

1

1	A morpho-tectonic approach to the study of earthquakes in Rome
2	
3	Fabrizio Marra ¹ *, Alberto Frepoli ¹ , Dario Gioia ² , Marcello Schiattarella ³ , Andrea
4	Tertulliani ¹ , Monica Bini ⁴ , Gaetano De Luca ¹ , Marco Luppichini ⁵
5	
6	¹ Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy
7	² Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio Nazionale delle Ricerche, Tito Scalo,
8	I-85050 Potenza, Italy
9	³ Dipartimento delle Culture Europee e del Mediterraneo (DiCEM), Università degli Studi della
10 11	Basilicata, I-75100 Matera, Italy; marcello.schiattarella@unibas.it
12	5Dinartimento di Scienze della Terra Università di Firenze Italy
13	
14	*corresponding author: fabrizio.marra@ingv.it
15	
16	Abstract
17	Rome has the world's longest historical record of felt earthquakes, with more
18	than 100 events during the last 2,600 years. However, no destructive earthquake
19	has been reported in the sources and all of the greatest damage suffered in the
20	past has been attributed to far-field events. While this fact suggests that a
21	moderate seismotectonic regime characterizes the Rome area, no study has
22	provided a comprehensive explanation for the lack of strong earthquakes in the
23	region. Through the analysis of the focal mechanism and the morphostructural
24	setting of the epicentral area of a "typical" moderate earthquake (ML=3.3) that
25	recently occurred in the northern urban area of Rome, we demonstrate that this
26	event reactivated a buried segment of an ancient fault generated under both a
27	different and a stronger tectonic regime than that which is presently active. We
28	also show that the evident structural control over the drainage network in
29	this area reflects an extreme degree of fragmentation of a set of buried faults
30	generated under two competing stress fields throughout the Pleistocene. Small
31	faults and a present-day weaker tectonic regime with respect to that acting
32	during the Pleistocene explain the lack of strong seismicity and imply that a large
33	earthquake could not reasonably occur.

35

2

Key words: Rome; geomorphology; streambed analysis; structural geology;

36	earthquakes; seismotectonics
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	1. Introduction
48	On May 11th 2020, a moderate (M_L=3.3, Io= IV MCS) yet broadly felt earthquake
49	awoke most of the Rome's inhabitants at 05:03 a.m. (local time) (for details see
50	https://e.hsit.it/24397691/index.html). While producing no damage, the
51	shaking alarmed many citizens, who searched for information and reassurance
52	through the dedicated informative sources such as the INGV (Italian National
53	Institute of Geophysics and Volcanology) website. Others, instead, preferred to
54	trust on several popular beliefs which state that "Rome couldn't be struck by a
55	Big One" (i.e., a destructive earthquake with M>7.0), such as the mitigating effect
56	of the catacomb voids (trivial simplification from the Aristotelian theories), or
57	the protection granted by the Pope's presence. It is very likely that only few
58	people based their reactions upon a learned knowledge of the actual
59	seismotectonics features of the Rome's area. Indeed, even if a series of
60	specialized studies have been published in the last 20 years, a dedicated paper
61	investigating the reasons why Rome would not be affected by large earthquakes
62	is still missing in the scientific literature. Filling this gap is the aim of the present
63	paper in which we present a seismic study of the May $11^{th}2020$ earthquake,
64	coupled with a statistical analysis of streambed directions in the epicentral area.
65	We identify the geometry of the seismogenic structure responsible for this M=3.3
66	event, and we frame it within the overall geo-morpho-structural setting of the

67 Rome's area, providing insights on the seismo-tectonic features of this region.

68	
69	2. Seismotectonic features of the Rome's area
70	Our knowledge on the earthquakes that affected the roman area can be resumed
71	from the seismic catalogues' records (Guidoboni et al., 2018; Rovida et al., 2020
72	and from the literature (e.g., Tertulliani and Riguzzi, 1995; Molin and Rossi.,
73	2004; Galli and Molin 2014; Tertulliani et al., 2020) as follows:
74	• very few events caused significant damage in the city (1349, 1703, 1915),
75	according to the studies mentioned above; all these large earthquakes
76	occurred in the Apennines mountain range;
77	• some other seismogenic areas surrounding Rome (e.g., the Colli Albani
78	Volcanic District) generated events that caused moderate damage;
79	the greater area of Rome is periodically affected by low to moderate
80	magnitude local earthquakes which is not supposed to cause significant
81	damage.
82	A summary of the historical and instrumental seismicity of the grater area of
83	Rome is shown in Figure 1. Evidently, the completeness of our knowledge of
84	seismicity decreases going back in time. In the period of ancient Rome, as well in
85	the Early Middle Ages, strong earthquakes would seem hit Rome, sometime
86	causing damage, whose origin is still unknown. The difficulty to understand if
87	such earthquakes were generated by local or far-field sources depends on the
88	documentary accounts: the earthquake was considered a prodigy, and as such,
89	interpreted as a divine foretelling. Information on effects, damage or victims was
90	often neglected, and very rarely documented. For these reasons we are not able
91	to distinguish with reliability if such ancient events were originated, for example,
92	in the Apennines region, or near Rome.
93	It is interesting to note, from the seismic hazard point of view, that the epicenter
94	of several historical events, that occurred in the Roman countryside, are
95	nowadays included in the greater Rome territory, densely urbanized.
96	Within this limited territory we can anyway discriminate some different clusters
97	of seismicity, in particular SE and NE of the City center. Of the first cluster are
98	part the 1812, 1895, 1995 earthquakes, while the 1901 and 2020 events are
99	located NE of the city (Figure 1). Very likely this seismicity feature is due to the
100	activity of different seismotectonic structures.

4

101

Figure 1. Map showing the seismicity of the Rome's area and mainshock location (blue star) ofthe 11.05.2020 earthquake.

