Response to comments of Anonymous Referee #2 on

Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions

Delfino et. al.

RC2: <u>https://https://doi.org/10.5194/nhess-2021-400-RC2</u>; Anonymous Referee #2

Recommendation: MAJOR REVISION

Reviewer 2's COMMENTS	Authors' RESPONSES
General comments	
The authors utilized WRF-ARW to simulate Typhoon	Dear Referee,
Haiyan and investigate the role of cumulus convection	
(KF and TK schemes), surface flux parameterizations,	Thank you very much for highlighting the importance of our
spectral nudging, and initial and boundary conditions	work, the useful feedback on the submitted manuscript, and for
(ERA5 and EDA). They concluded that the TK scheme	giving us the opportunity to submit a much improved version
and spectral nudging improve track simulations with	of the manuscript. We have addressed the major and minor
lower mean DPE than the other model configurations.	concerns raised. All changes are highlighted in the revised
On the other hand, KF scheme and varying the surface	manuscript and line numbers refer to the revised manuscript
flux options improve the intensity.	with tracked changes.
This type of study will definitely be of a great addition to	
works that optimize a model's configuration of TC	Please see below our specific responses and refer to the
simulations in the Philippines, but in its current form is	attached revised manuscript and supplementary file for more
not yet ready for publication. Major parts of the paper	details.
should be rewritten due to the following major concerns:	
Major Concerns:	
1. (Line 55~Line 105, Line 125) Although a future	Thank you for pointing this out. The overall approach of the
plan for conducting pseudo-global warming simulations	study is that we have used WRF configured as NWP to get the
was mentioned, WRF-ARW was used in the paper as a	best configuration for hindcast TC case simulations and
numerical weather prediction (NWP) model to simulate a	eventually use that configuration to simulate the TC cases with
weather event (TC Haiyan). However, the literature	future climate forcings. The results included in this paper are
review (introduction) seems to interchange regional	from the former i.e. as a sensitivity study using Typhoon
climate models (climatological simulations) with	Haiyan as the TC case. We have revised the manuscript to
numerical weather prediction models (short-term	make the distinction clearer i.e. studies with NWP event-based
weather events) resulting in mixed and improper	hindcast simulations to build a foundation on sensitivities to

citations of papers that use RCMs and NWPs. Event	model parameterizations and settings. We have also cited some
simulations are different from climatological runs.	studies using WRF as LAM with future climate forcings as
Although WRF and other NWPs can also be used as	initial and lateral boundary conditions in support of the
RCM, they are usually modified to efficiently work for	rationale behind the bigger study. Significant revisions were
climatological simulations (e.g. CLWRF, RegCM	made in Pages 2-4, Lines 55 – 170 in the revised manuscript.
RCM version of MM5, NHRCM – RCM version of	
JMA/MRI NHM). NHRCM, and not WRF, is the model	Apologies for this mistake. Cruz et al 2016 should read Cruz
used by Cruz et al., 2016 in Line 132.	and Narisma 2016. We have revised this in Page 1, Lines 71-
	72 and included in references of the revised manuscript.
The paper literature review should focus on studies that	We have included additional discussion in the introduction,
conduct TC short-term simulations using models (e.g.	particularly that of surface flux options e.g. from a study by
WRF, NHM) that are considered as NWP and not RCM.	Kueh et al., 2019 using WRF (Page 3, Lines 88-102 of the
	revised manuscript). Additional studies on ICBC (Islam et al.,
The literature review also fell short in terms of	2015; Mohanty et al., 2010; Shepherd and Walsh, 2016) and
discussing studies that tackle the other sensitivity	spectral nudging (in WRF as NWP Mori et al., 2014; Kueh et
parameters such as spectral nudging, surface flux, and	al., 2019 and as RCM Shen et al., 2017; Cha et al., 2011) have
ICBC. The reviewer hopes to see a clearer revised	also been added in the introduction section (Pages 2-3, Lines
Introduction with an additional review on the said	88-123).
parameters.	
2. The objective and analysis of this paper are very	Thank you for these clarifications. There is only one
promising but the initial forcing is also very critical to	mother/outer domain (D01) and child/inner (D02) domain and
consider it as a sensitivity analysis. Kindly clarify if the	the same domain settings were used in all the sensitivity
researchers downscaled only one mother domain (D1)	experiments (as shown in Figure 1 of the submitted
for all D2 sensitivity runs? If not, then it will be	manuscript). The same physics parameterizations were also
inappropriate and difficult to compare the sensitivity of	used in both outer (D01) and inner (D02) domains. We have
TC track and intensity to parameterizations if the initial	explicitly indicated these in the text (Page 6, Lines 235-245)
forcing (D1) for each experiment have different model	and in Table 3 of the revised manuscript.
physics. This might explain the different (or larger	
differences of) values of intensities at t=0 in Figure 4.	Since we are using two-way nesting and there is feedback from
The reviewer strongly suggests to reconsider rerunning	the outer to the inner domain and vice versa, it is important that
all simulations using only one D1 simulation as forcing	the same physics parameterization is used in both domains.
to all D2 experiments.	This is the used in WRF with multiple and nested domains
	(Werner and Wang, 2017; Dudhia 2015), as there could be
	issues with two-way nesting when physics parameterization
	differs across the nest boundaries (e.g. in precipitation fields of
	the mother/outer domain) (Dudhia 2015) and used in past
	studies (e.g. Wang and Wang, 2014; Islam et al., 2015). The
	physics parameterization, particularly the cumulus scheme,
	was changed in each sensitivity experiment in both domains.
	Apologies for the confusion. We have revised the time axis of
	Figures 3, 4 & 5 to reflect the analysis period between 18 UTC
	5 November 2013 to 18 UTC 8 November 2013. All
	1

