Response to comments of Anonymous Referee 1 & 2 on

Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions

Delfino et. al.

Editor's COMMENTS	Authors' RESPONSES
Dear authors	Dear Editor,
although the manuscript has improved a lot with the	Thank you very much for giving us the opportunity to
provided revisions there are: (a) some technical corrections	submit an improved version of the manuscript. We
which should be made and b) most importantly a concern	appreciate the thoroughness and objectiveness of the
on the use of 2-way nesting in the sensitivity experiments.	comments and have addressed the specific concerns raised
For that reason i would like to invite you to revise your	by the Reviewers, particularly the concern on the use of
manuscripts addressing the reviewers comments. Your	two-way nesting. Please note that, consistent with our
manuscript will be further reviewed by the editor and the	original plan for this study, we are not going to attempt to
referees. We thank you for your efforts that aim at	build a second study based on the use of 1-way nesting, in
improving the manuscript and bring it to the NHESS	the study of tropical cyclones: we have provided ample
standards.	literature review to support our decision, as well as the
	expert opinion of WRF developers. Please refer to our
	response to Reviewer 2 for more details.
	All changes are highlighted in the revised manuscript. All
	line numbers refer to the revised manuscript with tracked
	changes.
Reviewer 1's COMMENTS	Authors' RESPONSES
General comments	
accepted subject to technical corrections.	Thank you very much for the positive review. We have
The authors have addressed successfully the suggested	made the suggested technical corrections in the revised
corrections. The article will be acceptable for publication	manuscript. Please see below our specific responses and
after a few technical corrections are performed.	refer to the attached revised manuscript for more details.
Suggested corrections:	
Line 130: please insert a bullet at the beginning of the	Revised in Lines 128 – 131 of the revised manuscript
question (similarly to the question above).	
Line 206: " and 5-30 degrees North.".	Revised in Line 238 of the revised manuscript

Anonymous Referee #1 [Report #2 Submitted on 19 Jul 2022]

Table 1, 1st row (2nd column) and 2nd line of the caption	Revised in Table 1, 1st Row/2nd Column, of the revised
of Figure 4: "Fritsch".	manuscript
Line 281: " domains, include:".	Revised in Line 322 of the revised manuscript
Line 283 and 10th row (right column) of Table 3:	Revised in Table 3 of the revised manuscript
"Obukhov".	
Table 3, 10th row (left column): "Surface Layer" instead	Revised in Table 3 of the revised manuscript
of "180-hour period".	
Line 342 and lines 351-352: It is mentioned in line 342	Thank you very much for spotting this. We have corrected
that the simulations using the TK scheme have a mean	the figures in Lines 393 of the revised manuscript.
DPE of 47 km. This mean value is calculated from the	
average of the 3 TK simulations with nudging	
(TKsnONsf0, TKsnONsf1, TKsnONsf2) and the 3 TK	
simulations without nudging (TKsnOFFsf0 TKsnOFFsf1	
TKsnOFFsf2). However, lines 351-352 mention that the	
mean DPE of the former TK simulations (with nudging) is	
68 km while the mean DPE of the latter simulations	
(without nudging) is 87km. Both errors (68 km, 87 km) are	
above the overall TK mean of 47 km. Which errors are not	
correct?	
Lines 359-360: The sentence "The one and two black stars	We have removed these in Lines 400-401 of the revised
land, respectively" must be removed because the single	manuscript.
and double stars do not exist in this figure in the revised	
version of the article.	
Line 366: In Figure 4b the maximum wind speed of the	Thank you very much for spotting this. Revised in Lines 407-
control simulation KFsnOFFsf0 is stronger than 45 m/s	408 of the revised manuscript.
(and less than 50 m/s). After this correction, please also	
correct its difference from the observed max wind speed in	
line 367.	
Line 367: There is a difference of 44 hPa (and not 38 hPa)	Thank you very much for spotting this. Revised in Line 408
between the min mslp of KFsnOFFsf0 (939 hPa) and the	of the revised manuscript.
observed min mslp (895 hPa) of the typhoon.	
Figure 4: The lower row of panels is identical to the upper	Apologies for this, the lower and upper panels are merely
one.	duplicates. We have removed the lower panel in the revised
	manuscript.
Line 399: " without nudging has".	Revised in Line 441 of the revised manuscript
Line 517: " KF scheme (Fig. 11 b-d) than those that	Revised in Line 560 of the revised manuscript
used TK scheme (Fig. 11 e-g).".	