104

105

106 **3. Morpho-structural features of the Rome's area**

107 The morpho-structural setting of the Roman area originates in the deformation

108 of the geological substrate by combined faulting processes and erosion of rivers

and streams (Del Monte et al., 2016). Although partially obliterated by millennia

- 110 of anthropic interventions, it presents some evident and peculiar traits, whose
- analysis allows us to understand the features of the tectonic forces (and related
- stress-fields) that acted in the geological past through present time (Marra,
- 113 2001) (Fig. 2). Such analysis also consents to interpret the origin of the
- 114 earthquakes that nowadays affect this area.

5

115

Figure 2. Structural scheme of central Italy showing the competing tectonic force fields and the
 main faults associated with them that acted in the Middle-Upper Pleistocene.

120	If we could	see what the	tonogranhy w	zas like hefor	e the four	ndation o	f the Citv
120	II we could	see what the	topography w	as like belui	e ule lou	nuation 0	i the Gity,

- 121 the area of Rome would appear as a large flat sector, deeply engraved and
- 122 dissected by the valleys of the tributary streams of the Tiber and Aniene Rivers,
- 123 and by the wider ones of the two main watercourses. While these features are
- 124 less visible in the historical center of Rome, they are still well recognizable
- 125 through a Digital Elevation Model (DEM) in its surrounding territory, as
- highlighted in Fig. 3.
- 127

Figure 3. Digital elevation model (DEM) of the Roman area (TINITALY by Istituto Nazionale di Geofisica e Vulcanologia (INGV), published with a CC BY 4.0 license; available at:
https://doi.org/10.13127/TINITALY/1.0), showing the strongly marked characters of the river and stream incisions that form the hydrographic network afferent to the Tiber and the Aniene Rivers.

- 134 135
- 136 Most of the tabular surface highlighted by the shaded area in Fig. 3 is a
- 137 "pyroclastic plateau" created by the emplacement of large coulters of volcanic
- 138 deposits. These are represented by pyroclastic flows, originated by the collapse
- 139 of the sustained eruptive column, and air-fall products such as windblown
- 140 pumice, scoria and lapilli. The deposition of these volcanic products, starting
- 141 from around 600,000 years ago (Marra et al., 2014; Gaeta et al., 2016), leveled
- 142 the ground creating a thick, layered blanket of sediments which was soon after
- 143 etched by the erosive action of the watercourses. The latter, however, did not
- 144 settle at random, but progressively shifted in correspondence with embryonic
- 145 fractures and fault lines created by active tectonic deformation. The same
- 146 fracturing and faulting associated with the extensional tectonic regime which
- 147 shaped the Tyrrhenian Sea margin of central Italy during the Pleistocene allowed

7

148	the magma residing in the mantle to rise to the surface, originating the volcanoes
149	of the so-called "Roman Province" (Peccerillo, 2017) (Fig. 2). An intense
150	seismotectonic regime must have been associated to these large extensional
151	faults, likely producing strong earthquakes throughout this region.
152	
153	From the end of the Middle Pleistocene (125,000 years ago), the tectonic activity
154	began to decrease in intensity, paralleling the decrease in volcanic activity
155	(Marra et al., 2004a). Hence the seismogenic potential of the faults associated
156	with this tectonic regime must also have decreased significantly. This is one of
157	the reasons why Rome is today a low seismicity area. Moderate earthquakes
158	(M≤5.0) (Tertulliani and Riguzzi, 1995; Basili et al., 1995) are almost exclusively
159	concentrated in the volcanic area of Colli Albani (Amato and Chiarabba, 1995),
160	which is in a quiescent status (Trasatti et al., 2018). The moderate seismicity of
161	the Roman area reflects an active stress-field of the same nature, but weaker,
162	than the extensive tectonic regime that characterized the Tyrrhenian Sea margin
163	of central Italy for the entire Pleistocene, as revealed by the study of the focal
164	mechanisms of these earthquakes and borehole breakouts (Montone et al., 1995;
165	Montone and Mariucci, 2016). Such weaker tectonic regime, therefore,
166	reactivates all the faults present in this region with small movements, compatible
167	with their orientation with respect to the vectors of the stress-field (Frepoli et al.,
168	2010). The seismic events associated with this regime do not generate ground
169	ruptures, as it happens for strong, heavy damaging earthquakes, because the
170	small displacements that occur on the fault planes at depth do not propagate to
171	the surface. However, these movements repeated over time generate a slow and
172	progressive deformation of the soil, conditioning the flow direction of surface
173	waters, and exerting a "structural control" on the stream axes and alluvial valleys
174	(Marra, 2001). It follows that the hydrographic network has assumed over time a
175	geometry reflecting that of the faults occurring in the geological substrate.
176	
177	
178	4. Seismicity

179 The small seismic sequence occurred on May 11th 2020 in the north-eastern area

180 of Rome was recorded by the Italian National Seismic Network (RSN) of the

- 181 Istituto Nazionale di Geofisica e Vulcanologia (INGV) and by the regional seismic
- 182 network of Lazio and Abruzzo (RSA) (De Luca et al., 2009; Frepoli et al., 2017)
- 183 (Figure 4). Both national and regional Italian seismic networks have been
- 184 significantly extended in the last two decades through installation of new three
- 185 components, mostly broadband, stations. In addition we integrated the dataset of
- 186 this sequence with the data of the Italian strong motions network (RAN) and
- 187 with the IESN network (Italian Experimental Seismic Network) of Central Italy,
- 188 an amateur seismic network equipped with very good digitizers and sensors.
- 189 This dense monitoring improved in the last decade the detection and location of
- 190 the seismicity in central Italy.
- 191 To accurately relocate the seismicity, we used the Hypoellipse code (Lahr, 1989)
- 192 and a reliable 1D V_p velocity model computed by the application of a genetic
- algorithm (Holland, 1975; Sambridge and Gallagher, 1993). A constant value of
- 194 $1.84 V_p/V_s$ determined with the Wadati method (Chatelain, 1978) was used.
- 195

