Response to comments of Anonymous Referee #1 on

Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions

Delfino et. al.

RC1: 'Comment on nhess-2021-400', Anonymous Referee #1

Reviewer 1's COMMENTS	Authors' RESPONSES
General comments	
It is an interesting and well-written article that	Dear Referee,
investigates the impact of (a) two different cumulus	
convection schemes (Kain-Fritsch and Tiedtke), (b)	Thank you very much for the overall positive feedback on the
three surface flux formulations, (c) spectral nudging	submitted manuscript and for giving us the opportunity to submit
and (d) initial and boundary conditions from ERA	an improved version of the manuscript. We appreciate the
deterministic and Ensemble of Data Assimilations	thoroughness and objectiveness of the comments and have
system, on the WRF simulations of super Typhoon	addressed the specific concerns raised. And all changes are
Haiyan (2013) in Western North Pacific. The model	highlighted in the revised manuscript. All line numbers refer to
results are compared against the International Best	the revised manuscript with tracked changes.
Track Archive for Climate Stewardship, satellite data	
and ERA5 re-analyses.	Please see below our specific responses and refer to the attached
The use of English is very good. The figures/tables are	revised manuscript and supplementary file for more details.
clearly produced and necessary. The abstract is concise	
and the conclusions are supported by the results.	
It is suggested to accept this article for publication after	
some minor corrections are performed.	
Suggested corrections:	
Section 2.4: (a) Did you use one or two-way nesting?	(a) Two-way nesting was used to allow interaction between the
(b) Please justify the location of the southern boundary	outer and inner domain. This has been indicated in the
of the inner domain so close to the track of the tropical	manuscript (Page 6, Lines 236-239)
cyclone. Errors from the boundary conditions are	(b) Southern boundary – the overall approach of this study is to
expected to influence the simulation. (c) Why did you	have a common domain for multiple TC cases in this region
extend the inner domain so much north of the track?	(other TC cases not included in this paper, but are the focus
Please justify it in the manuscript. Was it necessary in	of a follow-on paper, about to be submitted) to understand
order to simulate appropriately the subtropical ridge?	and have a more general set of conclusions on the response
(d) Please clearly state whether all the model results of	of TCs to future warming. We conducted several sensitivity
this article are based on the output of the inner domain.	experiments on different domain configurations and
	specific experiments with adjusted southern boundaries
	were also conducted (but for a different TC case that

	 tracked further south) and it was found that the current domain configuration was optimal in terms of simulated tracks and intensity. Indicated in the manuscript (Page 6, Lines 241-244). <i>Kindly see Supplementary Figure 1 for more details.</i> (c) The northern boundary of the inner domain was also designed to consider multiple TC cases (and for further experiments, not included in this paper) that made landfall to the north of the Philippines and to appropriately simulate the subtropical ridge/Western North Pacific Sub-tropical High and Northeasterly winds. Indicated in Page 6, Lines 241-244 in the revised manuscript. Model results indicated in the manuscript are outputs of the inner domain and this has been indicated in the revised manuscript (Page 6, Line 220).
Lines 167-170: How do you explain your result that the	238) Experiments with different lead times have been conducted prior
Lines 167-170: How do you explain your result that the simulation with the longer lead-time was the best?	Experiments with different lead times have been conducted prior to the selection of 04 Nov 00 UTC as the initial time (longer lead- time). Other experiments include 04 Nov 06 UTC, 12 UTC, 18 UTC; 05 Nov 00 UTC, 12 UTC; 06 Nov 00UTC, 12 UTC; and Results of these experiments showed that this chosen initial time with longer lead-time is able to simulate the observed track and intensity better than later times. The longer lead-time was used to allow for the simulation of the early stages of development of Typhoon Haiyan, as also used by Nakamura et al. (2016) for Typhoon Haiyan under present-day and future-climate simulations and associated storm surge. The model initialized at 04 Nov 00UTC and 07 Nov 00UTC have simulated tracks closer to observed (IbTRaCS). In addition, when comparing the simulated and observed intensity (minimum sea level pressure and maximum wind speed), it can be noted that in the time series of the simulated intensities, the model takes longer to develop than the observed. This is often seen in regional modeling / limited area modeling, seems to indicate that the model often requires a spin-up period, for example a 36-hour spin-up period was also implemented by Cruz and Narisma 2016 in simulating Tropical Storm Ketsana, to reduce the effect arising from imbalances between the simulated results due to the model physics (microphysics, planetary boundary layer, cumulus) and the initial and boundary conditions (Chu et al., 2018). This behavior was found to be related to the planetary boundary and surface layer parameterizations in WRF (Maldonado et al., 2020) and the time needed for initialization can also be affected by the size of the domain and terrain conditions (Chu et al., 2018). Thus,