Anonymous Referee #2 [Report #1, Submitted on 6 July 2022]

Reviewer 2's COMMENTS	Authors' RESPONSES
General comments	
reconsidered after major revisions:	Thank you very much for the positive feedback. We continue to strive
The revised manuscript is significantly	for the improvement of the manuscript, particularly based on the
improved. The authors were able to address the	concerns raised by the reviewer. Please see below our specific responses
concerns of the reviewers.	and refer to the attached revised manuscript for more details.
Major Concerns:	
Thank you for considering my 1st major	Thank you very much. We have addressed the 1st major comment and
comment in the literature review part of the	we are happy that it has been to your satisfaction.
paper.	
For my second concern, it is now clear that two-	Yes, that is correct. We have used two-way nesting in the sensitivity
way nesting was used, which implies all D1	runs following recommended practice and previous studies that looked
forcings are different for all sensitivity runs	at sensitivities to physics parameterizations in WRF (Wu et al., 2019,
since WRF would not allow having different	Biswas et al., 2014; Li and Pu, 2009; Parker et al., 2017; Spencer and
parameterizations in a two-way nesting run.	Shaw 2012; Bopape et al., 2021), studies that simulated Typhoon
Kindly address the following:	Haiyan in the Philippines (Li et al., 2018; Nakamura et al., 2016) as
	well as TC cases in other basins (Parker et al., 2018; Mittal et al., 2019;
	Reddy et al 2020), among others. Please see Table 1 below, containing
	ample evidence from the literature, to support our decision to employ
	two-way nesting for the study of tropical cyclones.
	We have tried to address the specific comments as shown below.
1. Include two-way nesting WRF-related	Thank you for this suggestion. We have added the following discussion
sensitivity studies in your literature review.	in Lines 190 – 199 of the revised manuscript:
What is the difference between 1-way and 2-	
way nesting methods?	"Higher-resolution nested model configuration is widely used in
	numerical weather prediction and regional climate modelling. The main
	reason for this is because performing high resolution simulation over
	very large areas (e.g. an entire major oceanic basin) is computationally
	too expensive (Kueh et al 2019). The communication between the nested
	domains can be implemented using one-way or two-way nesting. One-
	way nesting means that the nested domains are run separately and
	sequentially starting with the outer domain i.e. the model is first run for
	the outer domain to create and output which is used to supply the inner
	domain's boundary file. In a two-way nesting configuration, both
	domains are run simultaneously and interact with each other, so that
	the highest possible resolution information produced by the innermost
	domain affects the solutions over the overlapping area of the coarser
	domains. The input from the coarse outer domain is introduced through
	the boundary of the fine inner domain, while feedback to the coarse
	domain occurs all over the inner domain interior, as its values are

replaced by combination of fine inner domain values (Alaka et al., 2022; Mure-Ravaud et al 2019; Harris and Duran 2009)."

We have also added a short discussion on this based on the literature in the revised manuscript (Lines 200 to 215), and also shown below:

"We have used two-way nesting in the sensitivity runs, rather than oneway nesting, following recommended practice and previous studies that looked at sensitivities to physics parameterizations in WRF (Wu et al., 2019, Biswas et al., 2014; Li and Pu, 2009; Parker et al., 2017; Spencer and Shaw 2012; Bopape et al., 2021), studies that simulated Typhoon Haiyan in the Philippines (Li et al., 2018; Nakamura et al., 2016), as well as TC cases in other basins (Parker et al., 2018; Mittal et al., 2019; Reddy et al 2020), among others. Studies of the differences in using 1way and 2-way nesting in regional modelling have been, the topic of multiple previous papers (e.g. Spencer and Shaw 2012; Matte et al. 2016; Raffa et al., 2021; Lauwaet et al. 2013; Harris and Durran, 2010, Chen et al 2010; Gao et al., 2019). A comprehensive discussion on the differences and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010). Studies such as those of Chen et al (2010) and Gao et al. (2019) have shown that the use of one-way or twoway nesting showed little difference in the results, but some studies showing that two-way nesting improves the simulations of TCs e.g. Typhoon Parma in the Philippines (Spencer and Shaw et al., 2012) and Typhoon Kai-tak (Wu et al., 2019). In addition, previous TC case studies in the Philippines have also used the two-way nesting configuration e.g. Mori et al. (2014), Takayabu et al. (2015), Nakamura et al (2016) and in other TC basins (Parker et al., 2018; Davis et al., 2008; Mittal et al., 2019; Reddy et al., 2020), as well as looking at sensitivity to different physics parameterizations (Wu et al 2019, Biswas et al 2014, Li and Pu 2009) as summarized in Table 1 of the Appendix. Two-way nesting is also used in operational TC forecasting (Mehra et al., 2018) and in the experimental Hurricane WRF system (Zhang et al., 2016) as well as in Convection-Permitting Regional Climate Models (Lucas-Picher et al., 2021)." 2. Again, even though all runs have the same We want to make it absolutely clear that two-way nesting was used domain settings (dx,dt,nx,ny etc.), it seems exclusively in our experiments and that 2-way nesting underpins the inappropriate and difficult to compare D2 communication between D1 and D2; we have not used one-way nesting sensitivities on TC track and intensity to model in any of our experiments. One-way forcing still comes, of course, from parameterizations if the initial forcing (D1) for the outer boundaries of the coarsest domain, where information from the

