunamis (e.g., Pellikka et al., 2020) (meteorologically

induced long, shallow-water waves) alter the sea level locally on a short time scale. Tides (e.g., Medvedev et al., 2013; Särkkä

et al., 2017) and ice have a marginal influence on the sea level variations on the Finnish coast compared to other forcing factors.35

In longer-term perspective, the in- and outflow of the water from the Danish Straits controls the total water balance in the Baltic

Sea. Other important long-term elements are the mean sea level change reflecting the behavior of global sea level rise, as well

as post-glacial land uplift, which originates from the pressure release of the crust after the last glacial era. The largest sea level

variations on the Finnish coastline take place in the ends of the Bay of Bothnia and Gulf of Finland due to the piling up effect

and standing wave oscillations within the bay (Jönsson et al., 2008).40

Previous studies have addressed coastal flooding risks in the present-day and future climatic conditions at the Finnish tide

gauge locations. Recently, Pellikka et al. (2018) estimated future coastal flooding risks by combining mean sea level projections

with the short-term sea level variability. Leijala et al. (2018) examined the total water level on the shore due to simultaneous

effect of sea level and wind waves. Physical limits of simulated extreme sea levels were investigated in hydrodynamic modeling

exercises by Särkkä et al. (2017) on the Helsinki coastal area using winds from regional climate model simulations and by45

Averkiev and Klevannyy (2010) for the whole Gulf of Finland with idealised wind fields as forcing. Wolski et al. (2014) and

Wolski and Wiśniewski (2020) showed that there are large geographical variations in the observed sea level extremes in the

Baltic Sea and that they tend to increase towards the ends of the bays in the northern parts of the Baltic Sea domain (see Fig.

1). Johansson et al. (2001) inspected temporal variations in the extreme sea levels on the Finnish coast and concluded that a

general increase has occurred in the annual maxima during the 20th century. Rapid sea level oscillations due to air-pressure50

disturbance i.e. meteorological tsunami waves have also been studied on the Finnish coast by concentrating on their occurrence

in the Gulf of Finland (Pellikka et al., 2020).

The theory on extreme value analysis is well documented in the literature (e.g., Coles, 2001). If block-maxima, such as the

annual maximum sea levels are considered, extreme value theory tells us that the generalised extreme value distribution (GEV)

is the only possible limiting distribution. GEV has been used to model return levels of annual maximum sea levels in the Baltic55

Sea region in many previous studies (e.g., Ribeiro et al., 2014; Wolski et al., 2014; Marcos and Woodworth, 2017; Soomere

et al., 2018; Kudryavtseva et al., 2021). Most of these studies, however, have concentrated on individual tide gauge locations.

As the time series of sea level extremes are relatively short, they generally do not allow reliable estimation of occurrence

probabilities of very rare events (e.g. return period >1000 years). Furthermore, to be able to construct predictions for sea level

extremes outside the tide gauge locations, information on their spatial dependencies and variations is needed. Soomere et al.60
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(2018) inspected spatial variations of GEV parameters along the Estonian coast using ocean model data as the basis for extreme

value analysis.

Issues with the limited sample size can be partly alleviated by pooling information on sea level extremes across the neigh-

bouring tide gauges, which reduces uncertainty on the parameter estimates. One approach to pool information across multiple

tide gauges is based on regional frequency analysis (RFA) (Dalrymple, 1960; Hosking and Wallis, 1997). In this approach,65

a reasonably homogeneous region is searched using some similarity criterion, tide gauges within the region are normalised

locally using flood-index and then pooled together before fitting a single extreme value distribution to the pooled data. This

approach has been successfully applied to storm surges (e.g., Bardet et al., 2011; Bernardara et al., 2011). However, the results

obtained with RFA might contain inconsistencies between different domains. Also, the method does not directly account for

spatial dependencies between the tide gauges within the whole target region.70

Bayesian hierarchical modeling approach allows more flexibly to incorporate spatial and other dependencies in statistical

models (e.g., Gelman et al., 2013). In our case, this means that tide gauge specific GEV parameters are described jointly at

the population level, for example, assuming that they come from the same joint hyper-distribution. This hyper-distribution

has its own hyper-parameters which need to be specified either from data or modeled by adding an additional layer to the

model. Bayesian hierarchical models have been used to estimate extremes in other geoscientific fields (e.g., Cooley et al.,75

2007), but there are relatively few examples of their use when modeling sea level extremes. Coles and Tawn (2005) made

one of the first attempts to model storm surges within the Bayesian framework. Calafat and Marcos (2020) developed a novel

hierarchical model to account for spatial dependencies on storm surge extremes over the North Sea and British Isles. They

showed that Bayesian hierarchical modeling approach allows to estimate occurrence probabilities of sea level extremes outside

gauge locations and to quantify uncertainty in the predicted sea levels.80

This paper applies previous efforts on statistical modeling of sea level extremes on the Finnish coastal region. Our aim is

to assess how Bayesian hierarchical modeling – implemented in a simpler manner compared to Calafat and Marcos (2020)

– performs in comparison to tide gauge specific models, when estimating theoretical return levels for extremes related to

short-term sea level variations. Three hierarchical models are included, two of which take the spatial distance between the tide

gauges into account in their model formulations. We perform a series of tests with the hierarchical models and evaluate their85

performance against the observed sea level extremes. Furthermore, we illustrate the theoretical return level estimates obtained

with the hierarchical models and their differences with respect to tide gauge specific estimates. We exclude long-term changes

from the analysis and focus on short-term sea level variations controlled by meteorological factors. As we concentrate solely

on stationary conditions, the potential time dependence of GEV parameters is not assessed.

