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Abstract. Probabilistic earthquake forecasts estimate the likelihood of future earthquakes within a specified time-space-

magnitude window and are important because they inform planning of hazard mitigation activities on different timescales.

The spatial component of such forecasts, expressed as seismicity models, generally rely upon some combination of past event

locations and underlying factors which might affect spatial intensity, such as strain rate, fault location and slip rate or past

seismicity. For the first time, we extend previously reported spatial seismicity models, generated using the open source inlabru5

package, to time-independent earthquake forecasts using California as a case study. The inlabru approach allows the rapid

evaluation of point process models which integrate different spatial datasets. We explore how well various candidate forecasts

perform compared to observed activity over three contiguous five year time periods using the same training window for the

::::
input

:
seismicity data. In each case we compare models constructed from both full and declustered earthquake catalogues. In do-

ing this, we compare the use of synthetic catalogue forecasts to the more widely-used grid-based approach of previous forecast10

testing experiments. The simulated-catalogue approach uses the full model posteriors to create Bayesian earthquake forecasts
:
,

:::
not

:::
just

:::
the

:::::
mean. We show that simulated-catalogue based forecasts perform better than the grid-based equivalents due to (a)

their ability to capture more uncertainty in the model components and (b) the associated relaxation of the Poisson assumption

in testing. We demonstrate that the inlabru models perform well overall over various time periods, and hence that independent

data such as fault slip rates can improve forecasting power on the time scales examined
:
:
::::
The

:::::::::::
full-catalogue

:::::::
models

:::::::
perform15

:::::::::
favourably

::
in

:::
the

::::
first

::::::
testing

::::::
period

::::::::::
(2006-2011)

::::::
while

:::
the

::::::::::
declustered

::::::::
catalogue

::::::
models

::::::::
perform

:::::
better

::
in

:::
the

::::::::::
2011-2016

:::::
testing

:::::::
period,

::::
with

::::
both

::::
sets

::
of

::::::
models

::::::::::
performing

::::
less

::::
well

::
in

:::
the

::::
most

::::::
recent

:::::::::::
(2016-2021)

::::::
testing

:::::
period. Together, these

findings represent a significant improvement in earthquake forecasting is possible, though this has yet to be tested and proven

in true prospective mode.

1 Introduction20

Probabilistic earthquake forecasts represent our best understanding of the expected occurrence of future seismicity (Jordan

and Jones, 2010). Developing demonstratively robust and reliable forecasts is therefore a key goal for seismologists. A key

component of such forecasts, regardless of the timescale in question, is a reliable spatial seismicity model that incorporates

as much useful spatial information as possible in order to identify areas at risk. For example in probabilistic seismic hazard
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modelling (PSHA) a time independent spatial seismicity model is developed by combining a spatial model for the seismic25

sources with a frequency magnitude distribution. In light of the ever-growing abundance of earthquake data and the presence

of spatial information that might help understand patterns of seismicity, Bayliss et al. (2020) developed a spatially-varying point

process model for spatial seismicity using Log-Gaussian Cox processes evaluated with the Bayesian integrated nested Laplace

approximation method (Rue et al., 2009) implemented with the open-source R package inlabru (Bachl et al., 2019). Time-

independent earthquake forecasts require not only an understanding of spatial seismicity, but also need to prove themselves to30

be consistent with observed event rates and earthquake magnitudes in the future.

Forecasts can only be considered meaningful if they can be shown to demonstrate a degree of proficiency at describing

what future seismicity might look like. The Regional Earthquake Likelihood Model (RELM, Field, 2007) experiment and

subsequent Collaboratory for the study of earthquake predictability (CSEP) experiments challenged forecasters to construct

earthquake forecasts for California, Italy, New Zealand and Japan (e.g. Schorlemmer et al., 2018; Taroni et al., 2018; Rhoades35

et al., 2018, and other articles in this special issue) to be tested in prospective mode using a suite of pre-determined statistical

tests. The testing experiments found that the best performing model for seismicity in California was the Helmstetter et al. (2007)

smoothed seismicity model, whether aftershocks were included or not (Zechar et al., 2013). This model requires no mosaic of

seismic source zones to be constructed, requiring only one free parameter - the spatial dimension of the smoothing kernel. In

the years since this experiment originally took place, there has been considerable work both to improve the testing protocols40

and to develop new forecast models which may improve upon the performance of the data-driven Helmstetter et al. (2007)

model, primarily by including different types of spatial information to augment what can be inferred from the seismicity alone.

Multiplicative hybrid models (Marzocchi et al., 2012; Rhoades et al., 2014, 2015) have shown some promise, but these require

some care in construction and further testing is needed
:::::::::::::::::
(Bayona et al., 2022). The performance of smoothed seismicity models

has been found to be inconsistent in testing outside of California, e.g. with the Italian CSEP experiment finding smoothed past45

seismicity alone did not do as well as models with much longer term seismicity and fault information (Taroni et al., 2018).

Thus, finding and testing new methods of allowing different data types to be easily included in developing a forecast model is

an important research goal. Here we explore in particular the role of testing an ensemble of point process simulated catalogues

(Savran et al., 2020) in comparison with traditional grid-based tests, where the underlying point process is locally averaged in

a grid element.50

In this paper we construct and test a series of time-independent forecasts for California by building on the spatial mod-

elling approach described by Bayliss et al. (2020). As a first step in the modelling we take a pseudo-prospective approach to

model design, with the forecasts being tested retrospectively on time periods subsequent to the data on which they were orig-

inally constructed, and test the models’ performance against actual outcome using the pyCSEP package (Savran et al., 2021)

:::::::::::::::::::::
(Savran et al., 2021, 2022). This is not a sufficient criterion for evaluating forecast power in true prospective mode, but is a nec-55

essary step on the way, and (given similar experience of ‘hindcasting’ in cognate disciplines such as meteorology) can inform

the development of better real-time forecasting models. The results presented here will in due course be updated and tested

in true prospective mode, using a training dataset up to the present. We first test the pseudo-prospective seismicity forecasts

in a manner consistent with the RELM evaluations. For this comparison we use a grid of event rates and the same training
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and testing time windows to provide a direct comparison to the forecasts of the smoothed seismicity models of Helmstetter et60

al. (2007), which use seismicity data alone as an input, and provide a suitable benchmark to our study. We then extend this

approach to the updated CSEP evaluations for simulated catalogue forecasts (Savran et al., 2020) and show that the synthetic

catalogue-based forecasts perform better than the grid-based equivalents, due to their ability to capture more uncertainty in the

model components and the relaxation of the Poisson assumption in testing.