	we considered the time between 04 Nov 00UTC to 05 Nov 12
	UTC as the spin-up period (first 36 hours of simulation and at
	this period Haiyan was observed to be just developing from a
	tropical depression to a tropical storm) and the results presented
	in the manuscript covers the analysis period between 5 Nov 18
	UTC to 8 Nov 18 UTC to cover Haiyan's mature stage. We have
	added a few lines in the revised manuscript (Page 7, Lines 253-
	255). Kindly refer to Supplementary Figure 2 for more details.
Line 182: Was the cumulus convection scheme	Yes, we have used the cumulus schemes in both 25km outer and
employed in both domains? Please state it clearly.	5km inner domain. We have indicated this in the revised
	manuscript (Page 7, Line 268).
Lines 289-290 and 297-298: the mean DPE of KF	Thank you for pointing this out. The indicated DPEs in Lines
simulations is not the same in the former and latter	289-290 (Page 11, Lines 390-391 in revised manuscript) were
lines. The same happens for the TK simulations. Please	the mean throughout the simulation period and not the analysis
make the necessary corrections and update lines 562-	period. We have removed this line and retained the correct
563 accordingly.	figures in Page 11, Lines 390-391 and in the conclusion (Page
	24, Lines 687-688).
Figure 3, x-axes: is it the simulation time or the 72-	Apologies for the confusion. We have revised the time axis of
hour verification time (as it was stated in line 171)?	Figures 3, 4 & 5 to reflect the analysis period between 18 UTC 5
	November 2013 to 18 UTC 8 November 2013. All experiments
	were initialized at 00 UTC 4 November 2013.
Line 319: in Figure 4 the control simulation	Thank you again for pointing this out. Same with the issue on the
(KFsnOFFsf0) has a minimum mslp of about 940 hPa	DPE and we have indicated the correct figures in the revised
(not 934 hPa) and maximum wind speed less than 50	manuscript (Page 12, Lines 422-423). It now reads:
hPa (not 53.69 m/s).	
	"The control simulation (denoted as KFsnOFFsf0) has a MSLP
	value of only 939 hPa and maximum wind speed of 43.47 meters
	per second (ms-1). Compared to the minimum central pressure
	of 895hPa and 73 ms-11-min sustained wind speed in the
	observations, this is a difference of 38 hPa and 29.53ms-1,
	respectively."
Figure 4: For consistency with the symbols of the other	As suggested, we have revised the figures for better
experiments, it is suggested to change the pattern of	representation of the different experiments. Kindly refer to the
TKsnOFFsf1 to dotted line. In the current figure it is	updated Figure 4 (Page 13) in the revised manuscript.
difficult to distinguish it from TKsnOFFsf0.	
Lines 349-350: in figure 6 the RMSE of KFsnOFFsf1	Thank you for spotting this. We have indicated the correct
is about 10 m/s and its correlation is between 0.8 and	figures in the revised manuscript (Page 15, Lines 458-459). It
0.85 (i.e. lower than 0.89).	now reads:
	"Of all the simulations, the simulation with the combination of
	KF and sf1 without nudging have the lowest RMSE (22 hPa
	MSLP and 9.59 ms ⁻¹ maximum winds) and highest correlation
	coefficient of 0.78 and 0.82 for MSLP and maximum winds,
	respectively."