The paper is structured in the following manner. In Section 2, we describe the tide gauge observations from the Finnish90

coast. In Section 3, we introduce the methods utilised in this paper, which is then followed by a summary of the main outcomes

of the study in Sect. 4. In Section 5, we discuss the shortcomings of this study and potential avenues for future research. The

paper is closed with conclusions in Sect. 6.
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Figure 1. Detrended time series of the annual maximum sea level at each tide gauge location selected for this study. The bathymetric data

used in the background map is taken from ETOPO1 database (Amante and Eakins, 2009) using the marmap package in R (Pante and Simon-

Bouhet, 2013).
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2 Tide gauge records on the Finnish coast

Finnish Meteorological Institute (FMI) maintains and collects sea level observations from 14 tide gauges along the Finnish95

coast. Most of the Finnish tide gauges have been constructed in the 1920s, meaning that they have more than 90 years of sea

level records currently available. The available time series are shorter only for Rauma tide gauge (built in 1933) and for Porvoo

tide gauge (built in 2014). The longest time series providing over 100 years of data are available from Hanko (the first tide

gauge in Finland, built in 1887) and Helsinki (tide gauge built in 1904). Two tide gauges were excluded from further analysis

either due to the too short length of time series for extreme value analysis (Porvoo) or the differing behavior of the annual100

maximum sea levels in the tide gauge location in the Finnish archipelago (Föglö) compared to the coastal tide gauges, which

was not captured by our simple hierarchical modeling approach.

Data set used here consists of annual maximum sea levels. Annual maxima were calculated from monthly maximum sea

levels which were extracted from either the original continuous paper recordings, or later from the digital data at 1-minute

resolution. Before year 1939, the values have been calculated from 4-hourly observations. Although there have been changes105

in the temporal resolution of the observations, we decided to include the earliest years in our study in order to use the longest

possible time series in our analysis. The measured sea levels have been converted to the height system N2000 from fixed tide-

gauge-specific reference systems. N2000 is the Finnish realisation of the European Vertical reference system, and the datum

has been derived from Normaal Amsterdams Peil (NAP) (Saaranen et al., 2009). All time series extend to the end of year

2020 with some gaps in them due to missing data. To reduce the impact of long-term changes caused by climate change and110

post-glacial land uplift to the extreme value analysis, a linear trend was calculated separately for each tide gauge based on

4-hourly observations and then subtracted from the annual maximum values.

Studies in the Baltic Sea region have suggested that the annual maximum sea levels should be calculated for a year-long

block that covers all winter months instead of using the calendar year due to seasonality in storminess (e.g., Johansson et al.,

2001; Suursaar et al., 2002; Soomere et al., 2018; Kudryavtseva et al., 2021). We took this approach and calculated the annual115

maximum values between 1 April–31 March. This way the maximum value from each winter period was selected, which

removes the correlation between the annual maximum values. Furthermore, those years, which had more than one monthly

maximum value missing from the winter half of the year were filtered out. The length of the pre-processed time series varied

between 87–124 years. These are illustrated in Fig. 1.

The maximum sea level varies between 36–198 cm in the pre-processed time series. From Fig. 1, it is observed that the120

highest sea levels are typically observed in Kemi and Hamina, which are the tide gauges located closest to the ends of the Gulf

of Bothnia and the Gulf of Finland. Time series for these tide gauges also exhibit the highest year-to-year variability. These

features have some implications for the statistical model design as discussed in the next section. We note that the highest annual

maximum values used here differ to certain extent from the reported record heights in Finland (e.g., Wolski and Wiśniewski,

2020) due to detrending and as they have been previously defined against a different reference, the so-called theoretical mean125

sea level (Johansson et al., 2003).
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Some individual values stand out from the time series panels. For example, markedly high sea levels were observed in

January 1984 on some tide gauges located on the western coast of Finland. Such exceptional cases are of interest to us, because

they are likely to some extent affect our statistical modeling results. We will briefly discuss the sensitivity of our GEV models

for anomalously high observed sea levels in Sect. 4 using the aforementioned case as an example.130

3 Methods

3.1 Extreme value analysis for annual maximum sea levels

We briefly summarise the main properties of the generalised extreme value distribution (GEV) applied to the extreme sea

levels before discussing the chosen modeling approaches. We refer to Coles (2001) for more details on GEV distribution

and its statistical properties. Let Yi with i= 1, . . . ,12, be a random variable describing the annual maximum sea level (i.e.,135

block-maxima) at the ith tide gauge. The extreme value theorem states that for the normalised maxima of a sequence of

independent and identically distributed random variables the GEV distribution is the only possible limiting distribution. GEV

is a suitable model in our case, as the detrended annual maxima can be considered to be independent of each other. The

cumulative distributions function of GEV can be written as:

G(y;µ,σ,ξ) = exp

(
−
[
1+ ξ

(
y−µ

σ

)]−1/ξ

+

)
. (1)140

In Eq. (1), µ ∈ R is the location parameter, σ > 0 scale parameter and ξ ∈ R denotes the shape parameter. The tail behavior of

GEV distribution is strongly controlled by the shape parameter. If ξ < 0, y has an upper limit at µ− ξ/σ, while in other cases

the upper tail is unbounded and has either exponential (ξ = 0) or polynomial (ξ > 0) decay.