2 Method65

We develop a series of spatial models of seismicity modelled by a time-independent Log-Gaussian Cox Process and fitted

with inlabru, as described in detail in Bayliss et al. (2020), and whose workflow
:
.
::::
This

:::::::
process is summarised in Figure 1

:::
the

::::::::
workflow

::
in

::::::
Figure

::
1,

:::::
which

::::::::
describes

:::
the

:::::
steps

:::::::
involved

:::
in

::::::::::
constructing

:::
an

::::::
inlabru

::::::
model,

:::
and

:::::
takes

:::
the

::::::
reader

:::::::
through

:::
the

::::::
process

::::
from

::::
data

::
to

::::::::
forecasts

::
so

::::
that

::
an

::::::::::
independent

:::::::::
researcher

:::
can

:::::::::
reproduce

:::
the

::::::
method

::::::::
presented

::::
here. The models take as

input twenty years (1984-2004
::::::::
1985-2005) of California earthquakes with magnitude ≥ 4.95 from the UCERF3 dataset (Field70

et al., 2014), with the magnitude cutoff chosen to be consistent with the RELM forecast criteria. The locations of these events

are an intrinsic component of a point process model with spatially varying intensity λ(s), where the intensity is described as

a function of some underlying spatial covariates xm(s), e.g. input data from seismicity catalogues or geodetic observations of

strain rate, and a Gaussian random field ζ(s) to account for spatial structure that is not explained by the model covariates. The

spatially varying intensity then can be described with a linear predictor η(s) such that75

λ(s) = eη(s), (1)

and η(s) can be broken down into a sum of linearly combined components

η(s) = β0 +

M∑
m=1

βmxm(s)+ ζ(s). (2)

The β0 term is an intercept term, which would describe a spatially homogeneous Poisson intensity if no other components

were included, and each βm describes the weighting of individual spatial components in the model. β0 is essentially the80

uniform average or base-level intensity, which allows the possibility of earthquakes happening over all of the region of interest

as a null hypothesis, so ’surprises’ are possible, though unlikely after adding the other terms and renormalising. The models

are built on a mesh (step 2 of Figure 1) which is required to perform numerical integration in the spatial domain, with the

model intensity evaluated at each mesh vertex as a function of the random field (RF, which is mapped by stochastic partial

differential equations or SPDE in step 3 of Figure 1) and other components of the linear predictor function (equation 2). Fitting85

the model
::::
with

::::::::
integrated

::::::
nested

:::::::
Laplace

::::::::::::
approximations

:::::
using

::::::
inlabru

:
results in a posterior probability distribution for each of

the model component weights, the random field and the joint posterior probability distribution for the intensity as a function of

these components. The expected number of events can then be approximated by summing over the mesh and associated weights
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over the area of interest (Step 5 of figure 1). The performance of the models can then be evaluated by comparing the expected

versus the observed number of events, and the models ranked using the resulting model deviance information criterion (DIC).90

DIC is commonly applied in other applications of Bayesian inference, including inlabru applications to other problems, such

as spatial distributions of species in ecology.
:::
The

::::
DIC

::::::::
measures

:::
the

::::::
relative

:::::::::
likelihood

::
of

:
a
::::::
model

::::
given

:::
the

:::::::::
likelihood

:::::::
inferred

::::
from

:::::
some

:::::::
observed

::::
data

::::
and

:
a
::::::
penalty

:::
for

:::
the

:::::::
effective

:::::::
number

::
of

:::::::::
parameters

:::
to

::::::
identify

::
a

:::::::
preferred

::::::
model,

:::
so

:::
that

:::::::
models

::
of

::::::
varying

::::::::::
complexity

:::
can

::
be

::::::::
evaluated

:::::
fairly

::
in
:::::::::::
competition

::::
with

:::
one

:::::::
another.

:
With the definition used here, DIC is lower for a

model with better predictive skill
:::::::::
likelihood.95

In Bayliss et al. (2020) a range of California spatial forecast models were tested on how well the spatial model created

by inlabru fitted the observed point locations, so were essentially a retrospective test of the spatial model alone in order to

understand which components were most useful in developing and improving such models. Here we test such models
::::::
extend

::::
these

:::::::
models

::
to

::::
full

::::::::::::::
time-independent

::::::::
forecasts

::::
and

:::
test

:::::
them

:
in pseudo-prospective mode for California, again using the

approach of testing different combinations of data sets as input data. We develop a series of new spatial models to compare with100

the smoothed seismicity forecast of Helmstetter et al. (2007). These models contain a combination of four different covariates

that were found to perform well in terms of DIC in Bayliss et al. (2020). These are shown in Figure 2 and include the GEM

strain rate (Kreemer et al., 2014) (SR) map, NeoKinema model slip rates (NK) attached to mapped faults in the UCERF3

model (Field et al., 2014), a past seismicity model (MS) and a fault-distance map (FD) constructed using the UCERF3 fault

geometry, with fault polygons buffered by their recorded dip. The past seismicity model used here is derived from events in the105

UCERF3 catalogue that occurred prior to 1984. For this data set, we fitted a model which contained only a Gaussian random

field to the observed events, thus modelling the seismicity with a random field where we do not have to specify a smoothing

kernel, the smoothing is an emergent property of the latent random field. This results in a smoothed seismicity map of events

which occurred before our training dataset. This smoothed seismicity model also includes smaller magnitude events and those

where the location or magnitude of the event is likely to be uncertain, so may account for some activity that is not observed or110

explicitly modelled (e.g. due to short-term clustering) at this time. Each of these components (SR, MS, NK, FD) is included

as a continuous spatial covariate combined with a random field and intercept component. The M4.95+ events from 1984-2004

:::::::::
1985-2005 are used to construct the point process itself. The exact combination of components in a model is reflected in the

model name as set out in Table 1.
:
1:

::::::
Model

::::::
SRMS

:::::::
includes

::::
strain

::::
rate

:::
and

::::
past

::::::::
seismicity

::
as

::::::
spatial

:::::::::
covariates,

:::::
model

:::::::::
FDSRMS

:::::::
includes

::::
fault

:::::::
distance,

:::::
strain

:::
rate

::::
and

:::
past

:::::::::
seismicity

:::
and

::::::
model

::::::::
SRMSNK

:::::::
includes

:::
the

:::::
strain

::::
rate,

::::
past

::::::::
seismicity

:::
and

::::
fault

::::
slip115

::::
rates.

:
More details on each of these model components and their performance in describing locations of observed seismicity

can be found in Bayliss et al. (2020). Step 7 of the workflow covers the steps described below and results presented here.

2.1 Developing full forecasts from spatial models

The inlabru models provide spatial intensity estimates which can be converted to spatial event rates by considering the

timescales involved. Since the models we develop here are to be considered time-independent, we assume that the number120

of events expected in this time period is ‘scaleable’ in a straight-forward manner, consistent with a (temporally homogeneous)

spatially-varying Poisson process. However we know that the rate of observed events is not Poissonian due to observed spatio-
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Key functions / codes

pcmatern <- inla.spde2.pcmatern (mesh,   prior.sigma = c(..., ...),   prior.range = c(..., ...)) 
components <- coordinates ~ Smooth (coordinates, pcmatern) + Intercept (1) 

mesh <- inla.mesh.2d (boundary=..., max.edge=..., min.angle=..., max.n=c..., max.n.strict=..., cutoff=..., crs=...) 

sp :: coordinates (catalogue) <- c ("longitude", "latitude") 
proj4string (catalogue) <- CRS (SRS_string = 'EPSG: ...')
spTransform(catalogue,  local_EPSG_string)
fm_crs_set_lengthunit(catalogue, "km")

predict (fit, pixels (mesh, mask=...), ~(Smooth + Intercept))

fit <- lgcp (components, data, domain , samplers, etc,) 

plot (spde.posterior (fit, "Smooth", what = "...")) 

predict (fit, ipoints (boundary, mesh), ~ sum(weight * exp (Smooth + Intercept))) 
predict (fit, ipoints (boundary, mesh), ~ data.frame(N =... , dpois (..., lambda = sum (weight * exp (Smooth + Intercept))))

inla.nonconvex.hull (coordinates (loc), ...)      OR      read.delim (...) / read.csv (...) / readOGR (...) / etc.  

mesh$n 
inla.mesh.assessment (mesh, spatial.range = ..., alpha = ..., dims = ...)

deltaIC (fit1, fit2, fit3, ...) 