9

19612°18'12°24'12°30'12°36'12°42'12°48'12°12'</

201

202 5. Geomorphology

203 5.1 Previous studies

204 A quantitative analysis of drainage trends in the south-eastern area of Rome

205 bounded by the Tiber and Aniene Rivers and by the Colli Alabani volcanic district

- 206 was carried on by Marra (2001). A simple technique based on statistical analysis
- 207 of rectified directions of streambeds was applied (e.g., Ciccacci et al., 1987;
- 208 Caputo et al., 1993; Macka, 2003). Stream channel directions for the total area
- 209 and for different sectors were weighted according to three groups of length,
- 210 independent of hydrographic order, and plotted on rose diagrams.
- 211 While it is possible that rectifying drainage patterns can introduce directionality
- 212 that is unrelated to structural control, it still does indicate preferential directions
- 213 of river flow. In the case that these preferential directions of river flow were
- 214 statistically significant and different from those expected from non-structural
- 215 controls (e.g. topographic and geographic trends), they were interpreted to be
- 216 diagnostic of the structural setting. Anthropic intervention is also possible cause
- 217 of rectification of water channels, however, the linearity of the alluvial valleys
- 218 forming in the hydrographic network consents to compare and support the
- 219 directionality of the streambeds. Indeed, deep incisions and a "canyon-like"
- 220 morphology characterizes the alluvial plains forming the hydrographic network
- 221 (see Fig. 3), due to the occurrence of ca. 50 m tectonic uplift in the last 250 ka
- 222 (Marra et al., 2016).

223 224 **Figure 5.** A) Result of the streambed direction analysis performed in this work within the hydrographic basin including the epicenter area of the May 11th event 225 226 (pale-blue borders in B) is compared with that performed in the south-eastern

12

- 227 Roman area, between the Tiber, the Aniene and the Colli Albani (B) (Marra,
- 228 2001). Analysis in the historical city center was hindered by the occurrence of a
- 229 widespread anthropic cover. Basemap from Qgis QuickMapServices (available
- 230 under <u>Creative Commons Attribution-ShareAlike 3.0 licence (CC BY-SA)</u> at:
- 231 https://plugins.qgis.org/plugins/quick_map_services/).
- 232

233 Results of the analysis conducted by Marra (2001) are shown in Fig. 5B showing 234 that the NW-SE direction is the dominant one in the total area analysis (large 235 diagram in the left upper corner), as opposed to an expected radial drainage 236 trend descending from the Colli Albani caldera rim. The maximum concentration 237 of fluvial channel directions oriented N145° matches the strike of extension-238 induced faults and fractures and agrees with the present day stress field 239 determined from focal mechanisms and breakouts data in this region (Montone et al., 1995; Montone and Mariucci, 2016). Moreover, there are significantly 240 241 different concentrations in discrete sectors delimited by the vellow lines. In 242 particular, there are two narrow bands (zones 2 and 4) where the N-S direction 243 of the streambeds prevails, and peculiar "domains" (zones 1A, 5A) where the 244 WNW-ESE one is prevailing. The validation of the 'tectonic' hypothesis was 245 performed through comparison with geometry and kinematics of fault and 246 fractures surveyed in the area, allowing to interpret the pattern highlighted as 247 the result of a complex structural control in this area, exerted by two competing 248 stress-fields alternating each other throughout Pleistocene times (Marra, 1999, 249 2001; Frepoli et al., 2010). 250 251 5.2 Streambed analysis

252 In order to compare the results with previous analysis of the regional

- 253 deformation pattern, a quantitative analysis of drainage trends has been
- 254 performed in the discrete hydrographic basin located in the sector NE of the
- 255 Tiber and Aniene Rivers confluence (Fig. 5A), within which the May 11th
- 256 earthquake occurred.
- 257 The streambed direction analysis within the hydrographic basin including the
- 258 epicenter area of the May 11th event was created by using the QGIS "Line
- 259 Direction Histogram" plugin (Tveite, 2015), that visualizes the distribution of
- 260 line segment directions as a rose diagram (weighted using the line segment
- 261 lengths). The number of bin of direction which composes the rose diagram could
- 262 be set and in this work we used 8 bins corresponding to the main cardinal

13

- 263 directions. The tiles in which the area has been divided were identified
- according to the main directions of streambeds.
- 265

266 5.3 Drainage network anomalies and river profile analysis

- 267 Drainage network anomalies are one of the most useful morphotectonic
- 268 indicators of active tectonics and they are widely used as an effective tool to infer
- 269 the possible control of fault activity on landscape and channels (see for example,
- 270 Boulton et al., 2014; Calzolari et al., 2016; Pavano et al., 2016; Kent et al., 2017;
- 271 Baharami, 2013). Integrated studies of possible active tectonic control on the
- 272 geometry of the drainage network frequently include analysis of river
- 273 longitudinal profiles, preferential orientation and alignments of channels, right-
- angle confluences and fluvial elbows (Boulton et al., 2014; Pavano et al., 2016;
- 275 Kent et al., 2017; Gioia et al., 2018). Indeed, river profile analysis is one of the
- 276 most powerful tools for the identification of transient state of a drainage
- 277 network and recognition of knickpoints/knickzones, which represent valuable
- 278 and effective morphotectonic markers of recent crustal deformation (Whipple
- and Tucker, 1999). Our approach combines the analysis of anomalies in drainage
- 280 network geometry (i.e. preferential orientation and/or alignments of channels,
- 281 fluvial elbows, right-angle confluences) with the identification of
- 282 knickpoints/knickzones of tectonic origin in transient longitudinal river profiles.
- 283 Such data have been used as morphotectonic evidences of active/recent tectonic
- 284 deformation induced by fault system responsible for the seismic activity of the
- study area.
- 286 River profile analysis has been carried out according to the methods and
- 287 procedures developed by Wobus et al. (2006), Forte and Whipple (2019) using a
- 288 DEM with a spatial resolution of 10 m. Stream profile analysis is classically
- 289 carried out by identifying knickpoints or knickzones along the river longitudinal
- 290 profiles or by extracting a linear regression in a log-log slope-area graph, which
- allowed us to extrapolate the concavity index (the slope of the regression) and
- 292 the steepness index (the y-intercept, that is the projection of the best-fit line that
- 293 intersects the y-axis). Knickpoints or abrupt scarps of the longitudinal profiles
- 294 can be related to tectonic- or eustatic- induced perturbations of ancient base-
- 295 levels but their formation and migration can be also related to a co-seismic fault