The quantiles of GEV distribution are obtained by inverting Eq. (1):

yp =

µ− σ
ξ

[
1−{− log(1− p)}−ξ

]
, for ξ ̸= 0,

µ−σ log{1− log(1− p)}, for ξ = 0.
(2)145

This equation is used to calculate the return level yp associated with a certain exceedance probability p or equivalently, the

return period T = 1/p. While other approaches such as peaks-over-threshold could be considered (e.g., Coles, 2001), we used

GEV as it allows the direct modeling of annual maxima.

In the simplest case where the GEV parameters are estimated separately for each tide gauge (denoted as Separate hereafter),

the model for the observations at the ith tide gauge is expressed as yi ∼GEV (µi,σi, ξi). We use Bayesian methods to estimate150

the distribution parameters. As we are particularly interested in robustly quantifying uncertainty in the GEV parameters and in

the predicted return levels, the Bayesian approach provides a natural way to do this. Bayes’ theorem states that the posterior

distribution of model parameters given observations y is

p(θ|y) = p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ

(3)
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Here, p(θ) is the prior distribution for the parameters and p(y|θ) the likelihood function. The symbol θ is a vector containing155

::::::
denotes

::
a

:::::
vector

:::
that

::::::::
contains all the unknown parameters of the model. As the integral in the denominator in Eq. (3) does not

generally have a closed-form solution for our hierarchical models, we use Markov chain Monte Carlo (MCMC) methods to

sample from the posterior parameter distribution p(θ|y). The implementation details such as the selected prior distributions for

the parameters p(θ) (and for the hyper-parameters in hierarchical modeling cases) are provided in the supplementary material.

3.2 Hierarchical models for GEV parameters160

Tide gauge specific parameter estimates tend to be uncertain, as we usually have relatively few observations in our disposal.

One way to include more information is to assume that the model parameters at different tide gauge locations are similar. A

hierarchical approach is to assume that their values are bind together with a joint prior distribution, whose parameters are not

assumed to be known, but estimated along the individual gauge specific parameters. For pooling information across the tide

gauges, we tested three hierarchical formulations for the GEV distribution parameters. The first model (denoted as Common165

hereafter) is a simple extension to the separate fitting of GEV distribution at the tide gauge locations. The model is written as

yi ∼GEV (µi,σi, ξi), i= 1, . . . ,12

µi ∼N (µµ,σ
2
µ)

σi ∼N+(µσ,σ
2
σ)

ξi ∼N (µξ,σ
2
ξ )

(4)

where N+ denotes the half-normal distribution. This model applies partial pooling to the data with the assumption that the tide

gauge specific distribution parameters come from the same joint Gaussian distribution but it simultaneously allows different

parameter values to be estimated for individual tide gauges. In addition to the tide gauge specific GEV parameters, we have six170

additional hyper-parameters (µµ, σµ, µσ, σσ, µξ, σξ), that tie the individual parameters together. As the hyper-parameters are

unknown and estimated from the data, we need to assign further prior distributions on them (see the supplementary material

for more details).

3.3 GEV parameter hierarchy using splines

Common does not account for possible spatial dependencies in the sea level extremes between the tide gauges. As was men-175

tioned previously, the northern part of the Baltic Sea consists of sub-basins like the Gulf of Bothnia and the Gulf of Finland.

This geometry strongly regulates the sea level variations in these regions (so-called bay effect), and the magnitude of sea level

extremes systematically increases towards the end of the two bays (Fig. 1). We used the distance d calculated roughly along the

coast between the tide gauge locations such that dKemi = 0 as covariate information when modeling the GEV parameters. In

these models, the vector for the GEV parameters is expressed as θ = (µ(di),σ(di), ξi). Thus, we assume the shape parameter ξ180

does not depend on d but still gets its own value at each tide gauge, similarly as in Sect. 3.2. One benefit of this approach is that

the model provides estimates of the GEV parameters and consequently return level estimates between the tide gauge locations.
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We tested two approaches to incorporate the distance dependence in our hierarchical models. In the first one, the location

and scale parameter are modeled using B-splines (de Boor, 1978) (denoted as Spline hereafter). B-splines are defined by the

degree p of the basis function polynomials and a non-decreasing, here equally-spaced, set of knots t= t1, . . . , tr. We have set185

r = 10. Spline functions are then constructed as a linear combination of B-spline basis functions. The model formulation for

Spline is

yi ∼ GEV (
∑m

j=1αjBj(di),
∑m

j=1βjBj(di), ξi), (5)

where m= r+2 is the number of cubic (p= 3) B-splines, Bj are the B-spline basis functions and αj and βj are the spline

coefficients to be estimated from the data. To avoid overfitting, we used cubic B-splines with first order random walk priors for190

the spline coefficients (e.g., Eilers and Marx, 1996; Lang and Brezger, 2004).

3.4 GEV parameter hierarchy using Gaussian processes

In the third hierarchical model, spatial dependence for the GEV parameters is accounted for using a Gaussian process (GP)

prior. The model is written as:

yi ∼GEV (fµ(di),fσ(di), ξi)

fµ ∼ GP(mµ,Kµ)

fσ ∼ GP(mσ,Kσ).

(6)195

In Eq. 6, mµ and mσ are the mean and Kµ and Kσ the covariance functions for µ and σ, respectively. As we have a finite

number of tide gauge locations, this amounts to modelling both priors as multidimensional Gaussian distributions. To obtain

smoothness in the neighbouring tide gauge estimates for the GEV parameters, we used squared exponential covariance function

in our model:

K(di,dj |α,ρ) = α2 exp

[
−1

2

(di − dj)
2

ρ2

]
, (7)200

where di and dj are tide gauge locations defined by their distances to the reference station at Kemi. Furthermore, α is spatial

standard deviation and ρ is the characteristic length scale, both of which are estimated from the data.