forcing GCM enters the coarsest regional domain, D1.

KF and TK experiments do not have the same

model physics. That is, KF runs have KF D1 forcings, while TK runs have TK D1 forcings.

The purpose of the coarsest domain, D1, is to mediate the signals originating from the entirely different physics package in the driving GCM (which enters D1 at the outer boundaries), and the physics that we are trying to study in the inner domain. We do not want to introduce a third physical parametrization between GCM and RCM, on the coarse domain, which could in principle be done with 1-way nesting, but is not a modelling strategy commonly adopted in the study of tropical cyclones (see our literature review, and below).

	Therefore, the true comparison of physics performance is inside the
	finest domain, D2, while D1 is acting as more of a mediator. Since we
	are exclusively using two-way nesting and there is feedback from the
	outer to the inner domain at each time step and vice versa, it is crucially
	important that the same physics parameterization is used in both
	domains, otherwise we would introduce spurious noise at each time
	step. This is the recommended practice in using WRF with multiple and
	nested domains (Werner and Wang, 2017; Dudhia 2015) i.e. all physics
	schemes must be the same for all domains except for when cumulus
	scheme must be turned off in 3-4km grid intervals (Chen 2022, personal
	communication, 25 July 2022). Multiple other studies point out the
	various issues in attempting to employ two-way nesting with differing
	physics parameterization across the RCM nest boundaries (e.g. in
	precipitation fields of the mother/outer domain (Dudhia 2015, Warner
	and Hsu 2000) and used as in past studies e.g. Wang and Wang,
	2014; Islam et al., 2015). The use of different cumulus schemes in
	different domains is also prohibited in WRF.
How much of the sensitivity is caused by the	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and parameterizations.	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations in the use of 2-way nesting in regional climate simulations for TCs are
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and parameterizations. If you perform a 1-way nesting simulation, how	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations in the use of 2-way nesting in regional climate simulations for TCs are discussed in Hashimoto et al (2016).
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and parameterizations. If you perform a 1-way nesting simulation, how much does it differ from its two-way nesting	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations in the use of 2-way nesting in regional climate simulations for TCs are discussed in Hashimoto et al (2016).
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and parameterizations. If you perform a 1-way nesting simulation, how much does it differ from its two-way nesting counterpart? May I suggest 1-way nesting	different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations in the use of 2-way nesting in regional climate simulations for TCs are discussed in Hashimoto et al (2016). As mentioned above, we have chosen to perform a study of TCs with 2-
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and parameterizations. If you perform a 1-way nesting simulation, how much does it differ from its two-way nesting counterpart? May I suggest 1-way nesting experiments as part of the supplementary (initial	 different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations in the use of 2-way nesting in regional climate simulations for TCs are discussed in Hashimoto et al (2016). As mentioned above, we have chosen to perform a study of TCs with 2-way nesting, because it is the predominant approach in the literature, as
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and parameterizations. If you perform a 1-way nesting simulation, how much does it differ from its two-way nesting counterpart? May I suggest 1-way nesting experiments as part of the supplementary (initial runs) or major experiments to show the nesting	 different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations in the use of 2-way nesting in regional climate simulations for TCs are discussed in Hashimoto et al (2016). As mentioned above, we have chosen to perform a study of TCs with 2-way nesting, because it is the predominant approach in the literature, as well as reflective of our approach in the study of scale interactions,
How much of the sensitivity is caused by the interactions of D1 and D2 (due to 2-way nesting), and how much from changing model physics/configuration? Kindly show and separate the contribution/effects of the nesting method (1-way vs. 2-way nesting) and parameterizations. If you perform a 1-way nesting simulation, how much does it differ from its two-way nesting counterpart? May I suggest 1-way nesting experiments as part of the supplementary (initial runs) or major experiments to show the nesting method's influence on the simulations?	 different domains is also prohibited in WRF. Thank you very much for pointing this out. The uncertainty related to the use of multiple nested grids can result from mismatched model physics across nested-domain boundaries, therefore consistency between nested grids is important (Kueh et al., 2019). A comprehensive discussion on the difference and uncertainties associated with 1-way or 2-way nesting can also be found in Harris (2010), and some limitations in the use of 2-way nesting in regional climate simulations for TCs are discussed in Hashimoto et al (2016). As mentioned above, we have chosen to perform a study of TCs with 2-way nesting, because it is the predominant approach in the literature, as well as reflective of our approach in the study of scale interactions, which is only possible with 2-way nesting. Please see Table 1 below