296	ruptures (Kirby and Whipple, 2012). In particular, the identification of fault-
297	induced disturbance on channel profiles can be performed through the
298	recognition of linear alignments of knickpoints/knickzones in channels with
299	different sizes and orientations (Boulton et al., 2014; Kirby and Whipple, 2012).
300	In order to investigate the possible occurrence of fault-related knickpoints and
301	river profile anomalies, we have investigated the river longitudinal profiles of the
302	main channels of the study area through the identification and mapping of
303	abrupt changes in river profile shape. Such data have been combined with the
304	morphotectonic analysis of the spatial distribution of drainage network
305	anomalies. Then, their spatial distribution has been used to infer the traces of
306	possible tectonic lineaments of the study area.
307	
308	6. Results
309	6.1 Focal mechanism and re-location of the 11 May earthquake
310	The $M_{\rm L}$ 3.3 mainshock (11 May at 03:03 UTC) was followed over the next two
311	days by only four small aftershocks with magnitude ranging from 0.7 to 1.8.
312	Thanks to the high station coverage we were able to determine all earthquake
313	hypocenter depths with acceptable uncertainties. The average location errors
314	are 0.14 km (horizontally) and 0.32 km (vertically) with a confidence level of
315	90%. Mainshock hypocenter is at 9.6 km of depth, while the aftershock
316	hypocenters are ranging from 5.0 to 11.2 km of depth (Fig. 4). The two largest
317	aftershocks (magnitude $M_{\rm L}$ 1.8 and 1.4, respectively) have depth between 5.0
318	and 5.8 km, and are located very close to the mainshock epicenter, while the two
319	smallest aftershocks (both magnitude $M_{\rm L}$ 0.7) are located slightly towards NW
320	with respect to the mainshock epicenter, at 7.2 and 11.2 km of depth.
321	We have computed the fault plane solution of the mainshock with the FPFIT code
322	(Reasenberg and Oppenheimer, 1985). First-motion polarities are 57. The focal
323	mechanism has a large strike-slip component (first nodal plane: strike 210, dip
324	65, rake 25). T-axis is oriented in a NE-SW direction according with the general
325	"Antiapennine" (NE-SW) extension. Following some tectonic information of this
326	area, the fault plane coincides with the NNE-SSW nodal plane of the solution
327	which has a left-lateral strike-slip kinematics.
328	

329	6.2 Statistical analysis of streambed directions in the epicenter area
330	Results of the streambed analysis in the small hydrographic basin where the
331	epicenter of the May 11th earthquake occurred are summarized in Fig. 5A.
332	The streambeds in the eastern portion of the basin (discrete sectors D, E, F)
333	concentrate around the NE-SW direction, which is the one expected based on the
334	topographic gradient, perpendicular to the Aniene River course, towards which
335	the catchment basin drains. In contrast, an abrupt rotation occurs in the western
336	portion of the basin (discrete sectors A, B, C), where the streambeds are aligned
337	along the NNE-SSW direction, parallel to the main watercourse of the Tiber
338	River. Similarly to the results obtained in the southern area by Marra (2001),
339	showing that the ca. N-S direction is a characteristic feature of the streambeds in
340	this region which is clearly independent by the geographic and topographic
341	control on the hydrographic network, we interpret the N-S lineaments to reflect
342	tectonic control on the streambeds exerted by fault activity in the analyzed basin.
343	As it has been remarked in previous works (e.g., Alfonsi et al., 1991; Faccenna et
344	al., 1994, 2008; Marra et al., 2004b) strike-slip, right-lateral N-S faults have been
345	active repeatedly during the Pleistocene, up to historical times. Frepoli et al.
346	(2010) have remarked on the direct relationship between the sectors
347	characterized by N-S direction of the streambeds and seismically active fault
348	zones. It is worth noting that the May 11th earthquake epicenter occurs on the
349	northern continuation of one such N-S zone (zone 2 in Fig. 5B).
350	
351	6.3 Morphotectonic analysis of the drainage network: river profile analysis
352	and drainage network anomalies
353	Analysis of longitudinal river profiles of the bedrock-rivers is based on the
354	stream power incision model (Whipple and Tucker, 1999; Wobus et al., 2006;
355	Forte and Whipple, 2019) and has been carried out to evaluate the channel
356	response to eustatic- and tectonic-induced processes. In a first step, we prepare a
357	map of the normalized steepness index (ksn) with a reference concavity index of
358	θ ref = 0.45 (Fig. 6a). Ksn map allowed us to perform a preliminary analysis of the
359	spatial distribution of ksn values, which can be useful to individuate the sectors
360	of the landscape featured by knickpoints and knickzones of tectonic origin.
361	Moreover, a morphotectonic map showing the spatial distribution of fluvial

362	elbows and anomalies in drainage network geometry was also introduced (Fig.
363	64b). Fig. 7 shows the results of the analysis of the river profiles, which
364	highlights how most of the channels deviates from the typical equilibrium shape
365	of the longitudinal profiles. Longitudinal profiles are featured by the presence of
366	knickpoints and knickzones, mainly in the central reach of the river profiles.
367	These knickpoints appear not controlled by lithological contact and suggest a
368	transient state of the fluvial net induced by tectonic perturbation or eustatic
369	base-level variations. In particular, we detect the occurrence of convex zones or
370	knickpoints related to a past base-levels, as testified by the presence of a large
371	"terraced surfaces" at altitude ranging from 60 to 40 m a.s.l. (Fig. 7). Our analysis
372	also reveals the occurrence of a cluster of knickpoints in the right-orographic
373	side of the Aniene River with different features than the previous ones. In fact,
374	they can be classified as slope-break knickpoint (<i>sensu</i> Wobus et al., 2006, see
375	also Kirby and Whipple, 2012) and are aligned along NW-SO and N-S orientation.
376	Such alignments as well as the location of anomalous confluences and right-angle
377	elbows of the drainage network allowed us to infer the occurrence of the tectonic
378	lineaments mapped in Fig. 7, which can be responsible for the recent tectonic
379	activity that promoted the perturbation of the fluvial net.