All models were fitted using MCMC simulations by R and Stan probabilistic programming language (Gabry and Češnovar,

2021; Stan Development Team, 2020a, b). Stan implements a variant of Hamiltonian Monte Carlo MCMC algorithm, so-

called No-U-Turn Sampler (NUTS), which has shown to perform well in fitting complex hierarchical models (e.g., Calafat and205

Marcos, 2020). For each model, MCMC simulations were done with four parallel chains over 3000 iterations. The first 1000

iterations were removed as the burn-in period. Thus, the total number of draws obtained from the posterior distribution was

8000.

Figure 2 shows an example how the Spline and GP fits for the location and scale parameter vary along the tide gauge locations

from Kemi to Hamina. Overall, both methods provide smooth, yet flexible fits between the stations. Also the uncertainty210

estimates given by these methods are very similar. The similarity of the obtained fits is not surprising, as the formulation
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Figure 2. Illustration of the (top
::
left) spline and (bottom

::::
right) Gaussian process fits for the (left

::
top) location and (right

:::::
middle) scale parameter

with respect to the distance from Kemi tide gauge. Darker (light) shading denotes the interquartile (95 %) range of the parameter estimates.

The figure also shows box-plots of the corresponding parameters at the tide gauge locations. The bottom row shows similar plots for the

50-year return level of annual maximum sea levels for both models. The box covers the interquartile range (IQR) and the median value is

highlighted by the horizontal line. The length of the whiskers is one and half times the IQR.

of the distance dependence is similar for both the Spline and GP model. Note that we do not attempt to extrapolate beyond

Kemi or Hamina, as the resulting parameter estimates would be highly uncertain. The bottom row in Fig. 2 illustrates how

the spatial 50-year return level estimates look like for both models. The shape parameter ξ has been sampled from the joint

posterior distribution of the tide gauge specific parameter values when drawing these plots. It is seen that the spatial return level215

estimates vary smoothly along the coast and match relatively closely with the tide gauge specific estimates of these models. In

the following, we concentrate on the tide gauge specific estimates, as it allows us to compare the results of all four models.
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4 Results

We first evaluate the goodness-of-fit of the hierarchical models against the observations and compare their performance against

the tide gauge specific GEV fits. We then have a more in-depth look at the simulated posterior parameter distributions for220

the hierarchical models and illustrate how the return level estimates differ between Separate and the hierarchical models. We

also briefly discuss whether some theoretical limits for the annual maximum sea level could be inferred from the estimated

parameters.

4.1 Evaluation of model fit against observations

Figure 3. Quantile-quantile plots showing the modeled quantiles for tide gauge specific fits (Separate) and for the Spline model when plotted

against the observed quantiles. Median values are given as points and the shading shows the 95% uncertainty range for the modeled quantiles.

The diagonal line is also shown in each panel.

To obtain some insights on model adequacy and the goodness of the Separate
:::::::
separate and hierarchical model fits, quantile-225

quantile (Q-Q) plots calculated against the observed return levels are shown in Fig. 3. As the Q-Q plots are very similar for
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Figure 4. Probability-probability plots calculated using median values of the GEV parameters for tide gauge specific fits (Separate) and for

the Spline model when plotted against the observed probabilities. The diagonal line is also shown in each panel.

all hierarchical models, the results are shown only for the Spline model. Visual inspection of the tide gauge specific panels

shows that both GEV models fit reasonably well to the data in most tide gauges, although the observational estimates tend

to be outside the 95% uncertainty range in some cases. Fig. 3 also shows that although the median results are close to each

other for these models, the uncertainty range is indeed larger for the Separate model
:::::::
Separate in many locations. Fig. 4 shows230

the probability-probability (P-P) plots for the same models. While the panels do not reveal any major discrepancies from the

observed probabilities in most tide gauges, the match is less good for those tide gauges that are located close to the ends of

the Bay of Bothnia and Gulf of Finland. In particular, the fit seems to be less good for Spline compared to Separate in Oulu.

Nevertheless, both Q-Q and P-P plots indicate that, with some tide gauge specific discrepancies with the observations, the

models provide reasonable fits to the data.235
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4.2 Leave-one-out cross validation

To compare the relative performance of the GEV models, we performed leave-one-out cross validation with Pareto smoothed

importance sampling (PSIS-LOO) implemented in the loo package in R (Vehtari et al., 2017, 2020). loo provides the ex-

pected logarithmic point-wise predictive density elpdloo for the out-of-sample predictions and also estimates the effective

number of parameters ploo. While Bayesian LOO cross-validation has some limitations for model selection purposes (e.g., see240

discussion in Gronau and Wagenmakers (2019a) and Gronau and Wagenmakers (2019b)), it is nevertheless useful in our case

for highlighting possible differences in the model performance.

∆elpdloo ploo

Spline 0.0 (0.0) 16.4 (1.2)

GP -1.2 (1.0) 18.5 (1.2)

Common -5.2 (2.1) 22.7 (1.4)

Separate -9.8 (3.3) 29.2 (1.9)
Table 1. Leave-one-out cross validation statistics for the implemented GEV models. The first column shows the difference in the expected

logarithmic point-wise predictive density (elpdloo) with respect to the best performing model and the second column the effective number

of parameters. Values within the brackets are the standard errors for the estimated statistics.