Main tasks Sub-tasksMain steps

setting priors of range and stdev

assessing range, stdev, and β 

plotting range, variance, Matérn
covariance & correlation, etc.

Plotting predicted (log) intensity
on a pixel map  

loading real data OR 
generating synthetic data
converting to SpatialPoint
attaching CRS

posterior mean distribution

DIC or WAIC ranking

based on observed points OR
using a specified polygon

tuning mesh quality parameters 

checking number of vertices
histogram and map of stdev

Data Modification

Ranking models

Mesh assessment

Mesh structure

Mesh boundary

SPDE model for RF

Estimating abundance

posterior distributions

Fitting LGCP function

Predicting intensity

2D time-independent seismicity modelling with inlabru

factor covariates 
continuous covariates
distance sampling data 

Linear predictor for RF 

Linear predictor for 
spatial covariates

SPDE + intercept

extending to full time-
independent forecasts

Mesh
building

Data 
import

Specifying
model

Fitting 
LGCP model

Predicting
intensity

Comparing
models

1

2

3

4

6

7

5

magnitude distribution on grid
using GR
magnitude distribution from
simulated catalogues using TGRSpatial 

rate model

     pyCSEP package (Savran et al., 2021)

CSEP tests number test (N-test)
magnitude test (M-test)
spatial test (S-test)
conditional likelihood test (CL-
test)
pseudo-likelihood test (PL-test)

forecast_sampler (loglambda, boundary, mesh,  crs=crs_wgs84, num_events, b_val, m_min)

csep_grid_wrapper(fit, lgcp_model,  boundary, dh, mag_min, mag_max, b_est, mesh)

Figure 1. The workflow for generating spatial seismicity models in inlabru, with functions shown on the right.
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Figure 2. Input model covariates (clockwise from top left): GEM strain rate (SR), NeoKinema Slip rates from UCERF3 (NK), distance to

nearest (UCERF3, dip and uniformly buffered) fault in km (FD), Smoothed seismicity from a Gaussian random field for events before 1984

(MS).

temporal clustering (Vere-Jones and Davies, 1966; Gardner and Knopoff, 1974) and that short time-scale spatial clustering can

lead to higher rates anticipated in areas where large clusters have previously been recorded (Marzocchi et al., 2014). To test the

impact of clustering on our forecasts, we include models made from both the full and declustered catalogues, assuming that125

the full catalogues might overestimate the spatial intensity due to observed spatio-temporal clustering and forecast higher rates

in areas with recent spatial clustering. We decluster the catalogue by removing events allocated as aftershocks or foreshocks

within the UCERF3 catalogue, which were determined by a (Gardner and Knopoff, 1974) clustering algorithm (UCERF3 ap-

pendix K). This results in 6 spatial models that we use from this point on, containing components as outlined in Table 1. The

posterior mean
::::::
Figures

:
3
::::

and
::
4

::::
show

::::
the

:::::::::
differences

:::::::
between

::::
the

:::::::
different

::::::
models

:::
for

::::
the

:::
full

:::::
(left)

:::
and

::::::::::
declustered

::::::
(right)130

::::::::
catalogue

::::::
models,

::::
with

:::
the

::::::::
posterior

::::::
median

:
of the log intensity for each of these models is shown in Figure ??. These models

::
on

:::
the

::::::::
diagonal.

:::
The

::::
top

::::
right

:::
part

:::
of

::::
each

:::
plot

::::::
shows

:
a
::::::::
pairwise

:::::::::
comparison

:::
of

:::
the

:::
log

::::::
median

:::::::
intensity

:::
of

::::
each

::::::
model,

:::::
while

::
the

:::::::
bottom

:::
left

::::::::::
component

:::::
shows

:::
the

::::::::
pairwise

:::::::::
differences

::
in

::::::
model

::::::::
variance.

:::
The

::::::::::
differences

::
in

::::::
models

:::
are

:::::
much

:::::::
clearer

::
in

::
the

::::::::::
declustered

:::::::::
catalogue

::::::
models,

:::::
once

:::
the

:::::::::
clustering

:::
has

::::
been

::::::::
removed.

:::::
This

::::::
further

::::::::
highlights

:::
the

::::
role

:::
of

::::::
random

:::::
field

::
in

::
the

::::::::::::
full-catalogue

::::::
models

::
is
::::::
largely

::
to

:::::::
account

:::
for

::::::
spatial

:::::::::
clustering.

:::
The

::::::
model

::::::::
outcomes are constructed using an equal-area135
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Figure 3. Posterior mean intensity
::::::
Pairwise

:::::::::
comparison

::
of

::::::
models for

::
full

::::::::
catalogue

::::::
models.

:::
The

:::::::
top-right

:::
side

::
of the six inlabru

:::
plot

:::::
shows

::::::::
differences

::
in

:::
log

:::::
median

:::::::
intensity

:::
and

:::
the

::::
lower

:::
left

::::::
section

:::::
shows

::
the

:::::::::
differences

::
in

:::::
model

:::::::
variances

:::::::
between

::
the

:::::::
different modelscreated

with full .
:::
The

::::::
median

:::
log

::::::::
intensities

::
for

::::
each

:::::
model

:::
are

:::::
shown

::
on

:::
the

:::::::
diagonal.

::::::
Models

::::::
include

::::::::::
combinations

::
of

::::::::
smoothed

:::
past

::::::::
seismicity

(top
::::
MS),

::::
strain

:::
rate

::::
(SR),

::::
fault

:::::::
distance

:::
(FD) and declustered

:::
fault

:::
slip

::::
rates (bottom

:::
NK)catalogues of events from 1985-2004.

projection of California and converted to latitude and longitude only in the final step before testing. This figure represents the

set of models formed by the training data set.

To extend this approach to a full forecast, we distribute magnitudes across the number of expected events according to a

frequency-magnitude distribution. Given the small number of large events in the input training catalogue, a preference between

a Tapered Gutenberg-Richter (TGR) or standard Gutenberg-Richter magnitude distribution with a rate parameter a, related to140

the intensity lambda, and an exponent b cannot be fully expressed. The choice of a b-value is not straightforward, as the b-value

can be biased by several factors (Marzocchi et al., 2020) and is known to be affected by declustering (Mizrahi et al., 2021).

In this case, we assume b= 1 for both clustered and declustered cataloguesand for the ,
:::::
which

::
is
::::::::
different

::::
from

:::
the

:::::::::
maximum

::::::::
likelihood

:::::::
b-value

:::::::
obtained

:::::
from

:::
the

::::::
training

:::::::::
catalogues

:::::
(0.91

::::
and

::::
0.75

:::
for

:::
the

:::
full

::::
and

:::::::::
declustered

:::::::::
catalogues

::::::::::::
respectively).

::::
This

:::
was

::
a

::::::::
pragmatic

::::::
choice

:::::
given

::::
that

:::
the

::::
high

:::::::::
magnitude

::::::
cut-off

:::
and

::::::::
therefore

::::::
limited

::::::::
catalogue

::::
size

::
is

:::::
likely

::
to

:::::
result

::
in

::
a145

:::::
biased

:::::::
b-value

:::::::
estimate

:::::::::::::::::
(Geffers et al., 2022)

:
.
:::
For

:::
the TGR magnitude distribution we assume a corner magnitude of Mc = 8

for the California region proposed by (Bird and Liu, 2007) and used in the Helmstetter et al. (2007) models.
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Figure 4.
:::::::
Pairwise

:::::::::
comparison

::
of

:::::
models

:::
for

:::::::::
declustered

:::::::
catalogue

::::::
models.