17

Figure 6. a) Hillshade of the study area and distribution of the normalized channel steepness
 index (ksn, θref = 0.45); b) Drainage network of the study area and main planar anomalies of the
 fluvial net. Tectonic lineaments inferred by morphotectonic analysis are also showed.

19

- 392
- 393
- 394

Figure 7. Longitudinal profiles of the main channels of the study area (location and numbering in the main map) and interpretation of the knickpoints.

DEM images in these figures: TINITALY by Istituto Nazionale di Geofisica e Vulcanologia (INGV), published with a CC BY 4.0 license; available at: https://doi.org/10.13127/TINITALY/1.0

395	7. Discussion
396	Studies conducted during the last two decades by the INGV on the geological-
397	structural and seismic-tectonic setting of the Roman area have shown that the
398	geometry of the hydrographic network reflects that of a set of buried faults
399	(Marra, 199, 2001; Frepoli et al., 2010). These are faults that are no longer active
400	with the seismic intensity they had in the geological past. They are reactivated
401	under the effect of the stress-field that currently acts in the upper crust and
402	determines the genesis of low-magnitude earthquakes in this region.
403	In particular, it has been shown that the directions of the streambeds reflect the
404	deformation field induced on the surface by the reactivation of these buried
405	faults, with a set of three preferential alignments:
406	i- The first displays an NW-SE "Apennine" direction, ("a" in Fig. 8), which
407	precisely reflects that of the large, dip-slip extensional faults that first created the
408	Tyrrhenian Sea marine basins (Barberi et al., 1994) and later, in the lower-
409	middle Pleistocene, the so-called "Tyrrhenian margin" (Fig. 2). This is a wide
410	hilly or sub-flat area between the Apennine chain and the present coast,
411	originated by the fault displacement and the "staircase" lowering of the
412	mountain relief (Parotto and Praturlon, 1975). The direction of these faults also
413	reflects the alignment of the volcanoes that developed in the Middle Pleistocene
414	along the Tyrrhenian margin, following the rise of magmas mainly along the
415	fractures in the earth's crust created by these tectonic structures (Locardi et al.,
416	1977).
417	

21

418 419

> 420 Figure 8. Geo-morpho-structural setting of the epicenter area. The thicker dashed lines 421 represent the main buried faults inferred from the analysis of the hydrographic network, with 422 the exception of the "a" fault, interpreted on the basis of the presence of a structural high to the 423 NE, represented by outcrops of Pliocene sediments. A fourth set of NE-SW lineaments is likely 424 originated by the topographic gradient in this area and is not highlighted as potential structural 425 control. The thin, solid lines represent the superficial expression of the deformation linked to 426 faults that are continuous at depth (b', b"), evidenced by straight tracts of the riverbeds. One of 427 these deep NNE-SSW faults is the one that generated the May 11th earthquake, as the focal 428 mechanism of this event suggests.

431 ii- The second s	set of lineaments has a	direction from	NS to l	NNE-SSW (("b" ir	ı Fig
----------------------	-------------------------	----------------	---------	-----------	---------	-------

- 432 8) and reflects that of even older faults, with right-lateral strike-slip character
- 433 (i.e. sub-vertical faults with right-hand horizontal movement (Alfonsi et al., 1991;
- 434 Faccenna et al., 1994). These faults are linked to the dismemberment of the
- 435 Apennine chain in independent arcs, due to the fragmentation of the "slab", that
- 436 is the "Adriatic" tectonic plate which subducted below the Apennine orogenetic
- 437 chain (Malinverno and Rayan, 1986; Patacca et al., 1990). However, these faults
- have been active until recent times (Faccenna et al., 2008; Marra et al., 2004b),
- 439 probably due to the independent geodynamic mechanism that generated them,
- 440 and are competing with the regime of forces that originated the extensional

22

- 441 faults (Marra, 2001; Faccenna et al., 1996). We also know from the analysis of the
- 442 focal mechanisms of local earthquakes that small N-S fault segments are
- 443 currently reactivated with opposite movement (left-lateral) together with the
- 444 "Apennine", dip-slip faults (Frepoli et al., 2010).
- 445
- 446 iii- Finally, a third set of lineaments has conjugated WNW-ESE and ENE-WSW
- 447 directions ("c" and "c'" in Fig. 8) and creates particular rhomboid "domains"⁹.
- 448 Within these discrete regions, the N-S direction (as in the case of the epicenter
- area of the Rome's May 11th, 2020 earthquake, Fig. 8), or the same WNW-ESE
- 450 directions (sectors 1A and 5A in Fig. 5B) may prevail. The origin of these
- 451 domains is linked to the strike-slip faults and can be generated between two
- 452 long, parallel N-S lineaments (Jones and Tanner, 1995). The characteristic of the
- 453 strike-slip (transcurrent) faults is precisely that of being arranged in parallel
- 454 with "en-echelon" geometry, that is, along stairway segments which can,
- 455 however, locally have a lateral overlap between them (Sylvester, 1988). The en-
- 456 echelon geometry characterizes the surface expression of faults that are
- 457 continuous at depth (Sylvester, 1988) (examples b' and b" in Fig. 8).
- 458