The LOO cross-validation statistics are listed in Table 1. The first column shows the difference in elpdloo with respect to

the best model for which this value is zero, together with its standard error estimate. Spline has the highest elpdloo value

out of all models with GP having only slightly worse results. Separate has the smallest elpdloo, which indicates that the245

hierarchical models might provide a better fit to the observed annual extremes. The second column shows the effective number

of parameters (ploo) together with the estimated standard error, whose value gives a rough estimate of model complexity. In

line with ∆elpdloo the Spline model
:::::
Spline has the smallest ploo which is roughly half of that for the Separatemodel

:::::::
Separate.

To assess the performance of the spatial models in ungauged locations, we performed an additional experiment in which

the tide gauges were left out one at time before fitting Spline and GP to the observations and the obtained fit was used to250

estimate the 50-year return level in the omitted tide gauge location. This procedure was repeated over all tide gauges apart

from Kemi and Hamina, as our models are not suitable for extrapolating the results spatially. We then calculated
::::::
absolute

::::
and

::::::
relative bias and mean absolute error (MAE) for the posterior median and conditional rank probability score (CRPS; Hersbach,

2000) for the full posterior distribution against the observed 50-year return level. The
:::::::
observed

::::::
50-year

::::::
return

::::
level

:::
has

:::::
been

::::::::
estimated

::
by

::::
first

:::::::::
calculating

:::
the

::::::::::
exceedance

:::::::::
probability

:::
for

:::
the

::::::::
observed

::::::
annual

:::::::
maxima

:::::
based

::
on

:::::::
Weibull

:::::::
plotting

::::::::
positions255

:::
and

::::
then

:::::::::::
interpolating

:::
the

::::::::
estimated

:::::::::::
probabilities

:::::::
between

:::
the

::::::::
observed

::::::
values.

::::
The resulting statistics are shown in Table 2,

when averaged over the ten tide gauges. As expected, the
:::
The

:
spatial models fitted without the target tide gauge (Splineloo and

GPloo) have worse statistics than the "full" models
:::::
except

:::
for

:::
the

::::::
model

::::
bias

:::
for

:::::::
Splineloo. In particular, GPloo has the largest

errors in all cases
::::
apart

:::::
from

:::::
MAE. However, absolute differences in the error statistics to the model estimates based on full
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data set are not large, which suggests that both the Spline and GP models are able to provide useful posterior predictions in260

ungauged locations.

Separate Common Spline GP Splineloo GPloo

CRPS
:::
Bias

:
(cm) 3.2

::
0.4 2.8

::
-1.2

:
3.0

:::
-1.4 2.8

:::
-1.4 4.6

:::
-0.7 6.2

:::
2.6

Bias (cm
:::
Rel.

:::
bias

:::
(%) 4.9

::
0.4 3.3

::
-0.9

:
3.1

:::
-1.1 3.2

:::
-1.0 3.9

:::
-0.5 7.2

:::
2.3

MAE (cm) 5.7
::
4.5 4.2

::
3.7

:
4.2

:::
3.7 4.1

:::
3.6 6.3

::
6.8 8.4

:::
5.8

:::::
CRPS

:::
(cm)

: ::
3.1

::
2.7

: :::
2.8

:::
2.6

::
4.4

:::
4.4

Table 2. Bias
::::::
Absolute

:::
and

::::::
relative

::::
bias, mean absolute error (MAE) and conditional rank probability score (CRPS) calculated with respect

to the observed 50-year return level when averaged over the tide gauges apart from Kemi and Hamina. The statistics are shown for the four

models fitted using all tide gauge records and (last two columns) for Spline and GP, when the target tide gauge has been left out data before

fitting the models.

4.3 Posterior parameter distributions

We next take a look at the posterior parameter estimates obtained with MCMC. To first illustrate some of the properties of

the posterior parameter distributions, bi-variate parameter distributions are shown in Fig. 5 for the Separate and Spline model

in the Kemi tide gauge. The panels in this plot show that µ and σ are negatively correlated with ξ to a certain degree for the265

Separatemodel
:::::::
Separate, as the location and scale parameters tend to increase for more negative shape parameter values. The

parameters are less strongly correlated for the Spline model and the distribution shape is more Gaussian due to the effect of

pooling. The bi-variate distributions look well identified for both models but for the Spline model
:::::
Spline

:
cover visibly narrower

parameter ranges compared to Separate. Very similar results are obtained for the other hierarchical models and therefore, are

not shown here.270

Figure 6 shows the posterior parameter distributions for all models. Both the location µ and scale σ parameter generally

increase towards the ends of the two bays. The location parameter µ obtains its largest values in Kemi, Oulu and Hamina tide

gauges, where the median value for µ approaches or even exceeds 100 cm. The posterior median for σ is close to, or exceeds,

25 cm in the same tide gauges. Furthermore, the spread of the posterior parameter distribution tends to be largest in these tide

gauges for both µ and σ. Note that the posterior parameter uncertainty in σ tends to be somewhat larger for Separate compared275

to the hierarchical models. Variations in µ across the tide gauges are similar for all models, but for the scale parameter σ,

Separate has slightly larger overall variations compared to the hierarchical models. This could be due to the shrinkage effect,

which tends to bring the station specific parameter values of the hierarchical models towards the overall mean.