:::
The

:::::::
top-right

::::
side

::
of

::
the

::::
plot

:::::
shows

::::::::
differences

::
in

:::
log

::::::
median

::::::
intensity

:::
and

:::
the

:::::
lower

:::
left

:::::
section

:::::
shows

:::
the

:::::::::
differences

::
in

:::::
model

:::::::
variances

::::::
between

:::
the

:::::::
different

::::::
models.

::::
The

:::::
median

:::
log

::::::::
intensities

:::
for

:::
each

:::::
model

:::
are

:::::
shown

::
on

:::
the

:::::::
diagonal.

::::::
Models

::::::
include

::::::::::
combinations

::
of

:::::::
smoothed

:::
past

::::::::
seismicity

:::::
(MS),

::::
strain

:::
rate

:::::
(SR),

:::
fault

:::::::
distance

::::
(FD)

:::
and

:::
fault

:::
slip

::::
rates

:::::
(NK).

:
A
:::::::::

schematic
:::::::
diagram

::::::::
showing

::::
how

:::
grid

::::
and

:::::::::::::
catalogue-based

::::::::::
approaches

:::
are

:::::::
applied

::
is

:::::
shown

:::
in

:::::
Figure

:::
5,

:::::
again

::
to

:::::
allow

::::::::::::
reproducibility

::
of

:::
our

:::::::
results..

:::
The

::::::::
flowchart

::::::::
describes

:::
the

::::::::
necessary

:::::
steps

:::
for

::::::::
extending

:
a
::::::
spatial

::::::
model

::
on

:
a
:::::::::::
non-uniform

::::
grid

::
to

:::
the

::::::
specific

:::::::
formats

:::::::
required

::
in
:::::::
forecast

:::::::
testing. For the gridded forecasts (which assume a uniform event rate or intensity150

within the area of each square element), we use the posterior mean
::::::
median

:
intensity as shown in Figure ??

::
on

:::
the

:::::::::
diagonals

::
in

::::::
Figures

::
3
:::
and

::
4, transformed to a uniform grid of 0.1 x 0.1 latitude/longitude within the RELM region. We use latitude-

longitude here as preferred by the pycsep tests. Magnitudes are then distributed across magnitude bins on a cell-by-cell basis

according to the chosen magnitude-frequency distribution and the total rate expected in the cell. In this paper, we show GR

magnitudes for the gridded forecasts. For the catalogue-based forecasts, we generate 10,000 samples from the full posteriors155

of the model components to establish 10,000 realisations of the model spatial intensity within the testing polygon. We then

sample a number of points consistent with the modelled intensity. In this case, we use the expected number of points given the

mean intensity (as in step 6 in Figure 1) for one year, and randomly select an exact number of events for a simulated catalogue

from a Poisson distribution about the mean rate, scaled to the number of years in the forecast. To sample events in a way that is

8



csep_grid_wrapper(lgcp_fit, lgcp_model, bdy, dh,
mag_min, mag_max, b_est, mesh)

predict field on model mesh
predict(lgcp_fit, mesh, lgcp_model)

Project to get intensity values in grid cells

proj <- INLA::inla.mesh.project(mesh, pts_grd)

Calculate total number of events
for cell from projected intensity

Distribute total rate across
specified magnitude bins

(mag_min - mag_max) according
to GR with specified b-value b_est

point_sampler(loglambda,  bdy, mesh,  crs, num_events, b_val, m_min)

Sample magnitudes
from TGR distribution

for all events in
simulated catalogue

using b-val and m_min

Set up grid of cell size dh over total
area of interest, specified by boundary

polygon bdy

select number of events for specific
stochastic catalogue

   =  rpois(1, num_events)

Sample many points from within
boundary area (bdy) - project to get

intensity at each point 

Keep points where

Repeat until kept points
>= 

Randomly select 
points for forecast

Get  from loglambda - a
sample from generate  

generate(lgcp_fit, mesh, lgcp_logmodel, n.samples = 10000)

Generate samples from full model posteriors with the inlabru generate function. n.samples = total number of
simulated catalogues to be created. Generate samples at mesh vertices so they can be projected to spatially

continuous field. 

Grid-based forecasts Catalogue-based forecasts

Figure 5. Schematic of the code for constructing grid-based (left) and simulated catalogue-based (right) earthquake forecasts given an inlabru

LGCP intensity model. These represent step 7 of the workflow.

consistent with modelled spatial rates, we sample many points and calculate the intensity value at the sampled points given the160

realisation of the model. We then implement a rejection sampler to retain points that have a significantly large intensity ratio

compared to the largest intensity in the specific model realisation, with points retained only if the intensity ratio is greater than

a uniform random variable between 0 and 1, that is points are retained with probability equal to 1− λp

λmax
. The set of retained

points for each catalogue are then assigned a magnitude sampled from a TGR distribution, by methods described in Vere-

Jones et al. (2001). Here we only sample magnuitudes from a TGR distribution in line with the approach of Helmstetter et al.165

(2007), to allow a like for like comparison with this benchmark. A schematic diagram showing how grid and catalogue-based

approaches are applied is shown in Figure 5.

2.2 CSEP tests

To test how well each forecast performs, we first test the consistency of the model forecasts, developed from data between 1984

and 2004
::::
1985

::::
and

:::::
2005, with observations from three subsequent and contiguous 5-year time periods, using standard CSEP170

tests for the number, spatial and magnitude distribution and conditional likelihood of each forecast. The original CSEP tests

calculate a quantile score for the number (N), likelihood (L) (Schorlemmer et al., 2007) and spatial (S) and magnitude (M)

(Zechar et al., 2010) tests, based on simulations that account for uncertainty in the forecast and a comparison of the observed

9



and simulated likelihoods. We use 100 000 simulations of the forecasts to ensure convergence of the test results. The number

test is the most straightforward, summing the rates over all forecast bins and comparing this with the total number of observed175

events. The quantile score is then the probability of observing at least Nobs events given the forecast, assuming a Poisson

distribution of the number of events. Zechar et al. (2010) suggests using a modified version of the original N-test that tests the

probability of a) at least Nobs events with score δ1 and b) at most Nobs events with score δ2 in order to test the range of events

allowed by a forecast. Here we report both N-test quantile scores in line with this suggestion.

The likelihood test compares the performance of individual cells within the forecast. The likelihood of the observation given180

the model is described by a Poisson likelihood function in each cell and the total joint likelihood described by the product

over all bins. The quantile score measures if the joint log-likelihood over many simulations falls within the tail of the observed

likelihoods, with the score defined by the fraction of simulated joint log-likelihoods less than or equal to the observed. The

conditional likelihood or CL test is a modification of the L-test developed due to the dependence of L-test results on the

number of events in a forecast (Werner et al., 2010, 2011). The CL-test normalises the number of events in the simulation185

stage to the observed number of events in order to limit the effect of a significant mismatch in event number between forecast

and observation. The magnitude and spatial tests compare the observed magnitude and spatial distributions by isolating these

from the full likelihood. This is again achieved with a simulation approach and by summing and normalising over the other

components. For the M-test, the sum is over the spatial bins while the S-test sums over all magnitude bins to isolate the

respective components of interest. The final test statistic in both cases is again the fraction of observed log likelihoods within190

the range of the simulated log likelihood values. In all cases small values are considered inconsistent with the observations -

we use a significance value of 0.05 for the likelihood-based tests and 0.025 for the number tests to be consistent with previous

forecast testing experiments (Zechar et al., 2013).