indicated in this response to support our decision. Studies of the differences in 1-way and 2-way nesting in regional modelling are, instead, the topic of multiple papers already written in the past (e.g.

	Spencer and Shaw 2012; Matte et al. 2016; Raffa et al., 2021; Lauwaet et al. 2013; Harris and Durran, 2010, Chen et al 2010; Gao et al., 2019). For example, Spencer and Shaw (2012) showed that the intensity of simulated Typhoon Parma (Philippines) was found to be improved (more accurate) when two-way nesting was used than with one-way nesting. Higher accuracy and efficiency were also shown using two-way nesting in simulating Typhoon Kai-tak (Wu et al., 2019). We feel that performing 1-way simulations would be substantial additional work and would greatly increase the length of the paper and distract from the main message. We feel that the reviewer is asking for an additional second study, both in terms of the volume of work and the length of the new text+figures, but mostly in terms of the type of study that we would be conducting if we were to re-run all experiments with 1-way nesting. We hope that the discussion above based on literature,
	and as included in the revised manuscript, would suffice.
Since two-away nesting implies D1-D2 interactions, both domain runs should be considered in the sensitivity analysis? What are the results of D1 runs?	Since we have exclusively used two-way nesting, we think that it is not necessary to show the result from the outer domain (D01) since a) in the overlapping region, the results of D01 are overwritten at each time step by the solutions of D02; b) as explained above, D01 is mostly an intermediary between GCM and RCM: as shown in most studies with a similar setup, D01 is used as a means to ensure smooth results for the inner domain (D02).
	Nevertheless, for the purpose of this response, we have shown some of results from D01 as indicated in our earlier response to the first round of review (Supplementary Figure 8). But we believe that it is not necessary to show in the final manuscript.
Minor suggestions	
1. Line 423-425 and other sections with surface roughness length discussion: Kindly check also other references (e.g. Montgomerry et al 2010, Smith et al 2014, their references, and other	Thank you for this suggestion. We have added a short discussion on this based on the literature in the revised manuscript (Lines 291-300), and also shown below:
studies) on the impact of friction (Cd) to tropical cyclones.	"There are limited studies on the sensitivity of TC intensity due to surface heat flux because to a lack of in-situ measurements (Montgomery et al., 2010; Green and Zhang, 2013; Smith et al., 2014), particularly under high-wind conditions (Liu et al., 2014). Emanuel (1986) put forward the idea that TC intensity is proportional to the square root of the ratio of the surface exchange coefficients of enthalpy, and momentum. According to Zhang et al. (2015), increasing surface friction would also increase boundary layer inflow, which would subsequently boost angular momentum convergence and intensify a TC. However, as surface friction also increases the momentum and heat

	dissipation to boundary layer winds, this might result in negative impact
	on TC intensity (Liu et al., 2014). Despite and playing a significant role
	in surface heat fluxes, Chen et al. (2018) hypothesized that the influence
	of on TC growth was minimal because it caused moderate sea-surface
	cooling. Further investigation on these aspects of surface heat flux is
	required in the future."
2. For the maps on environmental factors, may I	Thank you for this suggestion. We have updated the basemaps to higher
suggest setting the base map to high resolution.	resolution and replaced the figures (12,13,14) in the revised manuscript.
If using GrADS, set mpdset hires.	
Thank you and congratulations!	Thank you as well.