In contrast with µ and σ, the shape parameter ξ does not have as clear connection with the distance from the two bays. The

overall posterior median for ξ is around -0.16 for all models. However, for the Separate model
:::::::
Separate the posterior median280

tends to be more negative around the coast of the Bothnian Bay and less negative to south from Vaasa on the coast of the

Bothnian Sea. For the hierarchical models the shape parameter values vary only weakly with the tide gauge location, as this is

parameter is in our hierarchical models formulation less sensitive to location specific aspects of data. Even when the uncertainty
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Figure 5. Example of posterior distributions for the GEV parameters in Kemi tide gauge obtained with (orange) the Separate and (blue)

Splinemodel, respectively. Histograms of the three GEV parameters are shown on the diagonal and the corresponding bi-variate scatter plots

on the lower triangle. The location and scale parameter values are given in centimeters.

in the posterior parameter estimates is taken into account, ξ is consistently negative for all hierarchical models, although for

Separate the posterior distribution of ξ has a long tail towards positive values in some locations. The typically negative shape285

parameter value for all models suggests that annual maximum sea levels follow a 3-parameter Weibull distribution on the
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Figure 6. Posterior parameter distributions for all the tested models at each tide gauge. The location and scale parameter values are given in

centimeters.

Finnish coast. This result is in line with the previous study by Marcos and Woodworth (2017), which also suggested a negative

shape parameter for the Finnish and the neighbouring tide gauges. A slightly contrasting result was obtained by Soomere et al.

(2018), who estimated shape parameter values close to zero from an ocean model output along the Estonian coast. Furthermore,

in their additional analysis based on tide gauge observations the shape parameter varied strongly depending on location and290

method used to estimate the GEV distribution parameters. We note that as the behavior of annual sea level extremes is likely

different on the Estonian side of Gulf of Finland, their results are not directly comparable to ours.

When ξ < 0, the return level yp has an upper limit at y0 = µ−σ/ξ, which could be used, at least in theory, to estimate

the highest possible value that the annual maximum sea level can reach along the Finnish coast. We illustrate the upper limit

estimates in the next section.295

To conclude, compared to the separate fits, the hierarchical models have a narrower uncertainty range for the scale and shape

parameter. Overall, posterior parameter distributions are very similar for the hierarchical models regardless of the tide gauge.

This shows that pooling information across the tide gauges narrows the uncertainty range in the posterior parameter estimates.

4.4 Posterior predictive simulations

The estimated GEV parameters shown in the previous section can be used to calculate theoretical estimates for the N-year300

return levels on tide gauge locations. The estimated return levels are illustrated for all models and for two return periods in

Fig. 7. The upper panel shows box-plots of 50-year return levels together with the return level estimated from the observations.

The observed return level has been obtained by interpolating between the observed annual maximum values, as the number

of observations does not allow the direct estimation of the 50-year return level value. In most cases, the observed return level

matches relatively well with the model estimates. Only in Hamina and Hanko for some models, the observed value lies slightly305
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Figure 7. Example plots showing the posterior predictions for (top) 50-year and (bottom) 1000-year return levels for all four models. For

comparison, the upper panel contains (circles)
::
the

:
observed 50-year return levels calculated from the observations. The boxes cover the

inter-quartile range and are shown together with the median value, while the whiskers extend over the 95% percentile range.

.

below the 95% uncertainty range. One must keep in mind that due to the relatively short length of the available time series, the

observed return level estimates are uncertain and likely affected by sampling variability.

The lower panel in Fig. 7 shows estimates of much rarer, 1000-year return levels. In this case, differences between Separate

and the hierarchical models have become noticeably more visible compared to the 50-year return level. The median values

are slightly higher for the hierarchical models on tide gauges from Oulu to Pietarsaari, while the Separate model
:::::::
Separate has310

markedly higher median values in many tide gauges from Vaasa to Hamina. For the Separatemodel
:::::::
Separate, the 95 % uncer-

tainty range in the return level estimates tends to be smaller (larger) in the former (latter) locations, although the uncertainty
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range is in absolute terms largest for this model in all tide gauges. The hierarchical models predict very similar 1000-year return

level values and also have similar uncertainty ranges in all locations. Most of the features in the return level estimates obtained

with the Separate model
:::::::
Separate are directly related to the larger uncertainty in the estimated shape parameter values, which315

also exhibit larger spatial variations for this model than for the hierarchical models.

To further illustrate how much the hierarchical modeling approach reduces the prediction uncertainty, Table 3 shows the

standard deviation of the predicted 50-year return level in the tide gauge locations and its ratio (in percentage) with respect to

the Separate model
:::::::
Separate

:
for the hierarchical models. The spread is reduced in all cases and in some locations for Spline

and GP is less than 50 percent of that for the Separatemodel
:::::::
Separate. There are no major differences between the hierarchical320

models, although the reduction in the predictive uncertainty tends to be slightly smaller for the Common model
::::::::
Common than

for the two spatial models. This supports our conclusion that the hierarchical models are able to reduce uncertainty in the

posterior predictions.

Model Kemi Oulu Raahe Pietarsaari Vaasa Kaskinen Pori Rauma Turku Hanko Helsinki Hamina

Separate 85 75 66 59 67 91 86 85 67 67 92 85

Common 61 (72) 62 (82) 56 (84) 55 (93) 50 (75) 49 (55) 49 (57) 51 (60) 48 (72) 43 (65) 48 (52) 62 (74)

Spline 63 (74) 50 (66) 54 (82) 48 (82) 42 (63) 41 (45) 40 (47) 38 (44) 40 (60) 39 (59) 47 (51) 59 (70)

GP 61 (71) 53 (70) 56 (84) 50 (85) 45 (68) 42 (47) 42 (49) 42 (49) 42 (63) 41 (61) 48 (52) 58 (69)
Table 3. Standard deviation of the predictive distribution for the 50-year return level (in mm), shown separately for each tide gauge and model.