In the new CSEP tests (Savran et al., 2020), the test distribution is determined from the simulated catalogues rather than a

parametric likelihood function. For the N-test the construction of the test distribution is straightforward, being created from the195

number of events in each simulated catalogue and the quantile score calculated relative to this distribution. For the equivalent

to the likelihood test a numerical, grid-based approximation to a point process likelihood is calculated (Savran et al., 2020).

This is a more general approach than using the Poisson likelihood as in the grid-based tests, which penalises models that do not

conform to a Poisson model. The distribution of pseudo-likelihood is then the collection of calculated pseudo-likelihood results

for each simulated catalogue. The spatial and magnitude test distributions are derived from the pseudo-likelihood in a similar200

fashion to the grid-based approch, as explained in detail by Savran et al. (2020). The quantile scores are calculated similar

to the original test cases, but because the simulations are based on the constructed pseudo-likelihood rather than a Poisson

likelihood, the simulated-catalogue approach allows for forecasts which are overdispersed relative to a Poisson distribution.

Similarly to the original tests, very small values will be considered inconsistent with the observations.
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Table 1. Posterior means of model components and number of expected events for full and declustered (DC) models

mean component contribution to log intensity

Models strain rate (SR) past seismicity (MS) slip rates (NK) fault distance (FD) N

SRMS 1.551 0.853 - - 6.373

SRMSDC 0.415 0.777 - - 3.679

SRMSNK 1.488 0.837 0.017 - 6.44

SRMSNKDC 0.425 0.779 0.001 - 3.79

FDSRMS 1.574 0.857 - 0.001 6.456

FDSRMSDC 0.491 0.784 - 0.004 3.737

3 Full and declustered catalogue models205

In constructing the three models both with and without clustering, we can examine relative contributions of the model com-

ponents given differences in spatial intensity resulting from short-term spatio-temporal clustering. Table 1 shows the posterior

mean component of the log intensity for each model both with and without clustering for M4.95+ seismicity, and the number

of expected events per year for each model. The greatest contribution in the full-catalogue models comes from the strain rate

(SR) for each model, with the past seismicity also making a significant contribution to the intensity. For the models where the210

catalogue has been declustered, the contribution to the posterior mean from the past seismicity is only slightly lower while

the strain rate contribution is much smaller, effectively swapping the relative contributions of these components. This suggests

that the strain rate component is more useful when considering the full earthquake catalogue than when the catalogue has been

declustered. In both full- and declustered-catalogue models, the number of expected events is similar across all three models,

thus we expect the models to perform similarly in the CSEP N-tests.215

Figure ??
:
4
:
shows that the declustered-catalogue models (bottom row) appear much smoother than those constructed from

the full catalogue, as they have lower intensity in areas with large seismic sequences in the training period. They also have a

smaller range in intensity than the full catalogue models, with the (median) highest rates lower and the (median) lowest rates

higher than the full catalogue models, meaning they cover less of the extremes at either end.

4 Model testing220

We now test the models using the pyCSEP package for python (Savran et al., 2021)
:::::::::::::::::::::
(Savran et al., 2021, 2022). We begin with

the standard (grid-based) CSEP test models described by Schorlemmer et al. (2007); Zechar et al. (2010) included in pyCSEP

and described in section 2.2.
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Table 2. Quantile scores for CSEP tests. Upper bounds for S, L and PL-tests, lower bound for N. Bold indicates consistency with observations,

italics highlight declustered models.

Gridded Catalogue

Time Models N-test (δ1) N-test (δ2) S-test M-test CL-test N-test (δ1) N-test (δ2) S-test M-test PL-test

2006 - SRMS 0.465 0.603 0.031 0.291 0.126 0.440 0.625 0.180 0.404 0.268

2011 SRMSDC 0.002 0.999 0.694 0.288 0.822 0.001 0.999 0.922 0.842 0.006

FDSRMS 0.491 0.578 0.019 0.289 0.091 0.462 0.605 0.196 0.398 0.305

FDSRMSDC 0.003 0.998 0.733 0.289 0.846 0.001 0.998 0.891 0.838 0.007

SRMSNK 0.485 0.584 0.055 0.289 0.170 0.463 0.605 0.243 0.389 0.327

SRMSNKDC 0.002 0.999 0.702 0.292 0.824 0.002 0.999 0.874 0.833 0.007

2011 - SRMS 0.999 0 0.057 0.153 0.036 1 0 0.018 0 1

2016 SRMSDC 0.961 0.067 0.756 0.156 0.474 0.960 0.067 0.843 0.036 0.961

FDSRMS 0.9999 0 0.066 0.156 0.040 1 0 0.016 0 1

FDSRMSDC 0.971 0.052 0.754 0.155 0.476 0.971 0.050 0.858 0.026 0.972

SRMSNK 0.999 0 0.082 0.154 0.050 1 0 0.036 0 1

SRMSNKDC 0.963 0.064 0.768 0.158 0.495 0.958 0.070 0.827 0.035 0.959

2016 - SRMS 0.792 0.264 0 0.371 0.003 0.794 0.260 0.006 0.415 0.384

2021 SRMSDC 0.027 0.983 0.005 0.368 0.054 0.026 0.985 0.094 0.844 0.008

FDSRMS 0.810 0.244 0 0.366 0.003 0.822 0.233 0.004 0.385 0.399

FDSRMSDC 0.038 0.976 0.003 0.368 0.038 0.039 0.975 0.101 0.831 0.012

SRMSNK 0.806 0.249 0 0.367 0.003 0.767 0.290 0.005 0.439 0.319

SRMSNKDC 0.029 0.982 0.003 0.368 0.041 0.024 0.985 0.114 0.856 0.009

4.1 Grid-based forecast tests

We first compare the performance of our five-year forecasts, developed with a training window of 1984-2004
::::::::
1985-2005, over225

the testing period 01/01/2006-01/01/2011 with the Helmstetter et al. (2007) forecast.
::::
This

::::::
testing

::::
time

::::::
period

:::
was

:::::::
chosen

::
to

::
be

::::::::
consistent

:::::
with

:::
the

::::::
original

:::::::
RELM

::::::
testing

::::::
period. In this time, the comcat catalog

::::::::
catalogue

:
(https://earthquake.usgs.gov/

data/comcat/) . includes 32 M4.95+ events in the study region defined by the RELM polygon. All the models, regardless of

their components or which catalogue is used, perform well in the magnitude tests due to the use of the GR distribution.
::::
This

:
is
::::
true

::::
even

::::::
though

:::
we

:::::
have

::::
used

:
a
:::::
fixed

:
b
:::::
-value

::
of

::
1
:::
for

::::
both

::::::::::
catalogues,

:::::::::
suggesting

:::
that

:::
the

::::::
choice

::
of

:::::::
b-value

::
is

:::
not

::::::
hugely230

::::::::
influential

::
in

::::
this

:::::
testing

:::::::
period. The forecast tests are shown visually in Figure 6 and the quantile scores are reported in Table

2 for all tests and time-periods. A model is considered to pass a test if the quantile score is ≥ 0.05 for all tests except the N-test,

where the significance level is set at ≥ 0.025 for both score components and the model fails if either score fails (Schorlemmer

et al., 2010; Zechar et al., 2010). In Figure 4
:
6
:
the observed likelihood is shown as a coloured symbol (red circle for a failed test

and green square for a passed one) and the forecast range is shown as a horizontal bar, for ease of comparison. In the number235

12
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Figure 6. Grid-based forecast tests for all forecasts for three five year time periods: 2006-2011 (top), 2011-2016 (middle) and 2016-

2021(bottom). The bars represent the 95% confidence interval derived from simulated likelihoods from the forecast, while the symbol

represents the observed likelihood for observed events. The green square identifies that a model has passed the test and a red circle indicates

inconsistency between forecast and observation. The forecasts are compared to both the full (Helmstetter aftershock) and declustered models

of Helmstetter et al (2007)
:
.
::::::
Models

::::::
include

::::::::::
combinations

::
of

:::::::
smoothed

::::
past

::::::::
seismicity

::::
(MS),

:::::
strain

:::
rate

:::::
(SR),

:::
fault

:::::::
distance

::::
(FD)

:::
and

::::
fault

:::
slip

:::
rates

:::::
(NK).

test (N-test), the declustered forecasts underpredict the number of expected events significantly in all cases due to the much

smaller number of expected events per year and the large number of events that actually occurred in the testing time period.