	experiments were initialized at 00 UTC 4 November 2013 (t=0). The different values of intensities at the start of the analysis period (18 UTC 5 November 2013) is expected since there has already been interaction between D01 & D02. The same initial conditions were used for D01 and D02. There is no difference in the simulated intensity (MSLP = 1005hPa; max winds = 17 m/s) at t=0 (04 Nov 00 UTC) for both mother/outer domain (D01) and child/inner domain (D02) for all sensitivity experiment. Kindly refer to Supplementary Figure 3 for more details.
	Given this clarification, there is no need to rerun the simulations.
With this 2nd major concern, it will be difficult to give meaningful comments on the results and discussions.	Given what we have explained above, there is no reason for the 2 nd concern.
3. (Line 155-163, 166). Kindly provide supplementary materials for the results of the other domain configurations that led the authors to select the control run model setup. These supplementary materials are very important to justify the model setup of the control run.	Thank you for this suggestion. We have included some figures in the supplementary material. Initial simulations have been done to check model performance using different domain configurations and horizontal resolution i.e. (a) single domain (at 12km horizontal resolution); (b) two domains (at 12 and 4km horizontal resolution); (c) same as (b) but with bigger inner domain; (d) three domains (12, 4 and 1.3km horizontal resolution); and (e) two domains (25, 5km) horizontal resolution. Domain configuration (e) was used for the sensitivity experiments which simulated the lowest minimum sea level pressure and maximum winds, and in consideration of computing resources and other TC cases that were simulated in the project. Kindly refer to Supplementary Figure 1a for more details.
	Experiments with different lead times have also been conducted prior to the selection of 04 Nov 00 UTC as the initial time (longer lead-time) as well as experiments on different domain configurations and specific experiments with adjusted southern boundaries were also conducted (but for a different TC case that tracked further south) Kindly refer to Supplementary Figures 1b and 2 for more details.
	For the choice of cumulus parameterization in the control run, we have chosen KF for the control run since it's used by PAGASA in its NWP configuration; the default surface flux option (isftcflx = 0) and no spectral nudging so that we can easily assess the sensitivity to these physics parameterization