The percentage fraction of standard deviation with respect to Separate model is given for the three hierarchical models in the brackets.

As was mentioned in Sect. 2, individual extremely high sea level observations might markedly influence model fitting. To

check this, we performed a sensitivity test in which the observation from January 1984 was left out of the time series before325

fitting the models to the data. Removal of this observation lead to a slightly more negative shape parameter value for the

Separate model
:::::::
Separate especially in Kaskinen and Pori, which reduced its median estimate of 1000-year return level closer

to the hierarchical models in these locations (not shown). Return level estimates for the hierarchical models were only slightly

changed in this test, which highlights higher sensitivity of separate model fits to anomalous observations. We note that the

1000-year return level estimates require extrapolation to such cases that are not present in the observational records. Therefore,330

the aforementioned results should be interpreted cautiously.

As discussed in the previous section, the mostly negative shape parameter suggests that, in theory, we could infer an upper

limit the sea level can reach given the assumptions on data and models are met. As a sanity check for our models, we briefly

illustrate how high values the hierarchical models give at the theoretical upper limit. We stress that the shown values should

not be interpreted as actual limits for the sea level but, rather, as a hypothetical result provided by the hierarchical models.335

The distribution of µ−σ/ξ is illustrated for the hierarchical models in Kemi tide gauge in Fig. 8. All distributions look very

similar and are positively skewed towards larger values. The median value is almost identical for all models and exceeds 260

cm. These values are 63–65 cm higher than the largest value in the observed time series which sounds reasonable, although the

very long right tail highlights the substantial uncertainty associated with the upper level estimates.
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Figure 8. Theoretical upper limit (µ−σ/ξ) for the annual maximum sea level in Kemi tide gauge inferred from the posterior parameter

distributions. The results are shown for the hierarchical models only.

The theoretical upper limit estimates are summarised for the rest of the tide gauges in Table 4. Unsurprisingly, the median340

estimates are highest at those tide gauges, which are located closest to the end of the Bothnian Bay and Gulf of Finland,

where they exceed 250 cm. As in Kemi
::
the

:::::
Kemi

::::::::
example, all hierarchical models give very similar results. Overall, differences

between the highest observed sea levels and the theoretical upper limit vary between 47–73 cm, depending on the location.

Interestingly, there is also a local maxima in the upper limit estimates in Kaskinen, which is similar to the feature that was seen

in the 1000-year return level estimates for Separate in Fig. 7.345

5 Discussion

To put the obtained results into a broader perspective, we briefly compare our results to those available in the literature from

both statistical and dynamical model studies. We stress that this comparison is qualitative at the best, as it is difficult to make

direct comparisons due to differences in the used methods and observations.

Wolski et al. (2014) provided 50-year return level estimates based on stationary GEV fit to observations from 1960–2010 for350

Helsinki (163.8 cm) and Kemi (209.8 cm) tide gauges. These results are 25.1–31.1 cm higher than the median values for our

models and closer to the estimated 1000-year return levels. This is likely due to differences in the study period and methods

used. Using idealised cyclone winds as forcing in a hydrodynamic ocean model, Averkiev and Klevannyy (2010) estimated

how high sea levels could be associated with strong low pressure systems in the Gulf of Finland. Their results (184 cm in

Hanko and 186 cm in Helsinki) are higher than our 1000-year return level estimates for the hierarchical models and closer to355

their median upper limit estimates. Särkkä et al. (2017) performed an 850-year long simulation with a hydrodynamic ocean

model using regional climate model simulations as input. In their results, sea level could reach 225 cm height in Helsinki,

which is somewhat higher, but still similar to our median upper limit estimate in this location.
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Tide gauge Common Common-obs Spline Spline-obs GP GP-obs

Kemi 263 (220–393) 65 265 (221–393) 67 264 (221–385) 65

Oulu 248 (205–357) 70 251 (208–369) 73 249 (207–360) 70

Raahe 215 (178–310) 56 221 (179–312) 62 218 (179–311) 59

Pietarsaari 193 (156–284) 59 194 (157–289) 60 194 (157–275) 59

Vaasa 191 (158–289) 52 191 (158–284) 52 192 (158–284) 53

Kaskinen 194 (160–338) 51 195 (160–353) 52 193 (160–342) 51

Pori 184 (149–314) 56 184 (149–323) 56 183 (149–308) 55

Rauma 186 (152–307) 51 186 (152–305) 50 185 (153–308) 50

Turku 180 (147–268) 52 180 (146–286) 52 179 (147–267) 51

Hanko 179 (147–303) 48 180 (147–283) 48 179 (148–284) 47

Helsinki 206 (168–347) 56 208 (170–350) 58 206 (170–335) 56

Hamina 252 (210–381) 58 252 (211–377) 59 252 (211–381) 59
Table 4. Median value of the theoretical upper limit (µ−σ/ξ) of the annual maximum sea level in units of centimeters, calculated separately

for each tide gauge. The 95% credible interval is shown within the brackets. Differences to the highest observed annual sea levels are also

provided for each model.