In spatial testing (S-test), the full-catalogue models all perform poorly. In contrast, the declustered catalogue models all pass

the S-test. In the conditional likelihood tests (CL-test), all of the models perform well and pass the CL-test (figure 6), with the

declustered models performing better due to better spatial performance.240

We then repeat the tests for two additional five year periods of California earthquakes illustrated in Figure 6. In all time

windows, the M-test results remain consistent across all models. In the 2011-2016 period, there are 13 M4.95+ events within
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Figure 7. T-test results for the inlabru models showing information gain per earthquake relative to the full Helmstetter et al (2007) model

(helmstetter aftershock in Fig. 5) for three time periods. Red indicates forecasts are worse in terms of information gain and green indicates

forecasts performing better than the benchmark forecast. Grey forecasts are not significantly different in terms of information gain.
::::::
Models

:::::
include

::::::::::
combinations

::
of
::::::::
smoothed

:::
past

::::::::
seismicity

:::::
(MS),

::::
strain

:::
rate

:::::
(SR),

:::
fault

:::::::
distance

::::
(FD)

:::
and

:::
fault

:::
slip

::::
rates

:::::
(NK).

the RELM polygon, and this significant reduction in event number means that our full-catalogue models and the Helmstetter

models all overestimate the actual number of events significantly, with the true number outwith the 95% confidence intervals of

the models. In contrast, most of the models perform better in the S-test during this time period with the full catalogue slip-rate245

model
::
all

::::::::::::
full-catalogue

::::::
models

:
and all declustered-catalogue models recording a passing quantile score (Table 2). Each of the

models made with a declustered catalogue passes the CL-test,
::::
and

:::
the

:::
full

::::::::
catalogue

::::::
model

::::
with

:::
slip

::::
rates

::::
also

::::::
passes.

In the 2016-2021 period (Figure 6 top) there are 30 M4.95+ events, which is within the confidence intervals shown for all

tested models so all models pass the N-test for the first time. However none of the tested models pass the S-test due to the

spatial distribution of the events in this time period being highly clustered in areas without exceptionally high rates, even for250

models developed from the full catalogue. The CL-test results for the 2016-2021 period show that none of the models perform

particularly well in this time period, with two
:::
only

::::
one of the declustered-catalogue models passing the test,

::::
and only barely.

These statistical tests (N, S, M and CL) investigate the consistency of a forecast made during the training window with

the observed outcome. They do not compare the performance of models directly with each other, but rather with observed

events. One method of comparing forecasts is by considering their information gain relative to a fixed model with a paired255

T-test (Rhoades et al., 2011). Here, we implement the paired T-test for the gridded forecast to test their performance against the
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Helmstetter et al. (2007) aftershock forecast as a benchmark, because it performed best in comparison to other RELM models

in previous CSEP testing over various timescales (Strader et al., 2017). The results of the comparison are shown in Figure 7.

For the first time period (2006-2011), the models perform similarly in terms of information gain, and all of the inlabru models

perform worse than the Helmstetter model. For the 2011-2016 period, the inlabru models developed from the declustered260

catalogues perform better in terms of information gain than those developed from the full catalogue and significantly better than

the Helmstetter model. In the most recent testing period (2016-2021), the inlabru models have an information gain range that

includes the Helmstetter model. Together these results imply the inlabru models provide a positive and significant information

gain on a 5-10 year time period after the end of the training period for declustered-catalogue models, and not otherwise.

4.2 Simulated-catalogue forecasts265

Our second stage of testing uses simulated catalogues in order to make use of the newer CSEP tests (Savran et al., 2020). We

use the number, spatial and pseudolikelihood (PL) tests to evaluate these forecasts, with the PL test replacing the grid-based

L-test. In our case, as described above the number of events in the simulated catalogues is inherently Poisson due to the way

they are constructed, but the spatial distribution is perturbed from a homogeneous Poisson distribution due to the contributions

of model covariates and the random field itself (e.g. see equation 1, where a homogenous Poisson process would include only270

the intercept term β0) and the parameter values are sampled from the posterior at each simulation, so vary from simulation to

simulation. Figure 8 shows the test distributions for each forecast as a letter-value plot (Hofmann et al., 2011), an extended

boxplot which includes more quantiles of the distribution until the quantiles become too uncertain to discriminate. This allows

us to understand more of the full distribution of model pseudo-likelihood than a standard quantile range or boxplot, while

allowing easy comparisons between the results for different forecast models.275

We expect the grid-based and simulated-catalogue approaches to have similar results in terms of the magnitude (M) tests

due to the similarity of magnitude distributions used in construction, and all models do similarly well in this test (Table 2)
:
.

:::
All

::::::
models

::::
pass

:::
the

::::::
M-test

::
in

:::
the

::::::
testing

::::::
periods

:::::::::
2006-2011

::::
and

::::::::::
2016-2021,

:::
but

::::
only

:::
the

::::::::::
declustered

::::::
models

::::
pass

:::
the

::::::
M-test

::
in

:::
the

:::::::::
2011-2016

::::::
testing

::::::
period

:::::
when

:::
the

:::::::
number

:::
of

:::::::
observed

::::::
events

::::
was

:::::::
smaller. Similarly, we do not expect significant

differences in the number tests with this approach, since our method of determining the number of events will result in a280

Poisson distribution of the number of events. However, since the number of events varies in each synthetic catalogue we can

look at the distribution of the number of events in the synthetic data produced by the ensemble of forecast catalogs relative

to the observed number. This is shown in the left panel of Figure 8, with the observed number of events for each time period

shown with a dashed line. Again, the declustered models do better in the 2011-2016 period, though it is clear the observed

number of events is low even for them.285

We might expect the most noticeable differences to occur in the spatial test, because it measures the spatial component

consistency with observed events and because we are now using the full posterior distribution of spatial components, and

therefore potentially allowing more variation in the observed spatial models. The middle panel of Figure 8 shows the spatial

likelihood distribution constructed from simulated catalogues.
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Figure 8. N-test, S-test and pseudo-likelihood results for each of the 6 inlabru models when forecasts are generated from 10 000 synthetic

catalogues sampling from the full inlabru model posteriors. For the n-test, the number of observed events for the 2006-2011, 2011-2016 and

2016-2021 are shown by the red, blue and green dashed lines respectively. For the S- and Pseudo-likelihood tests, the observed test statistic

for each time period is shown as a symbol (red star for 2006-2011, blue diamond for 2011-2016 and green circle for 2016-2021)
:
.
::::::
Models

:::::
include

::::::::::
combinations

::
of

::::::::
smoothed

:::
past

::::::::
seismicity

::::
(ms),

::::
strain

:::
rate

::::
(sr),

:::
fault

:::::::
distance

:::
(fd)

:::
and

:::
fault

:::
slip

::::
rates

::::
(nk),

:::::
where

::
dc

:::::::
indicates

:
a
:::::
model

:::
built

::::
with

:
a
:::::::::
declustered

::::::::
catalogue.
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Similar to the grid-based examples, for the 2006-2011 period (red star indicator) the spatial performance of the SRMS and290

FDSRMS models is better when the full, rather than declustered catalogue, has been used in model construction.