Table 1 Summary of some studies that used two-way nesting in WRF for tropical cyclone simulations as NWP or RCM

Authors and Year	TC Cases	Basin / Region	Resolution (Domains)
Spencer and Shaw 2012*	TY Parma	Western North Pacific (WNP)	12km (D01); 3k (D02)
Li et al 2018*	TY Haiyan	WNP	18–45 km (D01), 6–15 km (D02), and 2–5 km (D03)
Nakamura et al 2016	TY Haiyan	WNP	not specified
Wu et al 2019*	Typhoon Kai-tak	WNP	15km (D01), 5km (D02)
Biswas et al 2014*	Hurricane Katia	Atlantic and Eastern North Pacific	HWRF ~27km (D01), ~9km (D02), ~3 km (D03)
Li and Pu 2009*	Hurricane Emily	Atlantic Basin	27km (D01), 9km (D02), 3 km (D03)
Davis et al 2008	Hurricane Katrina	Atlantic	12 (D01), 4 (D02)
Fierro et al 2009	Hurricane Rita	Atlantic	15–5-, 12–4-, 9–3-, 6–2-, and 3–1-km
Parker et al 2017*	TC Yasi	Australia	36 (D01), 12 (D02)
Parker et al 2018	TC Yasi, Ita, Marcia	Australia	36 (D01), 12 (D02)
Bopape et al 2021*	TC Idai	Africa	6km (D01)
Mittal et al 2019	TC Phailin (2013)	Bay of Bengal	30 (D01), 10 (D02)
Reddy et al 2020	TC Vardah, Madi, Hudhud and Phailin	Bay of Bengal	27 (D01), 9 (D02), 3 (D03)

*Focused on sensitivity studies on different physics parameterizations (including cumulus schemes)

References

Alaka, G. J., Jr., Zhang, X., & Gopalakrishnan, S. G. (2022). High-Definition Hurricanes: Improving Forecasts with Storm-Following Nests, Bulletin of the American Meteorological Society, 103(3), E680-E703. Retrieved Aug 1, 2022, from https://journals.ametsoc.org/view/journals/bams/103/3/BAMS-D-20-0134.1.xml

Bopape, M.-J.M.; Cardoso, H.; Plant, R.S.; Phaduli, E.; Chikoore, H.; Ndarana, T.; Khalau, L.; Rakate, E. Sensitivity of Tropical Cyclone Idai Simulations to Cumulus Parametrization Schemes. Atmosphere 2021, 12, 932. https://doi.org/ 10.3390/atmos12080932

Biswas, M. K., L. Bernardet, and J. Dudhia (2014), Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model, Geophys. Res. Lett., 41, 9113–9119, doi:10.1002/2014GL062071.

Chen, M. (2022). Personal Communication. 25 July 2022.

Chen, S., T. J. Campbell, H. Jin, S. Gaberšek, R. M. Hodur, and P. Martin, 2010: Effect of two-way air-sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, 3579–3602. <u>https://apps.dtic.mil/sti/pdfs/ADA530501.pdf</u>

Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaria, M., ... & Xiao, Q. (2008). Prediction of landfalling hurricanes with the advanced hurricane WRF model. *Monthly weather review*, *136*(6), 1990-2005. Dudhia, J.: Overview of WRF Physics. Retrieved from http://homepages.see.leeds.ac.uk/~lecag/wiser/sample_wiser_files.dir/Physics_Dudhia.ppt.pdf 2015.

Di Z, Gong W, Gan Y, Shen C, Duan Q. Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean. Atmosphere. 2019; 10(5):233. https://doi.org/10.3390/atmos10050233

Fierro, A. O., Rogers, R. F., Marks, F. D., and Nolan, D. S. (2009). The Impact of Horizontal Grid Spacing on the Microphysical and Kinematic Structures of strong Tropical Cyclones Simulated with the WRF-ARW Model. Monthly Weather Rev. 137, 3717–3743. doi:10.1175/2009mwr2946.1

Gao, K., Harris, L., Chen, J.-H., Lin, S.-J., & Hazelton, A. (2019). Improving AGCM hurricane structure with two-way nesting. Journal of Advances in Modeling Earth Systems, 11, 278–292. <u>https://doi.org/10.1029/2018MS001359</u>

Harris, L. M. (2010). On the relative performance of one-way and two-way grid nesting. Dissertation, University of Washington.