Lines 351-352: in figure 6 the RMSE of TKsnONsf0 is	Thank you for spotting this. We have indicated the correct
about 15 m/s and its correlation is about 0.69.	figures in the revised manuscript (Page 15, Line 459-461). It now
	reads:
	"While the simulation with the poorest performance i.e. highest
	RMSE (37 hPa and 14.17 ms ⁻¹) and lowest correlation coefficient
	(0.60 and 0.69 for MSLP and maximum winds, respectively) is
	the simulation with the combination of TK, sf0, with spectral
	nudging turned on."
Line 409: The simulation with the closest landfall time	Thank you for spotting this. We have indicated the correct
is not shown in Table 3, but it can be derived by Figure	figures in the revised manuscript (Page 17, Line 518).
11 (as far as the experiments without spectral nudging	
are concerned).	
Line 464: Please justify your choice to present only the	For improved readability, we have chosen to present the
runs without nudging in figure 11.	experiments without nudging to represent the TC-associated
	rainfall in the different experiments. Similar rainfall patterns
	were found in the experiments with nudging as shown in
	Supplementary Figure 4.
Line 488: the steering flow bias has not been shown in	Thank you for pointing this out. We have removed this line in
figure 12.	the manuscript (Page 21, Line 600).
Figures 12 and 14: Did you interpolate the WRF output	Yes, the 6-hourly WRF output was interpolated to the coarser
to the coarser ERA5 grid? Which interpolation method	ERA5 grid using First-order Conservative Remapping through
did you use? Please include this information in the	CDO's remapcon function. We have specified this in the revised
article.	manuscript (Page 21, Lines 611-613; Page 22, 645-647; Page 23,
	Lines 665-667)
Figures 12, 13, 14: (a) Please justify the use of the	(a) KFsnOFFsf1 and TKsnOFFsf1 were used in this section to
KFsnOFFsf1 and TKsnOFFsf1 experiments instead of	represent the experiments with KF and TK runs, primarily to
all the KF and TK runs. (b) are these figures based on	save on space but more importantly, similar results were found
6-hourly ERA5 and WRF output?	in the average of the experiments using KF and TK as cumulus
	convection scheme. Kindly refer to Supplementary Figures 5,6
	and 7.
	(b) Yes, these are based on 6-hourly ERA5 and WRF output
	values. We have indicated this in the revised manuscript (Page
	21, Lines 611-613; Page 22, 645-647; Page 23, Lines 665-667)
Lines 501-502: Please clarify in the article whether the	The vertical wind shear was re-computed by averaging the
vertical wind shear was computed (a) from time-	instantaneous values of the vertical wind shear (i.e. firstly
averaged u and v winds at 200 and 850 hPa (i.e. firstly	calculating the instantaneous vertical wind shear at each grid-
calculating the time-averaged u and v at each grid-	point and then calculating its time-average value) (kindly see
point and then using them to calculate the vertical wind	revised Figure 12). We specified this in the revised manuscript
shear), or (b) by averaging the instantaneous values of	(Page 22, Lines 619-620)
the vertical wind shear (i.e. firstly calculating the	

instantaneous vertical wind shear at each grid-point	
and then calculating its time-average value).	
Line 536: (a) do you mean that KF shows a higher	(a) Thank you for pointing this out. We have corrected this
relative humidity along the track? Otherwise, it	observation in the manuscript (Page 23, Lines 657-658).
disagrees with the previous discussion in this	(b) We think this is a great suggestion so we have revised the
paragraph. (b) for clarity it is suggested to draw the	figure to show the simulated tracks. Please refer to the new
tracks of the simulated and actual tracks on both panels	Figure 12 in the revised manuscript.
of figure 14.	
Technical corrections:	
Line 152: " and model physics (Isaksen et al.,	Revised in the manuscript (Page 6, Line 230)
2010)."	
Line 158: " different parameterization"	Revised in the manuscript (Page 6, Line 239)
Line 165: It is a 180-hour period (not 174-hour) from	Revised in the manuscript (Page 6, Line 248)
00 UTC 4 November to 12 UTC 11 November.	
Line 175: " is bounded by 100-170 degrees East"	Revised in the manuscript (Page 7, Line 260)
Line 251: " maximum 10m winds to evaluate"	Revised in the manuscript (Page 10, Line 352)
Line 268: " relative vorticity maxima"	Revised in the manuscript (Page 10, Lines 368-369)
Line 286: " without nudging (snOFF)"	Revised in the manuscript (Page 11, Line 387)
Line 312: " of the DPE (km)"	Revised in the manuscript (Page 12, Line 414)
Line 473: " the KF scheme shows"	Revised in the manuscript (Page 20, Line 582)
Lines 496, 527, 543: KFsnOFFsd1 and TKsnOFFsd1	Revised in the manuscript (Lines 610, 645, 665)
must be corrected to KFsnOFFsf1 and TKsnOFFsf1,	
respectively.	

References

Chu, Q., Xu, Z., Chen, Y. and Han, D.W.: Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times. Hydrology and Earth System Sciences Discussions, 22, 3391–3407. https://doi.org/10.5194/hess-22-3391-2018, 2018.

Cruz, F. and Narisma, G.: WRF simulation of the heavy rainfall over Metropolitan Manila, Philippines during tropical cyclone Ketsana: a sensitivity study. Meteorology and Atmospheric Physics, 128(4), 415–428. https://doi:10.1007/s00703-015-0425-x, 2016.

Maldonado T, Amador JA, Rivera ER, Hidalgo HG, Alfaro EJ.: Examination of WRF-ARW Experiments Using Different Planetary Boundary Layer Parameterizations to Study the Rapid Intensification and Trajectory of Hurricane Otto (2016). Atmosphere, 11(12):1317. https://doi.org/10.3390/atmos11121317, 2020.

Nakamura, R., Shibayama, T., Esteban, M. and Iwamoto, T.: Future typhoon and storm surges under different global warming scenarios: case study of typhoon Haiyan (2013). Nat. Hazards, 82, 1645-1681. https//doi:10.1007/s11069-016-2259-3, 2016.