All of the models pass the S-test when considering quantile scores in this time period. Similarly, when testing the 2011-2016

period (test statistic shown with a blue diamond), all of the models built from the declustered catalogue pass the S-test, while

the full-catalogue models do more poorly. In 2016-2021 (green circle), the spatial performance of all models is again poor. The

best-performing model
::::::
models in this time period is

::
are

:
the FDSRMS-declustered model

:::
and

::::::::::::::::::
SRMSNK-declustered

:::::::
models295

(Table 2), with the declustered-catalogue models generally doing better than the full-catalogue models.

Finally, the pseudo-likelihood test (Figure 8, right) incorporates both spatial and rate components of the forecast, much like

the grid-based likelihood. For the inlabru models, the preference between the models for the full and declustered catalogues

changes with time period with both sets of models doing poorly in the 2016-2021 period (green circle). All of the full-catalogue

models pass in 2006-2011 and surprisingly in 2011-2016 and
::
in

:
2016-2021, though some of the quantile scores are again300

quite large and in the upper tails of the likelihood distributions. Like the grid-based likelihood test, the pseudo-likelihood test

penalises for the number of events in the forecast, which allows the full-catalogue models to pass the pseudo-likelihood test

even when they have poor spatial performance, as in the 2011-2016 and 2016-2021 testing periods
:::::
period.

5 Discussion

5.1 Number of events305

While the full-catalogue models performed well in the tests for the first five-year time window, the other two sets of test results

were less promising. This can be largely explained by the number of events that occurred in the 10 year period from 2006-2016

(red and blue backgrounds in Figure 9, top right). In this time 45 events were recorded in the comcat catalog, compared to 32

events in the five years between 2006-2011. In the twenty years from 1984-2004
:::::::::
1985-2005 used in our model construction, a

total of 156
:::
155 events with M > 4.95 were recorded, which is an average of 7.8 events/year.

:::::::::::::::::
Bayona et al. (2022)

::::
found

::::
that310

:::::::
ten-year

:::::::::
prospective

::::
tests

::
of

::::::
hybrid

::::::
RELM

:::::::
models

::::::
mostly

:::::::::::
overestimated

:::
the

:::::::
number

::
of

::::::
events,

:::::
again

:::
due

::
to

:::
the

:::::
small

:::::::
number

::
of

:::::
events

:::
in

:::
the

:::::::::
2011-2020

::::::
testing

::::::
period

::::
used

::
in

::::
their

::::::::
analysis.

:
Helmstetter et al. (2007) explicitly use the average number

events per year with magnitude > 4.95 (7.38) to condition their models. It is therefore not surprising that the declustered

forecasts perform oppositely, with poor performance in the 2006-2011 time period and better performances in the 2011-2016

time period when fewer events occurred. This is a common issue in CSEP testing, reported both in Italy when the five-year315

tests occurred in a time period with a large cluster of events in a historically low-seismicity area (Taroni et al., 2018) and in

New Zealand, where the Canterbury earthquake sequence occurred in the middle of the CSEP testing period (Rhoades et al.,

2018) resulting in significantly more events than expected. Strader et al. (2017) found that four of the original RELM forecasts

overpredicted the number of events in the 2006-2011 time window and 11 overpredicted the number of events in the second 5-

year testing window (2011-2016), including the Helmstetter model. Overall, the inlabru model N-test results were comparable320

to the Helmstetter model performance in the grid-based assessment and performed well at forecasting at least the minimum

number of events in all but the declustered models in the first testing period (table 2).
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Figure 9. Top: Catalogue of events in California from 1985-2021. The period 1984-2004 is used for model construction, and the three testing

periods are shown with red, blue and green backgrounds. The left panel shows the magnitude of events in time and the right the number of

events in each year. Bottom: the comcat catalogues for the three five-year testing intervals.

5.2 Full- and declustered-catalogue models

We did not filter for mainshocks in the observed events, so we might expect the N-test results for the declustered models to do

poorly, but they were consistent with observed behaviour in 2 of the 3 tested time periods in both the grid-based and catalogue325

testing. If we consider only the lower bound of the N-test, the declustered models pass the test in the full 2011-2021 time period

and only perform poorly in 2006-2011, a time period which arguably contained many more than average events (Figure 9).

Similarly, the full catalogue models do poorly on the upper N-test in 2011-16 but otherwise pass in time windows with higher

numbers of events.

The declustered models pass spatial tests more often than the full catalogue models because they are less affected by recent330

clustering, and perhaps benefit from being smoother overall than the full-catalogue models (Figure ??
::::::
Figures

::
3

::
&

::
4). The
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superior performance of the declustered models may not have been entirely obvious had we tested only the 2006-2011 period

and relied solely on the ‘pass’ criterion from the full suite of tests: only the full-catalogue synthetic catalogue forecast models

get a pass in all consistency tests in this time period. This highlights a need for forecast to be assessed over different timescales

in order to truly understand how well they perform, a point previously raised by Strader et al. (2017) when assessing the RELM335

forecasts, and more generally embedded in the evaluation of forecasting power since the early calculations of Lorenz (1963)

for a simple but nonlinear model for Earth’s atmosphere in meteorological forecasting. .

We conclude that neither a full nor declustered catalogue necessarily gives a better estimate of the future number of events

in any 5-year time-period, though the declustered models tend to perform better spatially, and may be more suitable for longer-

term forecasting. Given different declustering methods may retain different specific events and different total numbers of340

events, different declustering approaches may lead to significant differences in model performances, especially in time periods

with a small number of events in the full catalogue. To truly discriminate between which approach is best, a much longer

testing time frame would be needed to ensure a suitably large number of events.

5.3 Spatial performance of gridded and simulated catalogue forecasts

In general, the simulated catalogue-based forecasts were more likely to pass the tests than the gridded models. This is most345

obvious in the first testing period, when the simulated catalogue-based models based on the full-catalogue passed all tests

and those for the declustered catalogues only fail due to the smaller expected number of events. Similarly, in the most recent

testing period (2016-2021) the simulated-catalogue forecasts are able to just pass the S-test where all models fail in the gridded

approach.
:::::::::::::::::
Bayona et al. (2022)

::::::::
suggested

:::
that

:::
the

::::::
spatial

:::::::::::
performance

::
of

:::::::::::
multiplicative

::::::
hybrid

::::::
models

::
in

:::
the

:::::::::
2011-2020

::::::
period

:::::::
suffered

:::
due

::
to

:::
the

::::::::
presence

::
of

:::::::::
significant

:::::::::
clustering

:::::::::
associated

::::
with

:::
the

:::::
2016

:::::::::
Hawthorne

::::::
Swarm

:::
in

::::::::::::
North-Western

:::::::
Nevada350

:
at
:::

the
:::::

edge
::
of

:::
the

::::::
testing

::::::
region

:::
and

:::
the

:::::
2019

:::::::::
Ridgecrest

:::::::::
sequence,

:::
and

::::
that

:::
the

:::::::
absence

::
of

::::
large

:::::::
on-fault

:::::::::::
earthquakes

::
in

:::
the

:::::
testing

::::::
period

:::
had

:::::::::
potentially

:::::::
affected

::::::
model

::::::::::
performance

:::
of

::::::
hybrids

::::
with

::::::::
geodetic

::::::::::
components.