459 8. Conclusions

460 The analysis of the hydrographic network in the epicenter area of the May 11th, 2020 earthquake shows a relative maximum concentration of the streambed in 461 462 the NNE-SSW direction: some of such rectilinear tracts, arranged with en-463 echelon geometry, are highlighted in Fig. 5. We interpret these features as the 464 surface expression of buried NNE-SSW, strike-slip faults. Indeed, the focal mechanism and aftershock alignment reveal that one of these buried ~N-S fault 465 reactivated with left-lateral movement on the occasion of the May 11th 2020 466 earthquake. Effectively, tectonically sensitive geomorphic analyses revealed the 467 468 occurrence of a cluster of knickpoints in the right side of the Aniene River that 469 can be classified as slope-break knickpoints and are aligned along NW-SO and N-470 S orientation. Such a fluvial net perturbation corroborates the hypothesis of 471 recent tectonic activity affecting the study area along those faults. 472 When we consider the multitude of lineaments that are present at a wider and at 473 a smaller scale in this region (e.g., Fig. 2 and Fig. 8, respectively), we realize the

23

- 474 extreme fragmentation deriving from the intricate network of genetically
- 475 different faults. Such fragmentation results into a number of small fault
- 476 segments, with respect to the original long fault lines generated under the
- 477 competitive tectonic regimes that affected this region during Pleistocene times.
- 478 Small fault planes and a weaker tectonic regime explain the occurrence of
- 479 moderate seismicity and provide a likely explanation for the inhabitants of Rome
- 480 of the reason why they should not expect that a large esrthquake may affect the
- 481 City.
- 482
- 483

484 **Additional information**

485 The authors declare no competing financial and non-financial interests.

486

487 Data availability statement

- 488 All data generated or analyzed during this study are included in this published
- 489 article.
- 490

491 **Author Contribution statement**

492

493 F.M. conceptualization, methodology, validation, investigation, Writing - Original 494 draft, supervision 495 A.F. methodology, validation, investigation, data curation, Writing - Original draft

496 D.G. methodology, validation, investigation, data curation, Writing - Original draft 497 M.S. methodology, validation, investigation, data curation, Writing - Original

498 draft

499 A.T. methodology, validation, investigation, data curation, Writing - Original draft 500 M.B. methodology, validation, investigation, data curation, Writing - Review and 501 editing

- G.D.L. methodology, validation, investigation, data curation, Writing Review and 502 503 editing
- M.L. methodology, validation, investigation, data curation, Writing Review and 504 505 editing
- 506
- 507
- 508
- 509
- 510
- 511

512

24

513	REFERENCES
514	Alfanzi I. Eurisialla D. Mattai M. Cinatti O. Majanani A. Dusita Mantinan M.
515	Allonsi, L., Funiciello, R., Mattel, M., Girotti, O., Malorani, A., Preite Martinez, M.,
516	Frudu, C., Furi, B.: Structural and geochemical features of the Sabina strike-slip
517	rault (Central Apennines), Bollettino della Societa Geologica Italiana, 110, 21/-
518	230, 1991.
519	
520	Amato, A. and Chiarabba, C.: Earthquake occurrence and crustal structure, in:
521	The Volcano of the Alban Hills, edited by Trigila, R., Univ. degli Studi di Roma "La
522	Sapienza", Rome, 193–211, 1995.
523	
524	Bahrami, S.: Analyzing the drainage system anomaly of zagros basins:
525	Implications for active tectonics, Tectonophysics, 608, 914-28, 2013.
526	
527	Barberi, F., Buonasorte, G., Cioni, K., Fiordelisi, A., Foresi, L., Iaccarino, S.,
528	Laurenzi M.A., Sbrana, A., Vernia, L., Vilia, I.M.: Pilo-Pieistocene geological
529	evolution of the geothermal area of Tuscany and Latium, Mem. Descr. Carta Geol.
530	Ital., 49, 77-134, 1994.
531	Decili A. Contone I. Concer M. Encoli A. Monthaviti I. Nactor C. Coloreri C.
532	Basili, A., Cantore, L., Cocco, M., Frepoli, A., Margneriti, L., Nostro, C., Selvaggi, G.:
533	The June 12, 1995 microearthquake sequence in the city of Rome, Ann. Geolis.,
534	39(6), 1107-1175, 1996.
535	Doulton CL Stolege M. Mathen A.E. Transient flurial incision of an indicator of
530 E27	boulton, S.J., Stokes, M., Mather, A.E.: Transfelit huvial incision as an indicator of
537 E20	Tactor and Pilo-Quaternary upint of the Moroccan Figh Auas,
530	Tectonophysics, 055, 10-55, uoi: 10.1010/j.tect0.2014.00.052, 2014.
539	Calzalari C. Dalla Sata M. Possatti F. Nazaom P. Vignarali C. Cosontino D.
540	Eacconna, E: Coomorphic signal of active faulting at the northern edge of Lut
542	Reck: Insights on the kinematic scenario of Central Iran Tectonics 25(1) 76
542	102 doi: https://doi.org/10.1002/2015TC0028602016
544	102, doi: https://doi.org/10.1002/2013100030092010.
545	Caputo C. Ciccacci S. De Rita D. Fredi P. Lunia Palmieri F. Salvini F. Drainage
546	nattern and tectonics in some volcanic areas of Latium (Italy) Geologica Romana
547	29 1-13 1993
548	25, 1 16, 1776.
549	Chatelain I.L.: Etude fine de la sismicité en zone de collision continentale à l'aide
550	d'un réseau de stations portables: la region Hindu-Kush-Pamir Thèse de 3 éme
551	cycle Univ Paul Sabatier Toulouse 1978
552	<i>y c c c c c c c c c c</i>
553	Ciccacci, S., Fredi, P., Lupia Palmieri, E., Salvini, F.: An approach to the
554	quantitative analysis of the relations between drainage pattern and fracture
555	trend. in: International Geomorphology 1986. edited by Gardiner. V., Proceedings
556	of the First International Conference on Geomorphology, Part II, John Wiley and
557	Sons Ltd, Chichester, 49-68,1987.
558	
559	Del Monte, M., D'Orefice, M., Luberti, G.M., Marini, R., Pica, A., Vergari, F.:

560 Geomorphological classification of urban landscapes: the case study of Rome

25

561 (Italy), Journal of Maps, 12, 178-189, DOI:10.1080/17445647.2016.1187977,
562 2016.