As a deliberate choice in our study, long-term changes in mean sea level were excluded from the analysis by detrending the

time series. Inclusion of mean sea level would be required, if we were to assess the overall flooding risk related to sea level360

extremes both in the present and future climate, as mean sea level has been a major driver of sea level extremes also in the

Finnish coastal region (e.g., Marcos and Woodworth, 2017). Furthermore, studies have suggested that future changes in the sea

level extremes are strongly associated with changes in mean sea level in the Baltic Sea region (e.g., Meier et al., 2004; Gräwe

and Burchard, 2012; Vousdoukas et al., 2016, 2017). In Finland, changing mean sea level is expected to increase flooding risk

along the coast of Gulf of Finland and the Gulf of Bothnia, whereas post-glacial land uplift is likely to counter most of changes365

in the mean sea level in the Bothnian Bay (Pellikka et al., 2018).

We have used GEV distribution to model the overall annual sea level maxima (after removing long-term trends). However,

different processes contribute to variations in sea level in the Baltic Sea and cause it to fluctuate at different temporal scales.

Therefore, alternative modeling approaches could be considered to model separately the different sea level fluctuations and

their contributions. For example, Soomere et al. (2015) have used an approach in which separate statistical models were fitted370

to weekly-scale and local storm-surge driven sea level fluctuations.

We also recognise some limitations in our study. Firstly, it was assumed that the time series of sea level extremes are

stationary after they have been detrended. This assumption is unlikely to be completely true. While not giving a rigorous

conclusion, visual inspection of the time series in Fig. 1 suggests that changes might have occurred both in the level and

variability of annual maxima. Furthermore, studies have indicated that sea level extremes have exhibited variations in the Baltic375

Sea region over different time scales (Johansson et al., 2001; Ribeiro et al., 2014; Marcos and Woodworth, 2017; Kudryavtseva
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et al., 2021) and that these variations were associated with variations in large scale atmospheric conditions (Samuelsson and

Stigebrandt, 1996; Johansson et al., 2001; Ribeiro et al., 2014; Marcos and Woodworth, 2017; Kudryavtseva et al., 2021;

Passaro et al., 2021). As with changing mean sea level, future climate is also expected to bring changes in storm surges in

the Baltic Sea region (e.g., Vousdoukas et al., 2016, 2017, 2018). Our models do not account for non-stationarity in extremes380

related to short-term sea level variations and cannot be used to assess such changes.

One remedy would be to model temporal dependence directly by allowing (e.g.) linear trends in the GEV parameters (e.g.,

Ribeiro et al., 2014; Marcos and Woodworth, 2017; Kudryavtseva et al., 2021). Physical covariates, which describe large scale

atmospheric circulation conditions around the Baltic Sea region, could also be used to account for interannual-to-decadal scale

variations in the annual maximum sea levels. For example, Marcos and Woodworth (2017) assessed connections between sea385

level extremes and North Atlantic Oscillation (NAO) index in the North Atlantic region. Their results showed that even after

taking the effect of mean sea level into account, NAO explained part of temporal variations in the sea level extremes in the

Baltic Sea. We aim to incorporate such physical covariates in our models in the following studies.

Another limitation for our hierarchical models is that they only account for dependence in the marginal GEV parameters

and do not take additional residual dependence (dependence in annual maxima between different tide gauges) into account.390

Exclusion of residual dependence implies that our uncertainty estimates are likely slightly too narrow. One way to address

this shortcoming is provided by Calafat and Marcos (2020), who use a max-stable process to capture the residual dependence.

Their approach is, however, outside the scope of this paper.

6 Conclusions

In this study, Bayesian hierarchical modeling was applied to estimate theoretical return levels from annual maximum sea level395

on tide gauges located along the Finnish coast. Three hierarchical descriptions of the parameters of the generalised extreme

value (GEV) distribution were compared against individual fits at twelve tide gauges. The main motivation was to test how the

hierarchical description of the distribution parameters affects the estimation of, and uncertainty in, them and the corresponding

estimates of return levels. The simplest hierarchical model assumes that station specific distribution parameters come from

the same joint Gaussian hyper-distributions. In addition, two hierarchical model structures based on B-splines and Gaussian400

processes were implemented in which the distance with respect to Kemi tide gauge along the Finnish coast was used as a

covariate in the model formulations. These two models also allow, in principle, the estimation of return levels between the tide

gauges.

The main results obtained from subsequent analysis are:

– All hierarchical models provide similar results for the GEV parameters and reduce the posterior parameter uncertainty405

in comparison to the individual model fits. In addition, the shape parameter is consistently negative on the Finnish coast

with median values around -0.16 for all models.
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– Examples for the return level estimates show that the 50-year return level is well captured by the hierarchical models.

For rarer (1000-year) events, individual fits tend to have a larger uncertainty range and they also give higher return level

estimates compared to the hierarchical models in most locations.410

– Median values of the theoretical upper limits computed with the hierarchical models indicate differences of 47–73 cm in

comparison to the observed maximum sea levels in the observational time series. However, uncertainty in these estimates

is large and therefore, they should be interpreted with extreme caution.

While the results suggest that our hierarchical models provide an improvement over separate fits to tide gauge time series,

the study is region specific and exploits regional geographical features. For regions with shorter tide gauges records available415

for analysis, it is expected that the hierarchical modeling approach has larger benefits in comparison to tide gauge specific

models. Furthermore, other modeling approaches should be included along our approach and compared with the local sea level

observations to find the best solutions. One must also keep in mind that the results still contain uncertainties due to possibly

missing components (long-term temporal evolution, physical information) in the model formulation and the limited sample size

for the observed extremes. To conclude, care needs to be taken when interpreting the above-mentioned results. Improvements420

for the tested models, e.g., by including missing non-stationary components, will be addressed in future studies.
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