:::::
They

::::::
further

::::::
suggest

::::
that

:::
the

::::::::::
performance

::
of

:::::
these

::::::
models

::
in

:::
this

::::::
testing

::::::
period

:::::
could

::
be

:
a
:::::
result

::
of

:::::::
reduced

::::::::
predictive

::::::
ability

::::
with

::::
time,

:::::
since

::::::
hybrid

::::::
models

::::
have

:::::::::
performed

:::::
better

::
in

::::::::::
retrospective

::::::::
analysis.

The simulated catalogue approach allows us to consider more aspects of the uncertainty in our model. For example, we355

could further improve upon this by considering potential variation in the b-value in the ensemble catalogues which arises from

magnitude uncertainties, an issue that may be particularly relevant when dealing with homogenised earthquake catalogues

(Griffin et al., 2020) or where the b-value of the catalogue is more uncertain (Herrmann and Marzocchi, 2020).

5.4 Roadmap - where next?

The main limitation of the work presented here, and many other forecast methodologies, is how aftershock events are handled.360

Our choice of (a relatively high) magnitude threshold for modelling may have also benefited the full model by ignoring many

small magnitude events that would be removed by a formal declustering procedure. The real solution to this is to formally

model the clustering process.
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The approach presented here conforms strongly with current practice. In time-independent forecasting and PSHA, catalogues

are routinely declustered to be consistent with Poisson occurrence assumptions. Operational forecasting already relies heavily365

on models such as the epidemic type aftershock sequence model(ETAS, Ogata (1988)) to handle aftershock clustering (Mar-

zocchi et al., 2014), but few attempts have been made to account for background spatial effects beyond a simple continuous

Poisson rate. The exceptions to this are changes to the spatial components of ETAS models (Bach and Hainzl, 2012), the recent

developments in spatially-varying ETAS (Nandan et al., 2017) and extensions to the ETAS model that also incorporate spatial

covariates (Adelfio and Chiodi, 2020). However, the more versatile inlabru approach allows for more complex spatial models370

than has yet been implemented with these approaches. The inlabru approach also provides a general framework to test the

importance of different covariates in the model, and a fully Bayesian method for forecast generation as we have implemented

here.

One way to handle these conflicts is to model the seismicity formally as a Hawkes process, where the uncertainty in the

tradeoff between the background and clustered components is explicit and can be formally accounted for. In future work we375

will modify the workflow of Figure 1 to test the hypothesis that this approach will improve the ability for inlabru to forecast

using both time-independent and time-dependent models.

6 Conclusions

For the first time, we present time independent forecasts for California developed with inlabru. We developed three earthquake

forecasts for California considering different combinations of spatial covariates and developed with both the full and declustered380

catalogue in each case, resulting in 6 models in total. These models each include spatial covariates that
::
We

::::
have

::::::::::::
demonstrated

::
the

::::
first

:::::::::
extension

::
of

::::::
spatial

:::::::
inlabru

:::::::
intensity

:::::::
models

:::
for

:::::::::
seismicity

::
to

:::::
fully

:::::::::::::::
time-independent

:::::::
models,

::::::
created

:::::
using

:::::
both

:::::::
classical

:::::::
uniform

:::::
grids

:::
and

::::
fully

::::::::
Bayesian

:::::::::::::
catalogue-type

::::::::
forecasts

:::
that

:::::
make

::::
use

::
of

:::
full

::::::
model

:::::::::
posteriors.

:::
We

:::::::::::
demonstrate

:::
that

:::
the

::::::
inlabru

:::::::
models perform well in retrospective testing of spatial seismicity, which are then extended to spatio-temporal

models by considering the frequency-magnitude distribution and assuming a Poisson distribution of events in time. The385

full-catalogue models each pass
:::::::::::::::
pseudo-prospective

::::::
testing

::::::
mode,

:::::::
passing

:
the standard CSEP tests for number, magnitude

and spatial distribution, and perform favourably with the Helmstetter model tested in the original RELM experiment
:::
and

:::::::::
performing

:::::::::
favourably

::
in

::::::::::
competition

::::
with

:::::::
existing

::::::::::::::
time-independent

::::::
CSEP

::::::
models over the 2006-2011 period, demonstrating

the suitability of inlabru models for time-independent earthquake forecasting. The declustered catalogues perform
:
.
::::::::
Forecasts

:::::::::
constructed

:::::
using

::
a

:::::::::
declustered

:::::::::
catalogue

::
as

:::::
input

::::::::
performed

:
less well in this time period due to the lower expected number390

of
:::::
terms

::
of

:::
the

::::::
number

:::
of

:::::::
expected

:
events, but perform better in spatial tests and overall in the 2011-2016 time period, where

::::::::::
nevertheless

::::::::
described

::::::
spatial

:::::::::
seismicity

::::
well

::::
even

:::::
where

:::
the

::::::
testing

::::::::
catalogue

::::
had

:::
not

::::
been

:::::::::::
declustered,

:::
and

:::
the

::::::::::
declustered

::::::
models

:::::::::
performed

:::::
better

:::
than

:
the full catalogue models overestimate

::
in

:::
the

:::::::::
2011-2016

:::::
testing

:::::::
period.

::::::
Further

::::::
testing

::
on

::::::
longer

::::::::
timescales

::::::
would

::
be

::::::::
necessary

::
to

::::::
assess

:
if
::::
full

::
or

:::::::::
declustered

:::::::::
catalogues

:::::::
provide

:
a
:::::
better

:::::::
estimate

::
of

:
the number of events quite

significantly. Neither the full-catalogue or declustered-catalogue models perform well in
:::::::
expected

::::::
events

:::
on

:::
the

:::::::::
timescales395

::::::::
examined

::::
here.

:::
In the most recent testing period, with much worse spatial performance

::
i.e.

:::
the

::::
one

::::
with

:::
the

:::::::
longest

::::
time

:::
lag
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:::::::
between

:::
the

:::::::
learning

:::
and

:::
the

::::::
testing

::::::
phase,

::::::
neither

::::
full

::
or

::::::::::
declustered

::::::::
catalogue

::::::
models

:::::::
perform

:::::
well,

:::::::::
suggesting

::
a

:::::::
possible

:::::
degree

::
of

:::::::
memory

::::
loss

::::
over

:
a
:::::::
decadal

::::::::
timescale

::
in

::::
both

:::::::
clustered

::::
and

:::::::::
declustered

:::::::::
seismicity. Simulated catalogue forecasts that

make use of the full posteriors of the model pass
::
full

::::::
model

::::::::
posteriors

::::::
passed consistency tests more often than their grid-based

equivalentsby better accounting
:
,
::::
most

:::::
likely

::::
due

::
to

::::
their

::::::
ability

::
to

:::::::
account for uncertainty in the model itself,

::::::::
including

::::
test400

::::::
metrics

:::
that

:::
do

:::
not

:::
rely

:::
on

:::
the

:::::::
Poisson

::::::::::
assumption.

::::
This

:::::::::::
demonstrates

:::
the

:::::::
potential

::
of

:::::
fully

:::::::
Bayesian

::::::::::
earthquake

:::::::
forecasts

::::
that

::::::
include

::::::
spatial

::::::::
covariates

::
to

:::::::
improve

:::::
upon

:::::::
existing

:::::::::
forecasting

:::::::::
approaches.
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