- 563
- 564 De Luca, G., Cattaneo, M., Monachesi, G., Amato, A.: Seismicity in central and
- 565 northern Apennines integrating the Italian national and regional networks,
- 566 Tectonophysics, 476(1), 121-135, doi:10.1016/j.tecto.2008.11, 2009.
- 567
- 568 Faccenna, C., Funiciello, R., Mattei, M.: Late Pleistocene N-S shear zones along the
- 569 Latium Tyrrhenian margin: structural characters and volcanological
- 570 implications, Bollettino di Geofisica Teorica Applicata, 36, 507-522, 1994.
- 571
- 572 Faccenna, C., Davy, P., Brun, J.P., Funiciello, R., Giardini, D., Mattei, M., Nalpas, T.:
- 573 The dynamics of back-arc extension: an experimental approach to the opening
- of the Tyrrhenian Sea, Geophysical Journal International, 126, 781–795, 1996.
- 575
- 576 Faccenna, C., Soligo, M., Billi, A., De Filippis, L., Funiciello, R., Rossetti, C.,
- 577 Tucciemei, P.: Late Pleistocene depositional cycles of the Lapis Tiburtinus
- 578 travertine (Tivoli, Central Italy): Possible influence of climate and fault activity,
- 579 Global and Planetary Change, 63(4), 299-308, 2008.
- 580 doi:10.1016/j.gloplacha.2008.06.006
- 581
- Forte, A.M. and Whipple, K.X.: Short communication: The Topographic Analysis
 Kit (TAK) for TopoToolbox, Earth Surf Dynam, 7(1), 87-95, doi: 10.5194/esurf-787-2019, 2019.
- 585
- Frepoli A, Marra F, Maggi C, Marchetti A, Nardi A, Pagliuca NM, et al. Seismicity,
 seismogenic structures and crustal stress field in the greater area of Rome (Central
 Italy). Journal Geophysical Research 2010;115. doi:10.1029/2009JB006322, 2010
- 588 589
- 590 Frepoli, A., Cimini, G.B., De Gori, P., De Luca, G., Marchetti, A., Monna, S., Montuori,
- 591 C., Pagliuca, N.: Seismic sequences and swarms in the Latium-Abruzzo-Molise
- 592 Apennines (central Italy): new observations and analysis from a dense
- 593 monitoring of the recent activity, Tectonophysics, 712-713, 312-329,
- 594 doi.org/10.1016/j.tecto.2017.05.026, 2017.
- 595
- 596 Galli, P.A.C. and Molin, D.: Beyond the damage threshold: the historic
- 597 earthquakes of Rome, Bull Earthquake Eng., 12, 1277–1306,
- 598 https://doi.org/10.1007/s10518-012-9409-0, 2014.
- 599
- Gaeta, M., Freda, C., Marra, F., Arienzo, I., Gozzi, F., Jicha, B., Di Rocco, T.: Paleozoic
 metasomatism at the origin of Mediterranean ultrapotassic magmas: constraints
 from time-dependent geochemistry of Colli Albani volcanic products (Central
- 603 Italy), Lithos, 244, 151-164, 2016.
- 604605 Gioia, D., Schiattarella, M., Giano, S.: Right-Angle Pattern of Minor Fluvial
- 606 Networks from the Ionian Terraced Belt, Southern Italy: Passive Structural
- 607 Control or Foreland Bending?, Geosciences, 8(9), 331, PubMed PMID,
- 608 doi:10.3390/geosciences8090331, 2018.
- 609

- 610 Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Sgattoni, G.,
- 611 Valensise, G.: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-
- 612 1997) e nell'area Mediterranea (760 a.C.-1500), Istituto Nazionale di Geofisica
- 613 e Vulcanologia (INGV), http://storing.ingv.it/cfti/cfti5, 2018.
- 614
- Holland, J.H.: Adaptation in Natural and artificial systems, University of MichiganPress, Ann Arbor, 1975.
- 617
- Jones, R.R. and Tanner, P.W.G.: Strain partitioning in transpression zones, Journal
 of Structural Geology, 17, 793-802, 1995.
- 620
- Kent, E., Boulton, S.J., Whittaker, A.C., Stewart, I.S., Cihat Alçiçek, M.: Normal fault
 growth and linkage in the Gediz (Alaşehir) Graben, Western Turkey, revealed by
 transient river long-profiles and slope-break knickpoints, Earth Surface
- 624 Processes and Landforms, 42(5), 836-52, https://doi.org/10.1002/esp.4049, 625 2017.
- 626
- 627 Kirby, E. and Whipple, K.X.: Expression of active tectonics in erosional
- 628 landscapes, Journal of Structural Geology, 44:54-75,
- 629 https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
- 630
- Lahr, J.C.: HYPOELLIPSE/Version 2.0: a computer program for determining local
 earthquake hypocentral parameters, magnitude and first-motion pattern, U.S.
- 633 Geol. Surv. Open-file Report, 95, 89-116, 1989.
- 634
- Locardi, E., Lombardi, G., Funiciello, R., Parotto, M.: The Main volcanic groups ofLatium (Italy): relations between structural evolution and petrogenesis,
- 637 Geologica Romana, 15, 279-300, 1977.
- 638
- Macka, Z: Structural control on drainage network orientation an example from
 the Loucka drainage basin, SE margin of the Bohemian Massif (S Moravia, Czech
- 641 Rep.), Landform Analysis, 4, 109-117, 2003.
- Malinverno, A. and Ryan, W.B.F.: Extension in the Tyrrhenian sea and shortening
 in the Apennines as results of arc migration driven by sinking of the lithosphere,
 Tectonics, 5: 227-245, 1986.
- 646
- 647 Marra, F.: Low-magnitude earthquakes in Rome: structural interpretation and
- 648 implications for local stress-field, Geophysical Journal International, 138, 231-649 243, 1999.
- 650
- Marra, F., Taddeucci, J., Freda, C., Marzocchi, W., Scarlato, P.: Recurrence of
- 652 volcanic activity along the Roman Comagmatic Province (Tyrrhenian margin of
- Italy) and its tectonic significance, Tectonics, 23, TC4013.
- 654 doi:10.1029/2003TC001600, 2004.
- 655
- Marra, F., Montone, P., Pirro, M., Boschi, E.: Evidence of Active Tectonics on a
- Roman Aqueduct System (II-III Century A.D.) near Rome, Italy, Journal of StructuralGeology, 26, 679-690, 2004.