	and alternative model options. Other parameterizations were
	based on previous work on Typhoon Haiyan i.e. Li et al., 2018.
Minor suggestions	
(Line 113): Correct the year "2012" to "2013".	Thank you for spotting this. Revised in Page 5, Line 190 in the
	revised manuscript
(Line 125): Kindly reconsider "NWP" instead of	The overall approach of the study is that we have used WRF
"RCM".	configured as NWP to get the best configuration for hindcast
	TC cases simulations and eventually use that configuration to
	simulate the TC cases with future climate forcings. The results
	included in this paper is from the former i.e. as a sensitivity
	study using Typhoon Haiyan as the TC case. We have revised
	the manuscript to indicate that we used WRF as a LAM so as
	to avoid confusion.
There is no "Powers 2016" in the references.	Apologies for this. Powers 2016 should read Powers 2017. We
	have revised in Page 5, Line 204 in the revised manuscript and
	already indicated in the references.
(Line 132): Cruz et al., 2016 uses NHRCM and not	Apologies for this mistake. Cruz et al 2016 should read Cruz
WRF to make temperature and rainfall projections in the	and Narisma 2016. We have revised this in Page 4, Line 210
Philippines.	and included in references of the revised manuscript.
(Line 155-170): Kindly provide a table for your control	We have used two-way nesting (between the outer domain D01
run's model setup as indicated in this section. Make sure	and inner domain D02) with horizontal resolution of 25km for
to clarify if you performed one-way or two-way nesting,	D01 and 5km for D01; and 44 vertical levels with model top of
specify the input forcing, temporal and spatial	50hPa. We have explicitly indicated this in the manuscript and
resolutions (dt,dx,dy,dz), model physics, and so on.	added a table for easier reference. Please refer to Table 3, Pages
	9-10 of the revised manuscript.
(Line 180): "These cumulus schemes are used because	PAGASA uses KF, and TK is used for tropical ocean
PAGASA uses KF". Does PAGASA also uses TK?	applications. We have indicated this in Page 7, Lines 266-273
Does the writer mean "The KF cumulus scheme was	in the revised manuscript.
used because"?	
(Line 185): There is no Sun et al., 2019 in the	Thank you for spotting this. Should read and have added Sun
references.	et al., 2015 in the text and references.
The discussion on TK is too short and vague. The author	We have revised and added in the discussion on cumulus
should also provide short discussion of the main output	parameterization particularly on Tiedtke scheme, and added a
of the cited references. Same comment for Lines 194-	brief description on the outputs of the cited references. Kindly
195, 205.	see Page 7, Lines 274-284.
(Line 206): Check repeating phrases in the sentence with	Thank you for pointing this out. We have revised this in Page
"Charnock's (1995)".	8, Line 303.

References

Cha, D-H., Jin, C-S., Lee, D-K., Kuo, Y-H.: Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. Journal of Geophysical Research: Atmospheres. https://https://doi.org/10.1029/2010JD015069, 2011. Cruz, F. and Narisma, G.: WRF simulation of the heavy rainfall over Metropolitan Manila, Philippines during tropical cyclone Ketsana: a sensitivity study. Meteorology and Atmospheric Physics, 128(4), 415–428. https://doi:10.1007/s00703-015-0425-x, 2016. Dudhia, J.: Overview of WRF Physics. Retrieved from

Dudhia,J.:OverviewofWRFPhysics.Retrievedfromhttp://homepages.see.leeds.ac.uk/~lecag/wiser/sample_wiser_files.dir/Physics_Dudhia.ppt.pdf2015.

Li, F., Song, J. and Li, X.: A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013). Nat Hazards 92, 647–67. https://doi:10.1007/s11069-018-3218-y, 2018.

Kueh, M.-T., Chen, W.-M., Sheng, Y.-F., Lin, S. C., Wu, T.-R., Yen, E., Tsai, Y.-L., and Lin, C.-Y.: Effects of horizontal resolution and air-sea flux parameterization on the intensity and structure of simulated Typhoon Haiyan (2013), Nat. Hazards Earth Syst. Sci., 19, 1509–1539, https://doi:10.5194/nhess-19-1509-2019, 2019.

Islam, T., Srivastava, P.K., Rico-Ramirez, M.A. et al.: Tracking a tropical cyclone through WRF-ARW simulation and sensitivity of model physics. Nat Hazards 76, 1473–1495, https://doi:10.1007/s11069-014-1494-8, 2015.

Mohanty, U. C., Osuri, K. K., Routray, A., Mohapatra, M., and Pattanayak, S.: Simulation of bay of bengal tropical cyclones with wrf model: Impact of initial and boundary conditions. Marine Geodesy, 33(4), 294–314. https://doi:10.1080/01490419.2010.518061, 2010.

Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K., and Yasuda, T.: Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, Volume 41, Issue 14, Pages 5106-5113. https://doi:10.1002/2014GL060689, 2014.

Shen, W., Tang, J., Wang, Y., Wang, S., and Niu, X.: Evaluation of WRF model simulations of tropical cyclones in the western North Pacific over the CORDEX East Asia domain. Climate Dynamics, 48(7), 2419–2435. https://doi:10.1007/s00382-016-3213-5, 2017.

Shepherd, T. J., and Walsh, K. J.: Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry. Meteorog. Atmos. Phys., 129(4), 345–374. https://doi:10.1007/s00703-016-0472-y, 2017.

Werner, K. and Wang, G: Nesting in WRF. Climate Science Org Australia. Retrieved from /https://www.climatescience.org.au/sites/default/files/werner_nesting.pdf, 2017.