Harris, L. and Durran, D. (2009). An Idealized Comparison of One-Way and Two-Way Grid Nesting. M onthly WeatherReview.AmericanMeteorologicalSociety.Volume138.https://atmos.uw.edu/~durrand/pdfs/AMS/2010_Harris_Durran_MWR.pdf

Hashimoto, A., Done, J.M., Fowler, L.D. et al. Tropical cyclone activity in nested regional and global grid-refined simulations. Clim Dyn 47, 497–508 (2016). https://doi.org/10.1007/s00382-015-2852-2

Islam, T., Srivastava, P.K., Rico-Ramirez, M.A. et al.: Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics. Nat Hazards 76, 1473–1495, doi:10.1007/s11069-014-1494-8, 2015.

Kueh, M.-T., Chen, W.-M., Sheng, Y.-F., Lin, S. C., Wu, T.-R., Yen, E., Tsai, Y.-L., and Lin, C.-Y.: Effects of horizontal resolution and air–sea flux parameterization on the intensity and structure of simulated Typhoon Haiyan (2013), Nat. Hazards Earth Syst. Sci., 19, 1509–1539, doi:10.5194/nhess-19-1509-2019, 2019.

Lauwaet, D., Viaene, P., Brisson, E., Van Noije, T., Strunk, A., Van Looy, S., ... Janssen, S. (2013). Impact of nesting resolution jump on dynamical downscaling ozone concentrations over Belgium. Atmospheric Environment, 67, 46–52. https://doi.org/10.1016/j.atmosenv.2012.10.034

Li X, Pu Z. Sensitivity of Numerical Simulations of the Early Rapid Intensification of Hurricane Emily to Cumulus Parameterization Schemes in Different Model Horizontal Resolutions, Journal of the Meteorological Society of Japan. Ser. II, 2009, Volume 87, Issue 3, Pages 403-421, Released on J-STAGE July 08, 2009, Online ISSN 2186-9057, Print ISSN 0026-1165, https://doi.org/10.2151/jmsj.87.403, https://www.jstage.jst.go.jp/article/jmsj/87/3/87_3_403/ article/-char/en

Li, F., Song, J. & Li, X. A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013). Nat Hazards 92, 647–671 (2018). <u>https://doi.org/10.1007/s11069-018-3218-</u> \underline{y}

Liu, L., Wang, G., Zhang, Z. et al. Effects of Drag Coefficients on Surface Heat Flux during Typhoon Kalmaegi (2014). Adv. Atmos. Sci. 39, 1501–1518 (2022). https://doi.org/10.1007/s00376-022-1285-1

Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., Kotlarski, S., & Caillaud, C. (2021). Convection-permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change, 12(6), e731. <u>https://doi.org/10.1002/wcc.731</u>

Matte, D., Laprise, R. & Thériault, J.M. Comparison between high-resolution climate simulations using single- and doublenesting approaches within the Big-Brother experimental protocol. *Clim Dyn* **47**, 3613–3626 (2016). https://doi.org/10.1007/s00382-016-3031-9

Mehra, Vijay Tallapragada, Zhan Zhang, Bin Liu, Lin Zhu, Weiguo Wang, Hyun-Sook Kim. (2019). Advancing the State of the Art in Operational Tropical Cyclone Forecasting at Ncep, Tropical Cyclone Research and Review, Volume 7, Issue 1, 2018, Pages 51-56, ISSN 2225-6032, <u>https://doi.org/10.6057/2018TCRR01.06</u>.

Mure-Ravaud M, Kavvas ML, Dib A. Investigation of Intense Precipitation from Tropical Cyclones during the 21st Century by Dynamical Downscaling of CCSM4 RCP 4.5. Int J Environ Res Public Health. 2019 Feb 26;16(5):687. doi: 10.3390/ijerph16050687. PMID: 30813587; PMCID: PMC6427206.

Mittal, R., Tewari, M., Radhakrishnan, C., Ray, P., and Singh, T.: Response of tropical cyclone Phailin (2013) in the Bay of Bengal to climate perturbations. Climate Dynamics, (2013). doi:10.1007/s00382-019-04761,2019.

Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K., and Yasuda, T.: Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, Volume 41, Issue 14, Pages 5106-5113. doi:10.1002/2014GL060689, 2014.

Nakamura, R., Shibayama, T., Esteban, M. and Iwamoto, T.: Future typhoon and storm surges under different global warming scenarios: case study of typhoon Haiyan (2013). Nat. Hazards, 82, 1645-1681. doi:10.1007/s11069-016-2259-3, 2016.

Parker CL, Lynch AH, Mooney PA (2017) Factors affecting the trajectory and intensification of tropical cyclone yasi (2011). Atmos Res. <u>https://doi.org/10.1016/j.atmosres.2017.04.002</u>

Parker, C.L., Bruyère, C.L., Mooney, P.A. et al.: The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia. Clim Dyn 51, 3467–3485, doi:10.1007/s00382-018-4091-9, 2018.

Raffa, M., Reder, A., Adinolfi, M., & Mercogliano, P. (2021). A comparison between one-step and two-step nesting strategy in the dynamical downscaling of regional climate model COSMO-CLM at 2.2 km driven by ERA5 reanalysis. Atmosphere, 12(2), 260. https://doi.org/10.3390/atmos12020260

Reddy, P., Sriram, D., Gunthe, S.S. et alet al.,, (2021). Impact of climate change on intense Bay of Bengal tropical cyclones of the post-monsoom season: a pseudo global warming approach. Clim Dyn 56, 2855–2879. https://doi.org/10.1007/s00382-020-05618-3

Spencer P, Shaw B, Pajuelas B. 2012. Sensitivity of typhoon Parma to various WRF model configurations. In Technical Report on 92nd American Meteorological Society Annual Meeting, 26 January 2012, New Orleans, LA; 608–619. American Meteorological Society: Boston, MA. 2012.

Takayabu, I., Hibino, K., Sasaki, H., Shiogama, H., Mori, N., Shibutani, Y. and Takemi, T.: Climate change effects on the worst-case storm surge: a case study of Typhoon Haiyan, Environ. Res. Lett. 10 089502. doi:10.1088/1748-9326/10/6/064011, 2015.

Warner, T. T. and Hsu, H. M.: Nested-model simulation of moist convection: the impact of coarse-grid parameterized convection on fine-grid resolved convection, Mon. Wea. Rev., 128, 2211–2231, 2000.

Werner, K. and Wang, G: Nesting in WRF. Climate Science Org Australia. Retrieved from /https://www.climatescience.org.au/sites/default/files/werner_nesting.pdf, 2017.

Wu, Z., Jiang, C., Deng, B. et al. Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions. Acta Oceanol. Sin. 38, 74–83 (2019). <u>https://doi.org/10.1007/s13131-019-1459-z</u>

Zhang, X., S. G. Gopalakrishnan, S. Trahan, T. S. Quirino, Q. Liu, Z. Zhang, G. Alaka, and V. Tallapragada, 2016: Representing multiscale interactions in the Hurricane Weather Research and Forecasting modeling system: Design of multiple sets of movable multi-level nesting and the basin-scale HWRF forecast application. Wea. Forecasting, 31, 2019–2034, doi:10.1175/WAF-D-16-0087.1.

Notification to the authors from the Editorial Team [Validation, 4 July 2022]

Notification to the authors	Authors' ACTIONS
1. For the next revision, please rename the supplement's	We have renamed the Supplementary Figures (see revised
figures regarding our standards: https://www.natural-	material) and are now numbered sequentially.
hazards-and-earth-system-	
sciences.net/submission.html#assets / Supplements /.	
Please note that figures must be numbered sequentially,	
without reference to the numbering of subsections.	
2. Regarding of sources of the supplement figures: for the	All Supplementary Figures were created by the authors. The
next revision, please check if your figures containing	source of the data in Supplementary Figure 9a has been
maps/aerial images require a copyright statement/image	provided in the figure title.
credit and add it to the figures (or captions)	
(https://publications.copernicus.org/for_authors/manuscr	
ipt_preparation.html#mapsaerials). If these figures were	
entirely created by the authors, there is no need to add a	
copyright statement or credit. In that case it is important	
that you confirm this explicitly by email.	
3. Regarding the figure #8: for next revision, please add	Revised in Lines 531-532 on the revised manuscript
the sources from footnote to the figure's caption.	