27

659	
660	Marra, F., Sottili, G., Gaeta, M., Giaccio, B., Jicha, B., Masotta M., Palladino, D.: Major
661	explosive activity in the Sabatini Volcanic District (central Italy) over the 800-
662	390 ka interval: geochronological - geochemical overview and
663	tephrostratigraphic implications, Quaternary Science Reviews, 94, 74-101,
664	DOI:10.1016/j.guascirev.2014.04.010, 2014.
665	
666	Marra, F., Florindo, F., Anzidei, M., Sepe, V.: Paleo-surfaces of glacio-eustatically
667	forced aggradational successions in the coastal area of Rome: assessing interplay
668	between tectonics and sea-level during the last ten interglacials. Ouaternary
669	Science Review, 148: 85-100,
670	http://dx.doi.org/10.1016/i.guascirey.2016.07.003.2016.
671	
672	Molin. D. and Rossi. A.: Effetti prodotti in Roma dai terremoti del 1703. in
673	Settecento abruzzese, in: Eventi sismici, mutamenti economico-sociali e ricerca
674	storiografica, edited by Colapietra, R., Marinangeli, G., Muzzi, P., L'Aquila, 69-106.
675	2004.
676	
677	Montone, P. Amato A. Chiarabba C. Buonasorte G. Fiordelisi A., Evidence of active
678	extension in Ouaternary volcanoes of Central Italy from breakout analysis and
679	seismicity. Geophysical Research Letters 1995:22: 1909-1912.
680	
681	Montone, P. and Mariucci, M.T.: The new release of the Italian contemporary
682	stress map. Geophysical Journal International. 205(3).1525-1531.
683	doi:10.1093/gii/ggw100.2016.
684	
685	Patacca, E., Sartori, R., Scandone, P.: Tyrrhenian basin and apen- ninic arcs:
686	Kinematic relations since late Tortonian times, Mem. Soc. Geol. Ital., 45, 425–451,
687	1990.
688	
689	Parotto, M. and Praturlon, A.: Geological summary of the Central Appenines, in:
690	Structural Model of Italy, edited by Ogniben, L., Parotto, M., Praturlon A., Quad.
691	Ric. Scient., 90, 257-311, 1975.
692	
693	Pavano, F., Pazzaglia, F.J., Catalano, S.: Knickpoints as geomorphic markers of
694	active tectonics: A case study from northeastern Sicily (southern Italy),
695	Lithosphere, 8(6), 633-48, doi: 10.1130/L577.1, 2016.
696	
697	Peccerillo, A.: Cenozoic Volcanism in the Tyrrhenian Sea Region, S. IAVCEI,
698	Barcelona, Springer, 2017.
699	
700	Reasenberg, P. and Oppenheimer, D.: FPFIT, FPPLOT and FPPAGE: FORTRAN
701	computer programs for calculating and displaying earthquake fault plane
702	solutions, USGS Open-file Report, 85-739, 1985.
703	
704	Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P.: The Italian earthquake
705	catalogue CPTI15. Bulletin of Earthquake Engineering, 18, 2953–2984.
706	https://link.springer.com/article/10.1007/s10518-020-00818-y, 2020.

- 708 Sambridge, M and Gallagher, K.: Earthquake hypocenter location using genetic
- 709 algorithms, Bull. Seism. Soc. Am., 83(5), 1467-1491, 1993.
- 710
- 711 Tertulliani, A. and Riguzzi, F.: Earthquakes in Rome during the past one hundred
- 712 years, Ann. Geofis., 38, 591–606, 1995.
- 713 Tertulliani A, Graziani L, Esposito A. How historical seismology can benefit from
- 514 bureaucracy: the case of the "Lettere Patenti" of the city of Rome in 1703. Seism.
- 715 Res. Lett. 2020;91, 2511-2519. https://doi.org/10.1785/0220200046
- 716
- 717 Trasatti, E., Marra, F., Polcari, M., Etiope, G., Ciotoli, G., Darrah, T., Tedesco, D.,
- 718 Florindo, F., Ventura, G.: Coeval uplift and subsidence reveal magma recharging
- near Rome, Geochemistry, Geophysics, Geosystems.
- 720 DOI:10.1029/2017GC007303, 2018
- 721
- 722 Tveite, H.: The QGIS Line Direction Histogram Plugin,
- 723 http://plugins.ggis.org/plugins/LineDirectionHistogram/, 2015.
- 724
- 725 Whipple, K.X. and Tucker, G.E.: Dynamics of the stream-power river incision
- 726 model: Implications for height limits of mountain ranges, landscape response
- timescales, and research needs, Journal of Geophysical Research: Solid Earth.,
- 728 104(B8),17661-74, doi: 10.1029/1999JB900120, 1999.
- 729
- 730 Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby,
- 731 B., Sheehan, D.: Tectonics from topography: Procedures, promise, and pitfalls,
- 732 Special Paper of the Geological Society of America, 55-74, 2006.
- 733
- 734